CHAPMAN & HALL/CRC
Interdisciplinary Statistics Series
Series editors: N. Keiding, B.J.T. Morgan, C.K. Wikle, P. van der Heijden
Published titles
AGE-PERIOD-COHORT ANALYSIS: NEW MODELS, METHODS, AND EMPIRICAL APPLICATIONS Y. Yang and K. C. Land
ANALYSIS OF CAPTURE-RECAPTURE DATA R. S. McCrea and B. J.T. Morgan
AN INVARIANT APPROACH TO STATISTICAL ANALYSIS OF SHAPES
S. Lele and J. Richtsmeier
ASTROSTATISTICS G. Babu and E. Feigelson
BAYESIAN ANALYSIS FOR POPULATION ECOLOGY R. King, B. J. T. Morgan, O. Gimenez, and S. P. Brooks
BAYESIAN DISEASE MAPPING: HIERARCHICAL MODELING IN SPATIAL EPIDEMIOLOGY, SECOND EDITION A. B. Lawson
BIOEQUIVALENCE AND STATISTICS IN CLINICAL PHARMACOLOGY
S. Patterson and B. Jones
CAPTURE-RECAPTURE METHODS FOR THE SOCIAL AND MEDICAL SCIENCES
D. Böhning, P. G. M. van der Heijden, and J. Bunge
CLINICAL TRIALS IN ONCOLOGY, THIRD EDITION S. Green, J. Benedetti, A. Smith, and J. Crowley
CLUSTER RANDOMISED TRIALS R.J. Hayes and L.H. Moulton
CORRESPONDENCE ANALYSIS IN PRACTICE, THIRD EDITION M. Greenacre
THE DATA BOOK: COLLECTION AND MANAGEMENT OF RESEARCH DATA M. Zozus
DESIGN AND ANALYSIS OF QUALITY OF LIFE STUDIES IN CLINICAL TRIALS, SECOND EDITION D.L. Fairclough
DYNAMICAL SEARCH L. Pronzato, H. Wynn, and A. Zhigljavsky
FLEXIBLE IMPUTATION OF MISSING DATA S. van Buuren
GENERALIZED LATENT VARIABLE MODELING: MULTILEVEL, LONGITUDINAL, AND STRUCTURAL EQUATION MODELS A. Skrondal and S. Rabe-Hesketh
GRAPHICAL ANALYSIS OF MULTI-RESPONSE DATA K. Basford and J. Tukey
INTRODUCTION TO COMPUTATIONAL BIOLOGY: MAPS, SEQUENCES, AND GENOMES M. Waterman
MARKOV CHAIN MONTE CARLO IN PRACTICE W. Gilks, S. Richardson, and D. Spiegelhalter
MEASUREMENT ERROR ANDMISCLASSIFICATION IN STATISTICS AND EPIDEMIOLOGY: IMPACTS AND BAYESIAN ADJUSTMENTS P. Gustafson
MEASUREMENT ERROR: MODELS, METHODS, AND APPLICATIONS
J. P. Buonaccorsi
MEASUREMENT ERROR: MODELS, METHODS, AND APPLICATIONS
J. P. Buonaccorsi
MENDELIAN RANDOMIZATION: METHODS FOR USING GENETIC VARIANTS IN CAUSAL ESTIMATION S.Burgess and S.G. Thompson
META-ANALYSIS OF BINARY DATA USINGPROFILE LIKELIHOOD D. Böhning, R. Kuhnert, and S. Rattanasiri
MISSING DATA ANALYSIS IN PRACTICE T. Raghunathan
MODERN DIRECTIONAL STATISTICS C. Ley and T. Verdebout
POWER ANALYSIS OF TRIALS WITH MULTILEVEL DATA M. Moerbeek and S. Teerenstra
SPATIAL POINT PATTERNS: METHODOLOGY AND APPLICATIONS WITH R A. Baddeley, E Rubak, and R. Turner
STATISTICAL ANALYSIS OF GENE EXPRESSION MICROARRAY DATA T. Speed
STATISTICAL ANALYSIS OF QUESTIONNAIRES: A UNIFIED APPROACH BASED ON R AND STATA F. Bartolucci, S. Bacci, and M. Gnaldi
STATISTICAL AND COMPUTATIONAL PHARMACOGENOMICS R. Wu and M. Lin
STATISTICS IN MUSICOLOGY J. Beran
STATISTICS OF MEDICAL IMAGING T. Lei
STATISTICAL CONCEPTS AND APPLICATIONS IN CLINICAL MEDICINE
J. Aitchison, J.W. Kay, and I.J. Lauder
STATISTICAL AND PROBABILISTIC METHODS IN ACTUARIAL SCIENCE
P.J. Boland
STATISTICAL DETECTION AND SURVEILLANCE OF GEOGRAPHIC CLUSTERS
P. Rogerson and I. Yamada
STATISTICAL METHODS IN PSYCHIATRY AND RELATED FIELDS: LONGITUDINAL, CLUSTERED, AND OTHER REPEATED MEASURES DATA R. Gueorguieva
