Advances in Nanotechnology and the Environmental Sciences Applications Innovations and Visions for the Future 1st Edition Alexander V. Vakhrushev (Editor)
CRC Press is an imprint of Taylor & Francis Group, an Informa business
No claim to original U.S. Government works
Printed on acid-free paper
International Standard Book Number-13: 978-1-4987-2623-8 (Hardback)
This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.
Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers.
For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.
Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe.
Library of Congress Cataloging-in-Publication Data
Names: Fulekar, M. H., author. | Pathak, Bhawana, author.
Title: Environmental nanotechnology / M.H. Fulekar and Bhawana Pathak.
Description: Boca Raton : Taylor & Francis, CRC Press, 2018. | Includes bibliographical references and index.
Identifiers: LCCN 2017026755| ISBN 9781498726238 (hardback : alk. paper) | ISBN 9781315157214 (ebook)
LC record available at https://lccn.loc.gov/2017026755
Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com
and the CRC Press Web site at http://www.crcpress.com
To Powara Fulekar
& Professor K. N. Pandey
3.10.2
3.10.3
3.10.4
3.10.6 Synthesis of Silver Nanoparticles Using Culture Supernatant of Staphylococcus aureus
3.10.7 Synthesis of Silver Nanoparticles Using Culture Supernatant of Klebsiella
3.10.8
3.10.9
3.10.10 Synthesis of Silver Nanoparticles Using Culture of Halococcus salifodinae BK3
3.10.11
3.10.12 Synthesis of Silver Nanoparticles Using Cyanobacteria
3.10.13 Synthesis of Silver Nanoparticles from Actinomycetes
3.14.1
3.14.2
3.14.3
3.14.4 Synthesis of Silver Nanoparticles Using Bipolaris nodulosa ....................................................................................
3.14.5 Synthesis of TiO2 Nanoparticles Using the Fungi Aspergillus flavus .....................................................................
3.14.6 Synthesis of Iron Nanoparticles Using Thiobacillus thioparus ...................................................................................
3.14.7
3.14.8
5.2
5.6
5.11
5.12
5.11.1
5.20.2 Preparation of Monodisperse Sulphonated Polystyrene Core–Shell Gel Spheres .................................
5.20.3 Preparation of PS/Ag Nanocomposite Spheres ...............
Nanotechnology is the design, characterization, production and application of structure, devices and system by controlling surface and sizes at nanoscale. Nanotechnology directs atoms and molecules to form the desired structure and patterns with novel properties. Nanotechnology R&D is directed towards understanding and creating improved materials, devices and systems that exploit these new properties. Nanotechnology is sometimes referred as general-purpose technology because in its advanced form, it will have a significant impact on almost all industries.
The modern technological advancements in chemical processes have given rise to new abundant levels of pollutants, which are above the self-cleaning capacities of the environment. Detecting and treating existing contaminants and preventing new pollutants are among the challenges of twenty-first century. The remediation of contaminants using existing technologies is not effective and efficient to clean up the environment. Environmental nanotechnology would offer an innovative mechanism to remediate and treat the contaminants to acceptable levels. Environmental scientists and engineers are already working with nanoscale structures to manipulate matter at the atomic and molecular scale that has cut across disciplines of chemistry, physics, biology, and even engineering. Natural weathering of minerals, iron oxide, silicates and microorganisms such as bacteria and algae produce nano-celluloids, which includes a dispersion of nano-sized particles in media with special properties that can be important in the fate, transport, transformation and bioavailability of environmentally harmful substances. Environmental nanotechnology is considered to play a key role in shaping current environmental engineering and science. Looking at the nanoscale has stimulated the development and use of novel and cost-effective technologies for remediation, pollution, detection, catalysis and others. There is high hope that nanotechnological application and products will lead to a cleaner and healthier environment. Nanotechnology offers a great promise for delivering new and improved environmental technologies.
Environmental Nanotechnology covers the advanced materials, devices, and system development for use in environmental protection. The development of nano-based materials, understanding its chemistry and characterization using x-ray diffraction, Fourier transform infrared spectroscopy (FT-IR), energy-dispersive x-ray spectroscopy (EDX), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution TEM, and so on, highlights the scope for their application in environmental protection, environmental remediation and environmental biosensors for detection, monitoring and assessment. The green chemistry based on nano-based materials will prevent pollution and control the environmental contaminants and help in environment cleanup.
