Rotor systems: analysis and identification 1st edition rajiv tiwari 2024 scribd download

Page 1


Rotor Systems: Analysis and Identification 1st Edition Rajiv Tiwari

Visit to download the full and correct content document: https://textbookfull.com/product/rotor-systems-analysis-and-identification-1st-edition-r ajiv-tiwari/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Identification of Continuous-Time Systems: Linear and Robust Parameter Estimation (Engineering Systems and Sustainability) 1st Edition Allamaraju Subrahmanyam

https://textbookfull.com/product/identification-of-continuoustime-systems-linear-and-robust-parameter-estimation-engineeringsystems-and-sustainability-1st-edition-allamaraju-subrahmanyam/

Identification of Continuous Time Systems Linear and Robust Parameter Estimation 1st Edition Allamaraju Subrahmanyam (Author)

https://textbookfull.com/product/identification-of-continuoustime-systems-linear-and-robust-parameter-estimation-1st-editionallamaraju-subrahmanyam-author/

Friction Stir Welding and Processing VII 1st Edition

Rajiv Mishra

https://textbookfull.com/product/friction-stir-welding-andprocessing-vii-1st-edition-rajiv-mishra/

Algebraic Identification of Smart Systems: Theory ■nd Practice Natalia A. Serdyukova

https://textbookfull.com/product/algebraic-identification-ofsmart-systems-theory-%d0%b0nd-practice-natalia-a-serdyukova/

Nanoscale Device Physics: Science and Engineering Fundamentals 1st Edition Sandip Tiwari

https://textbookfull.com/product/nanoscale-device-physicsscience-and-engineering-fundamentals-1st-edition-sandip-tiwari/

Emerging Markets Megatrends Rajiv Biswas

https://textbookfull.com/product/emerging-markets-megatrendsrajiv-biswas/

Developing Turn-Based Multiplayer Games 1st Edition

Yadu Rajiv

https://textbookfull.com/product/developing-turn-basedmultiplayer-games-1st-edition-yadu-rajiv/

BASH SCRIPT Linux Command Line Reference 1st Edition Aditya Tiwari

https://textbookfull.com/product/bash-script-linux-command-linereference-1st-edition-aditya-tiwari/

Pathfinder for Olympiad JEE Physics Arvind Tiwari

https://textbookfull.com/product/pathfinder-for-olympiad-jeephysics-arvind-tiwari/

Rotor Systems

Rotor Systems: Analysis and Identification

Department of Mechanical Engineering

Indian Institute of Technology Guwahati, Guwahati, India

MATLAB® is a trademark of The MathWorks, Inc. and is used with permission. The MathWorks does not warrant the accuracy of the text or exercises in this book. This book’s use or discussion of MATLAB® software or related products does not constitute endorsement or sponsorship by The MathWorks of a particular pedagogical approach or particular use of the MATLAB® software.

CRC Press

Taylor & Francis Group

6000 Broken Sound Parkway NW, Suite 300

Boca Raton, FL 33487-2742

© 2018 by Taylor & Francis Group, LLC

CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed on acid-free paper

International Standard Book Number-13: 978-1-138-03628-4 (Hardback)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www. copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-7508400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe.

Library of Congress Cataloging-in-Publication Data

Names: Tiwari, Rajiv (Mechanical engineer), author.

Title: Rotor systems : analysis and identification / Rajiv Tiwari.

Description: Boca Raton : CRC Press, Taylor & Francis Group, 2018. | Includes bibliographical references and index.

Identifiers: LCCN 2017023367| ISBN 9781138036284 (hardback : alk. paper) | ISBN 9781315230962 (ebook)

Subjects: LCSH: Rotors--Dynamics.

Classification: LCC TJ1058 .T59 2018 | DDC 621.8/2--dc23

LC record available at https://lccn.loc.gov/2017023367

Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com

and the CRC Press Web site at http://www.crcpress.com

1 A Brief History of Rotor Systems and Recent Trends

1.1

1.2 Rotor Dynamics Phenomena Studies from Stodola to Lund .....................................................5

1.3 Development of Rotor Dyna mics

1.4

1.5

1.6

1.7

2 Transverse Vibrations of Simple Rotor Systems

2.1

2.5

2.1.1

2.1.2

2.1.3

2.4.1

2.4.2

2.4.3

2.5.1

2.5.2

2.6 Effect of Cross-Coupling Stiffness on

2.7 Concluding

3

Rotordynamic Parameters of Bearings, Seals, and Dampers

3.1 Rolling Element Bearings ...............................................................................................................81

3.1.1 Linear Radial Stiffness of Rolling Bearings .................................................................85

3.1.2 Nonlinear Stiffness of Rolling Bearings.......................................................................93

3.1.3 Linear Stiffness Determination Under Combined Loadings ..................................103

3.1.4 Radial Stiffness at High-Speed Conditions ................................................................105

3.2 Hydrodynamic Fluid-Lubricated Journal Bearings .................................................................107

3.2.1 Types of Hydrodynamic Bearings ...............................................................................108

3.2.2 Reynolds Equation and Its Basic Assumptions .........................................................108

3.2.3 Basic Concepts and Assumptions of Fluid-Film–Bearing Models ..........................111

3.2.4 Short and Long Hydrodynamic Radial Bearings ......................................................113

3.2.5 Numerical Analysis Procedure of Finite Radial Bearings .......................................117

3.2.6 Rotordynamic Coefficients of Fluid-Film Bearings ..................................................120

3.3 Dynamic Seals ................................................................................................................................122

3.3.1 Classification of Seals .....................................................................................................122

3.3.2 Theoretical Estimation of Dynamic Coefficients of Seals ........................................124

3.3.2.1 Basic Governing Equations and Approximate Solution ........................124

3.3.2.2 Approximate Dynamic Coefficients of Seals ...........................................126

3.3.3 General Fluid-Film Dynamic Force Equations .........................................................134

3.4 Squeeze-Film Dampers .................................................................................................................134

3.4.1 Rotordynamic Force Coefficients.................................................................................136

3.5 Concluding Remarks.....................................................................................................................138

4 Transverse Vibrations of Simple Rotor-Bearing-Foundation Systems

4.1 A Symmetrical Long Rigid Shaft on Flexible Anisotropic Undamped Bearings ................145

4.2 A Symmetrical Long Rigid Shaft on Anisotropic Bearings ....................................................152

4.2.1

4.2.2

4.3 A Symmetrical Flexible Shaft on Anisotropic Bearings ..........................................................160

4.4 A Flexible Rotor on Flexible Bearings and Foundations .........................................................171

4.5 A Turbine-Coupling–Generator Rotor on Flexible Bearings .................................................174 Concluding Remarks ................................................................................................................................176

.....................................................................................................................................176

5 Transverse Vibrations of Simple Rotor Systems with Gyroscopic Effects

5.1 Angular Momentum .....................................................................................................................190

5.2 Gyroscopic Moments in Rotating Systems ................................................................................191

5.2.1 Motion of a Rotor Mounted on Two Bearings ...........................................................191

5.2.2 Gyroscopic Moments through the Coriolis Component of Accelerations............................................................................................................... 193

5.2.3 Gyroscopic Moments in a Rotating Thin Blade .........................................................194

5.2.4 Gyroscopic Moments in a Multibladed Propeller .....................................................196

5.3 Synchronous Motion of Rotors....................................................................................................198

5.3.1 A Cantilever Rotor with a Thin Disc ...........................................................................198

5.3.2 A Cantilever Rotor with a Long Stick ........................................................................203

5.4 Asynchronous Rotational Motion of Rotor System ................................................................208

5.5 Asynchronous General Motion of Rotor Systems ....................................................................213

5.6 Gyroscopic Effects by the Dynamics Approach ......................................................................227

5.7 Analysis of Gyroscopic Effects with Energy Methods .............................................................231

5.8 Pure Transverse Rotational Vibrations of a Jeffcott Rotor Model with Moment Unbalance ................................................................................................237

5.9 Concluding Remarks....................................................................................................................239 Exercise Problems ....................................................................................................................................239

6 Torsional Vibrations of Rotor Systems by the Direct Analytical and Transfer Matrix Methods

6.1 A Simple Torsional Rotor System with a Single Disc ..............................................................253

6.2 A Two-Disc Torsional Rotor System ..........................................................................................256

6.2.1 Alternative Method (Indirect Method) .....................................................................260

6.3 A Two-Disc Torsional Rotor System with a Stepped Shaft ....................................................262

6.4 Three-Disc Torsional Rotor System ...........................................................................................266

6.4.1 Direct Approach ............................................................................................................266

6.4.1.1 Characteristic (or Frequency) Equations .................................................267

6.4.1.2 An Eigenvalue Problem ..............................................................................268

6.4.2 An Indirect Approach...................................................................................................272

6.5 Transfer Matrix Methods ............................................................................................................276

6.5.1

6.5.2 Field Matrix ....................................................................................................................278

6.5.3 Transfer Matrix ..............................................................................................................279

6.5.4 Application of Bounda ry Conditions ..........................................................................281

6.5.4.1 Free–Free Boundary Conditions................................................................281

6.5.4.2 Fixed–Free Boundary Conditions ............................................................283

6.5.4.3 Fixed–Fixed Boundary Conditions ..........................................................284

6.6 Simple Geared Rotor Systems .....................................................................................................297

6.7 TMM for Branched Geared Rotor Systems ..............................................................................306

6.8 TMM for Damped Torsional Vibrations ...................................................................................314

6.9 Modeling of Reciprocating Machine Systems ...........................................................................318

6.9.1 An Equivalent Polar Mass Moment of Inertia ...........................................................318

6.9.1.1 Due to Revolving and Reciprocating Masses of the Connecting Rod ............................................................................................318

6.9.1.2 Due to Revolving Masses on the Crank ....................................................319

6.9.1.3 Due to Reciprocating Masses of the Piston ..............................................319

6.9.2 Equivalent Torsional Stiffness of Crankshafts ...........................................................321

6.9.3 Torque Variations in Reciprocating Machinery .......................................................322

6.10 Concluding Remarks....................................................................................................................324 Exercise Problems ....................................................................................................................................325 References..................................................................................................................................................338

7 Torsional Vibrations of Rotor Systems by the Continuous System and Finite Element Methods

7.1 Torsional Vibrations of Continuous Shaft Systems .................................................................339

