Download ebooks file Survival analysis with interval censored data a practical approach with example

Page 1


Visit to download the full and correct content document: https://textbookfull.com/product/survival-analysis-with-interval-censored-data-a-practi cal-approach-with-examples-in-r-sas-and-bugs-1st-edition-kris-bogaerts/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Clinical trial data analysis with R and SAS Second Edition Chen

https://textbookfull.com/product/clinical-trial-data-analysiswith-r-and-sas-second-edition-chen/

Analysis of Correlated Data with SAS and R Mohamed M. Shoukri

https://textbookfull.com/product/analysis-of-correlated-datawith-sas-and-r-mohamed-m-shoukri/

Statistical Analysis of Financial Data: With Examples In R 1st Edition James Gentle

https://textbookfull.com/product/statistical-analysis-offinancial-data-with-examples-in-r-1st-edition-james-gentle/

IFRS 9 and CECL Credit Risk Modelling and Validation A

Practical Guide with Examples Worked in R and SAS Tiziano Bellini

https://textbookfull.com/product/ifrs-9-and-cecl-credit-riskmodelling-and-validation-a-practical-guide-with-examples-workedin-r-and-sas-tiziano-bellini/

Graphical Data Analysis with R Antony Unwin

https://textbookfull.com/product/graphical-data-analysis-with-rantony-unwin/

Data Analysis with R 2nd Edition Tony Fischetti

https://textbookfull.com/product/data-analysis-with-r-2ndedition-tony-fischetti/

Time Series Analysis and Its Applications With R Examples 4th Edition Robert H. Shumway

https://textbookfull.com/product/time-series-analysis-and-itsapplications-with-r-examples-4th-edition-robert-h-shumway/

Introduction to Data Science Data Analysis and Prediction Algorithms with R 1st Edition By Rafael A. Irizarry

https://textbookfull.com/product/introduction-to-data-sciencedata-analysis-and-prediction-algorithms-with-r-1st-edition-byrafael-a-irizarry/

R in Action Data Analysis and Graphics with R Bonus ch 23 ONLY 2nd Edition Robert Kabacoff

https://textbookfull.com/product/r-in-action-data-analysis-andgraphics-with-r-bonus-ch-23-only-2nd-edition-robert-kabacoff/

SURVIVAL ANALYSIS with INTERVAL-CENSORED DATA

A Practical Approach with Examples in R, SAS, and BUGS

CHAPMAN & HALL/CRC

Interdisciplinary Statistics Series

Series editors: N. Keiding, B.J.T. Morgan, C.K. Wikle, P. van der Heijden

Published titles

AGE-PERIOD-COHORT ANALYSIS: NEW MODELS, METHODS, AND EMPIRICAL APPLICATIONS Y. Yang and K. C. Land

ANALYSIS OF CAPTURE-RECAPTURE DATA R. S. McCrea and B. J.T. Morgan

AN INVARIANT APPROACH TO STATISTICAL ANALYSIS OF SHAPES

S. Lele and J. Richtsmeier

ASTROSTATISTICS G. Babu and E. Feigelson

BAYESIAN ANALYSIS FOR POPULATION ECOLOGY R. King, B. J. T. Morgan, O. Gimenez, and S. P. Brooks

BAYESIAN DISEASE MAPPING: HIERARCHICAL MODELING IN SPATIAL EPIDEMIOLOGY, SECOND EDITION A. B. Lawson

BIOEQUIVALENCE AND STATISTICS IN CLINICAL PHARMACOLOGY

S. Patterson and B. Jones

CAPTURE-RECAPTURE METHODS FOR THE SOCIAL AND MEDICAL SCIENCES

D. Böhning, P. G. M. van der Heijden, and J. Bunge

CLINICAL TRIALS IN ONCOLOGY, THIRD EDITION S. Green, J. Benedetti, A. Smith, and J. Crowley

CLUSTER RANDOMISED TRIALS R.J. Hayes and L.H. Moulton

CORRESPONDENCE ANALYSIS IN PRACTICE, THIRD EDITION M. Greenacre

THE DATA BOOK: COLLECTION AND MANAGEMENT OF RESEARCH DATA M. Zozus

DESIGN AND ANALYSIS OF QUALITY OF LIFE STUDIES IN CLINICAL TRIALS, SECOND EDITION D.L. Fairclough

DYNAMICAL SEARCH L. Pronzato, H. Wynn, and A. Zhigljavsky

FLEXIBLE IMPUTATION OF MISSING DATA S. van Buuren

GENERALIZED LATENT VARIABLE MODELING: MULTILEVEL, LONGITUDINAL, AND STRUCTURAL EQUATION MODELS A. Skrondal and S. Rabe-Hesketh