STATISTICS FOR ENVIRONMENTAL BIOLOGY AND TOXICOLOGY A. Bailer and W. Piegorsch
STATISTICS FOR FISSION TRACK ANALYSIS R.F. Galbraith
SURVIVAL ANALYSIS WITH INTERVAL-CENSORED DATA: A PRACTICAL APPROACH WITH EXAMPLES IN R, SAS, AND BUGS
K. Bogaerts, A. Komárek, and E. Lesaffre
VISUALIZING DATA PATTERNS WITH MICROMAPS D.B. Carr and L.W. Pickle
Interdisciplinary Statistics Series
SURVIVAL ANALYSIS with INTERVAL-CENSORED DATA
A Practical Approach with Examples in R, SAS, and BUGS
Kris Bogaerts
Arnošt Komárek
Emmanuel Lesaffre
CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742
© 2018 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business
No claim to original U.S. Government works
Printed on acid-free paper
Version Date: 20171012
International Standard Book Number-13: 978-1-4200-7747-6 (Hardback)
This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.
Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers.
For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.
Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe.
Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com
and the CRC Press Web site at http://www.crcpress.com
1.2.2Intervalandleftcensoring................
1.2.3Somespecialcasesofintervalcensoring........
1.2.4Doublyintervalcensoring................
1.5.1Likelihoodforinterval-censoreddata..........
1.6.1Homograftstudy.....................
1.6.7SignalTandmobielstudy................
1.7.1R..............................
2.1.3SASsolution.......................
2.2Comparisonoftwosurvivaldistributions...........
2.2.1Reviewofsignificancetests...............
2.3.1.1Modeldescriptionandestimation......
2.3.1.2Modelchecking.................
2.3.1.3Rsolution...................
2.3.1.4SASsolution..................
2.3.2Acceleratedfailuretimemodel.............
2.3.2.1Modeldescriptionandestimation......
3.1Nonparametricmaximumlikelihood..............
3.1.1Estimation........................
3.1.2Asymptoticresults....................
3.1.3Rsolution.........................
3.1.4SASsolution.......................
3.2.1Estimation........................
3.2.5SASsolution.......................
3.3.1Logsplinedensityestimation..............
3.3.1.1Asmoothapproximationtothedensity...
3.3.1.2Maximumlikelihoodestimation.......
3.3.1.3Rsolution...................
3.3.2ClassicalGaussianmixturemodel...........
3.3.3PenalizedGaussianmixturemodel...........
4.1Nonparametriccomparisonofsurvivalcurves.........
4.1.1Weightedlog-ranktest:derivation...........
4.1.2Weightedlog-ranktest:linearform...........
4.1.3Weightedlog-ranktest:derivedfromthelinear transformationmodel..................
4.1.4Weightedlog-ranktest:the G ,γ family........
4.1.7SASsolution.......................
4.2Samplesizecalculation.....................
4.3Concludingremarks.......................
5Theproportionalhazardsmodel
5.1Parametricapproaches.....................
5.1.1Maximumlikelihoodestimation.............
5.1.3SASsolution.......................
5.2Towardssemiparametricapproaches..............
5.2.1Piecewiseexponentialbaselinesurvivalmodel.....
5.2.1.1Modeldescriptionandestimation......
5.2.1.2Rsolution...................
5.2.1.3SASsolution..................