Acknowledgements
Nanotechnology is the field of application in science and technology, covering a broad range of disciplines of chemistry, physics, biology, natural science, environment science, life science and even technology and engineering. Nanotechnology is a modern and advanced concept of the traditional branches of science that deals with molecules on a nanoscale. Nanosciences is the study of phenomena and manipulation of materials at atomic, molecular and macromolecular scales, where properties differ significantly from those at large scales. Nanotechnology is the design, characterization, production and application of structures, devices, and system by controlling shape and size at the nanoscale. The goal of nanotechnology is to direct atoms and molecules to form desired structures or devices with novel functions.
Environmental nanotechnology would be the new innovation to remediate and treat the contaminants to the acceptable level. Environmental scientists and engineers are already working with basic materials to manipulate matter of atoms or molecules at the nanoscale and also develop the nano composite to apply as a catalyst, devices for decontamination in soil/water and air environment. Environmental nanotechnology is considered to play a key role in the shaping of current environment engineering and science. Nanoscale material composites, catalysts, devices and products offer a great promise for new and improved technology.
Environmental Nanotechnology covers the recent publications in the literature. The chapters highlight synthesis, characterization, development of nano material/composite using various techniques for the application of developed materials in environmental science and engineering.
The vice chancellor of Central University of Gujarat, Professor S. A. Bari, has encouraged, motivated and provided the necessary facilities for writing a book on environmental nanotechnology. We express our gratitude to Professor Bari for his support and blessings.
The technical support received from the PhD students from the School of Environment and Sustainable Development and Centre for Nanosciences is acknowledged with thanks.
I, Professor M. H. Fulekar, would like to acknowledge my family members with love and affection: my mother Powara and father Hiraman as well as wife Dr. (Mrs) Kalpana Fulekar, children Jaya, Jyoti, and Vinay, and brothers Sacchidananad and Pawan.
I, Dr. Bhawana Pathak, am grateful with due respect and regards to my father late Professor K. N. Pandey who is a source of inspiration for me to be an academician and to do novel work to benefit to the society. My mother’s blessings always remain with me. I sincerely thank my husband Mr Santosh
Pathak. Aishwarya, my loving daughter, always a source of support in my work.
Professor M. H. Fulekar’s, guidance, directive, support, and blessing is a matter in every walk of my life.
The authors strongly believe in ‘energy and strength’ for doing novel work. This book is a miracle and blessing of God Almighty.
Authors
Professor M. H. Fulekar, MSc, MPhil, PhD, LLB, MBA, DSc, is a professor and dean, School of Environment and Sustainable Development, and director, Sector 30 campus, Central University of Gujarat. He was professor and head, University Department of Life Sciences, University of Mumbai. He has in his credit 250 research papers and articles published in international and national journals of repute. He is also author of 12 books published by CRC, Springer IK International, etc. He has guided 15 PhD and 20 MPhil students and guiding 10 PhD students in environmental biotechnology and environmental nanotechnology. He has to his credit five patents (filled).
As a principal investigator, he has completed research projects: UGC, CSIR, BRNS, DBT R&D and Industrial projects. He was awarded ILO fellowship ILO/UNDP: ILO/FINNIDA; ILO/JAPAN (1985; 1992–1993).
He was in the ‘Who’s Who’ in Science and Engineering USA in 1998; and ‘Outstanding Scientist of the 20th Century’ in 2000, from International Biographical Centre, Cambridge, England. He is also a member of New York Academy of Sciences, USA. He is recipient of Education Leadership Award and International award for Environmental Biotechnology. Recently he has been awarded for Eminent Educationist. He has worked in various capacities in University Administration. His areas of research interest include environmental science, environmental biotechnology and environmental nanotechnology. As an expert, he has visited Australia, Singapore, Thailand, Hong Kong and Nepal.