7.1.1 Hamilton’s Principle .....................................................................................................340

7.1.2 Lagrange’s Equation ......................................................................................................343

7.1.3 Governing Differential Equations ..............................................................................344

7.1.3.1 Alternative Method for Deriving EOMs..................................................347

7.2 Applications of FEMs ...................................................................................................................352

7.2.1 Galerkin Method ...........................................................................................................353

7.2.1.1 Checking Compatibility Requirements ...................................................355

7.2.1.2 Checking Completeness Requirements ...................................................356

7.2.1.3 Finite Element Formulations .....................................................................357

7.2.2 Rayleigh–Ritz Method ..................................................................................................358

7.2.3 Assembled System Equations ......................................................................................360

7.2.4 Application of Bounda ry Conditions ..........................................................................361

7.2.5 Free Torsional Vibrations .............................................................................................362

7.3 Development of the Finite Element for a Simple Gear Pair ...................................................373

7.3.1 The Consistent Mass and Stiffness Matrices of a Gear-Pair Element ...................374

7.3.2 Lumped Mass Matrix of Gear Pair .............................................................................375

7.4 Concluding Remarks....................................................................................................................382

8 Transverse Vibrations of Rotor Systems by the Influence Coefficients and Transfer Matrix Methods

8.1 Influence Coefficient Method .....................................................................................................387

8.1.1 The Static Case ...............................................................................................................388

8.1.2 The Dynamic Case ........................................................................................................390

8.2

8.2.1

8.2.2

8.2.3

8.2.4

8.2.5

8.2.6

8.3 Dunkerley’s Formula ....................................................................................................................447

8.4 Concluding Remarks.....................................................................................................................451

9 Transverse Vibrations of Rotor Systems by the Continuous and Finite Element Methods

9.1

9.1.1

9.1.2

9.1.3

9.1.4

9.1.5

9.2

9.3

9.4

9.5 FE Formulation of Euler-Bernoulli Beam ................................................................................480

9.5.1

9.5.2

9.5.3

9.5.4

9.5.5

10

9.5.6 System Equations of Motion ........................................................................................493

9.5.7 Eigenvalue Problem.......................................................................................................495

9.6 Proportional Damping ................................................................................................................527

9.7 Static and Dynamic Reductions .................................................................................................528

9.7.1 Static (Guyan) Reduction .............................................................................................529

9.7.2 Dynamic Reduction .......................................................................................................533

9.8 Concluding Remarks....................................................................................................................537

Exercises ....................................................................................................................................................537

Appendix 9.1 Comparison of Transverse Vibration continuous and finite element Analyses in y-z plane with that of z-x plane ..............................................................................545 References..................................................................................................................................................547

Transverse Vibrations of Rotor Systems with Higher-Order Effects by the Continuous and Finite Element Methods

10.1 Gyroscopic Effects in Rotor Systems with a Single Rigid Disc ..............................................549

10.2 Timoshenko Beam Theory ..........................................................................................................562

10.3 Finite-Element Formulations of the Timoshenko Beam ........................................................569

10.3.1 Weak Formulations of the Timoshenko Beam Element for the Static Case ................................................................................................................570

10.3.2 Derivation of Shape Functions .....................................................................................571

10.3.3 Weak Formulation of the Timoshenko Beam Element for the Dynamic Case .........................................................................................................577

10.4 Whirling of Timoshenko Shafts .................................................................................................583

10.4.1 Equations of Motion of a Spinning Timoshenko Shaft ...........................................584

10.4.2 Finite-Element Formulation ........................................................................................587

10.4.3 The Weak Form Finite-Element Formulations .........................................................589

10.4.4 Rigid Disc Element ........................................................................................................590

10.4.5 System Equations of Motion ........................................................................................590 10.4.6 Eigenvalue Problem.......................................................................................................590 10.5 Concluding Remarks....................................................................................................................594 Exercise Problems

ko

11 Instability Analysis of Simple Rotor Systems

11.1 Self-Excited Vibrations ................................................................................................................605 11.2 Phenomenon of the Oil Whirl ....................................................................................................608

Instability

11.5 Phenomenon of the Oil Whip......................................................................................................617

11.6 Instability Analysis due to Internal Damping in Rotors .........................................................619

11.7 Instability Due to Rotor Polar Asymmetry ..............................................................................629

11.8 Instability of An Asymmetric Continuous Rotor ...................................................................634

11.8.1 Equations of Motion .....................................................................................................634

11.8.2 Support Conditions and Characteristic Equation....................................................640

11.8.3 Whirl Natural Frequencies and Critical Speeds .......................................................643

11.8.4 Stability Analysis of Asymmetric Shaft with Gyroscopic Effects ..........................646

11.9 Rotor System with Variable Stiffness Characteristics .............................................................648

11.9.1 A Rotor System with Variable Stiffness .....................................................................650

11.9.2 Physical Analysis of a Horizontal Asymmetric Shaft with Gravity Effects ................................................................................................................

11.9.3 Analytical Solution of the Equation of Motion of Asymmetric Rotor .................653

11.10 Subcritical Vibrations of a Jeffcott Rotor ..................................................................................659

11.11 Instability Analysis Due to Stream Whirl ................................................................................ 664

11.12 Instability Analysis Due to Rotary Seals...................................................................................668

11.13 Analysis of Nonlinear Equations of Motion of the Jeffcott Rotor (Run-up and Rundown) ......................................................................................................................................670 11.14 Concluding Remarks....................................................................................................................675

Problems

12 Instability of Flexible Rotors Mounted on Flexible Bearings

12.1 Flexible Rotors Mounted on Flexible Bearings ........................................................................685

12.1.1 Fluid-Film

12.1.2

13.1 Unbalances in Rigid and Flexible Rotors ..................................................................................

13.1.1 Unbalance in a Single Plane .........................................................................................708

13.1.2 Unbalances in Two or More Planes ............................................................................709

13.2 Principles of Rigid Rotor Balancing ...........................................................................................710

13.2.1 Static Balancing (Single-Plane Balancing) .................................................................710

13.2.2 Static Balancing (Two-Plane Balancing) ....................................................................710

13.2.3 Couple Unbalance ..........................................................................................................711

13.2.4 Dynamic Unbalance ......................................................................................................

13.2.5 Various Expressions of Unbalances.............................................................................712

13.3 Balancing of Practical Rigid Rotor .............................................................................................717

13.3.1 Single-Plane Balancing ..................................................................................................717

13.3.2 Two-Plane Balancing (Cradle Balancing Machines) ................................................717

13.3.3 Two-Plane Balancing (Influence Coefficient Method) ............................................723

13.4 Balancing of Flexible Rotors .......................................................................................................729

13.4.1 Rigid Rotor Balancing versus Flexible Rotor Balancing .........................................729

13.4.2 Modal Balancing Methods ............................................................................................731

13.4.2.1 Modal Eccentricity .......................................................................................731

13.4.2.2 Basic Theory of Modal Balancing .............................................................733

13.4.2.3 Illustration of Modal Balancing Method up to the Second Mode ................................................................................................735

13.4.3 Influence Coefficient Methods ....................................................................................738

13.4.3.1 Experimental Determination of Influence Coefficients ........................740

13.5 Concluding Remarks....................................................................................................................755 Exercise Problems ....................................................................................................................................755

14 Experimental Identification of Rotor Dynamic Parameters of Bearings, Dampers, and Seals

14.1 Past Reviews and Surveys on Dynamic Parameters of Bearings ..........................................766

14.2 Hypothesis of Bearing Descriptions and Its Basic Concepts .................................................768

14.3 General Description of the Dynamic System Identification.................................................. 771

14.4 Bearing Parameter Identification Using Static Load Procedures .........................................772

14.4.1 Method 1: Stiffness coefficients based on two simultaneous orthogonal forces ..773

14.4.2 Method 2: Stiffness coefficients based on sequential orthogonal forces ...............773

14.4.3 Method 3: Stiffness coefficients based on gravity load ............................................774

14.4.4 Method 4: Stiffness coefficients based on eccentricity ratio ...................................776

14.4.5 Method 5: Stiffness and damping coefficients based on eccentricity ratio ..........777

14.5 Bearing Parameter Identification Using Dynamic Loads ......................................................777

14.6 Derivation of a Unified Identification Procedure in Linear Rotor-Bearing Systems.........780

14.7 Bearing Dynamic Parameter Identification Using Electromagnetic Exciters ....................783

14.7.1 Complex Receptance Procedure .................................................................................783

14.7.2 Direct Complex Impedance .........................................................................................788

14.7.3 Use of Multifrequency in Identification .....................................................................791

14.8 Bearing Parameter Identification Using Unbalance Forces ..................................................794

14.8.1 Trial Unbalance Fixed to the Journal .........................................................................794

14.8.2 Unbalanced Independent Rotating Disc....................................................................797

14.9 Bearing Parameter Identification Using Transient Methods .................................................801

14.10 Output-Only Identification Methods ........................................................................................803

14.11 Identification of Dynamic Parameter of Seals .........................................................................805

14.11.1 Experimental Methodology for Dynamic Parameter Estimation of Seals ..........806

14.11.2 Resources on Seal Rotor Dynamic Parameters ........................................................807

14.12 Concurrent Identification of Residual Unbalances and Bearing Dynamic Parameters ...807

14.12.1 Equations of Motion and Responses ..........................................................................808

14.12.2 Estimation Equations ....................................................................................................810

14.12.3 Condition of the Regression Matrix ............................................................................811

14.13 Concluding Remarks.....................................................................................................................815 Exercise Problems .....................................................................................................................................816 References...................................................................................................................................................819

15 Vibration and Acoustics Measurements in Rotating Machinery

15.1 Features of Measuring Units .......................................................................................................826

15.2 Uncertainty Analysis of Identified Parameters .......................................................................829

15.3 Transducers ...................................................................................................................................835

15.3.1 Displacement Sensors ................................................................................................... 835

15.3.2 Accelerometers ................................................................................................................841

15.4 Signal Conditioning and Analysis Equipment ........................................................................846

15.4.1 Filters ...............................................................................................................................846

15.4.2 Measurement Amplifier ...............................................................................................847

