PDF Intelligent computing in bioinformatics 10th international conference icic 2014 taiyuan china au

Page 1


10th International Conference ICIC 2014

Taiyuan China August 3 6 2014

Proceedings 1st Edition De-Shuang Huang

Visit to download the full and correct content document: https://textbookfull.com/product/intelligent-computing-in-bioinformatics-10th-internatio nal-conference-icic-2014-taiyuan-china-august-3-6-2014-proceedings-1st-edition-de-s huang-huang/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Intelligent Computing Theory 10th International Conference ICIC 2014 Taiyuan China August 3 6 2014 Proceedings 1st Edition De-Shuang Huang

https://textbookfull.com/product/intelligent-computingtheory-10th-international-conference-icic-2014-taiyuan-chinaaugust-3-6-2014-proceedings-1st-edition-de-shuang-huang/

Intelligent Computing Methodologies 10th International Conference ICIC 2014 Taiyuan China August 3 6 2014

Proceedings 1st Edition De-Shuang Huang

https://textbookfull.com/product/intelligent-computingmethodologies-10th-international-conference-icic-2014-taiyuanchina-august-3-6-2014-proceedings-1st-edition-de-shuang-huang/

Intelligent Computing Theories and Application 13th

International Conference ICIC 2017 Liverpool UK August 7 10 2017 Proceedings Part I 1st Edition De-Shuang Huang

https://textbookfull.com/product/intelligent-computing-theoriesand-application-13th-international-conferenceicic-2017-liverpool-uk-august-7-10-2017-proceedings-part-i-1stedition-de-shuang-huang/

Intelligent Computing Methodologies 16th International Conference ICIC 2020 Bari Italy October 2 5 2020

Proceedings Part III De-Shuang Huang

https://textbookfull.com/product/intelligent-computingmethodologies-16th-international-conference-icic-2020-bari-italyoctober-2-5-2020-proceedings-part-iii-de-shuang-huang/

Intelligent Computing Theories and Application 16th

International Conference ICIC 2020 Bari Italy October 2 5 2020 Proceedings Part I De-Shuang Huang

https://textbookfull.com/product/intelligent-computing-theoriesand-application-16th-international-conference-icic-2020-bariitaly-october-2-5-2020-proceedings-part-i-de-shuang-huang/

Intelligent Computing Theories and Application DeShuang Huang

https://textbookfull.com/product/intelligent-computing-theoriesand-application-de-shuang-huang/

Distributed Computing and Internet Technology 10th International Conference ICDCIT 2014 Bhubaneswar India February 6 9 2014 Proceedings 1st Edition Gérard Berry

https://textbookfull.com/product/distributed-computing-andinternet-technology-10th-international-conferenceicdcit-2014-bhubaneswar-india-february-6-9-2014-proceedings-1stedition-gerard-berry/

Bioinformatics Research and Applications 10th International Symposium ISBRA 2014 Zhangjiajie China June 28 30 2014 Proceedings 1st Edition Mitra Basu

https://textbookfull.com/product/bioinformatics-research-andapplications-10th-international-symposium-isbra-2014-zhangjiajiechina-june-28-30-2014-proceedings-1st-edition-mitra-basu/

Intelligent Virtual Agents 14th International

Conference IVA 2014 Boston MA USA August 27 29 2014 Proceedings 1st Edition Timothy Bickmore

https://textbookfull.com/product/intelligent-virtual-agents-14thinternational-conference-iva-2014-boston-ma-usaaugust-27-29-2014-proceedings-1st-edition-timothy-bickmore/

De-Shuang Huang Kyungsook Han

Michael Gromiha (Eds.)

Intelligent Computing in Bioinformatics

10th International Conference, ICIC 2014 Taiyuan, China, August 3–6, 2014

Proceedings

LectureNotesinBioinformatics8590

SubseriesofLectureNotesinComputerScience

LNBISeriesEditors

SorinIstrail

BrownUniversity,Providence,RI,USA

PavelPevzner

UniversityofCalifornia,SanDiego,CA,USA

MichaelWaterman UniversityofSouthernCalifornia,LosAngeles,CA,USA

LNBIEditorialBoard

AlbertoApostolico

GeorgiaInstituteofTechnology,Atlanta,GA,USA

SørenBrunak

TechnicalUniversityofDenmarkKongensLyngby,Denmark

MikhailS.Gelfand

IITP,ResearchandTrainingCenteronBioinformatics,Moscow,Russia

ThomasLengauer

MaxPlanckInstituteforInformatics,Saarbrücken,Germany

SatoruMiyano

UniversityofTokyo,Japan

EugeneMyers

MaxPlanckInstituteofMolecularCellBiologyandGenetics Dresden,Germany

Marie-FranceSagot

UniversitéLyon1,Villeurbanne,France

DavidSankoff

UniversityofOttawa,Canada

RonShamir

TelAvivUniversity,RamatAviv,TelAviv,Israel

TerrySpeed

WalterandElizaHallInstituteofMedicalResearch Melbourne,VIC,Australia

MartinVingron

MaxPlanckInstituteforMolecularGenetics,Berlin,Germany

W.EricWong

UniversityofTexasatDallas,Richardson,TX,USA

De-ShuangHuangKyungsookHan MichaelGromiha(Eds.)

10thInternationalConference,ICIC2014 Taiyuan,China,August3-6,2014

Proceedings

VolumeEditors

De-ShuangHuang

TongjiUniversity

MachineLearningandSystemsBiologyLaboratory SchoolofElectronicsandInformationEngineering 4800CaoanRoad,Shanghai201804,China

E-mail:dshuang@tongji.edu.cn

KyungsookHan

InhaUniversity

DepartmentofComputerScienceandEngineering Incheon,SouthKorea

E-mail:khan@inha.ac.kr

MichaelGromiha

IndianInstituteofTechnology(IIT)Madras DepartmentofBiotechnology Chennai600036,Tamilnadu,India

E-mail:gromiha@iitm.ac.in

ISSN0302-9743e-ISSN1611-3349

ISBN978-3-319-09329-1e-ISBN978-3-319-09330-7

DOI10.1007/978-3-319-09330-7

SpringerChamHeidelbergNewYorkDordrechtLondon

LibraryofCongressControlNumber:2014943596

LNCSSublibrary:SL8–Bioinformatics

©SpringerInternationalPublishingSwitzerland2014

Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped.Exemptedfromthislegalreservationarebriefexcerptsinconnection withreviewsorscholarlyanalysisormaterialsuppliedspecificallyforthepurposeofbeingenteredand executedonacomputersystem,forexclusiveusebythepurchaserofthework.Duplicationofthispublication orpartsthereofispermittedonlyundertheprovisionsoftheCopyrightLawofthePublisher’slocation, inistcurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer.Permissionsforuse maybeobtainedthroughRightsLinkattheCopyrightClearanceCenter.Violationsareliabletoprosecution undertherespectiveCopyrightLaw.

Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse.

Whiletheadviceandinformationinthisbookarebelievedtobetrueandaccurateatthedateofpublication, neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityforanyerrorsor omissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,withrespecttothe materialcontainedherein.

Typesetting: Camera-readybyauthor,dataconversionbyScientificPublishingServices,Chennai,India

Printedonacid-freepaper

SpringerispartofSpringerScience+BusinessMedia(www.springer.com)

Preface

TheInternationalConferenceonIntelligentComputing(ICIC)wasstartedto provideanannualforumdedicatedtotheemergingandchallengingtopicsin artificialintelligence,machinelearning,patternrecognition,bioinformatics,and computationalbiology.Itaimstobringtogetherresearchersandpractitioners frombothacademiaandindustrytoshareideas,problems,andsolutionsrelated tothemultifacetedaspectsofintelligentcomputing.

ICIC2014,heldinTaiyuan,China,duringAugust3–6,2014,constituted the10thInternationalConferenceonIntelligentComputing.Itbuiltuponthe successofICIC2013,ICIC2012,ICIC2011,ICIC2010,ICIC2009,ICIC2008, ICIC2007,ICIC2006,andICIC2005thatwereheldinNanning,Huangshan, Zhengzhou,Changsha,China,Ulsan,Korea,Shanghai,Qingdao,Kunming,and Hefei,China,respectively.