Dr. Bhawana Pathak is working as an associate professor in the School of Environment and Sustainable Development, Central University of Gujarat. Earlier she worked as a Pool Officer in University Department of Life Sciences, University of Mumbai. She was awarded CSIR – Research Associateship at GBPHIED Kosi, Katarmal Almora. She completed her MSc in botany with a gold medal from Kumaun University, Nainital, and PhD in plant ecology from G.B. Pant Institute of Himalayan Environment and Development
Kosi, Katarmal Almora. She has 14 years of research and teaching experience in the specialized area of environmental ecology, biodiversity conservation, environmental biotechnology and environmental nanotechnology. Thirteen MPhil degrees have been awarded under her guidance and presently she is guiding six PhD students. She also contributes to the development of curriculum for different courses; published research papers, scientific research articles, book chapters and books, and contributed to innovative research work in the specialized area for future policies. She has also presented scientific papers in national and international conferences and seminars and received the appreciation for presentation and publication. She has achieved excellence in ecology, biodiversity conservation and environmental biotechnology. She is a recipient of Bharat Gaurav Award and Outstanding Faculty award in Bio Science & Technology. Her biographical note is also published in Asia Pacific – learned India: Educationist Who is Who. Currently, she is focusing on transferring the lab technology to the land as a major task.
1 Environmental Nanotechnology: An Introduction
1.1 Introduction
Nanoscience and nanotechnologies have enabled an understanding of matter and have profound implications in all sectors, i.e. agriculture and food, energy production efficiency, the automotive industry, cosmetics, medical and drugs, household appliances, computers and weapons. Nanoscience is multidisciplinary and interdisciplinary branch of science and technology, which has an impact on virtually every spectrum of human endeavour including communications, computing, textiles, cosmetics, sports, therapy, automotive, environmental monitoring, fuel cells and energy devices, water purification, food and beverage industry, etc. The tiny objects constructed atom-by-atom or moleculeby-molecule present one of the exciting prospects for research in nanoscience.
The Royal Society (2004) and Royal Academy of Engineering gives the following definitions of ‘nano science’ and ‘nanotechnologies’:
‘Nanoscience is the study of phenomena and manipulation of materials at atomic, molecular and macromolecular scales, where the properties differ significantly from those at a larger scale’.
Nanotechnologies are the design, characterization, production and application of structures, devices and systems by controlling shape and size at nanometer scale
Nanomaterials are structured components with at least one dimension less than 100 nm. Materials have one dimension in the nanoscale and are extended in the other two-dimensional layers, such as graphene, thin films or surface coatings. Materials that are at nano scale having two dimensions and extended to one dimension include nanowires and nanotubes. Materials that are nano scale in three dimensions are particles. Nanocrystalline materials such as precipitates, colloids and quantum dots (tiny particles of semiconductor materials), made up of nanometre-sized grains, fall in this category.
Nanoparticles can be defined as material purposefully produced with one dimension in 1–100 nm range (as stated by the American Society for Testing and Materials (ASTM) Committee on Nanotechnology). The materials have unique properties compared to their bulk and atomic counterparts. The engineered nanoparticles are widely used by consumers as novel products. With the unique properties and characteristics such as their size and shape, it is possible that these materials have profound demand in the market. The use of nanoparticles in environmental technologies and the potential impact on the energy sector, potential effects on human health and the environment (adverse and beneficial) is reviewed by Biswas and Wu (2005). Environmental nanoparticles is a new and fastgrowing field.
The principal factors that cause the properties of nanomaterials differ significantly from other materials: increased relative surface area and quantum effects. These factors can change or enhance properties such as reactivity, strength and electrical characteristics. As a particle decreases in size, a greater proportion of atoms are found at the surface compared to those inside. For example, a particle of size 30 nm has 5% of its atoms on its surface, that of size 10 nm, 20% of its atoms, and that of size 3 nm, 50% of its atoms. The nanoparticles have a much greater surface area per unit mass compared with larger particles, because growth and catalytic chemical reaction occur at surfaces, which means a given mass of material in the nanoparticulate form will be much more reactive than the same mass of material made up of larger particles. Nanomaterials can be nanoscale in one dimension (surface films), two dimensions (strands or fibres) or three dimensions (precipitates, colloids). They can exist in single, fused, aggregated or agglomerated forms with spherical, tubular and irregular shapes.
