Dynamical Systems in Population Biology
Second Edition
CanadianMathematicalSociety
Soci ´ et ´ emath ´ ematiqueduCanada
Editors-in-Chief
R´edacteurs-en-chef
K.Dilcher
K.Taylor AdvisoryBoard
Comit´econsultatif
M.Barlow
H.Bauschke
L.Edelstein-Keshet
N.Kamran
M.Kotchetov
Moreinformationaboutthisseriesat http://www.springer.com/series/4318
DynamicalSystems inPopulationBiology
SecondEdition
Xiao-QiangZhao
Xiao-QiangZhao DepartmentofMathematicsandStatistics
MemorialUniversityofNewfoundland
St.John’s,NL,Canada
ISSN1613-5237
CMSBooksinMathematics
ISSN2197-4152(electronic)
ISBN978-3-319-56432-6ISBN978-3-319-56433-3(eBook) DOI10.1007/978-3-319-56433-3
LibraryofCongressControlNumber:2017938615
MathematicsSubjectClassification(2010):34Cxx,34Kxx,35Bxx,35R10,37Bxx,37Cxx,37N25, 39A05,92D25,92D30,92D40
© SpringerInternationalPublishingAG2003,2017
Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped.
Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse.
Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsorthe editorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorforanyerrors oromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictionalclaims inpublishedmapsandinstitutionalaffiliations.
Printedonacid-freepaper
ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerInternationalPublishingAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland
Preface
Populationdynamicsisanimportantsubjectinmathematicalbiology. Acentralproblemistostudythelong-termbehaviorofmodelingsystems. Mostofthesesystemsaregovernedbyvariousevolutionaryequationssuch asdifference,ordinary,functional,andpartialdifferentialequations(see,e.g., [253, 206, 334, 167, 77]).Asweknow,interactivepopulationsoftenliveina fluctuatingenvironment.Forexample,physicalenvironmentalconditionssuch astemperatureandhumidityandtheavailabilityoffood,water,andother resourcesusuallyvaryintimewithseasonalordailyvariations.Therefore, morerealisticmodelsshouldbenonautonomoussystems.Inparticular,ifthe datainamodelareperiodicfunctionsoftimewithcommensurateperiod, aperiodicsystemarises;iftheseperio dicfunctionshavedifferent(minimal) periods,wegetanalmostperiodicsystem.Theexistingreferencebooks,from thedynamicalsystemspointofview,mainlyfocusonautonomousbiological systems.ThebookofHess[152]isanexcellentreferenceforperiodicparabolic boundaryvalueproblemswithapplicationstopopulationdynamics.Sincethe publicationofthisbook,therehavebeenextensiveinvestigationsonperiodic, asymptoticallyperiodic,almostperiodic,andevengeneralnonautonomous biologicalsystems,whichinturnhavemotivatedfurtherdevelopmentofthe theoryofdynamicalsystems.
Inordertoexplainthedynamicalsystemsapproachtoperiodicpopulation problems,letusconsider,asanillustration,twospeciesperiodiccompetitive systems
= f1 (t,u1 ,u2 ),
= f2 (t,u1 ,u2 ), (0.1)
where f1 and f2 arecontinuouslydifferentiableand ω -periodicin t,and ∂fi /∂uj ≤ 0,i = j .Weassumethat,foreach v ∈ R2 ,theuniquesolution u(t,v )ofsystem(0.1)satisfying u(0)= v existsgloballyon[0, ∞).
vii
Let X = R2 ,anddefineafamilyofmappings T (t): X → X,t ≥ 0,by T (t)x = u(t,x), ∀x ∈ X .Itiseasytoseethat T (t)satisfiesthefollowing properties:
(1) T (0)= I ,where I istheidentitymapon X .
(2) T (t + ω )= T (t) ◦ T (ω ), ∀t ≥ 0.
(3) T (t)x iscontinuousin(t,x) ∈ [0, ∞) × X .
T (t)iscalledtheperiodicsemiflowgeneratedbyperiodicsystem(0.1),and P := T (ω )iscalleditsassociatedPoincar´emap(orperiodmap).Clearly, P n v = u(nω,v ), ∀n ≥ 1,v ∈ R2 .Itthenfollowsthatthestudyofthedynamicsof(0.1)reducestothatofthediscretedynamicalsystem {P n } on R2
If u =(u1 ,u2 ),v =(v1 ,v2 ) ∈ R2 ,thenwewrite u ≤ v whenever ui ≤ vi holdsfor i =1, 2.Wewrite u ≤K v whenever u1 ≤ v1 and u2 ≥ v2 .By thewell-knownKamkecomparisontheorem,itfollowsthatthefollowingkey propertiesholdforcompetitivesystem(0.1)(see,e.g.,[334,Lemma7.4.1]):
(P1)If u ≤K v ,then Pu ≤K Pv (P2)If Pu ≤ Pv ,then u ≤ v .
ThenthePoincar´emap P ,andhencethediscretedynamicalsystem {P n }, ismonotonewithrespecttotheorder ≤K on R2 .Consequently,system(0.1) admitsconvergentdynamics(see[334,Theorem7.4.2]).