Thisyear,theconference concentratedmainlyonthetheoriesandmethodologiesaswellastheemergingapplicationsofintelligentcomputing.Itsaimwas tounifythepictureofcontemporaryintelligentcomputingtechniquesasanintegralconceptthathighlightsthetrendsinadvancedcomputationalintelligence andbridgestheoreticalresearchwithapplications.Therefore,thethemeforthis conferencewas“AdvancedIntelligentComputingTechnologyandApplications”.Papersfocusedonthisthemeweresolicited,addressingtheories, methodologies,andapplicationsinscienceandtechnology.

ICIC2014received667submissionsfrom21countriesandregions.Allpaperswentthrougharigorouspeer-reviewprocedureandeachpaperreceivedat leastthreereviewreports.Basedonthereviewreports,theProgramCommittee finallyselected235high-qualitypapersforpresentationatICIC2013,included inthreevolumesofproceedingspublishedbySpringer:onevolumeof Lecture NotesinComputerScience (LNCS),onevolumeof LectureNotesinArtificial Intelligence (LNAI),andonevolumeof LectureNotesinBioinformatics (LNBI). Thisvolumeof LectureNotesinBioinformatics (LNBI)includes58papers. TheorganizersofICIC2014,includingTongjiUniversityandNorthUniversityofChina,TaiyuanNormalUniversity,TaiyuanUniversityofScienceand Technology,madeanenormouseffortto ensurethesuccessoftheconference. WeherebywouldliketothankthemembersoftheProgramCommitteeand therefereesfortheircollectiveeffortinreviewingandsolicitingthepapers.We wouldliketothankAlfredHofmann,executiveeditorfromSpringer,forhisfrank andhelpfuladviceandguidancethroughoutandforhiscontinuoussupportin publishingtheproceedings.Inparticular, wewouldliketothankalltheauthors forcontributingtheirpapers.Withoutthehigh-qualitysubmissionsfromthe

authors,thesuccessoftheconference wouldnothavebeenpossible.Finally, weareespeciallygratefultotheIEEEComputationalIntelligenceSociety,the InternationalNeuralNetworkSociety,andtheNationalScienceFoundationof Chinafortheirsponsorship.

May2014De-ShuangHuang KyungsookHan

MichaelGromiha

ICIC2014Organization

GeneralCo-chairs

De-ShuangHuang,China

VincenzoPiuri,Italy

YanHan,China

JiyeLiang,China

JianchaoZeng,China

ProgramCommitteeCo-chairs

KangLi,UK

JuanCarlosFigueroa,Colombia

OrganizingCommitteeCo-chairs

Kang-HyunJo,Korea

ValeriyaGribova,Russia

AwardCommitteeChair

VitoantonioBevilacqua,Italy

PublicationChair

PhalguniGupta,India

BingWang,China

Xing-MingZhao,China

Workshop/SpecialSessionCo-chairs

JiangQian,USA

ZhongmingZhao,USA

SpecialIssueChair

M.MichaelGromiha,India

TutorialChair

LaurentHeutte,France

InternationalLiaison

PrashanPremaratne,Australia

PublicityCo-chairs

KyungsookHan,Korea LingWang,China

ExhibitionChair

Chun-HouZheng,China

ProgramCommitteeMembers

KhalidAamir,Pakistan AndreaF.Abate,USA SabriArik,Korea VasilyAristarkhov,Australia CostinBadica,Japan WaqasBangyal,Pakistan VitoantonioBevilacqua,Italy ShuhuiBi,China JairCervantes,Mexico YuehuiChen,China QingfengChen,China Wen-ShengChen,China XiyuanChen,China GuanlingChen,USA YoonsuckChoe,USA Ho-JinChoi,Korea,Republicof MichalChoras,Colombia AngeloCiaramella,China YoupingDeng,Japan PrimianoDiNauta,Italy SalvatoreDistefano,USA Ji-XiangDu,China JianboFan,China

AbirHussain,UK Zhi-GangZeng,China

MinruiFei,China JuanCarlosFigueroa-Garc´ıa, Colombia shanGao,China LiangGao,China Dun-weiGong,India ValeriyaGribova,China MichaelGromiha,China XingshengGu,China KayhanGulez,USA PingGuo,China PhalguniGupta,India KyungsookHan,Korea FeiHan,China LaurentHeutte,France Wei-ChiangHong,Taiwan YuexianHou,China JingluHu,China TingwenHuang,Qatar PeterHung,Taiwan AbirHussain,UK SaifulIslam,India LiJia,China

ZhenranJiang,China

Kang-HyunJo,Korea

Dah-JingJwo,Korea

SeejaK.R,India

VandanaDixitKaushik,India

GulMuhammadKhan,Pakistan

SungshinKim,Korea

DonaldKraft,USA

YoshinoriKuno,Japan

TakashiKuremoto,Japan

JaerockKwon,USA

VincentLee,Australia

ShihuaZhang,China

Guo-ZhengLi,China

XiaodiLi,China

BoLi,China

KangLi,UK

PeihuaLi,China

JingjingLi,USA

YuhuaLi,UK

HonghuangLin,USA

MeiqinLiu,USA

JuLiu,China

XiweiLiu,China

ShuoLiu,China

YunxiaLiu,China

ChuKiongLoo,Mexico

ZhaoLu,USA

KeLu,China

YingqinLuo,USA

JinwenMa,USA

XiandongMeng,China

FilippoMenolascina,Italy

IvanVladimirMeza-Ruiz,Australia

TarikVeliMumcuMumcu,Turkey

RomanNeruda,Turkey

BenNiu,China

SeiichiOzawa,Korea

PaulPang,China

FrancescoPappalardo,USA

SuryaPrakash,India

PrashanPremaratne,Australia

DaowenQiu,China

AngelSappa,USA LiShang,China

DinggangShen,USA FanhuaiShi,China

ShitongWang,China

WilbertSibanda,USA JiataoSong,China StefanoSquartini,Italy

BadrinathSrinivas,USA Zhan-LiSun,China EviSyukur,USA Joaqu´ınTorres-Sospedra,Spain Rua-HuanTsaih,USA AntonioUva,USA JunWan,USA YongWang,China LingWang,China JimJing-YanWang,USA XuesongWang,China BingWang,China ZeWang,USA JunwenWang,HK HongWei,UK WeiWei,Norway YanWu,China QingXiangWu,China JunfengXia,China ShunrenXia,China BingjiXu,China Gongshengxu,China YuXue,China XinYin,USA Xiao-HuaYu,USA ZhigangZeng,China ShihuaZhang,China JunZhang,China Xing-MingZhao,China HongyongZhao,China XiaoguangZhao,China ZhongmingZhao,USA BojinZheng,China ChunhouZheng,China FengfengZhou,China YongquanZhou,China HanningZhou,China LiZhuo,China XiufenZou,China