15.4.3 Oscilloscope, Spectrum Analyzer, and Data Acquisition System .........................848

15.5 Vibration Exciter Systems ...........................................................................................................848

15.5.1 Electromagnetic Systems..............................................................................................849

15.5.2 Mechanical-Type Exciters ............................................................................................849

15.5.3 Hydraulic and Pneumatic Systems .............................................................................850

15.5.4 Impact Hammer ............................................................................................................850

15.5.4.1 Determining Natural Frequencies of the Rotor Bearing System Using Impact-Hammer Test.........................................................................851

15.6 Sound Measurements ...................................................................................................................853

15.7 Concluding Remarks....................................................................................................................857 Exercise Problems ....................................................................................................................................857

16 Signal Processing in Rotating Machinery

16.1 Visual Presentation of Vibration Measurements......................................................................861

16.2 Errors in Vibrat ion Acquisitions ................................................................................................866

16.3 Basic Concepts of Fourier Series ................................................................................................873

16.3.1 Real Fourier Series.........................................................................................................874

16.3.2 Complex Fourir Series .................................................................................................. 874

16.4 Basics of Fourier Transform and Fourier Integral ..................................................................878

16.5 Basics of the Discrete Fourier Transform ................................................................................. 880

16.6 Basics of the Fast Fourier Transform.........................................................................................887

16.7 Leakage Error and Its Remediation ...........................................................................................888

16.7.1 Remediation of Leakage Errors by the Windowing Function ...............................890

16.7.2 Avoidance of Leakage by Coinciding Periods...........................................................892

16.8 Full Spectrum and Its Applications to Rotor Dynamic Analysis .........................................893

16.8.1 Full Spectrum from Orbit Plots ..................................................................................894

16.8.2 Full Spectrum from Half Spectrum ...........................................................................896

16.8.3 Full Spectrum from Real DFT (or Half Spectrum) ..................................................900

16.8.4 Full Spectrum from Complex DFT ............................................................................902

16.8.5 Phase Ambiguity in the Full Spectrum .....................................................................904

16.8.6 Multiharmonic Quadrature Reference Signal and Phase Compensation Algorithm ............................................................................................907

16.9 Statistical Properties of Random Discrete Signals ..................................................................908

16.9.1 Probability, Probability Distribution Function, and Probability Density Function ...........................................................................................................908

16.9.2 Random Process, Ensemble, and Sample Function ..................................................912

16.9.3 Stationary and Ergodic Processes ................................................................................913

16.9.4 Estimation of Probability Distribution and Probability Distribution Function .....914

16.9.5 Ensemble Average, Temporal Average, Mean, Variance ..........................................914

16.9.6 Autocorrelation Function and Covariance ................................................................916

16.9.7 Cross-Correlation Function .........................................................................................917

16.9.8 Coherence Function .......................................................................................................918

16.9.9 Statistical Feature Extraction .......................................................................................918

16.10 Vibration Signal Conditioning ....................................................................................................919

16.10.1 Electrical Noise ...............................................................................................................919

16.10.2 Run-Out ...........................................................................................................................919

16.10.3

17 Vibration-Based Condition Monitoring in Rotating Machinery

17.1

17.2

17.3

17.4

17.8.1

17.8.2

17.8.3

17.9

Winding Faults or Armature Faults ............................................973

17.10.2.4 Bearing Faults ..............................................................................................974

17.10.2.5 Air-Gap Eccentricity Related Faults.........................................................975

17.11 Concluding Remarks....................................................................................................................977

18.1.2 Three- and Four-Pole-Pair Radial Magnetic Bearings .............................................991

18.1.3 Homopolar and Heteropolar Radial Magnetic Bearings ........................................992

18.1.4 Advantages and Limitations of Active Magnetic Bearings ....................................992

18.2 Literature Survey on Design and Analysis of AMBs ..............................................................993

18.3 Basics of Active Magnetic Bearings ...........................................................................................998

18.3.1 Operating Principles of an AMB ................................................................................998

18.3.1.1 Eddy Current Position Transducers .........................................................998

18.3.1.2 Signal Processing Unit ................................................................................999

18.3.1.3 Power Amplifiers .........................................................................................999

18.3.2 Fundamental Relations .................................................................................................999

18.3.3 Dynamics of Active Magnetic Bearings ..................................................................1000

18.3.4 Differential Driving Mode of the Controller ...........................................................1003

18.3.5 PID Controller ..............................................................................................................1005

18.4 Block Diagrams and Transfer Functions .................................................................................1005

18.4.1 Block Diagrams and Transfer Functions of Magnetic Bearing Systems .............1005

18.4.2 The PID Controller and Its Transfer Function ........................................................1007

18.4.3 Transfer Function and Block Diagram of the Overall Active Magnetic Bearing System..............................................................................................................1007

18.5 Tuning of the Controller Parameters ...................................................................................... 1009

18.5.1 Stability Criteria ...........................................................................................................1010

18.5.2 PID Controller ..............................................................................................................1010

18.5.3 PD Controller ................................................................................................................1013

18.6 A Single-DOF Rotor-AMB System ...........................................................................................1014

18.7 Two-DOF Rotor-AMB Systems .................................................................................................1022

18.8 Four-DOF Rigid-Rotor Flexible-Bearing AMB Systems .......................................................1030

18.8.1 Rotor-AMB System Model ..........................................................................................1030

18.9 Flexible Rotor-Bearing-AMB Systems .....................................................................................1041

18.9.1 Analysis of Flexible Rotor-Bearing-AMB System ...................................................1041

18.9.2 Modeling of Rotor-Bearing System ...........................................................................1041

18.9.3 Shaft Model....................................................................................................................1041

18.9.4 Rigid Disc Model ..........................................................................................................1043

18.9.5 Bearing Model...............................................................................................................1043

18.9.6 Active Magnetic Bearing Model ...............................................................................1043

18.9.7 Equations of Motion of the Rotor Substructure ......................................................1043

18.9.8 Natural Whirl Frequenc y of the System ...................................................................1045

18.10 Concluding Remarks...................................................................................................................1050 Exercise Problems ...................................................................................................................................1050

Preface

This book is the outcome of an elective course on “Rotor Dynamics” offered by me to undergraduate, graduate, and postgraduate students at IIT Guwahati over the last 18 years. It contains material on some of the research work done by me with my graduate students. Hopefully, the content will be useful for classroom teaching and will serve as a reference book for pursuing research and development in the field of rotor dynamics.

In a broader sense, rotor dynamics covers several topics, namely modeling, analysis, measurement, signal processing, identification, condition monitoring, and control of rotor-bearing systems. The modeling and analysis of rotor-bearing dynamics have now reached a mature state. The finite element method (FEM) and the transfer matrix method (TMM) have been used extensively for modeling and analyses of rotor systems. Until today, monitoring the condition of rotor-bearing systems based on vibrations was mainly concerned with feature-based fault detection and diagnostics. As a result of this, the methods available so far are not reliable and failsafe according to the expectations of fellow engineers working in the field. For model-based condition monitoring of rotor-bearing systems, identification methods for system parameters are under development. In terms of identifying rotor system parameters, from the available literature a lot of possibilities have appeared in the field. The purpose of this course material is to give a basic understanding of the rotor dynamics phenomena with the help of a few simple rotor models and modern analysis methods for real-life rotor systems. This background will be helpful in the identification of rotor-bearing system parameters and its use in futuristic model-based condition monitoring and fault diagnosis and prognostics.

The content of the present book is in two major parts as title of the book also suggests, the first is the modeling and analysis of rotor phenomena, and the second is the condition monitoring of rotor systems and associated identification of system parameters. The first part basically deals with theory related to dynamic analysis of simple rotors, which will give a systematic presentation of some of the rotor dynamic phenomena in the transverse and torsional vibrations with the help of simple rotor mathematical models. But for analyzing complex rotors that are used in practice, the free and forced response analyses of multi-DOF rotor system have been presented. The Euler-Bernoulli and Timoshenko beam models have been considered in transverse vibration analysis. The present book material keeps a balance between the transfer matrix method (TMM) and the finite element method (FEM) for the analysis of complex rotors. However, the FEM is the most practical approach and it can be applied to very large complex rotor-bearing-foundation systems with its easy implementation in computer code and due to development in the condensation or reduction schemes to reduce computation effort and time. The dynamic analysis of rotors contains finding the whirl natural frequency, mode shapes, Campbell diagram, critical speeds, unbalance responses and instability frequency bands. Apart from conventional bearings, i.e. the rolling element and hydrodynamic bearings, and dynamic seals and dampers, the present book also touch upon the contemporary active magnetic bearings and associated rotor unbalance response and instability analyses for the rigid and flexible rotors. The second part basically contains the practical aspect of rotor systems related to the condition monitoring and system identification.

Vibration measurements commonly used in rotor systems has been covered in the book. Apart from that the signal processing of measured vibrations and its display in various forms have been given in great details especially for rotor system applications. Simple frequency domain signal processing techniques, and associated error involved and corrective methods to be taken have been presented. Apart from this, specialized frequency domain signal processing in the form of full spectrum to show the forward and backward whirling components in vibration signals from a rotor system, is one such kind of signal processing given in detail. Some of the basic statistical properties of random measurement signals are provided, which is useful for feature based condition monitoring of rotating machinery. The rigid and flexible rotor balancing, and the experimental identification of bearing dynamic parameters are covered in detail. Condition monitoring of simple machine elements and subsystems based on time and frequency domain signals have been presented. It covers, unbalance, shaft bow, rubs, shaft cracks, shaft misalignment, rolling element bearings, gears, pumps and induction motors.

Extensive information is available on feature based identification different types of fault in the rotor systems. These methods are being used by industries. System parameters identification algorithms are being developed which are used to characterize critical component parameters with the help of experimental measurements and to identify the fault. However, still they have not been used in practice. The present book material compiles some of the available literature in a systematic and lucid form in respective chapters so as to boost research in the developing area of the rotor dynamics.

The book is supplemented throughout by both manual and computer-based calculations. It is expected that with this book, students will receive sufficient exposure and motivation to apply the finite element method and transfer matrix method to rotor dynamics and allied areas. Exercise problems would definitely enlarge the understanding of the subject and some of them can be taken as term projects due to its effort involvement.