Theorem Everyboundedsolutionofacompetitiveplanarperiodicsystem asymptoticallyapproachesaperiodicsolution.
Weusetheproofprovidedin[334,Theorem7.4.2].Indeed,itsufficestoprove thateveryboundedorbitof {P n } convergestoafixedpointof P .Giventwo points u,v ∈ R2 ,oneormoreofthefourrelations u ≤ v,v ≤ u,u ≤K v , v ≤K u musthold.Now,if P n0 u0 ≤K P n0 +1 u0 (orthereverseinequality) holdsforsome n0 ≥ 0,then(P1)impliesthat P n u0 ≤K P n+1 u0 (orthe reverseinequality)holdsforall n ≥ n0 .Therefore, {P n u0 } convergestosome fixedpoint¯ u,sincethesequenceisboundedandeventuallymonotone.The proofiscompleteinthiscase,soweassumethattheredoesnotexistsuchan n0 asjustdescribed.Inparticular,itfollowsthat u0 isnotafixedpointof P .Thenitfollowsthatforeach n wemusthaveeither P n+1 u0 ≤ P n u0 or thereverseinequality.Supposefordefinitenessthat u0 ≤ Pu0 ,theothercase beingsimilar.Weclaimthat P n u0 ≤ P n+1 u0 forall n.Ifnot,thereexists n0 suchthat u0 ≤ Pu0 ≤ P 2 u0 ≤···≤ P
P
but P n0 u0 ≥ P n0 +1 u0 .Clearly, n0 ≥ 1since u0 ≤ Pu0 .Applying(P2)tothe displayedinequalityyields P n0 1 u0 ≥ P n0 u0 andtherefore P n0 1 u0 = P n0 u0 . Since P isonetoone, u0 mustbeafixedpoint,incontradictiontoour assumption.Thisprovestheclaimandimpliesthatthesequence {P n u0 } convergestosomefixedpoint¯ u.
Itishopedthatthereaderwillappreciatetheeleganceandsimplicityof theargumentssupportingtheabovetheorem,whicharemotivatedbyanow classicalpaperofdeMottoniandSchiaffino[92]forthespecialcaseofperiodic Lotka–Volterrasystems.ThisexamplealsoillustratestherolesthatPoincar´ e mapsandmonotonediscretedynamicalsystemsmayplayinthestudyofperiodicsystems.Forcertainnonautonomousperturbationsofaperiodicsystem (e.g.,anasymptoticallyperiodicsystem),onemayexpectthatthePoincar´ e mapassociatedwiththeunperturbedperiodicsystem(e.g.,thelimitingperiodicsystem)shouldbeveryhelpfulinunderstandingthedynamicsofthe originalsystem.Foranonperiodicnonautonomoussystem(e.g.,almostperiodicsystem),wearenotabletodefineacontinuousordiscrete-timedynamical systemonitsstatespace.Theskew-productsemiflowapproachhasprovedto beverypowerfulinobtainingdynamicsforcertaintypesofnonautonomous systems(see,e.g.,[303, 300, 311]).
Themainpurposeofthisbookistoprovideanintroductiontothetheoryofperiodicsemiflowsonmetricspacesanditsapplicationstopopulation dynamics.Naturally,theselectionofthematerialishighlysubjectiveand largelyinfluencedbymypersonalinterests.Infact,thecontentsofthisbook arepredominantlyfrommyownandmycollaborators’recentworks.Also,the listofreferencesisbynomeansexhaustive,andIapologizefortheexclusion ofmanyotherrelatedworks.
Chapter 1 isdevotedtoabstractdiscretedynamicalsystemsonmetric spaces.Westudyglobalattractors,chaintransitivity,strongrepellers,and perturbations.Inparticular,wewillshowthatadissipative,uniformlypersistent,andasymptoticallycompactsystemmustadmitacoexistencestate.This resultisveryusefulinprovingtheexistenceof(allorpartialcomponentwise) positiveperiodicsolutionsofperiodicevolutionarysystems.
ThefocusofChapter 2 isonglobaldynamicsincertaintypesofmonotone discretedynamicalsystemsonorderedBanachspaces.Hereweareinterested intheabstractresultsonattractingorderintervals,globalattractivity,and globalconvergence,whichmaybeeasilyappliedtovariouspopulationmodels.
InChapter 3,weintroducetheconceptofperiodicsemiflowsandprove atheoremonthereductionofuniformpersistencetothatoftheassociated Poincar´emap.Theasymptoticallyperiodicsemiflows,nonautonomoussemiflows,skew-productsemiflows,andcontinuousprocessesarealsodiscussed.
InChapter 4,asafirstapplicationofthepreviousabstractresults,we analyzeindetailadiscrete-time,size-structuredchemostatmodelthatisdescribedbyasystemofdifferenceequations,althoughinthisbookourmain concerniswithglobaldynamicsinperiodicandalmostperiodicsystems.The reasonforthischoiceisthatwewanttoshowhowthetheoryofdiscretedynamicalsystemscanbeappliedtodiscrete-timemodelsgovernedbydifference equations(ormaps).