Reviewers

Jakub ˇ Sm´ıd

PankajAcharya

ErumAfzal

ParulAgarwal

TanvirAhmad

MusheerAhmad

SyedAhmed

SaboohAjaz

HayaAlaskar

FelixAlbu

DhiyaAl-Jumeily

IsraelAlvarezVillalobos

MuhammadAmjad

NingAn

MaryThangakaniAnthony MasoodAhmadArbab

Soniyabe

SunghanBae

LukasBajer

WaqasBangyal

GangBao

DonatoBarone

SilvioBarra

AlexBecheru

YeBei

MauriBeneditoBordonau

SimonBernard

VitoantonioBevilacqua

YingBi

AyseHumeyraBilge

HonghuaBin

JunBo

NoraBoumella

FabioBruno

AntonioBucchiarone

DaniloCaceres

YiqiaoCai

QiaoCai

GuorongCai

FrancescoCamastra

MarioCannataro

KecaiCao

YiCao

GiuseppeCarbone

RaffaeleCarli

JairCervantes

AravindanChandrabose

YuchouChang

DeisyChelliah

GangChen

SongcanChen

JianhungChen

DavidChen

HongkaiChen

XinChen

FanshuChen

FuqiangChen

BoChen

XinChen

LiangChen

WeiChen

JinanChen

YuChen

JunxiaCheng

ZhangCheng

FeixiongCheng

CongCheng

HanCheng

Chi-TaiCheng

ChengwangXie

SeongpyoCheon

FerdinandoChiacchio

Cheng-HsiungChiang

WeiHongChin

SimranChoudhary

AngeloCiaramella

AzisCiayadi

RudyCiayadi

DaniloComminiello

CarlosCubaque

YanCui

BobCui

CucoCuristiana

YakangDai

Dariod’Ambruoso

YangDan

FarhanDawood

FrancescaDeCrescenzio

KaushikDeb

SaverioDebernardis

DarioJoseDelgado-Quintero

SaraDellantonio

JingDeng

WeilinDeng

M.C.Deng

SupingDeng

ZhaohongDeng

SomnathDey

YunqiangDi

HectorDiezRodriguez

RongDing

LiyaDing

ShengDing

ShengDing

ShihongDing

DayongDing

XiangDing

SalvatoreDistefano

ChelseaDobbins

XueshiDong

VladislavsDovgalecs

VladDovgalecs

GaixinDu

DajunDu

KaifangDu

HaibinDuan

Durak-AtaLutfiye

MalayDutta

TolgaEnsari

NicolaEpicoco

MarcoFalagario

ShaojingFan

MingFan

FenghuaFan

ShaojingFan

YapingFang

ChenFei

LiangbingFeng

ShiguangFeng

GuojinFeng

AlessioFerone

FrancescoFerrise

JuanCarlosFigueroa

MicheleFiorentino

CarlosFranco

GibranFuentesPineda

HironobuFujiyoshi

KazuhiroFukui

Wai-KeungFung

ChunCheFung

ChiaraGaldi

JianGao

YushuGao

LiangGao

YangGao

Garcia-LamontFarid

Garcia-MartiIrene

MicheleGattullo

JingGe

NaGeng

ShahoGhanei

RozaidaGhazali

RosalbaGiugno

FengshouGu

TowerGu

JingGu

SmileGu

GuangyueDu

WeiliGuo YumengGuo FeiGuo

TiantaiGuo YinanGuo YanhuiGuo ChenglinGuo

LilinGuo

SandeshGupta PuneetGupta PuneetGupta

Shi-YuanHan

FeiHan

MengHan Yu-YanHan

ZhiminHan

XinHao

ManabuHashimoto

TaoHe

SelenaHe

XingHe

FengHe

Van-DungHoang

TianHongjun

LeiHou

JingyuHou

KeHu

ChangjunHu

ZhaoyangHu

JinHuang

QiangHuang

LeiHuang

Shin-YingHuang

KeHuang

HualiHuang

JidaHuang

XixiaHuang

FuxinHuang

DarmaPutraiKetutGede

HaciIlhan

SorinIlie

SaifulIslam

SaeedJafarzadeh

AlexJames

ChuleeratJaruskulchai

JamesJayaputera

UmaraniJayaraman

Mun-HoJeong

ZhiweiJi

ShoulingJi

YafeiJia

HongjunJia

XiaoJian

MinJiang

ChanganJiang

TongyangJiang

YizhangJiang

HeJiang

YunshengJiang

ShujuanJiang

YingJiang

YizhangJiang

ChanganJiang

XuJie

JieningXia

TaeseokJin

JingsongShi

MingyuanJiu

KanghyunJo

JayasudhaJohnSuseela

RenJun

FangJun

LiJun

ZhangJunming

YugandharK.