As the title suggests, Chapters 1 to 12 and Chapter 18 are on the dynamic analysis of rotor systems, whereas Chapters 13 to 17 are on the rotor system identification and its condition monitoring. Chapter 1 gives a historical development of the subject through problems faced by fellow engineers in the field in addition to the overall progress that has been made. In terms of analysis, a major portion of the text is devoted to finding the rotor system’s natural frequencies (free vibration) and critical speeds (forced vibration) for transverse vibrations (Chapters 2 to 5, 8 to 10, and 12) as well as torsional vibration (Chapters 6 and 7). Chapter 3 provides analyses of various bearings, seals, and dampers, as well as how to obtain rotordynamic parameters for them to be used for rotordynamic analysis. Chapters 11 and 12 are devoted to the analysis of instabilities in rotor systems due to various sources. Dynamic balancing of rotors is covered in Chapter 13, and Chapter 14 provides the experimental methodology of identifying rotordynamic parameters for bearings, seals, and dampers. Chapter 15 describes various instruments used for rotordynamic measurement purposes, and Chapter 16 describes the processing of measured signals to be used for rotordynamic identification. Monitoring the condition of various rotor elements and systems is covered in Chapter 17. Analysis of rotors integrated with active magnetic bearings is covered in Chapter 18, with an emphasis on dynamics and control of the rigid and flexible rotors. Overall the book contains all the facets of the rotor analysis and identification. The content of the book can be judiciously chosen for a semester course depending upon the focus of the course. For example, Chapters 1 through 9 and 11 through 13 can be chosen for 40 hours lectures, except more details of Chapter 3 can be excluded. However, if the TMM is to be excluded from Chapters 6 and 8, then selected topics from remaining chapters can be taken, especially from Chapter 18.

I sincerely acknowledge the Ministry of Human Resources and Development, New Delhi, for funding towards the development of the web and video courses under the National Programme on Technology Enhanced Learning (NPTEL) on the subject. I would like to express special thanks and gratitude to my teachers (Dr N. S. Vyas, Dr B. P. Singh, Dr K. Gupta, Dr J. S. Rao, Dr A. W. Lees, Dr M. I. Friswell, and Dr R. Markert who are well-known figures in the field of rotor dynamics) and academic collaborators friends (Dr J. K. Sinha, Dr Fadi Dohnal Dr S. Jana, Dr A. S. Sekhar, Dr A. Darpe, Dr M. Tiwari, Dr A. A. Khan and Dr A. Chasalevris). My heartfelt thanks to the help offered by the undergraduate and graduate

students (notably by Mr Parvin Telsinghe, Mr Gaurav Kumar, Mr Chitranjan Goel, and Mr Raghavendra Rohit D.), research scholars (Dr M. Karthikeyan, Dr Jagu S. Rao, Dr Sachin Singh, Dr Mohit Lal, Dr D. J. Bordoloi, Dr C. Shravankumar, Dr Sandeep Singh, Mr Dipendra K. Roy, Mr Purushottam Gangsar, Ms Shruti J. Rapur, Mr Siva Srinivas, Ms Nilakshi Sarmah, Mr Prabhat Kumar, Mr D. Gayen and Mr Gyan Ranjan), and the project, technical, and office staff as well as the faculty at IIT Guwahati. I also thank the innumerable students and practicing engineers worldwide who approached me for clarification on their work in this field—the book makes use of some of those discussions. I would also like to show appreciation for technical support provided during production of the book by Dr. Gagandeep Singh and Ms. Mouli Sharma of CRC Press, Taylor and Francis Books India Pvt. Ltd.; Mr Glenon C. Butler, Project Editor, CRC Press and Taylor & Francis Group USA; and Ms. Christina Nyren, Production Manager & her capable team members of diacriTech, USA. This work is dedicated to my daughter, Rimjhim; son, Antariksh; and wife, Vibha, for their patience during the preparation of the book.

MATLAB® is a registered trademark of The MathWorks, Inc. For product information, please contact:

The MathWorks, Inc.

3 Apple Hill Drive

Natick, MA 01760-2098 USA

Tel: 508-647-7000

Fax: 508-647-7001

E-mail: info@mathworks.com

Web: www.mathworks.com

Author

Dr. Rajiv Tiwari was born in 1967 at Raipur in Madhya Pradesh, India. He graduated with a BE in 1988 (Mechanical Engineering) from Government College Engineering and Technology, Raipur under Pt. Ravishankar University, Raipur, and an M.Tech. (Mechanical Engineering) in 1991 and a PhD (Mechanical Engineering) in 1997 from the Indian Institute of Technology (IIT) Kanpur, India.

He started his career as lecturer in 1996 at Regional Engineering College, Hamirpur (Himachal Pradesh), India, and worked there for one year. In 1997, he joined the Indian Institute of Technology Guwahati as assistant professor in the Department of Mechanical Engineering. He worked as a research officer at the University of Wales, Swansea, UK, for one year in 2001 on deputation. He was elevated to associate professor in 2002 and to Professor in 2007 at IIT Guwahati. He was the head of the Center of Educational Technology and Institute Coordinator of the National Programme on Technology Enhanced Learning (NPTEL) during 2005–2009, and the National Coordinator of the Quality Improvement Programme (QIP) for engineering college teachers during 2003–2009. He also visited University of Darmstadt Germany under DAAD fellowship during May-July 2011.

He has been deeply involved in various research areas of rotordynamics, especially identifying mechanical system parameters (e.g. the bearings, seals, and rotor crack dynamic parameters), diagnosing the faults of machine components (e.g. bearings, gears, pumps, and induction motors), and applying active magnetic bearings to monitoring the condition of rotating machinery. His research areas also include rolling element bearing design and analysis for high-speed applications. He has completed three projects for the Aeronautical Research & Development Board (ARDB), India on these topics. He has been offering consulting services for the last several years to Indian industries like the Indian Space Research Organisation (ISRO), Trivendrum; Combat Vehicle R&D Establishment (CVRDE), Chennai; and Tata Bearings, Kharagpur, as well as other local industries in the northeast of India. One of the European power industries, Skoda Power, Czech Republic, has also consulted him on seal dynamic parameter estimates for steam turbine applications.

Dr. Tiwari has authored more than 130 journal and conference papers. He has guided 38 M.Tech. students and 7 PhD students and 8 more are currently pursuing research projects.

He has successfully initiated and organized a national-level symposium on rotor dynamics (NSRD2003), four short-term courses on rotor dynamics (2004, 2005, 2008, 2015), and a national workshop on “Use and Deployment of Web and Video Courses for Enriching Engineering Education” (2007) at IIT Guwahati, India. He has jointly organized an “International Conference on Vibration Problems” (ICOVP 2015) at IIT Guwahati. He has developed two web- and video-based freely available on-line courses under NPTEL: (1) Mechanical Vibration and (2) Rotor Dynamics, and under MHRD sponsored virtual lab on the “Mechanical Vibration Virtual Lab.”

A Brief History of Rotor Systems and Recent Trends

This chapter presents a brief history of the rotor dynamics field. It reviews the early development of simple rotor models, starting with the Rankine to Jeffcott rotor models and physical interpretations of various kinds of instabilities in rotor-bearing systems. It also reviews the development of analysis methods for the multiple degrees of freedom and continuous systems to allow practicing engineers to apply these methods to real turbomachineries. It also summarizes work on condition monitoring and recent trends in the area of rotor dynamics.

First, however, it would be relevant to examine the importance of this subject. Also, the main difference of this subject as compared to orthodox structural dynamics will be looked into, both in terms of dynamic analysis and condition monitoring (or system identification). The rotating machinery application exists in the domestic, medical, manufacturing, automotive, marine, and aerospace fields. Predicting the dynamic behavior of such rotating machinery (Figure 1.1a) is essential to prolong the life of the machinery along with the comfort and protection of humans. Rotor dynamics covers these analyses, and hence it is imperative that rotordynamicists have a firm understanding of it. Rotor dynamics is different in the following aspects as compared to structural vibrations:

i. due to the relative motion between machine elements, rotating machineries have intrinsic forces and moments, which are often nonlinear in nature;

ii. for high-speed applications, the gyroscopic effect is very important, which provides a natural frequency as speed-dependent and the associated forward and backward whirl phenomena;

iii. similar speed dependency of natural frequency occurs due to the presence of bearings and seals;

iv. rotors can have instability due to various reasons: bearings and seals (due to cross-coupled anisotropic stiffness), asymmetric rotors (such as keyways or slots in rotors and turbine blades), internal (rotating) damping (material damping and friction between two rotating components), steam whirls (due to the high pressure of the steam in turbines), rubs (between rotor/blade/blisk and stator), and several other reasons;

v. due to high absolute motion of machine elements and due to the high relative motion among machine elements, the condition monitoring and maintenance practice also differ as compared to structures;

vi. faults in rotors can give rise to excessive dynamic loads and even lead to instability (for example, cracks in rotors);

vii. sensors and instrumentation differ due to the vibration measurement of rotating components with respect to the stator;

viii. vibration signal processing also differs due to phase measurements with respect to the rotating component reference point during balancing of rotors especially while acquiring data during

run-up and rundown of the machinery. Moreover, while observing the forward and backward whirls in the full spectrum (see Chapter 16).

These issues make the rotor dynamics subject more demanding compared to structural dynamics.

Rotating machinery can be categorized based on various factors, like the speed of operation, the power it handles, its size, and so on. Applications with varied operating speeds are 3 to 4 rpm for cement factory kilns, stone crushers, and escalators; 100 to 2500 rpm for fans; 3000 rpm for steam turbine generators; 9000 to 15,000 rpm for industrial compressors; 20,000 rpm for jet engines for airplanes; 50,000 rpm for cryogenic fuel pumps in rockets; 100,000 rpm for vacuum pumps for centrifuges; and above 100,000 rpm for micromachining applications. Similarly, these rotating machineries have varied power capacities: 0.5 to 3 W for the medical, micromachining, and household appliances; 2 to 3 MW for wind turbines and train locomotives; 10 to 190 MW for gasoline pumps, heavy machine tools, and jet engines; 600 to 1200 MW for steam turbines and fossil fuel power stations; and 2 to 10 GW for hydraulic turbines and nuclear power plants. Depending on the application, the length of the rotor could be as long as 50 m (for the multistage steam

(a)
(b)
Fluid-film bearing Discs Bush bearing mount Motor Shaft
Coupling
(c)
FIGURE 1.1 (a) A typical industrial rotor of a turbo-charger. (b) A typical rotor-bearing laboratory test rig. (c) A close view of a rotor consisting of two discs mounted on a flexible shaft.

turbine generator), 2 m for jet engines and missiles, 0.5 m for cryogenic pumps and electric motors, and few centimeters for helicopters and machine tool spindles.