Intherestofthebook,weapplytheresultsinChapters 1–3 tocontinuoustimeperiodicpopulationmodels:inChapter 5 tothe N -speciescompetition inaperiodicchemostat,inChapter 6 toalmostperiodiccompetitivesystems,
inChapter 7 tocompetitor–competitor–mutualistparabolicsystems,andin Chapter 8 toaperiodicallypulsedbioreactormodel.Ofcourse,foreachchapter,weneedtousedifferentqualitativemethodsandeventodevelopcertain adhoctechniques.
Chapter 9 isdevotedtotheglobaldynamicsinanautonomous,nonlocal, anddelayedpredator–preymodel.Clearly,thecontinuous-timeanaloguesof theresultsinChapters 1 and 2 canfindapplicationsinautonomousmodels. Notethatanautonomoussemiflowcanbeviewedasaperiodiconewiththe periodbeinganyfixedpositiverealnumber,andhenceitispossibletoget someglobalresultsbyusingthetheoryofperiodicsemiflows.However,we shouldpointoutthattheredoexistsomespecialtheoryandmethodsthat areapplicableonlytoautonomoussystems.Thefluctuationmethodinthis chapterprovidessuchanexample.
Theexistence,attractivity,uniqueness,andexponentialstabilityofperiodictravelingwavesinperiodicreaction–diffusionequationswithbistable nonlinearitiesarediscussedinChapter 10,whichisessentiallyindependentof thepreviouschapters.WeappealonlytoaconvergencetheoremfromChapter 2 toprovetheattractivityanduniquenessofperiodicwaves.Herethe Poincar´e-typemapassociatedwiththesystemplaysanimportantroleonce again.
Overtheyears,Ihavebenefitedgreatlyfromthecommunications,discussions,andcollaborationswithmanycolleaguesandfriendsinthefieldsof differentialequations,dynamicalsystems,andmathematicalbiology,andI wouldliketotakethisopportunitytoexpressmygratitudetoallofthem.I amparticularlyindebtedtoHerbFreedman,MorrisHirsch,HalSmith,Horst Thieme,GailWolkowicz,andJianhongWu,withwhomIwroteresearcharticlesthatareincorporatedinthepresentbook.
Finally,Igratefullyappreciate,financialsupportformyresearchfromthe NationalScienceFoundationofChina,theRoyalSocietyofLondon,andthe NaturalSciencesandEngineeringResearchCouncilofCanada.
DissipativeDynamicalSystems
Therearemanydiscrete-timepopulationmodelsgovernedbydifferenceequations(ormaps),andaswementionedinthePreface,thedynamicsofaperiodicdifferentialsystemcanbeinvestigatedviaitsassociatedPoincar´emap. Theaimofthischapteristointroducebasicdefinitionsanddevelopmain toolsinthetheoryofdiscretedynamicalsystems.InSection 1.1 wepresent conceptsoflimitsetsandattractorsandsomefundamentaltheoremssuchas theLaSalleinvarianceprinciple,theasymptoticfixedpointtheorem,andthe globalattractortheorems.
Chaintransitivityhasremarkableconnectionstothestructureofattractors.InSection 1.2 wefirstgivetypicalexamplesandcharacteristicsofchain transitivesets.Thenweshowthatthe Butler–McGeheepropertiesofomega limitsetsaresharedbychaintransitivesetsforadynamicalsystem,which enableustoobtainfurtherimportantpropertiesofchaintransitivesetssuch asstrongattractivityandconvergence,andtoprovetheequivalencebetween acycliccoveringsandMorsedecompositions.
Uniformpersistenceisanimportantconceptinpopulationdynamics,since itcharacterizesthelong-termsurvivalofsomeorallinteractingspeciesinan ecosystem.Lookedatabstractly,itis thenotionthataclosedsubsetofthe statespaceisrepellingforthedynamicsonthecomplementaryset,andthen itgivesauniformestimateforomegalimitsets,whichsometimesisessentialtoobtainamoredetailedglobaldynamics.InSection 1.3 weprovea strongrepellertheoremintermsofchaintransitivesets,whichunifiesearlier resultsonuniformpersistence,andimpliesrobustnessofuniformpersistence. Thenweshowthatadissipative,uniformlypersistent,andasymptotically compactsystemmusthaveatleastonecoexistencesteady state,whichprovidesadynamicapproachtosomestaticproblems(e.g.,existenceofpositive steadystatesandperiodicsolutions). Wealsointroducetheconceptofgeneralizeddistancefunctionsinabstractp ersistencetheoryso thatthepractical persistencecanbeeasilyobtainedforcertaininfinite-dimensionalbiological systems.
InSection 1.4 wediscusspersistenceunderperturbations.Weproveageneralresultontheperturbationofagloballystablesteadystate.Thenweprove uniformpersistenceuniforminparamete rs,whichisveryusefulinestablishingtherobustnessofglobalasymptoticstabilityofanequilibriumsolution.A dissipativeanduniformlypersistentsystemisoftensaidtobepermanent.For aclassofautonomousKolmogorovsystemsofordinarydifferentialequations wealsoobtainarobustpermanencetheorem.