GRAPHICAL ANALYSIS OF MULTI-RESPONSE DATA K. Basford and J. Tukey

INTRODUCTION TO COMPUTATIONAL BIOLOGY: MAPS, SEQUENCES, AND GENOMES M. Waterman

MARKOV CHAIN MONTE CARLO IN PRACTICE W. Gilks, S. Richardson, and D. Spiegelhalter

MEASUREMENT ERROR ANDMISCLASSIFICATION IN STATISTICS AND EPIDEMIOLOGY: IMPACTS AND BAYESIAN ADJUSTMENTS P. Gustafson

MEASUREMENT ERROR: MODELS, METHODS, AND APPLICATIONS

J. P. Buonaccorsi

MEASUREMENT ERROR: MODELS, METHODS, AND APPLICATIONS

J. P. Buonaccorsi

MENDELIAN RANDOMIZATION: METHODS FOR USING GENETIC VARIANTS IN CAUSAL ESTIMATION S.Burgess and S.G. Thompson

META-ANALYSIS OF BINARY DATA USINGPROFILE LIKELIHOOD D. Böhning, R. Kuhnert, and S. Rattanasiri

MISSING DATA ANALYSIS IN PRACTICE T. Raghunathan

MODERN DIRECTIONAL STATISTICS C. Ley and T. Verdebout

POWER ANALYSIS OF TRIALS WITH MULTILEVEL DATA M. Moerbeek and S. Teerenstra

SPATIAL POINT PATTERNS: METHODOLOGY AND APPLICATIONS WITH R A. Baddeley, E Rubak, and R. Turner

STATISTICAL ANALYSIS OF GENE EXPRESSION MICROARRAY DATA T. Speed

STATISTICAL ANALYSIS OF QUESTIONNAIRES: A UNIFIED APPROACH BASED ON R AND STATA F. Bartolucci, S. Bacci, and M. Gnaldi

STATISTICAL AND COMPUTATIONAL PHARMACOGENOMICS R. Wu and M. Lin

STATISTICS IN MUSICOLOGY J. Beran

STATISTICS OF MEDICAL IMAGING T. Lei

STATISTICAL CONCEPTS AND APPLICATIONS IN CLINICAL MEDICINE

J. Aitchison, J.W. Kay, and I.J. Lauder

STATISTICAL AND PROBABILISTIC METHODS IN ACTUARIAL SCIENCE

P.J. Boland

STATISTICAL DETECTION AND SURVEILLANCE OF GEOGRAPHIC CLUSTERS

P. Rogerson and I. Yamada

STATISTICAL METHODS IN PSYCHIATRY AND RELATED FIELDS: LONGITUDINAL, CLUSTERED, AND OTHER REPEATED MEASURES DATA R. Gueorguieva

STATISTICS FOR ENVIRONMENTAL BIOLOGY AND TOXICOLOGY A. Bailer and W. Piegorsch

STATISTICS FOR FISSION TRACK ANALYSIS R.F. Galbraith

SURVIVAL ANALYSIS WITH INTERVAL-CENSORED DATA: A PRACTICAL APPROACH WITH EXAMPLES IN R, SAS, AND BUGS

K. Bogaerts, A. Komárek, and E. Lesaffre

VISUALIZING DATA PATTERNS WITH MICROMAPS D.B. Carr and L.W. Pickle

Interdisciplinary Statistics Series

SURVIVAL ANALYSIS with INTERVAL-CENSORED DATA

A Practical Approach with Examples in R, SAS, and BUGS

Kris Bogaerts

Arnošt Komárek

Emmanuel Lesaffre

CRC Press

Taylor & Francis Group

6000 Broken Sound Parkway NW, Suite 300

Boca Raton, FL 33487-2742

© 2018 by Taylor & Francis Group, LLC

CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed on acid-free paper

Version Date: 20171012

International Standard Book Number-13: 978-1-4200-7747-6 (Hardback)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com

and the CRC Press Web site at http://www.crcpress.com

1.2.2Intervalandleftcensoring................

1.2.3Somespecialcasesofintervalcensoring........

1.2.4Doublyintervalcensoring................

1.5.1Likelihoodforinterval-censoreddata..........

1.6.1Homograftstudy.....................

1.6.7SignalTandmobielstudy................

1.7.1R..............................

2.1.3SASsolution.......................

2.2Comparisonoftwosurvivaldistributions...........