There is variety in the types of nanoparticles that have been fabricated, with almost every element in the periodic table, together with various alloys and compounds can form nanoparticles. Nanoparticles can be metallic, semiconducting or insulating and typically their properties are very different from those of the corresponding bulk materials. The seven main nanomaterial categories include carbon-based nanomaterials, nano-composites, nanometals and nano alloys; biological nanomaterials; nano-polymers; nano-glasses and nano-ceramics.
Due to their small dimension, nanomaterials have extremely large surface area to volume ratio, which gives rise to more ‘surface’-dependent material properties. When the sizes of nanomaterial are comparable to length, the developed material will be affected due to surface properties of the nanomaterial. This will enhance or modify the properties of the bulk materials (e.g. metallic nanoparticles can be used as very active catalysts, chemical sensors and nanowires that enhance sensitivity and sensor selectivity). Different properties of nanomaterials have different applications in different areas (Table 1.1).
TABLE 1.1
Nanoparticles Properties and Their Applications
Property
Optical Anti-reflection coatings.
Application
Tailored reflective index of surfaces.
Light-based sensors for cancer diagnosis.
Magnetic Increased density storage media.
Nanomagnetic particles to create improved detail and contrast in MRI images.
Thermal Enhance heat transfer from solar collectors to storage tanks. Improve efficiency of coolants in transformers.
Mechanical Improved wear resistance.
New anti-corrosion properties.
New structural materials, composites, stronger and lighter.
Electronic High performance and smaller components, e.g. capacitors for small consumer devices such as mobile phones.
Displays that is cheaper, larger, brighter and more efficient.
High conductivity materials.
Energy High energy density and more durable batteries.
Hydrogen storage applications using metal nanoclusters.
Electrocatalysts for high efficiency fuel cells.
Renewable energy, ultra high performance solar cells.
Catalysts for combustion engines to improve efficiency, hence economy.
Biomedical Anti-bacterial silver coatings on wound dressings.
Sensors for disease detection (quantum dots).
Programmed release drug delivery systems.
‘Interactive’ food and beverages that change colour, flavour or nutrients depending on a diner’s taste or health.
Environmental Clean-up of soil contamination and pollution, e.g. oil.
Biodegradable polymers.
Aids for germination.
Treatment of industrial emissions.
More efficient and effective water filtration.
Surfaces Dissolution rates of materials are highly size dependant.
Activity of catalysts.
Coatings for self-cleaning surfaces, Pilkington’s glass for example.
Personal care Effective clear inorganic sunscreens.
1.2 Properties of Nanomaterials
1. Electrical properties: The electrical properties of nanomaterials vary between metallic and semiconducting materials and depend on the diameter of the nanomaterial. The very high electrical conductivity of nanomaterial is due to minimum defects in the structure.
2. Thermal conductivity: The thermal conductivity of nanomaterials is very high, due to the vibration of covalent bonds which is 10
times greater than the metal. The high thermal conductivity of nanomaterials is due to minimum defects in the structure.
3. Mechanical properties: Nanomaterials are very strong and withstand extreme strain. The synthetic method is used for producing nanomaterials that exhibit properties as result of their characteristic length scale being in the nanometre range (∼1–100 nm). The synthetic method controls size in this range so that one property or another can be attained. Nanomaterials can be synthesized by two main methods ‘bottom up’ and ‘top down’.
The bottom-up approach involves the constitution of nanomaterials atom by atom, molecule by molecule and cluster by cluster. The chemical or biological methods are involved in the synthesis of nanostructured building blocks (e.g. nanoparticles) and subsequently assembled into final forms of nanomaterial in the bottom-up approach. The advantage of bottom-up approach is the possibility of obtaining nanostructures with lesser defects and more homogeneous chemical composition.
In top-down approach physical, chemical or mechanical methods are involved, wherein the suitable starting material is reduced in size. However, top-down approach develops imperfection of the surface structure, such as defects in the surface structure have significant impact on physical properties and surface chemistry.
1.3 Major Applications in Nanotechnology
Nano tools: Tools and techniques for synthesizing nanomaterials, manipulating atoms and fabricating device structures, and for measuring and characterizing materials and devices at the nanoscale.
Nano devices: Making devices at the nanoscale is important in microelectronics and optoelectronics at the present time, and at the interface with biotechnology with the aim of mimicking the action of biological systems such as cellular motors.