1.1LimitSetsandGlobalAttractors
Let N bethesetofintegersand N+ thesetofnonnegativeintegers.Let X be acompletemetricspacewithmetric d and f : X → X acontinuousmap.For anonemptyinvariantset M (i.e., f (M )= M ),theset W s (M ):= {x ∈ X : limn→∞ d(f n (x),M )=0} iscalledthestablesetof M .Theomegalimitsetof x isdefinedintheusualwayas ω (x)= {y ∈ X : f nk (x) → y, forsome nk → ∞}.Anegativeorbitthrough x = x0 isasequence γ (x)= {xk }0 k=−∞ such that f (xk 1 )= xk forintegers k ≤ 0.Theremaybenonegativeorbitthrough x,andevenifthereisone,itmaynotbeunique.Ofcourse,apointofan invariantsetalwayshasatleastonenegativeorbitcontainedintheinvariant set.Foragivennegativeorbit γ (x)wedefineitsalphalimitsetas α(γ )= {y ∈ X : xnk → y forsome nk →−∞}.If γ + (x)= {f n (x): n ≥ 0} (γ (x)) isprecompact(i.e.,itiscontainedinacompactset),then ω (x)(α(γ ))is nonempty,compact,andinvariant(see,e.g.,[141,Lemma2.1.2]).
Let e ∈ X beafixedpointof f (i.e., f (e)= e).Recallthat e issaidtobe stablefor f : X → X ifforeach > 0thereexists δ> 0suchthatforany x ∈ X with d(x,e) <δ ,wehave d(f n (x),e) < , ∀n ≥ 0.Thefollowingsimple observationisusefulinprovingtheconvergenceofaprecompactpositiveorbit toafixedpoint.
Lemma1.1.1. (Convergence) Let e beastablefixedpointand γ + (x) a precompactpositiveorbitfor f : X → X .If e ∈ ω (x),then ω (x)= {e}
Proof. Let > 0begiven.Bystabilityof e for f : X → X ,thereexists δ> 0 suchthatforany y ∈ X with d(y,e) <δ ,wehave d(f m (y ),e) < , ∀m ≥ 0. Since e ∈ ω (x),thereisasubsequence nk →∞ with f nk (x) → e,andhence anindex k0 suchthat d(f nk0 (x),e) <δ .Thus d(f nk0 +m (x),e) < , ∀m ≥ 0, whichimpliesthat ω (x) ⊂{z ∈ X : d(z,e) ≤ }, ∀ > 0.Letting → 0,we get ω (x)= {e}.
Definition1.1.1. Let G beaclosedsubsetof X .Acontinuousfunction V : G → R issaidtobeaLiapunovfunctionon G ofthemap f : G → G (orthediscretesystem xn+1 = f (xn ),n ≥ 0)if ˙ V (x):= V (f (x)) V (x) ≤ 0 forall x ∈ G.
Theorem1.1.1. (LaSalleinvarianceprinciple) Assumethat V isaLiapunovfunctionon G of f ,andthat γ + (x) isaprecompactorbitof f and
γ + (x) ⊂ G.Then ω (x) ⊂ M ∩ V 1 (c) forsome c = c(x),where M isthe largestinvariantsetin E := {x ∈ G : ˙ V (x)=0},and V 1 (c):= {x ∈ G : V (x)= c}.
Proof. Clearly,thecontinuousfunction V isboundedonthecompactset
γ + (x) ⊂ G.Let xn = f n (x),n ≥ 0.Then
V (xn+1 ) V (xn )= V (f (xn )) V (xn )= V (xn ) ≤ 0, andhence V (xn )isnonincreasingwithrespectto n andisboundedfrom below.Therefore,thereisarealnumber c = c(x)suchthatlimn→∞ V (xn )= c
Forany y ∈ ω (x) ⊂ G,thereisasequence nk →∞ suchthatlimk→∞ xnk = y .
Since V iscontinuous,limk→∞ V (xnk )= V (y )= c,and ω (x) ⊂ V 1 (c).Since ω (x)isinvariant, V (f (y ))= c and ˙ V (y )=0.Therefore, ω (x) ⊂ E ,andhence ω (x) ⊂ M .
Recallthataset U in X issaidtobeaneighborhoodofanotherset V providedthat V iscontainedintheinteriorint(U )of U .Foranysubsets A,B ⊂ X andany > 0,wedefine
d(x,A):=inf y ∈A d(x,y ),δ (B,A):=sup x∈B d(x,A),
N (A, ):= {x ∈ X : d(x,A) < } and N (A, ):= {x ∈ X : d(x,A) ≤ } .
TheKuratowskimeasureofnoncompactness, α,isdefinedby
α(B )=inf {r : B hasafiniteopencoverofdiameter ≤ r },
foranyboundedset B of X .Weset α(B )=+∞, whenever B isunbounded. ForvariouspropertiesofKuratowski’smeasureofnoncompactness,we referto[242, 91]and[304,Lemma22.2].Theproofofthefollowinglemmais straightforward.