2.2.1Reviewofsignificancetests...............

2.3.1.1Modeldescriptionandestimation......

2.3.1.2Modelchecking.................

2.3.1.3Rsolution...................

2.3.1.4SASsolution..................

2.3.2Acceleratedfailuretimemodel.............

2.3.2.1Modeldescriptionandestimation......

3.1Nonparametricmaximumlikelihood..............

3.1.1Estimation........................

3.1.2Asymptoticresults....................

3.1.3Rsolution.........................

3.1.4SASsolution.......................

3.2.1Estimation........................

3.2.5SASsolution.......................

3.3.1Logsplinedensityestimation..............

3.3.1.1Asmoothapproximationtothedensity...

3.3.1.2Maximumlikelihoodestimation.......

3.3.1.3Rsolution...................

3.3.2ClassicalGaussianmixturemodel...........

3.3.3PenalizedGaussianmixturemodel...........

4.1Nonparametriccomparisonofsurvivalcurves.........

4.1.1Weightedlog-ranktest:derivation...........

4.1.2Weightedlog-ranktest:linearform...........

4.1.3Weightedlog-ranktest:derivedfromthelinear transformationmodel..................

4.1.4Weightedlog-ranktest:the G ,γ family........

4.1.7SASsolution.......................

4.2Samplesizecalculation.....................

4.3Concludingremarks.......................

5Theproportionalhazardsmodel

5.1Parametricapproaches.....................

5.1.1Maximumlikelihoodestimation.............

5.1.3SASsolution.......................

5.2Towardssemiparametricapproaches..............

5.2.1Piecewiseexponentialbaselinesurvivalmodel.....

5.2.1.1Modeldescriptionandestimation......

5.2.1.2Rsolution...................

5.2.1.3SASsolution..................

5.2.2SemiNonParametricapproach..............

5.2.2.1Modeldescriptionandestimation......

5.2.2.2SASsolution..................

5.2.3Spline-basedsmoothingapproaches...........

5.2.3.1Twospline-basedsmoothingapproaches...

5.2.3.2Rsolution...................

5.2.3.3SASsolution..................

5.3Semiparametricapproaches...................

5.3.1Finkelstein’sapproach..................

5.3.2Farrington’sapproach..................

5.3.3Iterativeconvexminorantalgorithm..........

5.3.4Groupedproportionalhazardsmodel..........

5.3.5Practicalapplications..................

5.3.5.1Twoexamples.................

5.3.5.2Rsolution...................

5.3.5.3SASsolution..................

5.4Multipleimputationapproach.................

5.4.1Dataaugmentationalgorithm..............

5.4.2Multipleimputationforinterval-censoredsurvivaltimes

5.4.2.1Rsolution...................

5.4.2.2SASsolution..................

5.5Modelchecking..........................

5.5.1CheckingthePHmodel.................

5.5.2Rsolution.........................

5.5.3SASsolution.......................

5.6Samplesizecalculation.....................

6.1Parametricmodel........................

6.1.1Maximumlikelihoodestimation.............

6.1.3SASsolution.......................

6.2PenalizedGaussianmixturemodel...............

6.2.1Penalizedmaximumlikelihoodestimation.......

6.2.2Rsolution.........................

6.3SemiNonParametricapproach.................

6.5.1Computationalapproach.................

6.5.2SASsolution.......................

6.6Concludingremarks.......................

7.1Nonparametricestimationofthebivariatesurvivalfunction.

7.1.1TheNPMLEofabivariatesurvivalfunction.....

7.1.2Rsolution.........................

7.1.3SASsolution.......................

7.2Parametricmodels........................

7.2.1Modeldescriptionandestimation............

7.2.3SASsolution.......................

7.3Copulamodels..........................

7.3.1Background........................

7.3.2Estimationprocedures..................

7.3.3Rsolution.........................

7.4Flexiblesurvivalmodels.....................

7.4.1ThepenalizedGaussianmixturemodel........

7.4.2SASsolution.......................

7.5Estimationoftheassociationparameter............

7.5.1Measuresofassociation.................

7.5.2Estimatingmeasuresofassociation...........

7.5.3Rsolution.........................

7.5.4SASsolution.......................

7.6Concludingremarks.......................

8.1Doublyinterval-censoreddata.................

8.1.1Background........................

8.1.2Rsolution.........................

8.2.1Frailtymodels......................

8.2.1.1Rsolution...................

8.2.1.2SASsolution..................

8.2.2Amarginalapproachtocorrelatedsurvivaltimes...