A rotor is a body suspended through a set of cylindrical hinges or bearings that allow it to rotate freely about an axis fixed in space (Figures 1.1 and 1.2). Rotors can often be represented as a single beam or a series of beam elements and rigid discs. The beam is frequently considered to be flexible. Rigid discs are mounted on the flexile beam either by shrink-fit or other mechanical means. Practically, a rigid disc model represents flywheels, blades, cranks, rotary wings, coupling, disc brakes, impellers, and rolling bearings. Engineering components concerned with rotor dynamics include the rotating components of machines, especially of turbines, generators, motors, compressors, blowers, and the like. The parts of the machine that do not rotate are referred to by the general term stator. The machine element that allows relative motion of the rotor relative to the stator is called the bearing. Rotors of machines have a great deal of rotational energy and a small amount of vibrational energy while in operation. This is evident from the fact that a relatively small gas turbine propels a huge aircraft. The purpose of rotor dynamics as a subject is to keep the vibrational energy as small as possible. In operation, rotors undergo transverse (lateral or bending), longitudinal (axial), and torsional (or twisting) vibrations, either individually or in combination.

1.1 From the Rankine to Jeffcott Rotor Models

Rotor dynamics has a remarkable history of development, largely due to the interplay between its theory and its practice (Nelson, 2003). Rotor dynamics have been driven more by practice than by theory. This statement is particularly relevant to the early history of rotor dynamics. Research on industrial rotor dynamics spans more than 15 decades of history.

Rankine (1869) performed the first analysis of a spinning shaft (see Figure 1.3a). He predicted that beyond a certain spin speed “the shaft is considerably bent and whirls around in this bent form.” He defined this certain speed as the whirling speed of the shaft. In fact, it can be shown that beyond this whirling speed the radial deflection of Rankine’s model increases without limit, which is not true in actuality. However, Rankine did add the term whirling to the rotor dynamics vocabulary. Whirling refers to the movement of the center of the deflected disc (or discs) in a plane perpendicular to the bearing axis (see Figure 1.3b). In general, the frequency of whirl, ν, depends on the stiffness and damping of the rotor, as with the case of free vibration of a system (except for the synchronous whirl in which case it is equal to the unbalanced excitation force frequency, ω , i.e., the spin speed of the rotor). The whirl a mplitude is a function of the excitation force’s frequency, ω , and its magnitude. A critical speed, cr ω , occurs when the excitation frequency coincides with a (transverse) natural frequency, nf ω , of the rotor

(a) Bearing
Rotor Disc
Shaft (b) (c)
FIGURE 1.2 (a) A rigid rotor mounted on flexible bearings. (b) A flexible rotor mounted on rigid bearings.

1.3 (a) Rankine rotor model (two degrees of freedom spring-mass rotor model). (b) A Jeffcott (or Laval or Föppl) rotor model in general motion.

system and can lead to excessive vibration amplitudes. Rankine neglected the Coriolis acceleration in his analysis, which led to erroneous conclusions that confused practicing engineers for half a century.

The turbine built by Parsons in 1884 (Parsons, 1948) operated at speeds of around 18,000 rpm, which was 50 times faster than the existing engine at that time. In 1883, Swedish engineer de Laval developed a single-stage impulse steam turbine (Figure 1.3b) (named after him) for marine applications and succeeded in operating it at 42,000 rpm. He aimed at the self-centering of the disc above the critical speed (Figure 1.4), a phenomenon that he instinctively recognized. He first used a rigid rotor, but later used a flexible rotor and showed that it was possible to operate above critical speed by operating at a rotational speed about seven times the critical speed (Stodola, 1924).

In order to calculate the critical speeds of cylindrical shafts with several discs and bearings, the general theory of Reynolds (Dunkerley, 1895) was applied. The gyroscopic effect was also considered, together with its dependence on speed (i.e. a Campbell diagram—see Figure 1.5).

A Campbell diagram is designed to show rotor whirl frequency, ν, (natural frequency) with the spin speed, ω , of the shaft. In rotors the rotor whirl frequency changes with speed due to various reasons (e.g. gyroscopic effects, speed-dependent bearing parameters, etc.). However, this can be used to obtain critical speeds of rotors (intersections of whirl frequency curves with the ν = ω line, e.g., at resonance when whirl frequency is equal to the spin speed). Apart from this whirl frequency, the logarithmic decrement is also shown in the Campbell diagram, and the sign of that shows the stable/unstable stage of the rotor. Today more information is being put into these graphs, which are now are called Lee’s diagram

FIGURE
Shaft spin direction Shaft whirling direction (a)(b)
FIGURE 1.4 Synchronous whirls: (a) heavy side flying out. (b) heavy side flying in.

FIGURE 1.5 The natural frequency, υ , variation with the spin speed, ω , (a typical Campbell diagram).

(Lee, 1993). The Campbell diagram can be drawn from theoretical/numerical analyses as well as through the actual measurement from the machine.

Dunkerley found through numerous measurements the relationship known today through the work of Southwell, by which the first critical speed can be calculated, even for multidegree-of-freedom rotor cases. Dunkerley was the first to use the term critical speed for the resonance spin speed. Even with general knowledge of critical speeds, the shaft behavior at any general speed was still unclear, but more was learned from the calculation of unbalance vibrations, as given by Föppl (1895). He used an undamped model to show that an unbalanced disc would whirl synchronously with the heavy side (shown as a black spot) flying out (Figure 1.4a) when the rotation was subcritical and with the heavy side flying in (Figure 1.4b) when the rotation was supercritical. Also the behavior of Laval rotors at high speeds was confirmed by his theory. Engineers at that time were perplexed by the concepts equating Rankine’s whirling speed with Dunkerley’s critical speed. This was particularly frustrating because Rankine was far more of an authority than Dunkerley and, as a result, his predictions were widely accepted and were responsible for discouraging the development of high-speed rotors for almost 50 years. It was in England in 1916 that things came to an end. Kerr published experimental evidence that a second critical speed existed, and it was obvious to all that a second critical speed could only be attained by the safe traversal of the first critical speed.

The first recorded fundamental theory of rotor dynamics can be found in a classic paper by Jeffcott in 1919. Jeffcott confirmed Föppl’s prediction that a stable supercritical solution existed, and he extended Foppl’s analysis by including external damping (i.e. damping forces that depend upon only the absolute velocity of the rotor, whereas the internal damping comes from the rate of deformation of the shaft, often called the rotating damping) and showed that the phase of the heavy spot varies continuously as the rotation rate passes through the critical speed. We can appreciate Jeffcott’s great contributions if we recall that a flexible shaft of negligible mass with a rigid disc at the midspan is called a Jeffcott rotor (Figure 1.3b). The bearings are rigidly supported, and viscous damping acts to oppose the absolute motion of the disc. This simplified model is also called the Laval rotor and Föppl rotor, named after de Laval and Föppl, respectively.

1.2 Rotor Dynamics Phenomena Studies from Stodola to Lund

Developments made in rotor dynamics up to the beginning of the twentieth century are detailed in the masterpiece book written by Stodola (1924). Among other things, this book includes the dynamics of an elastic shaft with discs, the dynamics of continuous rotors without considering gyroscopic moment,

the secondary resonance phenomenon due to the effect of gravity, the balancing of rotors, and methods of determining the approximate values of critical speeds of rotors with variable cross-sections. He presented a graphical procedure to calculate critical speeds, which was widely used. He showed that these supercritical solutions were stabilized by Coriolis accelerations (which eventually give the gyroscopic moments). The constraint of these accelerations was the defect in Rankine’s model.

It is interesting to note that Rankine’s model is a sensible one for a rotor whose stiffness in one direction is much greater than its stiffness in the quadrature (perpendicular) direction. Indeed, it is now well known that such a rotor will have regions of divergent instability (see Figure 1.6). It is less well known that Prandtl (1918) was the first to study a Jeffcott rotor with a noncircular cross-section (i.e. elastic asymmetry in the shaft). In Jeffcott’s analytical model, the disc did not wobble or precess (see Figure 1.7). As a result, the angular velocity vector and the angular momentum vector were collinear and no gyroscopic moments were generated. This restriction was removed by Stodola.

About a decade later, the study of asymmetrical shaft systems and asymmetrical rotor systems began. The former are systems with a directional variation in the shaft stiffness (Figure 1.8a), and the latter are those with a directional difference in rotor inertia (Figure 1.8b). Two-pole generator rotors and propeller rotors are examples of such systems. As these directional differences rotate with the shaft, terms with time-varying coefficients appear in the governing equations. These systems therefore fall into the category of parametrically excited systems, in which vibrations depend on the motion itself; however, they may occur in a linear or a nonlinear system. The most characteristic property of an asymmetrical system is the appearance of unstable vibrations in some spin speed ranges. In 1933, Smith produced a pioneering work in the form of simple formulas that predicted the threshold spin speed for the supercritical instability varied with the bearing stiffness and with the ratio of external to internal viscous damping. The formula for damping was obtained independently by Crandall and Brosens (1961) some 30 years later.

Elliptical orbit due to rotor unbalance

equilibrium position

1.6 Journal center path due to perturbation: (a) stable motion. (b) unstable motion.

FIGURE 1.7 Wobbling of a disc in a rotor system. (a) A simply supported shaft with a disc near the bearing. (b) A cantilever shaft with a rigid disc at the free end.

FIGURE

Stiffness compansating slots

Magnetic pole

Slots for electrical windings y y y x x x

FIGURE 1.8 Asymmetry of the shaft and the rotor: (a) a generator rotor. (b) a three-bladed propeller.