Lemma1.1.2. Thefollowingstatementsarevalid:
(a)Let I ⊂ [0, +∞) beunbounded,and {At }t∈I beanonincreasingfamily ofnonemptyclosedsubsets(i.e., t ≤ s implies As ⊂ At ).Assumethat α(At ) → 0, as t → +∞.Then A∞ = t≥0 At isnonemptyandcompact, and δ (At ,A∞ ) → 0, as t → +∞.
(b)Foreach A ⊂ X and B ⊂ X, wehave α(B ) ≤ α(A)+ δ (B,A).
Forasubset B ⊂ X ,let γ + (B ):= m≥0 f m (B )bethepositiveorbitof B for f ,and
ω (B ):= n≥0 m≥n f m (B )
theomegalimitsetof B .Asubset A ⊂ X ispositivelyinvariantfor f if f (A) ⊂ A.Wesaythatasubset A ⊂ X attractsasubset B ⊂ X for f if limn→∞ δ (f n (B ),A)=0.
Itiseasytoseethat B isprecompact(i.e., B iscompact)ifandonlyif α(B )=0.Acontinuousmapping f : X → X issaidtobecompact(completelycontinuous)if f mapsanyboundedsettoaprecompactsetin X . Thetheoryofattractorsisbasedonthefollowingfundamentalresult, whichisrelatedto[141,Lemmas2.1.1and2.1.2].
Lemma1.1.3. Let B beasubsetof X andassumethatthereexistsacompact subset C of X whichattracts B for f .Then ω (B ) isnonempty,compact, invariantfor f andattracts B.
Proof. Let I = N+ ,thesetofallnonnegativeintegers,and An = m≥n
m (B ), ∀n ≥ 0.
Since C attracts B, fromLemma 1.1.2 (b)wededucethat
α(An ) ≤ α(C )+ δ (An ,C )= δ (An ,C ) → 0, as n → +∞.
Sothefamily {An }n≥0 satisfiestheconditionsofassertion(a)inLemma 1.1.2, andwededucethat ω (B )isnonempty,compact,and δ (An ,ω (B )) → 0, as n → +∞. So ω (B )attracts B for f .Moreover,wehave f ⎛ ⎝m≥n f m (B )⎞ ⎠ = m≥n+1 f m (B ), ∀n ≥ 0,
andsince f iscontinuous,weobtain f (An ) ⊂ An+1 , and An+1 ⊂ f (An ), ∀n ≥ 0.
Finally,since δ (An ,ω (B )) → 0, as n → +∞,wehave f (ω (B ))= ω (B )
Definition1.1.2. Acontinuousmapping f : X → X issaidtobepoint (compact,bounded)dissipativeifthereisaboundedset B0 in X suchthat B0 attractseachpoint(compactset,boundedset)in X ; α-condensing(αcontractionoforder k , 0 ≤ k< 1)if f takesboundedsetstoboundedsets and α(f (B )) <α(B ) (α(f (B )) ≤ kα(B ))foranynonemptyclosedbounded set B ⊂ X with α(B ) > 0; α-contractingif lim n→∞ α (f n (B ))=0 forany boundedsubset B ⊂ X ;asymptoticallysmoothifforanynonemptyclosed boundedset B ⊂ X forwhich f (B ) ⊂ B ,thereisacompactset J ⊂ B such that J attracts B
Clearly,acompactmapisan α-contractionoforder0,andan α-contraction oforder k is α-condensing.Itiswellknownthat α-condensingmapsareasymptoticallysmooth(see,e.g.,[141,Lemma2.3.5]).ByLemma 1.1.2,itfollows that f : X → X isasymptoticallysmoothifandonlyiflimn→∞ α (f n (B ))=0
1.1LimitSetsandGlobalAttractors5
foranynonemptyclosedboundedsubset B ⊂ X forwhich f (B ) ⊂ B .This impliesthatany α-contractingmapisasymptoticallysmooth.
Apositivelyinvariantsubset B ⊂ X for f issaidtobestableifforany neighborhood V of B, thereexistsaneighborhood U ⊂ V of B suchthat f n (U ) ⊂ V, ∀n ≥ 0.Wesaythat A isgloballyasymptoticallystablefor f if, inaddition, A attractspointsof X for f .
Bytheproofthat(i)implies(ii)in[141,Theorem2.2.5],wehavethe followingresult.
Lemma1.1.4. Let B ⊂ X becompact,andpositivelyinvariantfor f .If B attractscompactsubsetsofsomeneighborhoodofitself,then B isstable.
Definition1.1.3. Anonempty,compact,andinvariantset A ⊂ X issaidto beanattractorfor f if A attractssomeopenneighborhoodofitself;aglobal attractorfor f if A isanattractorthatattractseverypointin X ;andastrong globalattractorfor f if A attractseveryboundedsubsetof X .
Remark1.1.1. Thenotionofattractorandglobalattractorwasusedin [164, 304].Thestrongglobalattractorwasdefinedasglobalattractorin [141, 358, 286].Inthecasewherethedimensionof X isfinite,itiseasytosee thatbothglobalattractorandstrongglobalattractorareequivalent.Inthe infinite-dimensionalcaseof X ,however,thereexistdiscrete-andcontinuoustimedynamicalsystemsthatadmitglobalattractors,butnostrongglobal attractors,seeExample 1.3.3 and[241,Sections5.1–5.3].