8.2.2.1Independenceworkingmodel.........

8.2.2.2SASsolution..................

8.3Abiplotforinterval-censoreddata...............

8.3.1Classicalbiplot......................

8.3.2Extensiontointerval-censoredobservations......

9.1Bayesianinference........................

9.1.1ParametricversusnonparametricBayesianapproaches

9.1.2Bayesiandataaugmentation...............

9.1.3MarkovchainMonteCarlo...............

9.1.4Credibleregionsandcontourprobabilities.......

9.1.5Selectingandcheckingthemodel............

9.2.1Bayesiannonparametricmodellingofthehazard

9.2.2Bayesiannonparametricmodellingofthedistribution

9.3Bayesiansoftware........................

9.3.1WinBUGSandOpenBUGS...............

9.3.3

9.4Applicationsforright-censoreddata..............

9.4.1Parametricmodels....................

9.4.1.1BUGSsolution.................

9.4.1.2SASsolution..................

9.4.2NonparametricBayesianestimationofasurvivalcurve

9.4.2.1Rsolution...................

9.4.3SemiparametricBayesiansurvivalanalysis.......

10.1Bayesianparametricmodelling.................

10.2Bayesiansmoothingmethods..................

11.3SemiparametricPHmodel...................

12.1BayesianparametricAFTmodel................

12.1.1JAGSsolution......................

12.2AFTmodelwithaclassicalGaussianmixtureasanerror

12.2.1Rsolution.........................

12.3AFTmodelwithapenalizedGaussianmixtureasanerror

12.4BayesiansemiparametricAFTmodel.............

13.1.1Parametricsharedfrailtymodels............

13.1.1.1JAGSsolution.................

13.1.1.2SASsolution..................

13.1.2Flexiblesharedfrailtymodels..............

13.1.3Semiparametricsharedfrailtymodels.........

13.2.1.1JAGSsolution.................

13.2.1.2SASsolution..................

13.2.2Bivariatecopulamodels.................

13.2.3Flexiblebivariatemodels................

13.2.3.1Rsolution...................

13.2.4Semiparametricbivariatemodels............

13.2.4.1Rsolution...................

13.2.5Multivariatecase.....................

13.3Doublyintervalcensoring....................

13.3.1ParametricmodellingofunivariateDI-censoreddata.

13.3.1.1JAGSsolution.................

13.3.2FlexiblemodellingofunivariateDI-censoreddata...

13.3.2.1Rsolution...................

13.3.3SemiparametricmodellingofunivariateDI-censored data............................

13.3.3.1Rsolution...................

13.3.4ModellingofmultivariateDI-censoreddata......

13.4Concludingremarks.......................

14.1.1Competingrisksandmultistatemodels........

14.1.2Survivalmodelswithacuredsubgroup.........

14.1.3Multilevelmodels.....................

14.1.4Informativecensoring..................

14.1.5Interval-censoredcovariates...............

14.1.6Jointlongitudinalandsurvivalmodels.........

14.1.7Spatial-temporalmodels.................

C.4Inversegammaprior:

C.5Wishartprior:Wishart(

C.6InverseWishartprior:Wishart(R,k).............

C.7LinkbetweenBeta,DirichletandDirichletProcessprior.. 508

D.1icensBKLpackage........................

D.2Icenspackage...........................

D.3intervalpackage.........................

D.4survivalpackage.........................

D.5logsplinepackage........................

D.6smoothSurvpackage......................

D.7mixAKpackage.........................

D.8bayesSurvpackage........................

E.4PROCICPHREG........................

F.1IterativeConvexMinorant(ICM)algorithm.........

F.2Regionsofpossiblesupportforbivariateinterval-censoreddata 536

F.2.1AlgorithmofGentlemanandVandal(2001)...... 536

F.2.2AlgorithmofBogaertsandLesaffre(2004)....... 537

F.2.3HeightmapalgorithmofMaathuis(2005)....... 538

F.3Splines.............................. 539

F.3.1Polynomialfitting....................

F.3.2Polynomialsplines....................

F.3.3Naturalcubicsplines................... 541

F.3.4Truncatedpowerseries.................. 541

F.3.5B-splines......................... 541

F.3.6M-splinesandI-splines.................. 543

F.3.7Penalizedsplines(P-splines)............... 543

ListofTables

1.1Taxonomyofinterval-censoredobservations......... 5

1.2Simulationstudyillustratingtheeffectofmid-pointimputationandintervalcensoring................... 12

1.3Dataofbreastcancerstudy.................. 21

1.4Dataofsensoryshelflifestudy................ 24

1.5SignalTandmobielstudy....................