In the early 1920s, a supercritical instability in built-up rotors was encountered. Thereafter, it was first shown by Newkirk (1924) and Kimball (1924) to be a manifestation of the rotor’s internal damping (i.e. the friction damping between rotor components). Then, Newkirk and Taylor (1925) described an instability caused by the nonlinear action of the oil wedge in a journal bearing, which was named the oil whip. Baker (1933) described self-excited vibrations due to contact between the rotor and the stator (i.e. the dry whip). The Soviet scientist Nikolai (1937) examined the stability of transverse and torsional vibrations in a shaft with a disc mounted in the center and the stability of a shaft with a disc attached to the free end. Kapitsa (1939) pointed out that a flexible shaft could become unstable due to friction conditions in its sliding bearings. In the middle of the twentieth century, Hori (1959) succeeded in explaining various fundamental characteristics of the oil whip by investigating the stability of shaft motion and considering pressure forces due to oil films. The mechanism of vibrations due to the steam whirl in turbines was explained by Thomas (1958), and that in compressors was explained by Alford (1965). The vibration of a hollow rotor containing the fluid was the problem of flow-induced vibrations. Instability due to liquids partially filling the interior cavities of rotors was demonstrated by Kollmann (1962), and in 1967 Ehrich reported that fluid trapped in engine shafts induced asynchronous vibration and changed the shape of resonance curves. Kuipers (1964) and Wolf (1968) independently succeeded in explaining the appearance of an unstable speed range in a postcritical region of a rotor system containing inviscid fluid. In the 1980s, the rotor dynamic effects of seals in fluid-handling machines received a great deal of attention. Rotor destabilization due to seals was predicted and demonstrated in an operational compressor by Jenny (1980).

As rotors became lighter and rotational speeds higher, the occurrence of nonlinear resonances such as subharmonics and superharmonics became a serious problem. Yamamoto (1955, 1957) studied various kinds of nonlinear resonances after he reported on the subharmonic resonance due to ball bearings in 1955. He also investigated combination resonances. Tondl (1965) studied nonlinear resonances due to oil films in journal bearings. Ehrich (1966) reported on subharmonic resonances observed in an aircraft gas turbine due to strong nonlinearity produced by the radial clearance of squeeze-film dampers.

The nonstationary phenomena during passage through critical speeds have been studied since Lewis (1932) reported his investigation on the Jeffcott rotor. Nonstationary phenomena that occur are one in a process with a constant acceleration (unlimited driving torque) and another with variable acceleration (limited driving torque). Natanzon (1952) studied shaft vibrations at critical speeds, and Grobov (1953, 1955) investigated in a general form the shaft vibrations resulting from varying rotational speeds. The development of the asymptotic method by Mitropolskii (1965) for nonlinear problems considerably boosted the research on this subject.

Beginning in the early 1960s, most attention focused on hydrodynamic bearings—this was largely stimulated by Lund (1964). Gunter’s work (1966) related to rotor dynamic stability problems and, combined with Ruhl and Booker’s (1972) and Lund’s (1974) methods for calculating damped critical speeds, stimulated a great deal of interest in rotor-bearing stability problems. Lund (1987) gave an overview of

(a)
(b)

the field. In the mid-1970s, rotor dynamic instability experienced with various high-pressure compressors and the high-pressure fuel turbo pump of the Space Shuttle’s main engine focused a great deal of attention on the influence of fluid–structure–interaction forces, particularly forces due to the liquid and gas seals, in pumps and turbines. Shaft seals have a similar effect as fluid-film bearings. They influence the critical speeds and can either provide damping or cause instability. Shaft seals have acquired a significant role in their effect on rotor dynamics. Someya (1989) and Tiwari et al. (2004, 2005) compiled extensive numerical and experimental results and presented literature review related to the identification of rotor dynamic parameters of bearings and seals.

Self-excited vibrations, which occur due to nonconservative forces, generally lead to large vibration amplitudes, which may ultimately damage or even destroy rotating machinery (Childs, 1993; Gasch et al., 2002; Tondl, 1965; Yamamoto and Ishida, 2001). Therefore, it is essential during the design stage of a new machine to consider the possibility of self-excitation and take measures against it. A strategy to suppress self-excited vibrations that is based on an antiresonance phenomenon (two neighboring modes having opposite effects) that can occur in parametrically excited systems (Tondl, 1978, 1991, 1998) was described by Ecker and Tondl (2004). The basic idea of parametric stabilization was adopted by introducing a time-dependent variable stiffness located at the bearing mounts. The nonconservative forces were generated through the bearings of the rotor. They showed the cancellation of the self-excited vibrations through the parametric excitation.

Shaw and Balachandran (2008) provided a comprehensive review of nonlinear dynamics of mechanical systems, including the rotating machineries. For rotating machineries they considered both the ideal and nonideal excitations. In ideal excitation case, it is assumed that the rotor speed is a specified function of time, which is a classic in the theory of nonstationary problems in dynamics and is extensively covered in the book by Mitropolskii (1965). The problem of passage through resonance of nonideal vibrating systems has received special attention from engineering researchers in recent years, but unfortunately little literature on this subject is available (Balthazar et al., 2003). Generally, nonideal vibrating systems are those for which the power supply is limited. Laval likely was the first one to work with nonideal problems via an experiment. In 1889 he built a single-stage turbine and demonstrated that in the case of rapid passage through the resonance with enough power, the maximum vibration amplitude may be reduced significantly compared with that obtained in the steady-state resonant vibration. Simultaneously, it was also known that sometimes the passage through resonance required more input power than the excitation source had available. The consequence is the so-called Sommerfeld effect in which the vibrating system cannot pass the resonance or requires an intensive interaction between the dynamic system and the motor to do it. The worst case is that of a dynamic system constructed for an overcritical operation to become stuck just before resonance conditions are reached. A strong interaction results with fluctuating motor speed and fairly large vibration amplitudes. This phenomenon was studied intensively by Sommerfeld (1927). Balthazar et al. (2003) provided an excellent review on the topic of the limited power source, in which case the system is called the nonideal vibrating system. Yamamoto and Ota (1964), Dimentberg (1961), Crandall and Yeh (1989), and Lei and Lee (1990) reported the curve veering in rotor-bearing systems. In Crandall and Yeh’s words (1989): “It is interesting that when the curve for an even rotor mode approaches the curve for an even stator mode, or an odd rotor mode approaches an odd stator mode, the two modes form a coupled system and the curves repel each other avoiding an intersection.” This was in reference to the Campbell diagram of the natural frequency of a uniform rotor rotating in a uniform stator, as a function of rotational speed.

Instability from fluid-film bearings and shaft seals arises from the fact that, during the radial displacement of a rotor, a restoring force is produced that has a component at right angles to this displacement. The phenomenon of instability was described in detail by Newkirk (1924), whose interest was in turbomachineries. The cause of this instability, in fact, lay in the oil-film bearings. In the following years it was established that in a few cases, internal friction or damping could indeed be a cause of instability. The designer must thus be aware of these possibilities. Some of the important phenomena in rotorbearing systems, its main causes, and investigators’ details are summarized in Table 1.1.

Another random document with no related content on Scribd:

«Ne poljubljaj, ne objemlji, Ne govori, da me ljubiš ...

S svojo strastjo nepošteno

Pogubila si mi dušo.

Na pohotnih tvojih ustnih, V poželjivih tvojih rokah

Stopa prédme v rožnem svitu

Zapuščeno dekle moje.

Strahom, studom gleda náme

Njen nedolžni, gorki pógled ...

‚Ah, kakó je mrzlo, temno

Tu pri tebi, ljubček moj! ...‘

Dà, temnó je vse krog mene, V srcu mojem temno, prazno; In zagrnil bi si lice

Od sramote, od kesanja.»

Temni kodri so se vili

Nad obrazom njenim belim;

Kot dva črna dijamanta

Sta goreli ji očesi.

«Ne govôri, ne očitaj! ...

Ti me hočeš ... ti me ljubiš;

S svojo strastjo nepošteno

Ti pogubil si mi dušo; —

In temnó je vse krog mene, Temno, prazno v srcu mojem

Kadar plaka moja mati

In preklinja me moj mož.»

Prišel sem o mraku k svoji ljubici. Po preprogah in tapetah so se tresli tenki, ozki žarki oranžne barve. Okno je bilo odprto. Zunaj na vrtu so se priklanjale temne veje kostanjev in listje je trepetalo kakor mrzlično. Od daleč se je slišalo melanholično zvonjenje, ki je prihajalo za trenotek bliže in bliže, potem pa se polagoma izgubljalo v daljavi.

Ona je ležala na divanu s polzatisnjenimi očmi in naslanjala je glavo na rdečo blazinico. Gola, mramorna levica je visela mrtvo navzdol, da so se dvigale izza belega ozadja tenke, plave žile. Lasje so ji padali globoko čez senca in se leno igrali po ramah in lahtéh.

Ko sem vstopil, je dvignila glavo, pogledala me boječe s svojimi velikimi, temnoobrobljenimi očmí ter se prisiljeno nasmehnila. Potem pa se je obrnila v steno.

Šèl sem za okroglo mizico pred divanom. Po nji so ležala raztresena rožnata, parfumirana pisma poleg drobnih kuvert. Nekateri listi so bili razstrti, kakor šele pol prečitani, krog druzih pa se je vil razvezan omot bledosinje barve.

Malomarno sem vzel v roko najbližje pismo ... Zdi se mi, da je pisava moja, — moj slog iz tistih časov ...

«Lahka in svobodna mi je duša, kadar sanjam o Tebi, — kakor škrjančeva pesem o jutranji zori. Vzdramil sem se iz težke noči in jasna, vesela gorkota mi je zasijala v obraz. Kakó sem se otresel pozemskega prahú, kakó sem vrgel raz sebe zarjavele okove! ...

Pred mano ni ničesar in ne za menój, v tej čisti ljubezni leží neizmerna večnost ... Ali je ne čutiš, ljubica? Ali ne vidijo bogá Tvoje nedolžne očí, kakor ga vidim jaz? ...»

In moja ljubica je ležala na divanu in gledala v steno ...

«Velik je najin svet in krasen ... Najina duša plava visoko nad belimi oblaki, nad šumečimi gozdovi ... in tam globoko doli se klanjajo lilije, in rože trepečejo v tihi bojazni ... Ali ne čuješ akordov oddaljene harfe? Ali ne čuješ v teh glasovih jasno in odkrito vse one

brezkončne, čudovite lepote, o kateri sanjajo tam doli z bolnim srcem in zastrtimi pogledi? ... Velik je najin svet in krasen! ...»