Tom´aˇsKˇren

YangKai

Hee-JunKang

QiKang

Dong-JoongKang

ShugangKang

BilalKaraaslan

RohitKatiyar

OndrejKazik

MohdAyyubKhan

MuhammedKhan

Sang-WookKim

Hong-HyunKim

One-CueKim

DuangmalaiKlongdee

KunikazuKobayashi

YoshinoriKobayashi

TakashiKomuro

ToshiakiKondo

DeguangKong

KittiKoonsanit

RafalKozik

KuangLi

JunbiaoKuang

BaeguenKwon

HebertLacey

ChunluLai

Chien-YuanLai

DavidLamb

WeiLan

ChaowangLan

QixunLan

YeeWeiLaw

TienDungLe

My-HaLe

YongduckLee

JooyoungLee

SeokjuLee

Shao-LunLee

XinyuLei

GangLi

YanLi

LiangliangLi

XiaoguangLi

ZhengLi

HuanLi

DengLi

PingLi

QingfengLi

FuhaiLi

HuiLi

KaiLi

LongzhenLi

XingfengLi

JingfeiLi

JianxingLi

KelingLi

JuanLi

JianqingLi

YunqiLi

BingNanLi

LvzhouLi

QinLi

XiaoguangLi

XinwuLiang

JingLiang

Li-HuaZhang

JongilLim

ChanglongLin

YongLin

JianLin

GenieLin

YingLiu

ChenbinLiu

JamesLiu

LiangxuLiu

YuhangLiu

LiangLiu

RongLiu

LiangLiu

YufengLiu

QingLiu

ZheLiu

ZexianLiu

LiLiu

ShiyongLiu

SenLiu

QiLiu

Jin-XingLiu

XiaomingLiu

YingLiu

XiaomingLiu

BoLiu

YunxiaLiu

AlfredoLiverani

AnthonyLo

Lopez-ChauAsdr´ubal

SiowYongLow

ZhenLu

XingjiaLu

JunfengLuo

JuanLuo

RicaiLuo

YouxiLuo

YanqingMa

WencaiMa

LanMa

ChuangMa

XiaoxiaoMa

SakashiMaeda

GuoqinMai

MarioManzo

AntonioMaratea

ErikMarchi

CarlosRom´anMariacaGaspar

NaokiMasuyama

GuMeilin

GeethanMendiz

QingfangMeng

FilippoMenolascina

MuharremMercimek

GiovanniMerlino

Hyeon-GyuMin

MartinRenqiangMin

MingleiTong

SalehMirheidari

AkioMiyazaki

YuanbinMo

QuanyiMo

AndreiMocanu

RaffaeleMontella

MontoliuRaul

TsuyoshiMorimoto

MohamedMousaAlzawi

LijunMu

InamullahMuhammad

IzharuddinMuhammed

TarikVeliMumcu

FrancescaNardone

FabioNarducci

RodrigoNava

PatricioNebot

KenNguyen

ChanghaiNie

LiNie

AdityaNigam

EvgeniNurminski

Kok-LeongOng

KazunoriOnoguchi

ZeynepOrman

SelinOzcira

CuipingPan

BinbinPan

Quan-KePan

DazhaoPan

FrancescoPappalardo

JekangPark

AnooshaParuchuri

VibhaPatel

SamirPatel

LizhiPeng

YimingPeng

JialinPeng

KlaraPeskova

CarolinePetitjean

MartinPilat

SuryaPrakash

PhilipPretorius

AliQamar XiangboQi

ShijunQian

PengjiangQian

BinQian

YingQiu

Jian-DingQiu

JunfengQu

JunjunQu

MuhammadRahman

SakthivelRamasamy

TaoRan

MartinRandles

CalebRascon

MuhammadRashid

HaiderRaza

DavidReid

FengliRen

StefanoRicciardi

AngeloRiccio

AlejoRoberto

AbdusSamad

RuyaSamli

HongyanSang

MicheleScarpiniti

DongwookSeo

ShiSha

ElenaShalfeeva

LiShang

LinlinShen

YehuShen

HaojieShen

JinBiaoShen

AjithaShenoy

Jiuh-BiingSheu

XiutaoShi

JibinShi

FanhuaiShi

YonghongShi

YinghuanShi

AtsushiShimada

NobutakaShimada

JiSunShin

YeShuang

RaghurajSingh

DushyantKumarSingh

HaozhenSitu

MartinSlapak

SergeySmagin

YongliSong

YingleiSong

MeiyueSong

BinSong

RuiSong

GuanghuaSong

GangSong

SotantoSotanto

SreenivasSremathTirumala

AntoninoStaiano

JinyaSu

Hung-ChiSu

MarcoSuma

XiaoyanSun

JiankunSun

ShengSun

YuSun

CeliSun

YonghuiSun

ZengguoSun

JieSun

AboozarTaherkhani

ShinyaTakahashi

JinyingTan

ShijunTang

XiweiTang

BuzhouTang

MingTang

JianliangTang

HissamTawfik

ZhuTeng

SinTeo

GirmaTewolde

XiangeTian

YunTian

TianTian

HaoTian

GaoTianshun

KamleshTiwari

AmodTiwari

KamleshTiwari

AndrysiakTomasz

Torres-SospedraJoaqu´ın

SergiTrilles

Yao-HongTsai

NaoyukiTsuruta

FahadUllah

PierPaoloValentini

AndreyVavilin

GiuseppeVettigli

PetraVidnerov´ a Villatoro-TelloEsa´ u

JiWan

LiWan

LinWan

QuanWang

ZixiangWang

YichenWang

XiangjunWang

YunjiWang

HongWang JinheWang XuanWang

XiaojuanWang

SuyuWang ZhiyongWang XiangyuWang

MingyiWang YanWang

ZongyueWang HuisenWang

YongcuiWang

XiaomingWang ZiWang JunWang

AihuiWang

YiWang LingWang ZhaoxiWang

ShulinWang

YunfeiWang YongboWang ZhengxiangWang

Sheng-YaoWang

JingchuanWang

QixinWang

YongWang

Fang-FangWang

TianWang

ZhenzhongWang

PanwenWang

LeiWang

QilongWang

DongWang

PingWang

HuiweiWang

YiqiWang

ZhixuanWei

ZhihuaWei

LiWei

ShengjunWen

ShipingWen

DiWu

YonghuiWu

ChaoWu

XiaomeiWu

WeiliWu

HongrunWu

WeiminWu

GuolongWu

SiyuXia

QingXia

SenXia

JinXiao

MinXiao

QinXiao

YongfeiXiao

ZhaoXiaoguang

ZhugeXiaozhong

MinzhuXie

ZhenpingXie

JianXie

TingXie

ChaoXing

WeiXiong

HaoXiong

YiXiong

XiaoyinXu

DawenXu

JingXu

YuanXu

JinXu

XinXu

MengXu

LiXu

FengXu

ZhenyuXuan

HariYalamanchili

AtsushiYamashita

MingyuanYan

YanYan

ZhigangYan

BinYan

ZhileYang

DanYang

YangYang

WankouYang

WenqiangYang

YutingYang

Chia-LuenYang

Chyuan-HueiYang

DengYanni

JinYao

XiangjuanYao

TaoYe

XuYe

FengqiYi

WenchaoYi

KaiYin

Jamesj.q.Yu

HelenYu

JunYu

FangYu

XuYuan

LinYuan

JinghuaYuan

LinYuling

FaheemZafari

Xue-QiangZeng

HaimaoZhan

Yong-WeiZhang

JingZhang

ShuyiZhang

KevinZhang

MingZhang

ZhenminZhang

XuebingZhang

MinluZhang

JianpingZhang

XiaopingZhang

YongZhang

QiangZhang

GuohuiZhang

ChunhuiZhang

YifengZhang

WenxiZhang

XiujunZhang

LongZhang JianZhang

BoyuZhang

HaileiZhang

HongyunZhang

JianhuaZhang

ChunjiangZhang

PengZhang JianhaiZhang

HongboZhang

LinZhang

XiaoqiangZhang HaiyingZhang

JingZhang

WeiZhang

QianZhang HongliZhang

GuohuiZhang

LipingZhang

HongboZhang

SenZhao

YaouZhao

JaneZhao

LiangZhao

YunlongZhao MiaomiaoZhao

XinhuaZhao

XuZhao

GuodongZhao

LiangZhao

FengZhao

JuanZhao

JunfeiZhao

ChangboZhao

YueZhao

MinZheg

DongZhen

GuangZheng

XiaolongZheng

HuanyuZheng

ShenggenZheng ShanZhong

QiZhou

MianZhou

YinzhiZhou

JiayinZhou

SongshengZhou

BoZhou

QiangZhou

LeiZhu

LinZhu

YongxuZhu

NanliZhu

XiaoleiZhu

MajidZiaratban

XiangfuZou

BrockZou

Tanish

QiqiDuan

TableofContents

MachineLearning

PredictingtheOuter/InnerBetaStrandsinProteinBetaSheetsBased ontheRandomForestAlgorithm 1 LiTang,ZhengZhao,LeiZhang,TaoZhang,andShanGao

ExtractFeaturesUsingStackedDenoisedAutoencoder 10 YushuGao,LinZhu,Hao-DongZhu,YongGan,andLiShang

CancerClassificationUsingEnsembleofErrorCorrectingOutput

15 ZhihaoZeng,Kun-HongLiu,andZheyuanWang

EarlyDetectionMethodofAlzheimer’sDiseaseUsingEEGSignals 25 DhiyaAl-Jumeily,ShamailaIram,AbirJaafarHussain, VialatteFrancois-Benois,andPaulFergus

NeuralNetworks

TumorClusteringUsingIndependentComponentAnalysisand AdaptiveAffinityPropagation 34 FenYe,Jun-FengXia,Yan-WenChong,YanZhang,and Chun-HouZheng

ResearchofTrainingFeedforwardNeuralNetworksBasedonHybrid ChaosParticleSwarmOptimization-Back-Propagation ................ 41 FengliZhouandXiaoliLin

TrainingDeepFourierNeuralNetworkstoFitTime-SeriesData 48 MichaelS.GashlerandStephenC.Ashmore

RegularizedDynamicSelfOrganizedNeuralNetworkInspiredbythe ImmuneAlgorithmforFinancialTimeSeriesPrediction 56 HayaAl-Askar,AbirJaafarHussain,DhiyaAl-Jumeily,and NaeemRadi

ImageProcessing

Multi-scaleLevelSetMethodforMedicalImageSegmentationwithout Re-initialization ................................................. 63 Xiao-FengWang,HaiMin,LeZou,andYi-GangZhang

ANovelLocalRegionalModelBasedonThree-LayerStructure 72 HaiMinandXiao-FengWang

Multi-modalityMedicalCaseRetrievalUsingHeterogeneous1 Information 80 MenglinWuandQuansenSun

AnIncrementalUpdatingBasedFastPhenotypeStructureLearning Algorithm 92 HaoCheng,Yu-HaiZhao,YingYin,andLi-JunZhang

ComputationalSystemsBiologyandMedical Informatics

AMulti-InstanceMulti-LabelLearningApproachforProteinDomain Annotation 104

YangMeng,LeiDeng,ZhigangChen,ChengZhou,DiweiLiu, ChaoFan,andTingYan

AnAdvancedMachineLearningApproachtoGeneralisedEpileptic SeizureDetection 112 PaulFergus,DavidHignett,AbirJaafarHussain,and DhiyaAl-Jumeily

Structure-BasedPredictionofProteinPhosphorylationSitesUsingan EnsembleApproach 119 YongGao,WeilinHao,ZhigangChen,andLeiDeng

ConceptMiningofBinaryGeneExpressionData 126 PingHe,XiaohuaXu,YongshengJu,LinLu,andYanqiuXi

JeonghoonLee,YuChen,andKyungsookHan

EvolvingAdditiveTreeModelforInferringGeneRegulatory Networks 141 GuangpengLi,YuehuiChen,BinYang,YaouZhao,andDongWang

AnalyzingSupportVectorMachineOverfittingonMicroarrayData

148 HenryHan

EvolutionaryDesignofSyntheticGeneNetworksbyMeansofa SemanticExpertSystem .......................................... 157 PaoloPannaraleandVitoantonioBevilacqua

StabilityandOscillationoftheSolutionsforaCoupledFHNModel withTimeDelays ................................................

YuanhuaLin

ARestrainedOptimalPerturbationMethodforSolvingaKindof InverseProblemwithVariableCoefficient 175 BoWang,YujingYuan,andGuang-anZou

AKnowledge-GuidedApproachforInferringGeneRegulatory Networks ....................................................... 186 Yu-TingHsiaoandWei-PoLee

BiomedicalInformaticsTheoryandMethods

AFrameworkforAutomaticHairCountingandMeasurement 193 QianZhang

ADeepLearningMethodforClassificationofEEGDataBasedon

XiuAn,DepingKuang,XiaojiaoGuo,YiluZhao,andLianghuaHe

InvestigationofNewStatisticalFeaturesforBCIBasedSleepStages RecognitionthroughEEGBio-signals ............................... 211 IbrahimSefik,FurkanElibol,IbrahimFurkanInce,andIlkerYengin

DiscriminationofADHDBasedonfMRIDatawithDeepBelief Network ........................................................ 225 DepingKuang,XiaojiaoGuo,XiuAn,YiluZhao,andLianghuaHe

ADHD-200ClassificationBasedonSocialNetworkMethod ............ 233 XiaojiaoGuo,XiuAn,DepingKuang,YiluZhao,andLianghuaHe

MotorImageryEEGSignalsAnalysisBasedonBayesianNetworkwith GaussianDistribution ............................................ 241 LianghuaHeandBinLiu

PredictionofMolecularSubstructureUsingMassSpectralDataBased onMetricLearning 248 Zhi-ShuiZhang,Li-LiCao,andJunZhang

CombineMultipleMassSpectralSimilarityMeasuresforCompound IdentificationinGC-MS ..........................................