1.6Intervalcensoringin

2.1Transformationsforconfidenceintervals........... 37

2.2Observedcountsattime tj forderivationofthelog-ranktest. 42

2.3Homograftstudy.Two-sampletestscomparingaorticdonor graftswithpulmonarydonorgrafts............... 43

2.4Homograftstudy.Coxproportionalhazardsmodel...... 48

2.5Homograftstudy.Acceleratedfailuretimemodel....... 56 2.6Homograftstudy.WeibullAFTmodel............. 56

3.1Breastcancerstudy.RegionsofpossiblesupportandNPMLE equivalenceclassesfortheradiotherapy-onlygroup...... 68

3.2SignalTandmobielstudy.Parametricmodellingofemergence oftooth44ofboys........................ 80

3.3SignalTandmobielstudy(boys).Estimatedparametersofthe emergencedistributionoftooth44............... 97

4.1SignalTandmobielstudy.Two-sampletests.......... 115

4.2SignalTandmobielstudy.Testscomparingthreesamples... 117

5.1MethodofFarrington(1996).Definitionofbinaryresponse yi andauxiliaryintervals Bi 152

5.2Sensoryshelflifestudy..................... 176

6.1SignalTandmobielstudy.ParametricAFTmodelforemergenceoftooth44.Modelfitstatisticsobtainedwith R package survival.............................. 183

6.2SignalTandmobielstudy.AFTmodelforemergenceoftooth 44withanormalerrordistribution............... 183

6.3SignalTandmobielstudy.AFTmodelsforemergenceoftooth 44withaPGMerrordistribution.Modelfitstatistics.... 200

6.4SignalTandmobielstudy.MeanAFTmodelforemergenceof tooth44withaPGMerrordistribution............ 202

6.5SignalTandmobielstudy.Mean-scaleAFTmodelforemergenceoftooth44withaPGMerrordistribution....... 202

6.6SignalTandmobielstudy.Estimatedmeanemergencetimes basedonthePGMAFTmodels................ 203

7.1AIDSclinicaltrial........................ 226

8.1Mobilestudy.Adhocanalysesofdoublyinterval-censored data................................ 259

8.2Mastitisstudy.Sharedfrailtymodels............. 266

9.1Homograftstudy.BayesianWeibullAFTmodel........ 308

9.2Homograftstudy.Bayesianacceleratedfailuretimemodel.. 308

10.1SignalTandmobielstudy.Bayesianparametricmodellingof emergenceoftooth44ofboys.................. 326 10.2SignalTandmobielstudy(boys).Posteriorsummarystatistics fortheparametersoftheemergencedistributionoftooth44. 339

11.1Breastcancerstudy.BayesianWeibullPHmodel....... 357 11.2SignalTandmobielstudy.Comparisonofmodels M1 and model M3............................. 375

12.1SignalTandmobielstudy.BayesianWeibullAFTmodelfor emergenceoftooth44...................... 383

12.2SignalTandmobielstudy.AFTmodelforemergenceoftooth 44withaCGMerrordistribution............... 392

12.3SignalTandmobielstudy.AFTmodelforemergenceoftooth 44withaPGMerrordistribution................ 406

12.4SignalTandmobielstudy.SemiparametricBayesianAFT modelforemergenceoftooth44withlog-normalbaselinesurvivaldistribution.Posteriorsummarymeasures........ 416

13.1Mastitisstudy.Bayesiansharedfrailtymodels........ 425

13.2SignalTandmobielstudy.BayesianflexibleAFTrandomeffectsappliedtoemergencetimesofpermanentfirstpremolars................................ 434

13.3SignalTandmobielstudy.BivariateAFTmodelsappliedto emergencetimesofhorizontallysymmetricteeth14,24and verticallysymmetricteeth24,34,respectively......... 448

13.4Mobilestudy.Posteriorsummarymeasuresfromtwomodels thatpredicttimetobuyanewmobilephone......... 460

A.1DataofAIDStrial.......................

B.1Parametrizationsofthedistributionsoftheeventtime T in R and BUGS...........................

B.2Parametrizationsofthedistributionsofthelog-eventtime Y in R and BUGS

E.1Supporteddistributionin PROCLIFEREG

ListofFigures

1.1Right,leftandintervalcensoring................ 6

1.2Doublyintervalcensoring....................