Thefollowingresultisessentiallythesameas[142,Theorem3.2].Note thattheproofofthisresultwasnotprovidedin[142].Forcompleteness,we stateitintermsofglobalattractorsandgiveanelementaryproofbelow.
Theorem1.1.2. (GlobalAttractors) Let f : X → X beacontinuous map.Assumethat
(a) f ispointdissipativeandasymptoticallysmooth; (b)Positiveorbitsofcompactsubsetsof X for f arebounded.
Then f hasaglobalattractor A ⊂ X .Moreover,ifasubset B of X admits thepropertythat γ + (f k (B )) isboundedforsome k ≥ 0,then A attracts B for f .
Proof. Assumethat(a)issatisfied.Since f ispointdissipative,wecanfind aclosedandboundedsubset B0 in X suchthatforeach x ∈ X, thereexists k = k (x) ≥ 0,f n (x) ∈ B0 , ∀n ≥ k. Define
J (B0 ):= {y ∈ B0 : f n (y ) ∈ B0 , ∀n ≥ 0} .
Thus, f (J (B0 )) ⊂ J (B0 ),andforevery x ∈ X ,thereexists k = k (x) ≥ 0such that f k (x) ∈ J (B0 ).Since J (B0 )isclosedandbounded,and f isasymptoticallysmooth,Lemma 1.1.3 impliesthat ω (J (B0 ))iscompactinvariant,and attractspointsof X .
Assume,inaddition,that(b)issatisfied.Weclaimthatthereexistsan ε> 0suchthat γ + (N (ω (J (B0 )),ε))isbounded.Assume,bycontradiction,that γ + N ω (J (B0 )), 1 n+1 isunboundedforeach n> 0.Let z ∈ X befixed.
Thenwecanfindasequence xn ∈ N ω (J (B0 )), 1 n+1 ,andasequenceof integers mn ≥ 0suchthat d(z,f mn (xn )) ≥ n.Since ω (J (B0 ))iscompact, wecanalwaysassumethat xn → x ∈ ω (J (B )),as n → +∞.Since H := {xn : n ≥ 0}∪{x} iscompact,assumption(b)impliesthat γ + (H )isbounded, acontradiction.Let D = γ + (N (ω (J (B0 )),ε)).Then D isclosed,bounded, andpositivelyinvariantfor f .Since ω (J (B0 ))attractspointsof X for f ,and ω (J (B0 )) ⊂ N (ω (J (B0 )),ε) ⊂ int(D ),wededucethatforeach x ∈ X, there exists k = k (x) ≥ 0suchthat f k (x) ∈ int(D ).Itthenfollowsthatforeach compactsubset C of X ,thereexistsaninteger k ≥ 0suchthat f k (C ) ⊂ D . Thus,theset A := ω (D )attractseverycompactsubsetof X .Fixabounded neighborhood V of A.ByLemma 1.1.4,itfollowsthat A isstable,andhence, thereisaneighborhood W of A suchthat f n (W ) ⊂ V, ∀n ≥ 0.Clearly,the set U := ∪n≥0 f n (W )isaboundedneighborhoodof A,and f (U ) ⊂ U .Since f isasymptoticallysmooth,thereisacompactset J ⊂ U suchthat J attracts U .ByLemma 1.1.3, ω (U )isnonempty,compact,invariantfor f ,andattracts U .Since A attracts ω (U ),wehave ω (U ) ⊂ A.Thus, A isaglobalattractor for f
Toprovethelastpartofthetheorem,withoutlossofgeneralityweassume that B isaboundedsubsetof X and γ + (B )isbounded.Weset K = γ + (B ). Then f (K ) ⊂ K .Since K isboundedand f isasymptoticallysmooth,there existsacompact C whichattracts K for f .Notethat f k (B ) ⊂ f k (γ + (B )) ⊂ f k (K ) , ∀k ≥ 0.Thus, C attracts B for f .ByLemma 1.1.3,wededucethat ω (B )isnonempty,compact,invariantfor f andattracts B .Since A isa globalattractorfor f ,itfollowsthat A attractscompactsubsetsof X .Bythe invarianceof ω (B )for f ,wededucethat ω (B ) ⊂ A,andhence, A attracts B for f .
Remark1.1.2. FromthefirstpartoftheproofofTheorem 1.1.2,itiseasyto seethatif f ispointdissipativeandasymptoticallysmooth,thenthereexists anonempty,compact,andinvariantsubset C of X for f suchthat C attracts everypointin X for f .
Thefollowinglemmaprovidessufficientconditionsforthepositiveorbit ofacompactsettobebounded.