Li-HuanLiao,Yi-FeiZhu,Li-LiCao,andJunZhang

MetagenomicPhylogeneticClassificationUsingImprovedNa¨ıve Bayes ..........................................................

YukiKomatsu,TakashiIshida,andYutakaAkiyama

PredictingProtein-ProteinInteractionSitesbyRotationForestswith EvolutionaryInformation ......................................... 271 XinyingHu,AnqiJing,andXiuquanDu

PredictingPotentialLigandsforOrphanGPCRsBasedonthe ImprovedLaplacianRegularizedLeastSquaresMethod 280

YanYan,XinweiShao,andZhenranJiang

ComputationalEvaluationofProteinEnergyFunctions

288 NashatMansourandHusseinMohsen

SelectionandClassificationofGeneExpressionDataUsinga MF-GA-TS-SVMApproach

Hern´andez-MontielAlbertoLuis,Bonilla-HuertaEdmundo, Morales-CaporalRoberto,andGuevara-Garc´ıaAntonioJos´ e

EvaluationofAdvancedArtificialNeuralNetworkClassificationand FeatureExtractionTechniquesforDetectingPretermBirthsUsing EHGRecords

PaulFergus,IbrahimOlatunjiIdowu,AbirJaafarHussain, ChelseaDobbins,andHayaAl-Askar

PotentialDriverGenesRegulatedbyOncomiRNAAreAssociatedwith DruggabilityinPan-NegativeMelanoma

DiZhangandJun-FengXia

ClassificationofVentricularTachycardiaandFibrillationBasedonthe Lempel-ZivComplexityandEMD ..................................

DelingXia,QingfangMeng,YuehuiChen,andZaiguoZhang

309

322

PredictionofProteinStructureClasseswithEnsembleClassifiers ...... 330 WenzhengBao,YuehuiChen,DongWang,FanliangKong,and GaoqiangYu

AParameterizedAlgorithmforPredictingTranscriptionFactorBinding Sites ........................................................... 339 YingleiSong,ChangbaoWang,andJunfengQu

SpecialSessiononAdvancesinBio-inspired Computing:TheoriesandApplications

RoadNetworkConstructionandHotRoutesInferringwithVehicular Trajectories ..................................................... 351 JunweiWu,YunlongZhu,andHanningChen

PSOBasedonCartesianCoordinateSystem ........................

363 YanminLiu,ZhuanzhouZhang,YuanfengLuo,andXiangbiaoWu

AnImprovedPSOforMultimodalComplexProblem .................

371 YanminLiu,ZhuanzhouZhang,YuanfengLuo,andXiangbiaoWu

AWeightedBacterialColonyOptimizationforFeatureSelection .......

379 HongWang,XingjingJing,andBenNiu

ANovelMethodforImageSegmentationBasedonNatureInspired Algorithm 390 YangLiu,KunyuanHu,YunlongZhu,andHanningChen

NeuralNetworkBasedonSelf-adaptiveDifferentialEvolutionfor Ultra-Short-TermPowerLoadForecasting ...........................

403 WeiLiu,HuiSong,JaneJingLiang,BoyangQu,andAlexKaiQin

BacterialForagingOptimizationwithNeighborhoodLearningfor DynamicPortfolioSelection 413 LijingTan,BenNiu,HongWang,HualiHuang,andQiqiDuan

Structure-Redesign-BasedBacterialForagingOptimizationforPortfolio Selection 424 BenNiu,YingBi,andTingXie

BacterialColonyOptimizationforIntegratedYardTruckScheduling andStorageAllocationProblem ................................... 431 BenNiu,TingXie,YingBi,andJingLiu

SpecialSessiononProteinandGeneBioinformatics: Analysis,AlgorithmsandApplications

ImprovingFusionwithOne-ClassClassificationandBoostingin MultimodalBiometricAuthentication

QuangDucTranandPanosLiatsis

IntegrativeAnalysisofGeneExpressionandPromoterMethylation duringReprogrammingofaNon-Small-CellLungCancerCellLine UsingPrincipalComponentAnalysis-BasedUnsupervisedFeature

Y.-h.Taguchi

PredictingtheSubcellularLocalizationofProteinswithMultipleSites

XumiQu,YuehuiChen,ShanpingQiao,DongWang,andQingZhao

GlobalVotingModelforProteinFunctionPredictionfrom

YiFang,MengtianSun,GuoxianDai,andKarthikRamani

ComparativeAssessmentofDataSetsofProteinInteractionHotSpots

YunqiangDi,ChangchangWang,HuanWu,XinxinYu,and Jun-FengXia

TheIntrinsicGeometricStructureofProtein-ProteinInteraction NetworksforProteinInteractionPrediction

YiFang,MengtianSun,GuoxianDai,andKarthikRamani

IdentificationofNovelc-YesKinaseInhibitors

ANewGraphTheoreticApproachforProteinThreading .............

YingleiSongandJunfengQu

Predicting the Outer/Inner BetaStrands in Protein Beta Sheets Based on the Random Forest Algorithm

Li Tang1,2,*, Zheng Zhao1, Lei Zhang3,*, Tao Zhang3,**, and Shan Gao3,**

1 School of Computer Science and Technology, Tianjin University, Tianjin, P.R. China tangli0831@yeah.net

2 Information Science and Technology Department, Tianjin University of Finance and Economics, Tianjin, P.R. China

3 Key Lab. of Bioactive Materials, Ministry of Education and The College of Life Sciences, Nankai University, Tianjin, P.R. China {zhni,zhangtao,gao_shan}@nankai.edu.cn

Abstract. The beta sheet, as one of the three common second form of regular secondary structure in proteins plays an important role in protein function. The best strands in a beta sheet can be classified into the outer or inner strands. Considering the protein primary sequences have determinant information to arrange the strands in the beta sheet topology, we introduce an approach by using the random forest algorithm to predict outer or inner arrangement of a beta strand. We use nine features to describe a strand based on the hydrophobicity, the hydrophilicity, the side-chain mass and other properties of the beta strands. The random forest classifiers reach the best prediction accuracy 89.45% with 10-fold cross-validation among five machine learning methods. This result demonstrates that there are significant differences between the outer beta strands and the inner ones in beta sheets. The finding in this study can be used to arrange beta strands in a beta sheet without any prior structure information. It can also help better understanding the mechanisms of protein beta sheet formation.

Keywords: beta sheet, beta strand, protein secondary structure, random forest algorithm.

1 Introduction

Protein secondary structure is an important bridge to understand the protein’s threedimensional structure from its amino acid sequence[1-3]. Investigation of the protein secondary structure helps the determination of the protein structure, as well as the design of new proteins[4]. The beta sheet (also β-pleated sheet) is one of the three common second form of regular secondary structure in proteins. The statistical data of the PDB database[5] showed more than 75% of proteins with known structures

* These authors contributed equally to this paper.

** Corresponding author.

D.-S. Huang et al. (Eds.): ICIC 2014, LNBI 8590, pp. 1–9, 2014. © Springer International Publishing Switzerland 2014

contain beta sheets. To predict these beta sheet containing proteins, assigning beta strands to a beta sheet can reduce the search space in the ab initio methods[13, 45]. Moreover, beta sheets play some important roles in protein functions, particularly in the formation of the protein aggregation observed in many human diseases, notably the Alzheimer's disease.

Fig. 1. Illustration of beta strands pairs and configurations. Arrows show the amide (N) to carbonyl (C) direction of beta strands. Hydrogen bonds are represented by dotted lines.

In a beta sheet, beta strands are paired by the interactive hydrogen bonds in parallel or antiparallel arrangement (Fig.1). A beta sheet forms a topology (Fig.2b), which can be described by three components: the group of beta strands in the beta sheet, the orders of these beta strands on the sequence level (Fig.3), and the configuration of beta strand pairs (parallel or antiparallel). The order of beta strands arranged in a beta sheet topology differs with the order of beta strands on sequence level (Fig.2). As described in the Protein Data Bank Contents Guide[6], beta strands are listed and numbered according to their orders on the sequence level. In this study, the first and the last strand in a beta sheet are defined as outer strands, whereas the other strands are defined as inner strands (Fig.3).