1.3Breastcancerstudyoftheradiotherapy-onlygroup.Median timetobreastretraction..................... 9

1.4One(true)simulateddatasetfromeithersettingusedforthe illustrationofmid-pointimputation.............. 11

1.5Breastcancerstudy.Observedintervalsinmonthsfortimeto breastretractionofearlybreastcancerpatientspertreatment group............................... 21

1.6AIDSclinicaltrial.Observedintervalsinmonthsfortimeto CMVsheddingandtimetoMACcolonization........ 23

1.7Sensoryshelflifestudy.Shelflifeofyoghurtstoredat42◦Cin hours............................... 24

1.8Mobilestudy.Interval-censoredtimesofpreviousandofcurrentmobilephonepurchase................... 26

1.9Mastitisstudy.Timefromparturitiontomastitisindaysby location.............................. 28

1.10SignalTandmobielstudy.FDInumberingsystemofdeciduous andpermanentteeth.......................

2.1Homograftstudy.Kaplan-Meiercurveofhomograftfailureaccordingtotypeofgraft..................... 37

2.2Homograftstudy.Estimatedsurvivalcurvesfor14-year-old patientsbasedonthePHmodel................ 49

2.3Homograftstudy.Martingaleresidualsvs.linearpredictor.. 50

2.4ImpactofacovariateonthehazardofaPHandAFTmodel 54

3.1DeterminationofregionsofpossiblesupportfortheTurnbull

3.2Orderingoftwointerval-censoredobservationswithtiedendpoints.............................. 64

3.3Breastcancerstudyoftheradiotherapy-onlygroup.NPMLE ofthecumulativedistributionandsurvivalfunctions..... 69

3.4SignalTandmobielstudy.Log-normalmodelforemergenceof tooth44ofboys.........................

3.5SignalTandmobielstudy(boys).Probabilityplotoflognormalmodelforemergenceoftooth44............ 79

3.6Breastcancerstudy(radiotherapy-alonegroup).Distribution ofthetimetobreastretractionestimatedusingthelogspline method.............................. 87

3.7Severaldensitiesexpressedastwo-orfour-componentGaussianmixtures........................... 90

3.8SeveraldensitiesexpressedashomoscedasticGaussianmixtures............................... 94

3.9SignalTandmobielstudy(boys).Distributionofthetimeto emergenceoftooth44estimatedusingthepenalizedGaussian mixture............................. 98

3.10SignalTandmobielstudy(boys).Distributionofthestandardizedlog-timetoemergenceoftooth44estimatedusingthe penalizedGaussianmixturecomparedtoparametricdensities. 102

4.1SignalTandmobielstudy.NPMLEofthesurvivalfunctionsfor emergenceofpermanenttooth44intwogroupsaccordingto baselineDMFstatusofprimarytooth84andinthreegroups accordingtoocclusalplaquestatusofpermanenttooth46.. 114

5.1Breastcancerstudy.ValidationofPHassumptionfortreatmentviaatransformationofthesurvivalfunction...... 173

5.2Breastcancerstudy.ValidationofPHassumptionfortreatmentviaresiduals........................ 174

5.3Sensoryshelflifestudy.Baselinesurvivalfunctionfordifferent models............................... 177

6.1SignalTandmobielstudy.ParametricAFTmodelbasedsurvivalfunctionsforemergenceofpermanenttooth44ingender byDMFgroups.......................... 184

6.2SignalTandmobielstudy.ParametricAFTmodelbasedsurvivalfunctionsforemergenceofpermanenttooth44compared toNPMLE............................ 186

6.3SignalTandmobielstudy.PGMAFTmodelsbasedestimated errordensitiescomparedtoadensityofthestandardnormal distribution............................ 200

6.4SignalTandmobielstudy.PGMAFTmodelsbasedestimated survivalfunctionsforemergenceofpermanenttooth44comparedtoNPMLE......................... 203

6.5SignalTandmobielstudy.Mean-scaleAFTmodelforemergenceoftooth44withaPGMerrordistribution.Estimated densityofthestandardizederrortermcomparedtoparametricdensities............................ 208

6.6SignalTandmobielstudy.Themean-scalePGMAFTmodel basedestimatedsurvivalandhazardfunctions........ 212

7.1Graphicalrepresentationof4bivariateinterval-censoredobservations............................ 221

7.2Artificialexamplewithmoreregionsofsupportthanobservations............................... 223

7.3Anartificialdatasetwith6observedrectanglesandtheir corresponding4regionsofsupport.............. 223

7.4DensityplotsofClayton,normalandPlackettcopula.... 235

7.5SignalTandmobielstudy.DensityofpenalizedGaussianmixturemodelforemergenceofpermanentteeth14and24... 242