5.2.2SemiNonParametricapproach..............
5.2.2.1Modeldescriptionandestimation......
5.2.2.2SASsolution..................
5.2.3Spline-basedsmoothingapproaches...........
5.2.3.1Twospline-basedsmoothingapproaches...
5.2.3.2Rsolution...................
5.2.3.3SASsolution..................
5.3Semiparametricapproaches...................
5.3.1Finkelstein’sapproach..................
5.3.2Farrington’sapproach..................
5.3.3Iterativeconvexminorantalgorithm..........
5.3.4Groupedproportionalhazardsmodel..........
5.3.5Practicalapplications..................
5.3.5.1Twoexamples.................
5.3.5.2Rsolution...................
5.3.5.3SASsolution..................
5.4Multipleimputationapproach.................
5.4.1Dataaugmentationalgorithm..............
5.4.2Multipleimputationforinterval-censoredsurvivaltimes
5.4.2.1Rsolution...................
5.4.2.2SASsolution..................
5.5Modelchecking..........................
5.5.1CheckingthePHmodel.................
5.5.2Rsolution.........................
5.5.3SASsolution.......................
5.6Samplesizecalculation.....................
6.1Parametricmodel........................
6.1.1Maximumlikelihoodestimation.............
6.1.3SASsolution.......................
6.2PenalizedGaussianmixturemodel...............
6.2.1Penalizedmaximumlikelihoodestimation.......
6.2.2Rsolution.........................
6.3SemiNonParametricapproach.................
6.5.1Computationalapproach.................
6.5.2SASsolution.......................
6.6Concludingremarks.......................
7.1Nonparametricestimationofthebivariatesurvivalfunction.
7.1.1TheNPMLEofabivariatesurvivalfunction.....
7.1.2Rsolution.........................
7.1.3SASsolution.......................
7.2Parametricmodels........................
7.2.1Modeldescriptionandestimation............
7.2.3SASsolution.......................
7.3Copulamodels..........................
7.3.1Background........................
7.3.2Estimationprocedures..................
7.3.3Rsolution.........................
7.4Flexiblesurvivalmodels.....................
7.4.1ThepenalizedGaussianmixturemodel........
7.4.2SASsolution.......................
7.5Estimationoftheassociationparameter............
7.5.1Measuresofassociation.................
7.5.2Estimatingmeasuresofassociation...........
7.5.3Rsolution.........................
7.5.4SASsolution.......................
7.6Concludingremarks.......................
8.1Doublyinterval-censoreddata.................
8.1.1Background........................
8.1.2Rsolution.........................
8.2.1Frailtymodels......................
8.2.1.1Rsolution...................
8.2.1.2SASsolution..................
8.2.2Amarginalapproachtocorrelatedsurvivaltimes...
8.2.2.1Independenceworkingmodel.........
8.2.2.2SASsolution..................
8.3Abiplotforinterval-censoreddata...............
8.3.1Classicalbiplot......................
8.3.2Extensiontointerval-censoredobservations......
9.1Bayesianinference........................
9.1.1ParametricversusnonparametricBayesianapproaches
9.1.2Bayesiandataaugmentation...............
9.1.3MarkovchainMonteCarlo...............
9.1.4Credibleregionsandcontourprobabilities.......
9.1.5Selectingandcheckingthemodel............
9.2.1Bayesiannonparametricmodellingofthehazard
9.2.2Bayesiannonparametricmodellingofthedistribution
9.3Bayesiansoftware........................
9.3.1WinBUGSandOpenBUGS...............
9.3.3
9.4Applicationsforright-censoreddata..............
9.4.1Parametricmodels....................
9.4.1.1BUGSsolution.................
9.4.1.2SASsolution..................
9.4.2NonparametricBayesianestimationofasurvivalcurve
9.4.2.1Rsolution...................
9.4.3SemiparametricBayesiansurvivalanalysis.......
10.1Bayesianparametricmodelling.................
10.2Bayesiansmoothingmethods..................
11.3SemiparametricPHmodel...................
12.1BayesianparametricAFTmodel................
12.1.1JAGSsolution......................
12.2AFTmodelwithaclassicalGaussianmixtureasanerror
12.2.1Rsolution.........................