Lemma1.1.5. Assumethat f ispointdissipative.If C isacompactsubset of X withthepropertythatforeveryboundedsequence {xn }n≥0 in γ + (C ), {xn }n≥0 or {f (xn )}n≥0 hasaconvergentsubsequence,then γ + (C ) isbounded in X
Proof. Since f ispointdissipative,wecanchooseaboundedandopensubset V of X suchthatforeach x ∈ X thereexists n0 = n0 (x) ≥ 0suchthat
f n (x) ∈ V, ∀n ≥ n0 .Bythecontinuityof f andthecompactnessof C ,it followsthatthereexistsapositiveinteger r = r (C )suchthatforany x ∈ C , thereexistsaninteger k = k (x) ≤ r suchthat f k (x) ∈ V .Let z ∈ X be fixed.Assume,bycontradiction,that γ + (C )isunbounded.Thenthereexists asequence {xp } in γ + (C )suchthat
xp = f mp (zp ),zp ∈ C, andlim p→∞ d(z,xp )= ∞.
Since f iscontinuousand C iscompact,withoutlossofgeneralitywecan assumethat
lim p→∞ mp = ∞, and mp >r,xp / ∈ V, ∀p ≥ 1.
Foreach zp ∈ C ,thereexistsaninteger kp ≤ r suchthat f kp (zp ) ∈ V .Since xp = f mp (zp ) / ∈ V ,thereexistsaninteger np ∈ [kp ,mp )suchthat yp = f np (zp ) ∈ V, and f l (yp ) / ∈ V,
Clearly, xp = f lp (yp ), ∀p ≥ 1,and {yp } isaboundedsequencein γ + (C ).
Weonlyconsiderthecasewhere {yp } hasaconvergentsubsequencesince theproofforthecasewhere {f (yp )} hasaconvergentsubsequenceissimilar. Thus,withoutlossofgeneralitywecanassumethatlimp→∞ yp = y ∈ V Inthecasewherethesequence {lp } isbounded,thereexistaninteger ˆ l and sequence pk →∞ suchthat lpk = ˆ l, ∀k ≥ 1,andhence,
d(z,f ˆ l (y ))=lim k→∞ d(z,f ˆ l (ypk ))=lim k→∞ d(z,xpk )= ∞,
whichisimpossible.Inthecasewherethesequence {lp } isunbounded,there existsasubsequence lpk →∞ as k →∞.Thenforeachfixed m ≥ 1,there existsaninteger km suchthat m ≤ lpk , ∀k ≥ km ,andhence, f m (ypk ) ∈ X \ V, ∀k ≥ km .
Letting k →∞,weobtain
f m (y ) ∈ X \ V, ∀m ≥ 1, whichcontradictsthedefinitionof V .
Thefollowingresultontheexistenceofstrongglobalattractorsisimplied by[142,Theorems3.1and3.4].Sincetheproofofthisresultwasnotprovided in[142],weincludeasimpleproofofit.
Theorem1.1.3. (StrongGlobalAttractors) Let f : X → X bea continuousmap.Assumethat f ispointdissipativeon X ,andoneofthe followingconditionsholds:
(a) f n0 iscompactforsomeinteger n0 ≥ 1,or (b) f isasymptoticallysmooth,andforeachboundedset B ⊂ X ,thereexists k = k (B ) ≥ 0 suchthat γ + (f k (B )) isbounded.
Thenthereisastrongglobalattractor A for f .
Proof. Theconclusionincase(b)isanimmediateconsequenceofTheorem 1.1.2.Inthecaseof(a),since f n0 iscompactforsomeinteger n0 ≥ 1,it sufficestoshowthatforeachcompactsubset C ⊂ X , n≥0 f n (C )isbounded.
ByapplyingLemma 1.1.5 to f = f n0 ,wededucethatforeachcompactsubset C ⊂ X, n≥0 f n (C )isbounded.SoTheorem 1.1.2 impliesthat f hasaglobal
attractor A ⊂ X .Weset B = 0≤k≤n0 1 f k A .Bythecontinuityof f ,it thenfollowsthat B iscompactandattracts everycompactsubsetof X for f , andhence,theresultfollowsfromTheorem 1.1.2.
Remark1.1.3. Itiseasytoseethatametricspace(X,d)iscompleteifand onlyifforanysubset B of X , α(B )=0impliesthat B iscompact.However,wecanprovethatLemmas 1.1.3 and 1.1.4 alsoholdfornon-complete metricspacesbyemployingtheequivalencebetweenthecompactnessandthe sequentialcompactnessformetricspaces.ItthenfollowsthatTheorems 1.1.2 and 1.1.3 arestillvalidforanymetricspace.Wereferto[64, 286]forthe existenceofstrongglobalattractorsofcontinuous-timesemiflowsonametric space.
Clearly,iftheglobalattractorisasingleton {e},then e isaglobally attractivefixedpoint.Let A betheglobalattractorclaimedinTheorem 1.1.2 with X beingaBanachspaceandwith“asymptoticallysmooth”replacedby “α-condensing.”Thefollowingasymptoticfixedpointtheoremimpliesthat thereisatleastonefixedpointin A.Foraproofofit,wereferto[257, 143] or[141,Section2.6].
Theorem1.1.4. (Asymptoticfixedpointtheorem) Suppose E isaBanachspace.If f : E → E is α-condensingandcompactdissipative,then f has afixedpoint.