7.6SignalTandmobielstudy.Theestimatedcross-ratiofunction forthemaxillarfirstpremolarsforboys............ 249

8.1Threecasesofdoublyinterval-censoredsurvivaltimes.... 256

8.2Mobilestudy.Forestplotshowingtheimpactofgender,householdsizeandageonthetimetochangephone........ 258

8.3SignalTandmobielstudy.Biplot................ 277

9.1Illustrationofgammaprocess:Tenrealizationsof G(cH ∗,c) 298

9.2IllustrationoftheDirichletprocess:Tenrealizationsof DP{c Weibull(1.5,7)} 300

9.3Homograftstudy.MCMCdiagnostics............. 313

9.4Homograftstudy(aortichomograftpatients).Nonparametric Bayesianestimateofsurvivalfunction............ 317

9.5Homograftstudy.SemiparametricPHmodelBayesianestimatesofsurvivalfunctions................... 320

10.1SignalTandmobielstudy.DiagnosticplotsofBayesiananalysisusingthe SAS procedure LIFEREG 334

10.2SignalTandmobielstudy(boys,emergenceoftooth44).Posteriordensitiesofselectedparameters,distributionofthe emergencetimeestimatedusingtheclassicalGaussianmixture................................ 338

10.3Breastcancerstudyoftheradiotherapy-onlygroup.NonparametricBayesianestimateofsurvivalfunction......... 346

10.4SignalTandmobielstudy.Estimateddensity,survivaldistributionandhazardfunctionfrom DPMdencens oftheemergence timefortooth44ofboysfortwoprecisionparameters... 348

10.5SignalTandmobielstudy.Imputedemergencetimesfortooth 44ofboysfrom2ndsolutionobtainedfromthe R package DPpackage togetherwithobservedintervals......... 352

11.1Breastcancerstudy.DiagnosticplotsofBayesiananalysisusing runjags 361

11.2Breastcancerstudy.Q-Qplotstocontrastthe‘truelatent’survivaltimeswiththe‘model-basedreplicated’survival times............................... 363

11.3Breastcancerstudy.PPCscorrespondingtotherangeand maxgaptest........................... 364

11.4Breastcancer:SmoothandWeibullsurvivalfunctions.... 371

11.5SignalTandmobielstudy.Estimatedpiecewiseconstantdynamicregressioncoefficientsobtainedfrom dynsurv 374

11.6SignalTandmobielstudy.Estimatedpiecewiseconstantbaselinehazardfunctionsobtainedfrom dynsurv.......... 376

11.7SignalTandmobielstudy.Frequencyofjumppointsobtained from dynsurv........................... 379

12.1SignalTandmobielstudy.CGMAFTmodelbasedposterior predictiveerrordensitycomparedtoadensityofthestandard normaldistribution........................ 393

12.2SignalTandmobielstudy.CGMAFTmodelbasedposteriorpredictivesurvivalfunctionsforemergenceofpermanent tooth44comparedtoNPMLE................. 394

12.3SignalTandmobielstudy.CGMAFTmodelbasedposterior predictivehazardfunctionsforemergenceofpermanenttooth 44................................. 395

12.4SignalTandmobielstudy.PGMAFTmodelbasedposterior predictiveerrordensitycomparedtoadensityofthestandard normaldistribution........................ 407

12.5SignalTandmobielstudy.PGMAFTmodelbasedposteriorpredictivesurvivalfunctionsforemergenceofpermanent tooth44comparedtoCGMAFTbasedestimates...... 408

12.6SignalTandmobielstudy.SemiparametricBayesianAFT modeltraceplotsandmarginalposteriordensities...... 415

12.7SignalTandmobielstudy.Posteriorpredictiveerrordistribution................................ 417

12.8SignalTandmobielstudy.Posteriorpredictivesurvivaldistribution............................... 418

13.1Mastitisstudy.Log-normalfrailtydistributionwithWeibull baselinehazard:Estimatedrandomeffectsandtruesurvival times............................... 426

13.2SignalTandmobielstudy.Estimatederror(left)andrandom effectsdensity(right)forNorm-PGMandPGM-Normmodels toevaluatetheemergencetimesofteeth14,24,34and44.. 435

13.3SignalTandmobielstudy.Estimatedpredictiveincidence curveandhazardfunctionfromPGM-PGMmodeltocompare emergencetimesoftooth24forboyswithcariesonprimary predecessorornot........................ 436

13.4SignalTandmobielstudy.Imputedemergencetimesofteeth 14and24assumingabivariatelog-normaldistribution.... 441