12.3AFTmodelwithapenalizedGaussianmixtureasanerror
12.4BayesiansemiparametricAFTmodel.............
13.1.1Parametricsharedfrailtymodels............
13.1.1.1JAGSsolution.................
13.1.1.2SASsolution..................
13.1.2Flexiblesharedfrailtymodels..............
13.1.3Semiparametricsharedfrailtymodels.........
13.2.1.1JAGSsolution.................
13.2.1.2SASsolution..................
13.2.2Bivariatecopulamodels.................
13.2.3Flexiblebivariatemodels................
13.2.3.1Rsolution...................
13.2.4Semiparametricbivariatemodels............
13.2.4.1Rsolution...................
13.2.5Multivariatecase.....................
13.3Doublyintervalcensoring....................
13.3.1ParametricmodellingofunivariateDI-censoreddata.
13.3.1.1JAGSsolution.................
13.3.2FlexiblemodellingofunivariateDI-censoreddata...
13.3.2.1Rsolution...................
13.3.3SemiparametricmodellingofunivariateDI-censored data............................
13.3.3.1Rsolution...................
13.3.4ModellingofmultivariateDI-censoreddata......
13.4Concludingremarks.......................
14.1.1Competingrisksandmultistatemodels........
14.1.2Survivalmodelswithacuredsubgroup.........
14.1.3Multilevelmodels.....................
14.1.4Informativecensoring..................
14.1.5Interval-censoredcovariates...............
14.1.6Jointlongitudinalandsurvivalmodels.........
14.1.7Spatial-temporalmodels.................
C.4Inversegammaprior:
C.5Wishartprior:Wishart(
C.6InverseWishartprior:Wishart(R,k).............
C.7LinkbetweenBeta,DirichletandDirichletProcessprior.. 508
D.1icensBKLpackage........................
D.2Icenspackage...........................
D.3intervalpackage.........................
D.4survivalpackage.........................
D.5logsplinepackage........................
D.6smoothSurvpackage......................
D.7mixAKpackage.........................
D.8bayesSurvpackage........................
E.4PROCICPHREG........................
F.1IterativeConvexMinorant(ICM)algorithm.........
F.2Regionsofpossiblesupportforbivariateinterval-censoreddata 536
F.2.1AlgorithmofGentlemanandVandal(2001)...... 536
F.2.2AlgorithmofBogaertsandLesaffre(2004)....... 537
F.2.3HeightmapalgorithmofMaathuis(2005)....... 538
F.3Splines.............................. 539
F.3.1Polynomialfitting....................
F.3.2Polynomialsplines....................
F.3.3Naturalcubicsplines................... 541
F.3.4Truncatedpowerseries.................. 541
F.3.5B-splines......................... 541
F.3.6M-splinesandI-splines.................. 543
F.3.7Penalizedsplines(P-splines)............... 543
ListofFigures
1.1Right,leftandintervalcensoring................ 6
1.2Doublyintervalcensoring....................
1.3Breastcancerstudyoftheradiotherapy-onlygroup.Median timetobreastretraction..................... 9
1.4One(true)simulateddatasetfromeithersettingusedforthe illustrationofmid-pointimputation.............. 11
1.5Breastcancerstudy.Observedintervalsinmonthsfortimeto breastretractionofearlybreastcancerpatientspertreatment group............................... 21
1.6AIDSclinicaltrial.Observedintervalsinmonthsfortimeto CMVsheddingandtimetoMACcolonization........ 23
1.7Sensoryshelflifestudy.Shelflifeofyoghurtstoredat42◦Cin hours............................... 24
1.8Mobilestudy.Interval-censoredtimesofpreviousandofcurrentmobilephonepurchase................... 26
1.9Mastitisstudy.Timefromparturitiontomastitisindaysby location.............................. 28
1.10SignalTandmobielstudy.FDInumberingsystemofdeciduous andpermanentteeth.......................