1.4 Type of Nanoparticles
Ultra-fine particles: Often referred to as nanometre-diameter particles that are not intentionally produced (less than 100 nm size), such as naturally airborne particles or incidental products of processes involving combustion (e.g. carbon black, smoke, welding fumes).
Engineered nanomaterial: Intentionally manufactured material, containing particles (unbound state, aggregate or agglomerate) and 50% or more of the particles in the number size distribution, one or more external dimensions is in the size range 1–100 nm.
Nano powder: A mass of dry nanoparticles.
Nano aerosol: A collection of nanoparticles suspended in a gas.
Nano fibre: A nano-object with two similar external dimensions at the nano scale and the third dimension significantly larger. A nano-fibre can be flexible or rigid. The two similar external dimensions are considered to differ in size by less than three times and the significantly larger extern al dimension is considered to differ from the other two by more than three times. The largest external dimension is not necessarily in the nano scale.
Nano platelet: A nanoparticle having a ‘platelet’ morphology (a minute flattened body) that presents only one dimension at the nanoscale (they have a very thin but wide aspect ratio).
High aspect ratio nanoparticles (HARNs): Particles with one or two dimensions at the nanoscale are much smaller than the others. Nano-fibres and nano platelets are considered as HARNs.
Agglomerate: A group of nanoparticles held together by relatively weak forces (van der Waals, electrostatic or surface tension).
1.5 Types of Engineered Nanoparticles
Carbon-Based Particles: Nanoparticles, which are commonly composed of carbon and having shapes in the form of spheres, ellipsoids and tubes. The spheres are known as fullerenes and the tubes are known as carbon nanotubes.
Metal-Based Particles: These nanoparticles include metal oxides (e.g. TiO2, ZnO, CeO2), quantum dots (semiconductor devices with chemical composition of CdSe or ZnS) and zero-valence metals (e.g. zero-valence Fe, colloidal silver and gold). They consist of closely packed metals with particulate sizes of a few nanometres to a 100 nm in dia meter. These particles also have sizesensitive optical properties.
Dendrimers: These nanoparticles are synthesized polymers with many side branches with different functional groups on the surface of these dendrimers. Dendrimers are used for different functions and applications and they have cavities inside that can host other types of molecules.
Composites: These are nanoparticles combined with other nano or bulk materials. A composite material (also called a composition material) is a material made from two or more constituent materials with significantly different physical or chemical properties, when combined, produce a material with characteristics different from the individual. Some examples include using nanoparticles in a wide variety of merchandise to improve their
current properties (i.e. nano clays including mineral silicates, montmorillonite, bentonite, kaolinite, hectorite and hallosite).
1.6 Properties
One-dimensional nanomaterials: They are extended in the other two dimensions and are known as layers (e.g. thin film or surface coatings).
Two-dimensional nanomaterials: They are extended in one dimension only and are known as wires (e.g. nanowires or carbon nanotubes).
Three-dimensional nanomaterials: All three dimensions are in the nanoscale and they are known as nanoprecipitates (e.g. nanoparticles or quantum dots).
Research and technology in nanotechnology including development at the atomic, molecular or macromolecular levels in the length scale of approximately 1 to 100 nm range is intended to provide a fundamental understanding of materials at the nanoscale, to create and use structures, devices and systems that have novel properties and functions. Nano technology is now being created and evolving a wide range molecular synthesis, manipulation and manufacturing of materials and devices for specific purposes so as to design innovative methods for the new technology to be applied for sustainable development. Nanotechnology includes design, characterization, production and application of structure, device and system on controlling the shape and size at the nanoscale. It is possible to control fundamental characteristics of a material by creating nanometre-scale structure that changes melting point, magnetic properties and colour without changing its chemical composition. The goal of nanotechnology goal is to form the desired structure or pattern with novel functionality from direct atoms and molecules. The physical, chemical and biological properties of nanoparticles differ in fundamental and valuable means from the properties of individual atom and molecular or bulk matter. Research and development in nanotechnology is directed towards the understanding and creating of improved materials, devices and systems that exploit approximately the new field of nanotechnology from multidisciplinary directions, viz. physical, chemical and biological engineering. The approximation of active nanostructures and nano systems may bring significant changes in various fields, viz. industry, agriculture, medicine, quality of life and the environment.