Many studies have been proposed to reach the different levels of understanding the beta sheet topology. The mechanisms and rules of beta sheet formation are investigated and simulated by theoretical and experimental method[7-10]. Some efforts focus on the prediction of residue contact maps, which can be used to construct the beta sheet topology[11, 12]. Other researcher predicted the parallel/antiparallel beta strand pairs[13-15], based on the non-random distribution and pairing

preferences of amino acids in parallel and antiparallel beta strand pairs[16-19]. Utilizing machine learning algorithms, several methods are proposed to predict the topology of some certain kinds of beta sheets[2, 20, 21]. Although much achievements have been acquired in some aspects of beta sheet studies, the mechanisms of beta strands to form beta sheets have not yet to be fully understood[7].

Fig. 2. (a) Seven strands of protein 1VJG in sequence order. (b) Beta-sheet topology of protein 1VJG. (c) Protein 1VJG rendered in Rasmol.

Considering the two outer beta strands take the starting and terminal location in one beta sheet, we suggest beta strands probably have different conservative properties in the outer and inner strands on the sequenced level. In this study, we predict the outer/inner beta strands in beta sheets using the Random Forest (see Materials and Methods), extracting the features from the protein primary sequences.

Fig. 3. Illustration of beta strands number in the beta sheets of protein 1VJG in the PDB file. The number 1 and 5 marked with circles denote the outer beta strands; whereas the number marked with the box denote inner ones. The number 1 strand, ranging from the sequence number of residue 43 to 51, corresponds to the second strand in sequence order.

2 Materials and Methods

2.1

Datasets

The protein structure dataset we used is from a database server named PISCES, established by Wang et al[22, 23]. For precisely examining the accuracy of the classification via a cross-validation, an appropriate cutoff threshold of sequence identity is necessary to avoid the redundancy and homology bias[24, 25]. PISCES utilizes a combination method of PSI-BLAST and structure-based alignments to determine sequence identities, and products lists of sequences from the Protein Data Bank (PDB) using a number of entry- and chain-specific criteria and mutual sequence identity according to the needs of the study. In our investigation, a non-redundant dataset (cullpdb_pc25_res2.0_R0.25_d090516_chains4260) with the sequence identity percentage cut-off 25% is used. Crystal structures have a resolution of 2.0 Å or better and an R-factor below 0.25. We import the set into the Sheet Pair Database [26] for easier data management and screening. Many incorrectness samples such as protein chains that contain non-standard amino acids or disordered regions[27, 28], any patterns with a chain break or heteroatom are excluded. We treat the outer beta strands as positive samples and the inner ones as negative samples (Fig. 3). In the final dataset, there are 1,205 proteins, of which contained 11,424 outer beta strands and 13,285 inner ones.

2.2 Feature Extraction

Protein folding is a collaborative process but mainly driven by the hydrophobic interaction[29]. The balance of the interaction between hydrophobicity and hydrophilicity is a notable feature of the stability of protein structure[29,30]. The previous studies also showed that the amino acid hydrophobicity and molecular size are two important factors that cause differences of amino acid conservative[31]. In this study, we used nine features to describe a beta strand. Seven of nice features are based on three physical and chemical properties of the amino acids, which are the hydrophobicity value (H1) from Tanford[32], the hydrophilicity value (H2) from Hopp and Woods[33], and the mass of side chain of amino acid(M). The other two features are from the Pseudo-Amino Acid Composition (PseAAC), which was originally introduced by Chou for the prediction of protein subcellular localization and membrane protein type[34]. The PseAAC includes not only the main feature of amino acid composition but also sequence order information beyond amino acid composition. It can represent a protein sequence comprehensively with additional sequence order effects reflected by a series of sequence correlation factors with different tiers of correlation.

A beta strand chain can be represented by a 9-dimension numeric vector } … { X 9 8 7 3 2 1 x x x x x x = . Each value in the vector can be calculated by such formulas:

M and R H R H are the hydrophobicity value, hydrophilicity value, and side-chain mass of the amino acid Ri after the standard conversion, respectively.

The element 8x is the first-tier correlation factor defined in PseAAC[34].Since the length of a beta strand sequence is usually not long, only the first-tier correlation factor is calculated which can reflect the sequence order correlation between all the most contiguous residues along a beta strand sequence[34]. Correspondingly, the element 9x is the 21st component of PseAAC. In Eq.(9), i f is the normalized occurrence frequency of the 20 amino acids in the beta strand and w is the weight factor for the sequence order effect and is set to default value 0.05 in the current study [34]. In Eq.(8) and Eq.(9), ) , ( 1+ Θ i i R R is calculated by the following equation as described in PseAAC:

The standard conversion from ) R ( H i 0 1 to ) ( 1 Ri H is described by the forrmula (11) as below. ) R ( M and ) R ( H ), R ( H i 0 i 0 2 i 0 1 are the raw values of the amino acid hydrophobicity, hydrophilicity and side-chain mass.

2.3 The Random Forest Algorithm

Random Forest (RF), as a machine learning algorithm, was originally introduced by Breiman[35]. RF generates decision trees by randomly sampling subspaces of the input features, and then makes the final decisions by a majority voting from these

trees. RF has a good predictive performance even though the dataset has much noise [36]. With the increased number of decision trees, RF avoids the overfitting problem or the dependence on the training data sets[35]. In view of the good characteristics of Random Forest, it has been applied successfully to deal with many classification or prediction problems in varied biological fields[37-41]. In this study, we used theWeka software package[42] to implement the RF classification of the outer/inner beta strands. There are three parameters to run RF in Weka developer version 3.6.2, which are I: the number of trees constructed in the forest; K: the number of features calculated to define each of the nodes in a tree; and S:random number seed. In this study, we used the default setting without model selection.

2.4 Performance Measures

To assess the performance of classifiers we used the following measures: the number of true positives (TP), the number of false positives (FP), the number of true negatives (TN), the number of false negatives (FN) , sensitivity of positive examples(Sn+), specificity of positive examples(Sp+), sensitivity of negative examples(Sn-), specificity of negative examples(Sp-), accuracy(Ac) and Matthews correlation coefficient(MCC), as described in[43].

3 Results

In order to compare the prediction performance of different algorithms with that of Random Forest (RF), BayesNet, support vector machine (SVM), multilayer perceptron (MLP) and K-nearest-neighbor (IBk) were used to classify the outer/inner beta strands with the default parameter setting. The SVM algorithm was implemented by the LibSVM 2.86 [44], while the other three algorithms were implemented in Weka. Ten-fold cross-validation test was used to evaluate the accuracy of each prediction algorithm. The prediction accuracy of outer/inner beta strands in beta sheets reaches 89.45% Ac and 0.79 MCC by using RF (see 2.3). From Table 1, we can see that RF reaches the best performance among five algorithms. The prediction accuracy of RF is about 2% higher than the K-nearest-neighbor classifier, significantly ahead of the Naive Bayes, SVM and MLP classifiers.

Table 1. The prediction result of theouter/inner beta strands

Another random document with no related content on Scribd:

Voi minua virpi vieno, kukka kurja kuihtuvainen.

KYLLIKIN KUOLO.

Kaplahat ne narahtaa ja ääntää tuonen rengin reessä.

Kuolonkello kalkahtaapi hiljaa tuolla oven eessä.

Kalman valkealla vuotehella Kyllikki nyt makaa.

Huuli vaikenee, ja lepää silmä sammuva ja vakaa.

Kukkaa ijäisyyden kumpuloille noutaa kalman renki.

Rauhan, viihdytyksen valkamahan Kulkee herkkä henki.

LEMMINKÄISEN LAULUJA.

ENSIMMÄINEN OSA.

I.

Jo löysin sun, oi saaren impi sorja ja kaihojeni kaunis Kyllikki. Nyt olen viittaustes nöyrä orja, ja sulon silmäykses kerjuri.

Tuo silmäykses kumman kuutamainen oi vielä kerran minuhun se luo, ja lemmenmalja täysi, jumalainen vain minun yksin juodakseni suo.

Mun silmiesi säikkyä suo juoda ja uida haaveisessa katseessas. Sä taidat Ahdin sankariksi luoda ja nostaa suureksi sun sulollas.