2.1Homograftstudy.Kaplan-Meiercurveofhomograftfailureaccordingtotypeofgraft..................... 37
2.2Homograftstudy.Estimatedsurvivalcurvesfor14-year-old patientsbasedonthePHmodel................ 49
2.3Homograftstudy.Martingaleresidualsvs.linearpredictor.. 50
2.4ImpactofacovariateonthehazardofaPHandAFTmodel 54
3.1DeterminationofregionsofpossiblesupportfortheTurnbull
3.2Orderingoftwointerval-censoredobservationswithtiedendpoints.............................. 64
3.3Breastcancerstudyoftheradiotherapy-onlygroup.NPMLE ofthecumulativedistributionandsurvivalfunctions..... 69
3.4SignalTandmobielstudy.Log-normalmodelforemergenceof tooth44ofboys.........................
3.5SignalTandmobielstudy(boys).Probabilityplotoflognormalmodelforemergenceoftooth44............ 79
3.6Breastcancerstudy(radiotherapy-alonegroup).Distribution ofthetimetobreastretractionestimatedusingthelogspline method.............................. 87
3.7Severaldensitiesexpressedastwo-orfour-componentGaussianmixtures........................... 90
3.8SeveraldensitiesexpressedashomoscedasticGaussianmixtures............................... 94
3.9SignalTandmobielstudy(boys).Distributionofthetimeto emergenceoftooth44estimatedusingthepenalizedGaussian mixture............................. 98
3.10SignalTandmobielstudy(boys).Distributionofthestandardizedlog-timetoemergenceoftooth44estimatedusingthe penalizedGaussianmixturecomparedtoparametricdensities. 102
4.1SignalTandmobielstudy.NPMLEofthesurvivalfunctionsfor emergenceofpermanenttooth44intwogroupsaccordingto baselineDMFstatusofprimarytooth84andinthreegroups accordingtoocclusalplaquestatusofpermanenttooth46.. 114
5.1Breastcancerstudy.ValidationofPHassumptionfortreatmentviaatransformationofthesurvivalfunction...... 173
5.2Breastcancerstudy.ValidationofPHassumptionfortreatmentviaresiduals........................ 174
5.3Sensoryshelflifestudy.Baselinesurvivalfunctionfordifferent models............................... 177
6.1SignalTandmobielstudy.ParametricAFTmodelbasedsurvivalfunctionsforemergenceofpermanenttooth44ingender byDMFgroups.......................... 184
6.2SignalTandmobielstudy.ParametricAFTmodelbasedsurvivalfunctionsforemergenceofpermanenttooth44compared toNPMLE............................ 186
6.3SignalTandmobielstudy.PGMAFTmodelsbasedestimated errordensitiescomparedtoadensityofthestandardnormal distribution............................ 200
6.4SignalTandmobielstudy.PGMAFTmodelsbasedestimated survivalfunctionsforemergenceofpermanenttooth44comparedtoNPMLE......................... 203
6.5SignalTandmobielstudy.Mean-scaleAFTmodelforemergenceoftooth44withaPGMerrordistribution.Estimated densityofthestandardizederrortermcomparedtoparametricdensities............................ 208
6.6SignalTandmobielstudy.Themean-scalePGMAFTmodel basedestimatedsurvivalandhazardfunctions........ 212
7.1Graphicalrepresentationof4bivariateinterval-censoredobservations............................ 221
7.2Artificialexamplewithmoreregionsofsupportthanobservations............................... 223
7.3Anartificialdatasetwith6observedrectanglesandtheir corresponding4regionsofsupport.............. 223
7.4DensityplotsofClayton,normalandPlackettcopula.... 235
7.5SignalTandmobielstudy.DensityofpenalizedGaussianmixturemodelforemergenceofpermanentteeth14and24... 242
7.6SignalTandmobielstudy.Theestimatedcross-ratiofunction forthemaxillarfirstpremolarsforboys............ 249
8.1Threecasesofdoublyinterval-censoredsurvivaltimes.... 256
8.2Mobilestudy.Forestplotshowingtheimpactofgender,householdsizeandageonthetimetochangephone........ 258
8.3SignalTandmobielstudy.Biplot................ 277
9.1Illustrationofgammaprocess:Tenrealizationsof G(cH ∗,c) 298
9.2IllustrationoftheDirichletprocess:Tenrealizationsof DP{c Weibull(1.5,7)} 300
9.3Homograftstudy.MCMCdiagnostics............. 313
9.4Homograftstudy(aortichomograftpatients).Nonparametric Bayesianestimateofsurvivalfunction............ 317