Environmental nanotechnology (E-nano) is considered to play a key role in the shaping of current environmental science and engineering. Environmental nanotechnology products already exist in a wide array for environmental protection. Nanotechnology pollution prevention technology refers to reduction in the use of raw materials, water or other resources and the elimination or reduction of waste and use of more energy-efficient products. In clean and green technology, the production of nanoparticles for
Another random document with no related content on Scribd:
The Project Gutenberg eBook of Taikapeili
This ebook is for the use of anyone anywhere in the United States and most other parts of the world at no cost and with almost no restrictions whatsoever. You may copy it, give it away or re-use it under the terms of the Project Gutenberg License included with this ebook or online at www.gutenberg.org. If you are not located in the United States, you will have to check the laws of the country where you are located before using this eBook.
Title: Taikapeili
Nelinäytöksinen satunäytelmä
Author: Larin-Kyösti
Release date: October 19, 2023 [eBook #71912]
Language: Finnish
Original publication: Jyväskylä: K. J. Gummerus Oy, 1916
(Hovirouva tulee toiselta, hoviherra toiselta taholta, tekevät naurettavia kumarruksia ja niiauksia, asettavat sormet suulleen ja sipsuttavat prinsessan huoneen ovelle ja tirkistävät avaimen reijästä.)
HOVIROUVA. Kuulitteko?
HOVIHERRA
Kyllä minä kuulin.
HOVIROUVA
Kuulkaa, kuinka prinsessa mellastaa. Nyt hän heitti jotain lattialle, ai!
HOVIHERRA
Kaulakoristeen, jonka hän sai korkealta kosijalta. Rasavilli!
HOVIROUVA
Hän on mahdoton! Eilen hän tahtoi pukeutua ryysyihin ja kulkea paljain jaloin.
HOVIHERRA
Tuittupää, oikullinen orpo. Hänellä ei ole ikäistensä seuraa. Eilen hän näki linnanikkunasta paimentyttöjen ajavan lammaskarjaa ja nyt hän tahtoo olla paimentyttönä.
HOVIROUVA
Hänen täytyy tottua hovitapoihin. Meidän velvollisuutemme on opettaa ja ohjata häntä.
HOVIHERRA
Mutta hän ei tottele, tekee ja sanoo kaikki päinvastoin. Olisiko syy…
HOVIROUVA
Syy meissä, minussa? Minä olen aina hyvällä esimerkillä koettanut…
HOVIHERRA
Hänen pitäisi saada kuulla soittoa, tanssia ja iloita. Ja sitten pitää hänen rakastua. Minäkin…
HOVIROUVA
Tekin..? Hän ei huoli kenestäkään. Kääntää kosijoille selkänsä tai tekee heistä pilkkaa.
HOVIHERRA
Eilen hän istui pitkän aikaa tornikomerossa ja uhkasi vaijeta kokonaisen viikon… Mutta pohjaltaan hän on hyvä, hän antaa almuja.
HOVIROUVA
Te olette pilannut hänet. Te olette niin kevytmielinen. Eilen te nipistitte kamarineitiä korvasta, te, te…
HOVIHERRA
Mi, minä, armollinen rouva, olen aina ollut vain teidän nöyrin palvelijanne. Mutta nyt prinsessa tulee, vetäytykäämme syrjään.
(Hoviherra ja -rouva poistuvat perälle.)
IMANDRA (tulee paljain jaloin ja hajalla hapsin, kamarineiti rientää hänen jälessään. Prinsessa heittäytyy maahan.)
Ei, ei! Minä osaan jo sen taidon. Minä olen kyllästynyt koreihin pukuihin ja koreihin puheihin.
INKERI
Nouskaahan, armollinen prinsessa, joku voi tulla!
IMANDRA
Joku kosija? Hahhaa, muistatko, sitä viimeistä minä nipistin nenästä.
INKERI
Hyi, prinsessa, kuinka te olitte häijy.
IMANDRA
Niin, hovirouva sanoo minua häijyksi ja minä tahdon olla häijy, niin häijy, että ne ajavat minut linnasta.
INKERI
Kultavaunuissa te kerran linnasta ajatte, te olette niin kaunis ja maan kuulu, että tänne saapuu ruhtinaita aina Arapiasta kameleilla, kuormitettuina kullalla ja kalliilla kivillä.