13.5SignalTandmobielstudy.Contourplotsoftheestimatederror distributionsforemergencetimesofteeth14and24andteeth 24and34............................. 449

13.6SignalTandmobielstudy.Emergencedistributionsfortooth 14andtooth24forfourcovariatecombinations........ 452

13.7Mobilestudy.Histogramlog(time)purchase1stmobilephone andlog(gaptime)between2purchases............. 460

13.8Mobilestudy.Estimatederrordensityfortimeoffirstpurchaseandestimatederrordensityforgaptime........ 462

13.9Mobilestudy.Estimatedincidencefunctiontobuyanewmobilephonesplitupintoagegroups............... 463

B.1Threesurvivaldistributions...................

F.1Graphcorrespondingtothedatapresentedin Figure7.3 537

F.2Heightmapcorrespondingtotheexampledatapresentedin Figure7.3 ............................ 538

F.3Truncatedpolynomialofdegree1andB-splinesofdegree3 on[0, 10]............................. 542

F.4M-splinesoforder2and3................... 544

Notation

S(t)survivalfunction S

F (t)cumulativedistributionfunction F

f (t)densityfunction f (t)

(t)hazardfunction (t)

H(t)cumulativehazardfunction H(t)

[l,u]closedintervalwithlowerlimit l andupperlimit u

(l,u]half-openintervalwithlowerlimit l andupperlimit u

l,u open,half-openorclosedintervalwithlowerlimit l andupper limit u

δ censoringindicator

L(·)likelihood

(·)log{L(·)},log-likelihood

D collecteddata

DP Dirichletprocess

Dir p(δ1,...,δp) p-dimensionalDirichletdistributionwithparameters δ1,...,δp N (µ,σ2)normaldistributionwithmean µ andvariance σ2

ϕ densityofthestandardnormalGaussiandistribution N (0, 1)

ϕµ,σ2 densityoftheGaussiandistribution N (µ,σ2)

ΦstandardcumulativedistributionfunctionoftheGaussiandistribution N (0, 1)

Φµ,σ2 cumulativedistributionfunctionoftheGaussiandistribution N (µ,σ2)

Φρ standardbivariatecumulativedistributionfunctionofthe Gaussiandistributionwithcorrelation ρ

G(ζ,γ)gammadistributionwithashapeparameter ζ andarateparameter γ (withthemean ζ/γ)

N p(µ, Σ) p-dimensionalnormaldistributionwithmeanvector µ and covariancematrix Σ

I(·)indicatorfunctionequalto1iftheexpressionbetweenparenthesesistrue,and0otherwise

lp penalizedlog-likelihood

∆k( )k-orderforwarddifferencefunction

I identitymatrix

I Hessianmatrix

RanF rangeofthefunction F

C(u,v)copula

˘

C(u,v)survivalcopula

˘

CC

θ (u,v)Claytoncopulawithparameter θ

˘

CG

ρ (u,v)Gaussiancopulawithparameter ρ

˘ CP

θ (u,v)Plackettcopulawithparameter θ

· Euclideanlength

Another random document with no related content on Scribd:

compliance. To SEND DONATIONS or determine the status of compliance for any particular state visit www.gutenberg.org/donate.

While we cannot and do not solicit contributions from states where we have not met the solicitation requirements, we know of no prohibition against accepting unsolicited donations from donors in such states who approach us with offers to donate.

International donations are gratefully accepted, but we cannot make any statements concerning tax treatment of donations received from outside the United States. U.S. laws alone swamp our small staff.

Please check the Project Gutenberg web pages for current donation methods and addresses. Donations are accepted in a number of other ways including checks, online payments and credit card donations. To donate, please visit: www.gutenberg.org/donate.

Section 5. General Information About Project Gutenberg™ electronic works

Professor Michael S. Hart was the originator of the Project Gutenberg™ concept of a library of electronic works that could be freely shared with anyone. For forty years, he produced and distributed Project Gutenberg™ eBooks with only a loose network of volunteer support.

Project Gutenberg™ eBooks are often created from several printed editions, all of which are confirmed as not protected by copyright in the U.S. unless a copyright notice is included. Thus, we do not necessarily keep eBooks in compliance with any particular paper edition.

Most people start at our website which has the main PG search facility: www.gutenberg.org.

This website includes information about Project Gutenberg™, including how to make donations to the Project Gutenberg Literary

Archive Foundation, how to help produce our new eBooks, and how to subscribe to our email newsletter to hear about new eBooks.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.