Sun silmiesi sinisessä vyössä, mun Kyllikkini kaunoinen niin karkeloi kuin kesäyössä tuo auer hellän haaveinen, mi laulaa

II.

lemmen armautta ja suven suurta suloa ja riemun täyttä rikkautta ja ikuisia iloja.

Se paltahilta sinirantain ja siimeksistä salojen käy onnen kukkasia kantain ja tuoksehia toiveiden. Siks’ silmäis siniauteretta mun aina salli katsella. Ei elä kasvi kastehetta, en minä ilman sinua.

Hän soutaa tuolla aalloilla veen impi ilonkukka. ja häll¹ on silmä siintoisa ja viherjäinen tukka.

Hän soutaa suloaatoksin ja leutomielin laulaa ja painaa päätä aaltoihin ja valkeaista kaulaa.

Hän painaa päätä aaltoihin ja sinisilmän sulkee, ja mieli luokse Nyyrikin nyt rannikolle kulkee.

Ja tyttö muistaa armastaan, mi seisoi koivun alla ja soitti tuohitorveaan vain äänell’ ihanalla.

Ja valkoviitta poikasen niin kirkkahana hohti, kun katse, hellä, haaveinen nous’ aallon neittä kohti.

III.

Veen immyt aaltovuoteella näin uinuu unelmissa, mut

Nyyrikki se rannalla on lemmenpolttehissa.

IV.

Kukkuu kukahtaa kankahalla puussa. Huhuu huhuaa paimen salmen suussa.

Lip, lap hyppelee salmessa ne siijat. Kip, kap kahisee pihatossa piijat.

Laa, laa sointuaa heljä koivuranta. Raa, raa rasahtaa jalan alla santa.

Hei, hei Kauko vaan paimentaapi karjaa. Suottapa ainiaan tytöt mua parjaa.

Illalla paimenta vedellä he valaa. Mutta taas kisoissa silmäilevät salaa.

Kukkuu kukahtaa kankahalla käki. Onpa vaan rattoisaa saaren tyttöväki.

V.

Muut on vaskiromua muuttuvaista multaa. Yks’ on saaren impynen kallihinta kultaa.

Eipä kulta himmene, vaikka tummuu vaski. Saaren kulta Kyllikki puheilleen mun laski.

Vaskihelyt heittelen, kultamurun poimin. Saaren kulta Kyllikin voitan lemmen voimin.

Mä tahdon olla se laulujen mies, jota Kyllikin aatos ajaa. On mulla povessa liekkivä lies’ ja kerran lauluni kajaa.

Se nousevi ylitse seudun tään, se lentävi mainesiivin.

Ja kunis mä Kyllikin heltyvän nään, niin luoksensa hiljaa hiivin.

Mä hiivin Kyllikin kammioon kesä-aamuna aivan varhain ja tartun taasenkin kanteloon, ja olkoon se soittoni parhain.

Ja olkoon se soittoni hehkuisin, joka silloin immelle soipi, ja olkoon se lauluni viimeisin, jos hän minut hyljätä voipi.

VII.

Ja kun päivin, öisinkin siintää silmihini Kyllikkini kaunoisin ja sen silmäin sini,

VI.

silloin totta mietin näin: se on tahto taivaan, että ainiaaksi jäin lemmen sulo vaivaan.

VIII.

Hentoa kyyditän kyyhkyläistä, pientä mä perhoa saattelen.

Lentäös sanoma onneni häistä luokse mun äitini armaisen.

Saaren rannalta rauhaisalta koppasin Kyllikin korjaani, kas miten tummien kulmain alta impeni arkana silmääpi.

Mutta mä kesytän kyyhkyläisen kanssani kauvaksi karkaamaan. Kohta on Kyllikki Lemminkäisen eikä se poies kaipaakaan.

IX.

Jo on korjassani kulta, armas pyyhyt pyydettynä, saatu kauvan kaipaeltu.

Minkä kenkiä kulutin, senpä kuljin kullan luoksi. Minkä airoja tuhosin, senpä sousin sirkun vuoksi. Minkä saarella samoilin, senpä allia ajelin.

Jo on pyyhyt pyydettynä, ajettuna armas alli.

Vemmel vilkkaa, somer soittaa. Tähdet taivahalla koittaa. Metsä on mesinukalla, koivut kullassa kuhisee. — Hymnit

X.

hiljaa hymiseepi, vierii virret voitolliset yli maitten, manteritten, kauvas ilman istuimille.

Jo on korjassani kulta, pulmu puhdas purressani.

Elä itke impyeni, elä vainen vaikertele

Kaukomielen kainalossa, Ahdin hellässä sylissä.

Jo sun kukkana kuletan, liljanani liikuttelen, hellittelen hentonani.

Laitan valkean tupasen kultaiselle kukkulalle. Orret ylvähät ylennän, nostan kuulun kurkihirren päilyväiset pihtipielet, lempeän laen varailen.

Niin on onni ollaksesi, kaunis kehräelläksesi sinerväisellä rukilla unten utuista lankaa utuisesta kuontalosta, utu-impien keralla.

Elä itke impyeni, Kultalintuni kujerra.

XI.

Sinä nyt olet mun.

Mä saan sun kutrejas koskettaa

ja henkiä huultesi purppuraa.

Olet mun.

Olet vaimoni mun ja vaalija vuoteeni valkoisen, mun keijuni hento ja herttainen.

Olet mun.

Kesä-illat nää me aitan hämyssä haaveillaan, kun sade se soittavi harppuaan yli maan.

Sade soittavi vaan, ja kuuluvi kahina tammien ja askelet yöttären huntuisen yli maan.

Oi nukkuos jo!

Minä valvon untasi varjellen, nuku kätteni turvihin armainen, nuku jo!

XII.

Oi onni, aarteheni verraton, sä helmi hohtavainen, kallis. Oi, ett'et karkaisi sä luotani, en sitä konsanaan mä sallis.

Mun helmeni, mun pyhä onneni, oi, ettet särkyväinen oisi, ja jospa heloisena hohtehes kautt’ aikain varjeltua voisi.

XIII.

Onko onni vaan kupla, vetten päällä, kupla heleä, hetken kestävä?

Onko onni vaan unten kevyt keiju, jota etsien harhaa ihminen?

Onko onni vaan virvatulten väike, joka häipyy pois kun sen luona ois?

Onko onni vaan haave kuolematon, kaiho ikuinen, rinnass’ ihmisen?

XIV.

Mä turhaa enää korviani telkin, kun ennätin jo kuulla pahimman. Kun sukkamieliseks’ mun sanoin pelkin he sai ja rintahani riehunnan.

Nyt käsi Kyllikin, mi kerran kaasi mun maljahani simaa kuohuvaa, on kuollut minulle kuin kolkko paasi, min juurta joka aalto huuhtoaa.

Ja silmä petollinen, viekas poski mä luoksenne en palaa konsanaan. On sisässäni kuohuvainen koski ja luonnonraivoni on valloillaan.

Se riemuni suuri ja suloinen jo vaaleni syksyn tullen. Nyt mietin kurjana kalveten, miks’ Kyllikki kylmä on mullen.

Ja syöntäni okahat pistelee, ja vaiva rintaani raastaa.

Ja tuloset tielläni himmenee, ja sieluuni syöpyy saastaa.

Pois tahdon mä sotahan kaukaiseen kotiveräjän kuuluvilta.

Mä kaipaan välkettä vieraan veen, mulle musta on kotini silta.

Mä kaipaan välkettä vieraan veen ja hurmetta rannikoilla.

Käy matkani sotahan kaukaiseen, siks’ ilkaten soittelen soilla.

Mä suolla soittelen mennessäin ja painan kannusrautaa.

Kas Kauko se uhmaten ajaa näin, ja syömensä itkut hautaa.

TOINEN OSA.

Lemminkäinen on tehnyt retken Pohjolaan, joutunut Tuonen jokeen, josta äiti hänet ylös haravoi ja loitsii terveeksi. Lemminkäisen kotiintullessa on Kyllikki jo kuollut.

Erheeni on musta, musta. —

Kuka suopi sovitusta? —

Ääni soimaa, ääni soimaa. —

Mistä saan mä nousun voimaa?

Tahdon tuskistani nousta.

Kuka jännittäisi jousta?

Kuka terästäisi tahdon, tekis terveheksi Ahdon?