9.5Homograftstudy.SemiparametricPHmodelBayesianestimatesofsurvivalfunctions................... 320
10.1SignalTandmobielstudy.DiagnosticplotsofBayesiananalysisusingthe SAS procedure LIFEREG 334
10.2SignalTandmobielstudy(boys,emergenceoftooth44).Posteriordensitiesofselectedparameters,distributionofthe emergencetimeestimatedusingtheclassicalGaussianmixture................................ 338
10.3Breastcancerstudyoftheradiotherapy-onlygroup.NonparametricBayesianestimateofsurvivalfunction......... 346
10.4SignalTandmobielstudy.Estimateddensity,survivaldistributionandhazardfunctionfrom DPMdencens oftheemergence timefortooth44ofboysfortwoprecisionparameters... 348
10.5SignalTandmobielstudy.Imputedemergencetimesfortooth 44ofboysfrom2ndsolutionobtainedfromthe R package DPpackage togetherwithobservedintervals......... 352
11.1Breastcancerstudy.DiagnosticplotsofBayesiananalysisusing runjags 361
11.2Breastcancerstudy.Q-Qplotstocontrastthe‘truelatent’survivaltimeswiththe‘model-basedreplicated’survival times............................... 363
11.3Breastcancerstudy.PPCscorrespondingtotherangeand maxgaptest........................... 364
11.4Breastcancer:SmoothandWeibullsurvivalfunctions.... 371
11.5SignalTandmobielstudy.Estimatedpiecewiseconstantdynamicregressioncoefficientsobtainedfrom dynsurv 374
11.6SignalTandmobielstudy.Estimatedpiecewiseconstantbaselinehazardfunctionsobtainedfrom dynsurv.......... 376
11.7SignalTandmobielstudy.Frequencyofjumppointsobtained from dynsurv........................... 379
12.1SignalTandmobielstudy.CGMAFTmodelbasedposterior predictiveerrordensitycomparedtoadensityofthestandard normaldistribution........................ 393
12.2SignalTandmobielstudy.CGMAFTmodelbasedposteriorpredictivesurvivalfunctionsforemergenceofpermanent tooth44comparedtoNPMLE................. 394
12.3SignalTandmobielstudy.CGMAFTmodelbasedposterior predictivehazardfunctionsforemergenceofpermanenttooth 44................................. 395
12.4SignalTandmobielstudy.PGMAFTmodelbasedposterior predictiveerrordensitycomparedtoadensityofthestandard normaldistribution........................ 407
12.5SignalTandmobielstudy.PGMAFTmodelbasedposteriorpredictivesurvivalfunctionsforemergenceofpermanent tooth44comparedtoCGMAFTbasedestimates...... 408
12.6SignalTandmobielstudy.SemiparametricBayesianAFT modeltraceplotsandmarginalposteriordensities...... 415
12.7SignalTandmobielstudy.Posteriorpredictiveerrordistribution................................ 417
12.8SignalTandmobielstudy.Posteriorpredictivesurvivaldistribution............................... 418
13.1Mastitisstudy.Log-normalfrailtydistributionwithWeibull baselinehazard:Estimatedrandomeffectsandtruesurvival times............................... 426
13.2SignalTandmobielstudy.Estimatederror(left)andrandom effectsdensity(right)forNorm-PGMandPGM-Normmodels toevaluatetheemergencetimesofteeth14,24,34and44.. 435
13.3SignalTandmobielstudy.Estimatedpredictiveincidence curveandhazardfunctionfromPGM-PGMmodeltocompare emergencetimesoftooth24forboyswithcariesonprimary predecessorornot........................ 436
13.4SignalTandmobielstudy.Imputedemergencetimesofteeth 14and24assumingabivariatelog-normaldistribution.... 441
13.5SignalTandmobielstudy.Contourplotsoftheestimatederror distributionsforemergencetimesofteeth14and24andteeth 24and34............................. 449
13.6SignalTandmobielstudy.Emergencedistributionsfortooth 14andtooth24forfourcovariatecombinations........ 452
13.7Mobilestudy.Histogramlog(time)purchase1stmobilephone andlog(gaptime)between2purchases............. 460
13.8Mobilestudy.Estimatederrordensityfortimeoffirstpurchaseandestimatederrordensityforgaptime........ 462
13.9Mobilestudy.Estimatedincidencefunctiontobuyanewmobilephonesplitupintoagegroups............... 463
B.1Threesurvivaldistributions...................