IMANDRA
Minä en tahdo olla kaunis, katsos kuinka minä olen ruma! Sano, enkö minä ole ruma! —(vetää kasvonsa ryppyihin.)
INKERI (leikillä)
Ruma kuin hyypiä. Mutta jos nyt saapuisi se Kaukovallan prinssi, josta huhu käy.
No, teehän niin. Mutta lue samalla sitä hauskaa kirjaa paimenesta ja metsätytöstä!
INKERI (järjestäen tukkaa, lukee)
— — — Ja paimenpoika kulki metsälähteelle, jonka luona istui ihmeen ihana metsätyttö. Paimenpoika koristi hänen päänsä
mesikukilla, syötti häntä mesimarjoilla, soitteli paimenpillillään, hyväili
häntä kuin katrastaan, ja he nousivat, kulkivat tanssien ilossa ja rakkaudessa läpi hämyisen metsän — — —.
IMANDRA
Oh, olisinpa metsässä ja kohtaisin kauniin ja kainon paimenpojan!
Täällä minä tukehdun. Minua inhoittaa kaikki hovitavat, tanssin- ja soitonopettajat! Hyi! (Sylkee).
INKERI
Ai, ai, ei saa sylkeä!
IMANDRA
Mutta minä sylen vaan! Hyi! (kurkistaa ikkunasta). — Kas tuolta tulee paimentyttöjä! Hei, hei, tytöt, tulkaa tänne!
INKERI
Mutta prinsessa, ne ovat niin likaisia.
IMANDRA
Mutta minä tahdon!
INKERI
Pistetään toki kultakruunu päähän ja kultakengät jalkaan!
IMANDRA
Ei, ei, kruunu painaa ja kengät puristavat.
INKERI
Mutta hovirouva pistää mustaan komeroon.
IMANDRA
Pistäköön vaan! Minä tahdon olla kuin likainen paimentyttö. (Paimentytöt tulevat.) Tässä on mesikakkuja! Kuulkaas, miltä ketunleivät maistuvat, tuleeko niistä kieli vihreäksi? Näyttäkää kieltänne! Kas niin. Sehän on punainen niinkuin minunkin. (Näyttää kieltään, tytöt nauravat.)
INKERI
Mutta prinsessa!
IMANDRA
Mutta miksei teillä ole koreita vaatteita eikä mesikukkia kiharoilla?
PAIMENTYTTÖ
Me koristamme itseämme vain sunnuntaina.
IMANDRA
Ja minun pitää olla koreana joka päivä, siksi ei se tunnu miltään. Minä tahtoisin kulkea metsässä puettuna repaleisiin vaatteisiin. Annahan, kun koetan! (Aikoo ottaa tytön röijyn.)
INKERI (estää)
Ei, ei, siinä voi olla pieniä — eläviä.
IMANDRA
Hellan lettu, minä en koskaan näe täällä linnassa pieniä eläviä. Mutta osaattehan tanssia. Tanssikaa!
(Tytöt tanssivat.)
Kuinka se on kaunista! Siinä ei ole kumarruksia eikä polven koukistuksia. (Syöksyy keskelle tanssia.) Hih!
HOVIROUVA (tulee)
Mitä tämä merkitsee! Prinsessa, kuinka te käyttäydytte! Tämä on kauhea rikos hovisääntöjä vastaan. Avojaloin ja hajalla hapsin!
IMANDRA
Minä en välitä säännöistä! Piti, piti, piti!
HOVIHERRA (liehutellen nenäliinaa)
Hirvittävää! Mikä katku!
HOVIROUVA (pirskottaen hajuvettä)
Tuulettakaa huonetta! Ja te karjatytöt, lähtekää heti tiehenne! (Tytöt pois.)
IMANDRA
Ei, ei, minä tahdon mukaan. Minä tahdon tanssia heidän kanssaan.
HOVIROUVA
Kamarineiti, viekää armollinen prinsessa heti pukuhuoneeseen, sillä kohta tulee tänne Kaukovallan prinssi ja hänen ystävänsä hovitaidemaalari!