Postajal sem nervozen in nezadovoljen. In kakor sem se jih branil, prihajali so tisti dnevi z vso silo prédme, bližali se mi od vseh stranij, kakor bi se me dotikale po udih mrzle, mokre róke. Nisem jih maral gledati, a postajali so vsak trenotek jásnejši in živéjši. Rogale so se mi moje tedanje besede z vsemi akcenti in vzdihi vred; slišal sem jih takó razločno, kakor bi jih nehoté ponavljal sam. In videl sem njene velike, vprašujoče oči, polne sreče in ljubezni; slišal sem njen otroški smeh, kakor bi padali kristali na srebrn krožnik ...

Dà, — «velik je najin svet in krasen ...» Dvoje pierrotov na pepelnično jutro ... Preveč je bilo šampanjca! ... Od telesa visé samó še raztrgane pisane cunje; lica so zamolkla in v prsih je prazno ...

Dvignila je glavo, da so se ji vsuli lasje raz rámen čez prsa. Zdelo se mi je, da vidim nocoj prvikrat njen rumenkastobledi, od strasti in življenja upali obraz, njene globoke, meglene oči, polne sramú in utrujenosti, — da čutim prvikrat njeno zoperno mehko, opolzko teló, njene mokre, težke lase, — da slišim njen tihi, boječi, odživeli glas in njene poludušene vzdihe ...

Odšel sem tiho po mehki preprogi, v zrcalu pa sem videl, da je ležala na divanu mirno, kakor ob mojem prihodu, s polzatisnjenimi očmi in povešeno golo roko.

In dvíga in širi se vroče obzorje, Na nebu razpaljenem solnce gorí, Vsa zemlja potaplja se v démantno morje, V polspanju, utrujena v prahu leží. Tam daleč ječí preperelo drevje, Kot gole, koščene roké

Razpénja in krči temno vejevje.

V očí skelí zrak težák in suh, Na prsa pada opojni duh

Razpalih, krvavih rož.

In jaz vidim njó, ah njó ...

Kipí in trepeče ji belo teló, Prozorna meglà je po udih razlíta, Pretkana s kristali od solnčnega svíta; Na polne ramé

Valíjo mogočno se črni lasjé, In njeno okó, poželjívo in mokro, Bleščí se kot brušen nož.

In v dušo kipečo in v srca dnò

Sesá se mi njeno pohotno okó; V bolestnem razkošju teló mi trepeče, V objem se mi dvigajo roke drhteče ...

In v prahu nesvesten klečí pred teboj

In ljubi in moli te suženj tvoj — Venus, Venus!

Noč brezupna, — in nikdár več

Ne posíje solnce vanjo.

Roke črne in ledéne

Ségajo iz dnà nočí, Kot opolzke, mokre kače

Drsajo po mojih licih;

Mraz ledén leží na udih, V srcu mojem strah in stud.

O tebi sem sanjal vse dolge večere, Kakó sem te čakal, a tebe ni bilo, Ah, nisi me čula, kakó sem te klícal, —

In zdaj, zaželjena, prišèl je čas ...

Glej, vse moje rosne, duhteče rože, Nocoj so razpale in v prahu ležíjo, In solnce, to lepo, velíko solnce

Ne vrne se níkdar in níkdar več ...

Najtíšjega zvoka drhteče strune, Ne bledega žarka oddaljene zvezde —

In ti si pred mano ... jaz čutim tvoj pógled ...

Ah, nagni se k meni, objemi me! —

Da položím to trudno čelo

Na tvoje ljubeče, mrzle róke —

Ah, nagni se k meni, ti zaželjena,

Ti mirna poslednja noč! ...

ROMANCE.

Kakó bleščí se morje to V demantih in kristalih, Kakó pohotno ziblje se

V razkošnih, mehkih valih.

Sulamit.

V tem burnem plesu od strastí

Telesa trepetajo,

Krog belih udov kot meglé

Tančíce plapolajo.

Iz zlatih harp takó sladkó

Vro pesmi koprneče

In srce plaka in drhtí

Od žalosti, od sreče.

Visoko duša nad zemljó

Svobodna, srečna plove, Kot na perotih dviga se

Do néba, do Jehove ...

Ob belo róko Salomon

Opira trudno glavo,

Na čelu mu leží oblak, Okó strmí v daljavo.

Ne mehki udje mladih žen, — Sestradana, drhteča

Telesa tam pred njim stojé, Proseča in grozeča.

Brezupno k njemu dvigajo Koščene, vele róke, Umirajoč strmíjo vanj Očí temné, globoke.

In zlate strune pojejo Mrtvaško melodijo, —

Poslednji vzdihi sužnjih prs Nocoj iz njih zveníjo ...

Ob belo roko Salomon Opira trudno glavo, Na čelu mu leží oblak, Okó strmí v daljavo ...

In láhno, láhno k njemu se Gorkó teló privije, Po vsem životu čut mehák Sladkó se mu razlíje.

«Zakaj ti je okó temnó

In duša nevesela?

Zakaj ti bleda žalost je Nocoj srce objela?

Ljubezen tvoja že mrjè, Še komaj porojena, —

Kaj hočem jaz brez njé, povej, Nesrečna, zapuščena?» ...

«Nelepe sanje, ljubica, Poslal mi je Jehova, — Zakaj, to sam on vé, — modrost Velika je njegova ...

Ah, nagni k meni, Sulamit, Prebele prsi svoje, — Pogíne naj ves Izrael, — Ti si kraljestvo moje!»

Ob grobu tiranovem.

Upognil zdaj si glavo, car, Če nisi je doslej nikdar.

Ves svet je klečal pred teboj, Ves svet široki bil je tvoj.

Oj car, oj car, pa zapovej Naj bela smrt beží naprej!

Že krsta iztesana je, Že postelj ti postlana je ...

Oj to vam je vesel pokop, Ves svet hití pred carjev grob.

A ko ga položé v zemljó Okó nobeno ni mokró.

Okó nobeno ni mokró, Srcé nobeno ni težkó.

Med ljudstvom patrijarh stojí. Veselo vzdihne, govorí:

«Oj hvala, hvala ti, Gospod, Da osvobodil svoj si rod!

Dovolj je v solzah vzdihoval, Trpljenja pač dovolj prestal!

Jaz begal sem okrog pregnan, Pregnan, povsod zaničevan.

In ti poslal si belo smrt, Tiran mogočni v prah je strt.

Spet dal si meni svetlo čast, Spet dal si meni vso oblast.

Oj hvala, hvala ti, Gospod, Da osvobodil svoj si rod!»

Med ljudstvom knez visok stojí

In patrijarhu govorí:

«Oj patrijarh, nikar, nikar, Vladánje pač ni tvoja stvar!

Dovolj je roki tvoji križ, Zakaj po žezlu hrepeniš? ...

O čuvaj sívo si glavó, Na pot ne hodi mi drznó!»

Ob knezovih besedah teh Vsem divja strast vsplamtí v očeh.

Še tristo knezov tam stojí, Po žezlu vsakdo hrepení.

Po žezlu vsakdo hrepení, Že v roki vsakdo meč drží.

Ne nagne še se beli dan, Pa zadivjá že boj strašan ...

Veselo, kakor še nikdar, Smehljá se v krsti — mrtvi car.

Ivan Kacijanar.

Kacijanar, vojskovodja slavni,

Ves zamíšljen hodi po šatoru.

Težka skrb mu polni trudno glavo, Ríše mu na čelo temne črte

In obrvi mu ježí košate.

Polumesec na šatorih belih

Ob ostrogu blíska se krščanskem ...

Ne rešítve in ne krasne zmage, —

Sam in truden, — kakor ranjen sokol

Brez pomóči v jati lačnih vranov ...

In globočja bol v junaških prsih, In bridkejša skrb na čelu resnem.

«Kaj pomeni tam ta šum skrivnostni?

Saj prišlò še ní krvavo jutro.»

In služabnik stari, zvesti Miloš,

Odgovarja: «Gospodar, ne skrbi!

Res prišlò še ni krvavo jutro, Ali srca jim kipé junaška,

Sèn jim lahki na očí ne more ...»

Zopet praša slavni Kacijanar:

«Kaj pomeni tam ta šum skrivnostni, Kot hodile tolpe bi po planem?

Saj še vstalo ní krvavo solnce.»

Odgovarja mu s tresočim glasom:

«Oj ne skrbi, gospodar mogočni!

Res še vstalo solnce ní krvavo, Vso ravnino krije noč ledena; A v telesu mrzlem — mrzla duša, In junaki hodijo po planem, Da si mrzle ude oživíjo ...»

Tretjič praša slavni Kacijanar:

«Kaj pomeni ta topòt skrivnostni, Kot bi v dalji dírjali konjiki?

A govori mi resnico, Miloš!

Priča mi je tvoj pogled brezupni, Da zakrívaš mi srcé nemirno.»

In zastoče grenko stari Miloš,

Odgovarja solzen gospodarju:

«Kaj mi né bi se okó solzílo, Kaj mi né bi srce trepetalo!

Gledal tvojo sem visoko slavo;

Tvoja videl sem junaška dela —

Oj število krasno ... Vse za tabo;

Izgubljen si, Kacijanar silni! ...

Kaj pomeni tam ta šum skrivnostni?

Vojska naša je v sramotnem begu.»

Ne vztrepeče Kacijanar slavni, Ne porósi mu okó se bistro; Meč opaše, pa zasede konja

In odjaše v diru skozi meglo; Poleg njega jaše stari Miloš.

Hladna megla krije vso ravnino; In ne gane se peró na drevji, In ne gane bilka se na polju;

Vse je tiho kakor pod gomilo ...

«Ali vidiš tam bleskèt orožja, Ali vidiš prápore razvíte?»

«Kacijanar, ózri se v daljavo, —

Žarki zore se bleščé po hribih, Nad gozdovi plava bela megla ...»

«Ali čuješ glasno petje, Miloš — Ali čuješ — zmagoslavi, Allah!

Vmes pa jok in stok in petje mečev? ...»

Prah se dvigne tam na beli cesti, V njem pridirja jezdec kakor tica:

«Izgubljena bitev, vojskovodja,

Izdajalec — žalostna ti majka!»