F.1Graphcorrespondingtothedatapresentedin Figure7.3 537
F.2Heightmapcorrespondingtotheexampledatapresentedin Figure7.3 ............................ 538
F.3Truncatedpolynomialofdegree1andB-splinesofdegree3 on[0, 10]............................. 542
F.4M-splinesoforder2and3................... 544
Notation
S(t)survivalfunction S
F (t)cumulativedistributionfunction F
f (t)densityfunction f (t)
(t)hazardfunction (t)
H(t)cumulativehazardfunction H(t)
[l,u]closedintervalwithlowerlimit l andupperlimit u
(l,u]half-openintervalwithlowerlimit l andupperlimit u
l,u open,half-openorclosedintervalwithlowerlimit l andupper limit u
δ censoringindicator
L(·)likelihood
(·)log{L(·)},log-likelihood
D collecteddata
DP Dirichletprocess
Dir p(δ1,...,δp) p-dimensionalDirichletdistributionwithparameters δ1,...,δp N (µ,σ2)normaldistributionwithmean µ andvariance σ2
ϕ densityofthestandardnormalGaussiandistribution N (0, 1)
ϕµ,σ2 densityoftheGaussiandistribution N (µ,σ2)
ΦstandardcumulativedistributionfunctionoftheGaussiandistribution N (0, 1)
Φµ,σ2 cumulativedistributionfunctionoftheGaussiandistribution N (µ,σ2)
Φρ standardbivariatecumulativedistributionfunctionofthe Gaussiandistributionwithcorrelation ρ
G(ζ,γ)gammadistributionwithashapeparameter ζ andarateparameter γ (withthemean ζ/γ)
N p(µ, Σ) p-dimensionalnormaldistributionwithmeanvector µ and covariancematrix Σ
I(·)indicatorfunctionequalto1iftheexpressionbetweenparenthesesistrue,and0otherwise
lp penalizedlog-likelihood
∆k( )k-orderforwarddifferencefunction
I identitymatrix
I Hessianmatrix
RanF rangeofthefunction F
C(u,v)copula
˘
C(u,v)survivalcopula
˘
CC
θ (u,v)Claytoncopulawithparameter θ
˘
CG
ρ (u,v)Gaussiancopulawithparameter ρ
˘ CP
θ (u,v)Plackettcopulawithparameter θ
· Euclideanlength
Another random document with no related content on Scribd:
compliance. To SEND DONATIONS or determine the status of compliance for any particular state visit www.gutenberg.org/donate.
While we cannot and do not solicit contributions from states where we have not met the solicitation requirements, we know of no prohibition against accepting unsolicited donations from donors in such states who approach us with offers to donate.
International donations are gratefully accepted, but we cannot make any statements concerning tax treatment of donations received from outside the United States. U.S. laws alone swamp our small staff.
Please check the Project Gutenberg web pages for current donation methods and addresses. Donations are accepted in a number of other ways including checks, online payments and credit card donations. To donate, please visit: www.gutenberg.org/donate.
Section 5. General Information About Project Gutenberg™ electronic works
Professor Michael S. Hart was the originator of the Project Gutenberg™ concept of a library of electronic works that could be freely shared with anyone. For forty years, he produced and distributed Project Gutenberg™ eBooks with only a loose network of volunteer support.
Project Gutenberg™ eBooks are often created from several printed editions, all of which are confirmed as not protected by copyright in the U.S. unless a copyright notice is included. Thus, we do not necessarily keep eBooks in compliance with any particular paper edition.
Most people start at our website which has the main PG search facility: www.gutenberg.org.
This website includes information about Project Gutenberg™, including how to make donations to the Project Gutenberg Literary
Archive Foundation, how to help produce our new eBooks, and how to subscribe to our email newsletter to hear about new eBooks.