Kyllikkini marja, mairut laita tänne uskon airut! —

Etkö kuule kuikutusta, Ahti raukan rukousta?

Et sä vastaa. — Olet vainaa. —

Taakkani se kasvaa, painaa. — Äiti ainut, kultamuru, suista Lemminkäisen suru.

Käänny Kaukomielen puoleen, luo’os lohdutusta huoleen!

Sain mä ennen avun sulta, suo se nytkin äitikulta.

Sinun silmäis’ hellä luonti on kuin suuri anteeks’ suonti. —

Näin on suru suloisempi.

Siunattu oi äidin lempi.

III.

Nyt alla kodin kurkihirren taas sydämeni sykkäilee. Ja kuulen ääntä vienon virren, mi rinnassani helisee.

Se puhuu: pient’ on sankarmaine, ei vie se tähtitarhoihin.

Ja ikäisyyden virtain laine sen huuhtoo aivan aikaisin.

Mut tuo on suurta, ikisuurta, kun henkes aarteet oivallat, ja rinnassasi hyvän juurta kuin kallehinta kasvatat.

On suurta nousta erheistänsä, töin entisyyttä sovittaa ja kuulla omaa henkeänsä ja muitakin myös oivaltaa.

Mut kauheaa on kalske kalvan ja inhaa ihmisviha myös. Kun voitat oman luontos halvan, kas tuo on suurin sankartyös.

Se lenteleepi luokseni tuo henki kevyt, vapaa ja vaipuneena aatoksiin yön vuoteella mun tapaa. Se luokseni mun leijuaa ja hiljaa kuiskuttaa.

Tuo henki armaan Kyllikin se kuiskaa taivahista ja valvoo elonmatkaani niin suurta, tuskallista. Se aatokseni ylentää,

IV.

kun tummuu määränpää.

Tien tahdon käydä uljaasti, en lailla kääpiöiden.

Ja kasvakohon kärsimys ja ponnistukset töiden.

Mun yllän’ henki liihoittaa ja taistoon tenhoaa.

Se tenhoo taistoon sisäiseen, se kutsuu suureen voittoon.

Ja olkoon tuskallinen tie mä astun aamukoittoon.

Ja lailla ilmankotkien mun nousee aatoksen.

Ja konsa kiihtyy taisto tuo, ja päätä polte pohtaa, niin leijaa henki luokseni, ja tähtösetkin hohtaa, ja on kuin silmä Kyllikin mua katsois silmihin.

Lepää katsehen yllä aaltojen kaukaisilla rannikoilla. Siellä siintävät korvet himmeät, kuuset kohoo kukkuloilla.

Yli metsien, latvain laheiden käypi kunniakas lento. Haaveet suuret ain’ kantaa nostattain, voimistuupi siipi hento.

Kauvas, kauvas pois mulla määrä ois jättää heikon sielun valta. Rannat, kukkulat tuolla viittovat, liput liehuu taivahalta.

V.

Matkaa loistoisaa henken janoaa kohin pilvein kultarantaa.

Katse korkea, aatos hehkuva Lemminkäistä kauvas kantaa.

VI.

Istun tumman poppelin alla, varjot vaihtuvi nurmella. Herpoo hehkuva henkeni palo raukee rintani riehuisa.

Käteni ristissä rinnan päällä katselen kulkua pilvien.

Viileä viihtymys mieleni täyttää, sydän on tyyni ja vakainen.

Istun hiljaa ja pohjasta rinnan unteni uhria suitsutan.

Alla poppelin juhlallisen valojen voimia kumarran.

Täällä mä tajuan tuntoni äänen, täällä mä itseeni havahdun. Tuulonen oksilla vaikenee, kun hiljaa, hiljaa mä polvistun.

Käy hapsin hajaisin ja jaloin paljahin mun Kyllikkini tuonen nientä. Ja pajunlehviä hän taittaa vihreitä ja sitoo seppelettä pientä.

Hän seisoo yksinään ja sitoo seppeltään, hän sitä solmiaapi mulle. — Kai kerran joutunen mä tuonen niemellen ja kunnahalle kaihotulle.

Ah silloin Kyllikki mä olen luonasi ja sulta seppeleeni perin.

Ja lemmen ruusut nuo taas umpujansa luo ja hohtelevat punaterin.

— Mä näen haamusi ah armas Kyllikki, kun yksinäni täällä kuljen. Mut kerran joutunen mä tuonen niemellen ja sinut syleilyyni suljen.

VII.

Mä seison ja katson taaksepäin mun eloni taivalta pitkin, miten monta mä riemua riemuitsin, miten monta mä itkua itkin.

Ja kuin tulirinnoin mä innostuin ja suureksi tähtäsin työni. —

Ja kuinka mä itseeni’ hiivin taas ja vavisten valvoin yöni. —

Mä seison, ja ilta mun yllättää, ja lempeesti lännetär henkää — Te muistelot lepohon vaipukaa ja unholan maille menkää!

Nyt tahdon katsoa eteenpäin läpi kuoleman tumman verhon. Syvä kaipaus kantavi kauvas mun kuin siivillä sinisen perhon.

Ja kaipaus rintani riehakkaan se kasvaa, kasvaa aina. Ja kun se mun rintani aateloi, ei elämä taakkana paina.

LOPPUSANAT.

Me etsimme elämän liljaa tältä puolelta tuonelan veen ja niitämme kyynelviljaa ja kaihoja sydämeen.

Tää elämän kukkaissilta ei liljoja kannakaan.

Sen kurjilta kunnahilta vilukukkaset puhkee vaan.

Mut etsijän katse kantaa yli tuonelan virran suun kohin lepojen nurmirantaa ja ruskoja valjun kuun. —

Soi tuonelan vetten tenho. Kukat solmitaan köynnökseen, kunis saapuvi kaihottu venho, vie etsijän aarteineen.

*** END OF THE PROJECT GUTENBERG EBOOK KYLLIKKI JA LEMMINKÄINEN ***

Updated editions will replace the previous one—the old editions will be renamed.

Creating the works from print editions not protected by U.S. copyright law means that no one owns a United States copyright in these works, so the Foundation (and you!) can copy and distribute it in the United States without permission and without paying copyright royalties. Special rules, set forth in the General Terms of Use part of this license, apply to copying and distributing Project Gutenberg™ electronic works to protect the PROJECT GUTENBERG™ concept and trademark. Project Gutenberg is a registered trademark, and may not be used if you charge for an eBook, except by following the terms of the trademark license, including paying royalties for use of the Project Gutenberg trademark. If you do not charge anything for copies of this eBook, complying with the trademark license is very easy. You may use this eBook for nearly any purpose such as creation of derivative works, reports, performances and research. Project Gutenberg eBooks may be modified and printed and given away—you may do practically ANYTHING in the United States with eBooks not protected by U.S. copyright law. Redistribution is subject to the trademark license, especially commercial redistribution.

START: FULL LICENSE

THE FULL PROJECT GUTENBERG LICENSE

PLEASE READ THIS BEFORE YOU DISTRIBUTE OR USE THIS WORK

To protect the Project Gutenberg™ mission of promoting the free distribution of electronic works, by using or distributing this work (or any other work associated in any way with the phrase “Project Gutenberg”), you agree to comply with all the terms of the Full Project Gutenberg™ License available with this file or online at www.gutenberg.org/license.

Section 1. General Terms of Use and Redistributing Project Gutenberg™ electronic works

1.A. By reading or using any part of this Project Gutenberg™ electronic work, you indicate that you have read, understand, agree to and accept all the terms of this license and intellectual property (trademark/copyright) agreement. If you do not agree to abide by all the terms of this agreement, you must cease using and return or destroy all copies of Project Gutenberg™ electronic works in your possession. If you paid a fee for obtaining a copy of or access to a Project Gutenberg™ electronic work and you do not agree to be bound by the terms of this agreement, you may obtain a refund from the person or entity to whom you paid the fee as set forth in paragraph 1.E.8.

1.B. “Project Gutenberg” is a registered trademark. It may only be used on or associated in any way with an electronic work by people who agree to be bound by the terms of this agreement. There are a few things that you can do with most Project Gutenberg™ electronic works even without complying with the full terms of this agreement. See paragraph 1.C below. There are a lot of things you can do with Project Gutenberg™ electronic works if you follow the terms of this agreement and help preserve free future access to Project Gutenberg™ electronic works. See paragraph 1.E below.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.