Dvigne se na konju Kacijanar, Dvigne se mu v prsih silna duša, Meč zablisne se mu v roki močni

In preseka jezdeca do sedla ...

Spet se dvigne prah na beli cesti, V njem pridirja tolpa konjenikov, —

Vsi pokriti so s krvjó in prahom.

«Izdajalec — bežal je sramotno

In v pogubi pustil je junake, —

Naj pogine izdajalec kleti!»

Takrat vstane v sedlu mladi Hojzič:

«Z mečem svojim si ubil mi brata, —

Vreden nisi, da bi padel v boju;

Meč krvníkov ti končaj življenje, Naj ubije te izdajstvo tvoje ...!»

In zastoče Ivan Kacijanar, Meč mu pade iz roké junaške

In jetník je sredi konjeníkov.

Vino pije grof Nikola Zrinjski

Na visokem, sivem gradu svojem;

Ž njim sedí ob mizi družba krasna,

Družba krasna samih slave sínov, —

A med njimi Ivan Kacijanar.

Bledo mu je lice, móten pógled,

Zgúbano mu je visoko čelo.

S stola vstane grof Nikola Zrinjski,

Polno čašo dvigne in napíva:

«Vse zahvaljam vas, junake slavne, Da s posetom svojim ste prijaznim

Počastili dom moj starodavni, —

Da sočutje prišli ste izkazat

Med junaki prvemu junaku! —

Res okrutno ga pestí usoda, Res preganja ga vladar krivično, —

Ah nečastno je sedèl v temníci

Kacijanar, prvi med junaki! ...

In recíte, ní li to pravično,

Da svobodo sam si je priboril

Ter pobegnil ječi in vladarju?

Ali naj bi čakal, da zablisne

Meč krvníkov njemu se nad vratom?

Čakal naj bi, da mu za plačilo

Vzame glavo naš vladar dobrotni? ...

Zopet bodi jasno lice tvoje,

Pijmo rujno vino, kakor nekdaj,

Kacijanar, prvi med junaki! ...

Pijmo, bratje, na njegovo zdravje!»

Blískajo se v solncu jasne čaše, Po dvorani pa zveníjo klici:

«Slava tebi, prvi med junaki!»

In odméva tam od druge mize, Tam med hlapci, kmeti in vojníki:

«Slava tebi, prvi med junaki!»

Jeden le ne dvígne polne čaše,

To vojnik je drzni, mladi Hojzič.

In ozrè se grof Nikola Zrinjski:

«Je li spanec te premagal, Hojzič,

Da uhó ti čulo ní zdravíce?

Ali zdí se vino ti preslabo,

Da porósil ž njim bi ustna svoja?

Ali pa ti v srcu je sovraštvo,

Da ne piješ, — odgovori, Hojzič!» —

«Kaj naj pil bi zdravje izdajalcu,

Kaj naj slavo klícal bi morilcu?

Vso izdal je vojsko nam krščansko

In sramotno zbežal iz ostroga —

A na begu mi ubil je brata ...

Vreden bil bi svojega plačila,

Da vladár bi vzel mu kleto glavo, —

A ušèl je, kot bežé tatovi ...

Car pohvali te, Nikola Zrinjski,

Da je mrtev pes na tvojem gradu!»

Samokres mu dvigne drzna roka, Strel odmeva glasno po dvorani

In na tlà se zgrudi Kacijanar.

Obledíjo gostom vsem obrazi

In zastane jim beseda v grlu.

Ali vzdrami se napósled Zrinjski,

Skloni se nad prsi krvaveče:

«Tjà odšèl je duh tvoj, Kacijanar, Kjer pravico je dobil in srečo!»

In vsi gostje molijo ob truplu —

A po beli cesti dirja Hojzič.

Na svatbenem potovanju.

Zašlò je solnce. V tihi mrak Zagrinja se daljava,

Kot bela tica ladija

Po temnem morju plava; Na krovu pa mlad mož stojí, Mehkó na prsih mu sloní

Prelepa mlada žena.

«Čaroben je ljubezni raj

Kot to nebó večerno, Neskončen je ljubezni raj

Kot morje neizmerno —

A ljubček, ljubček, kaj molčiš, Zakaj v obraz takó bledíš, Zakaj se v stran oziraš?»

«Poglej, nevesta, o poglej

Tam bledo, krasno ženo, Oj mojo ljubico bolnó

Bolnó in zapuščeno;

Poglej, kakó stojí mirnó,

Na prsih pa ji spi sladkó

Nesrečno moje dete.»

«Oj zbudi, zbudi se, moj mož,

Pri tebi jaz sem sama, Krog naju je morjé temnó

In pa nebó nad nama —»

«Kakó me vabi spet nocoj

S pogledom žalostnim seboj,

Da ljubim jo, kot nekdaj.

Kakó je belo njé teló, Kakó krasnó nje lice, In moje dete za menoj

Izteza že ročice; Že padata v morjé temnó ...

Kakó me vabita sebó, —

Ne brani mi ... ostani! ...»

Kongfutse.

Majka zemlja, da si še starejša,

Pa rodila né bi učenjaka,

Da bi tó znal, kar je znal Kongfutse.

Jasno gledal je v človeško dušo,

Zlè podzemske je poznàl duhove

In bogove nad visokim nebom.

Ali vsega ni še znal Kongfutse.

Rad bi videl, kar očém je skrito,

Rad bi videl tisto skrivno silo,

Ki povzdiga smrtnika k bogovom,

Ki poraja vzvišena dejanja

Kar človeški rod živí pod solncem ...

Noč se zgrne nad zemljó kitajsko.

Sam bedí še učenjak Kongfutse

Pa ozira se k bleščečim zvezdam.

«Če ostàl si med človeškim rodom,

Če si dvignil se v nebó k bogovom,

Če pod zemljo pàl si k zlìm duhovom:

Prédme stopi, duh preteklih časov, Ki rodíl si vzvišena dejanja!» ...

Oj krasota, da je ni jednake!

Če bi videl te navaden smrtnik, Od veselja bi izdahnil dušo, —

A izdahnil duše ni Kongfutse;

Razprostrl je roke pred bogínjo

Pa jo molil z glasom srečepolnim:

«Oj svoboda, vseh bogínj bogínja!

Ne slavím te iz strahú pred mečem, Zlatim mečem, ki držíš ga v roki;

Ne slavím te zarad zlate krone, Ki jo nosiš na ponosni glavi;

A slavím te zarad večne slave,

Ki odela ž njó si dede naše:

Slava tebi, vseh bogínj bogínja!»

Prav do zore molil je Kongfutse ...

Noč se zgrne nad zemljó kitajsko.

Sam bedí še učenjak Kongfutse

Pa ozira se k bleščečim zvezdam.

«Prédme stopi, oj ti duh mogočni, Ki vrstníkom mojim vzbujaš srca,

Da po časti hrepené in slavi;

Duh mogočni, ki človeka vzdigneš

Vsaj za hipe nad pozemske misli, —

Prédme stopi, da te srečen molim!» ...

Oj ti žalost, da je ni jednake!

Kdor bi tebe videl, bi zajokal,

In zajokal je celó Kongfutse.

«Kaj je tebi, oj svoboda krasna?

Kakor smrt je bledo lice tvoje,

Tvoje róke so v okovih težkih,

Tvojo glavo krije trnjev venec ...»

Prav do zore jokal je Kongfutse ...

Noč se zgrne nad zemljó kitajsko.

Sam bedí še učenjak Kongfutse

Pa ozira se k bleščečim zvezdam.

«Slab je človek in mogoče ni mu, Da bi videl, kar prihodnost skriva, —

Vam bogovom pa je vse mogoče.

Oj bogovi, čujte prošnjo mojo,

Pa idejo silno dnij prihodnjih,

Da jo vidim, iz nebá pošljíte!»

Ali črna noč se ne razjasni,

Glasa čuti ni v tišini grobni ...

«Oj podzemski zlobni vi duhovi,

Če rodili ste idejo silno,

Da prihodni zárod onesreči, —

Póšljite jo prédme, da jo vidim!»

Ali črna noč se ne razjasni,

Glasa čuti ni v tišini grobni ...

Prav do zore molil si, Kongfutse!

A da molil si vso dolgo večnost, Ne priklical bi nikdár ideje, Vladarice národom prihodnim, Kajti ni je duh rodíl človeški, Nì bogovi niso je rodíli,

Nì podzemski niso je duhovi

In rodili je nikdar ne bodo.

Ungnadovi gostje.

Tam v Urahu, mestu nemškem,

Pri vinu sedíjo možjé;

Jasné se jim temni obrazi,

In govori krasni zvené.

A kaj ti je, Primož Trubar,

Da v družbi veseli molčiš?

Oblak ti je splaval na čelo, Ko v čašo zamišljen strmiš.

Zakaj prihodnosti lepše, Zakaj ne slaviš je nocoj?

Zakaj od Lutrove vere

Ne vžíga se pógled tvoj?

«Oj misel na zemljo domačo

To trudno srcé mi teží:

Pretesna, pretesna je meni, Tam meni prostora ni.

Osrečiti brate svoje

Htel z uki sem božjimi jaz, Sovražnikov bal se nisem, Ponosno jim gledal v obraz.

Bal njega se nisem, ti veš, bog, Kdor z uki slepil je naš rod, Kdor z zlobno, pregrešno besedo

Zapiral mi v srca je pot.

Vojvódsko je žezlo me vzmoglo, Ni vzmoglo me žezlo duhá — —

Nadvojvoda Karol je vzdignil

Svoj préstol nad préstol bogá.

Oj Karol, očém si ti mojim

Zaprl domačo zemljó ...

Da v roki jo puščam tvoji, Kakó mi je v srcu težkó ...»

Govoril je Primož Trubar, Zamišljeni vsi obmolčé ...

Pa vstane tedàj baron Ungnad, Navdušeno Trubarju dé:

«Oj Trubar, — nadvojvoda Karol

Zemljó ti je svojo zaprl; Glas tvoj je umrl za njega, Za narod tvoj ni umrl.

Saj senca vojvodskega žezla

Nikoli duhá ne stemní, Ko dvigne na prostih se krilih Noben ga vladar ne vzdrží.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.