IMANDRA
Jos he tulevat, niin minä rupean rääkymään tai hypin harakkaa. Joko minä alan? (Tekee liikkeen).
Hahhahhaa, harakka! (Juoksee tiehensä, Inkeri hänen jälessään.)
HOVIROUVA
Ei, tämä menee jo liian pitkälle, minä ihan halkean harmista.
Hoviherra, te olette kelpaamaton kasvattaja, te turmelette koko hovin.
HOVIHERRA
No, no, armollinen, muistattehan, te itsekin… hypitte nuorena harakkaa! Muistatteko, kerran puutarhassa ollessamme…
HOVIROUVA
Siitä on jo kulunut monta vuotta, kun…
HOVIHERRA
… Kun minä katsoin teihin kuin kuningattareeni.
HOVIROUVA (keimaillen)
Oi, kuningattareen! Anteeksi! Minä kiivastuin. Miettikäämme kasvattavia keinoja.
HOVIHERRA
Prinsessaa hemmoitellaan, vuoroin peloitetaan. Seuratkoon kerran oikkujaan, olkoon paimentyttönä, niin hän saa nähdä, onko se niin hauskaa ja runollista.
HOVIROUVA
Te olette oikeassa. Tehkäämme niin, jollei hän suostu Kaukovallan prinssiin. Menkäämme nyt katsomaan prinsessaa! (Hovirouva ja hoviherra menevät.)
(Kaukovallan prinssi ja Otro tulevat.)
PRINSSI
Minä näin hänet taas ikkunassa. Mikä suloinen, kiehtova kuva! Sellaista sinä, Otro, et koskaan ole ikuistanut.
OTRO
Me olemme vaeltaneet kauan tuntemattomina, nyt olette onnenne ovella. Mutta olkaa varovainen, prinsessa kuuluu olevan omituinen ja oikullinen.
PRINSSI
Mutta paimentytöt kertoivat hänestä vain hyvää. Minä vapisen onneni odotuksesta.
OTRO
Teidän korkeutenne! Ette ole ensimmäinen, jonka prinsessa on karkoittanut.
PRINSSI
Mitä? Kuulin ääniä.
OTRO
Sieltä tulee jo tuulispää! Olkaa vatuillanne! (Vetäytyy syrjään.)
IMANDRA (Toisessa jalassa kenkä, toinen puoli päätä on palmikkona.)
Mitä? Kuka te olette, mitä te täällä teette?
PRINSSI
Olen Kaukovallan prinssi! Armollinen, armas prinsessa! Kuulu kauneutenne on minut tuonut tänne kaukaiselta maalta. Te olette kuin ihana ilmestys.
IMANDRA
Minä en ole kaunis enkä armollinen. Katsokaa! (Vetää tukan silmilleen.) Minä onnun.
PRINSSI
Se johtuu siitä, että nousitte ehkä vuoteestanne väärällä jalalla.
IMANDRA (tehden eleitä)
Ja minun nenäni on väärässä ja silmäni vinossa. (Vääntelee nenäänsä ja silmiänsä.)
Prinsessa, minä en ole tullut tänne tukistettavaksi vaan…
IMANDRA Vaan?
PRINSSI
Pyytämään teidän kunnioitettavaa kättänne.
IMANDRA
Mitä, kättäni? Mitä te sillä tekisitte? Onhan teillä käsiä itsellännekin.
PRINSSI
Minä tahtoisin laskea sydämeni teidän jalojen jalkojenne juureen.
IMANDRA
Nyt te puhutte kuin sydämenne olisi kurkussanne. Älkää puhuko tyhmyyksiä, olettehan viisas mies.
PRINSSI
Se ilahuttaa minua kuullessani sen teidän suloisesta suustanne.
IMANDRA
Miksi olette imelä niinkuin muutkin korkeat kosijani? Minä olen väsynyt teihin, koko hoviin, kaikkeen, kuuletteko!
PRINSSI
Niin minäkin, siksi lähdin etsimään jotain uutta. Minä haukottelen usein hoviherrojeni seurassa.
IMANDRA
Nyt minä pidän teistä. Haukotelkaamme yhdessä! Kun minä katselen teitä, niin olettehan sentään ihmisen näköinen. Kunhan olisitte paimenpoika ja soittaisitte paimenhuilua!