Let Λ beametricspace.Thefamilyofcontinuousmappings fλ : X → X,λ ∈ Λ,issaidtobecollectivelyasymptoticallysmoothifforanynonemptyclosed boundedset B ⊂ X forwhich fλ (B ) ⊂ B,λ ∈ Λ,thereisacompactset Jλ = J (λ,B ) ⊂ B suchthat Jλ attracts B under fλ and ∪λ∈Λ Jλ isprecompact in X .Wethenhavethefollowingresultontheuppersemicontinuityofglobal attractors.Foraproof,wereferto[141,Theorem2.5.3].
Theorem1.1.5. Let f : Λ × X → X becontinuous, fλ =: f (λ, ·),andsuppose thereisaboundedset B thatattractspointsof X under fλ foreach λ ∈ Λ,and foranyboundedset U ,theset V = ∪λ∈Λ ∪n≥0 f n λ (U ) isbounded.Ifthefamily
{fλ : λ ∈ Λ} iscollectivelyasymptoticallysmooth,thentheglobalattractor Aλ of fλ isuppersemicontinuousinthesensethat limλ→λ0 supx∈Aλ d(x,Aλ0 )=0 foreach λ0 ∈ Λ.
1.2ChainTransitivityandAttractivity
Inthissectionwecontinuetoassumethat X isametricspacewithmetric d, andthat f : X → X isacontinuousmap.
1.2.1ChainTransitiveSets
Definition1.2.1. Apoint x ∈ X issaidtobechainrecurrentifforany > 0,thereisafinitesequenceofpoints x1 ,...,xm in X (m> 1)with x1 = x = xm suchthat d(f (xi ),xi+1 ) < forall 1 ≤ i ≤ m 1.Thesetofall chainrecurrentpointsfor f : X → X isdenotedby R (X,f ).Let A ⊂ X bea nonemptyinvariantset.Wecall A internallychainrecurrentif R (A,f )= A, andinternallychaintransitiveifthefollowingstrongerconditionholds:For any a,b ∈ A andany > 0,thereisafinitesequence x1 ,...,xm in A with x1 = a,xm = b suchthat d(f (xi ),xi+1 ) < , 1 ≤ i ≤ m 1.Thesequence {x1 ,...,xm } iscalledan -chainin A connecting a and b
FollowingLaSalle[212],wecallacompactinvariantset A invariantlyconnectedifitcannotbedecomposedintotwodisjointclosednonemptyinvariant sets.Aninternallychainrecurrentsetneednothavethisproperty,e.g.,apair offixedpoints.However,itiseasytosee thateveryinternallychaintransitive setisinvariantlyconnected.
Wegivesomeexamplesofinternallychaintransitivesets.
Lemma1.2.1. Let f : X → X beacontinuousmap.Thentheomega(alpha)limitsetofanyprecompactpositive(negative)orbitisinternallychain transitive.
Proof. Let x ∈ X andset xn = f n (x).Assumethat x hasaprecompact orbit γ = {xn },anddenoteitsomegalimitsetby ω .Then ω isnonempty, compact,andinvariant,andlimn→∞ d(xn ,ω )=0.Let > 0begiven.By thecontinuityof f andcompactnessof ω ,thereexists δ ∈ (0, 3 )withthe followingproperty:If u,v arepointsintheopen δ -neighborhood U of ω with d(u,v ) <δ ,then d(f (u),f (v )) < 3 .Since xn approaches ω as n →∞,there exists N> 0suchthat xn ∈ U forall n ≥ N .
Let a,b ∈ ω bearbitrary.Thereexist k>m ≥ N suchthat d(xm ,f (a)) < 3 and d(xk ,b) < 3 .Thesequence
{y0 = a,y1 = xm ,...,yk m = xk 1 ,yk m+1 = b}
isan 3 -chainin X connecting a and b.Sinceforeach yi ∈ U ,1 ≤ i ≤ k m, wecanchoose zi ∈ ω suchthat d(zi ,yi ) <δ .Let z0 = a and zk m+1 = b. Thenfor i =0, 1,...,k m wehave
(f (zi ),zi+1 ) ≤
(yi+1 ,zi+1 ) < /3+ /3+ /3.
Thusthesequence z0 ,z1 ,...,zk m ,zk m+1 isan -chainin ω connecting a and b.Therefore, ω isinternallychaintransitive.Byasimilarargument,we canprovetheinternalchaintransitivityofalphalimitsetsofprecompact negativeorbits.
Let {Sn : X → X }n≥0 beasequenceofcontinuousmaps.Thediscrete dynamicalprocess(orprocessforshort)generatedby {Sn } isthesequence {Tn : X → X }n≥0 definedby T0 = I =theidentitymapof X and Tn = Sn 1
Theorbitof x ∈ X underthisprocessistheset γ + (x)= {Tn (x): n ≥ 0}, anditsomegalimitsetis
ω (x)= y ∈ X : ∃nk →∞ suchthatlim k→∞ Tnk (x)= y .
Ifthereisacontinuousmap S on X suchthat Sn = S, ∀n ≥ 0,sothat Tn isthe nthiterate S n ,then {Tn } isaspecialkindofprocesscalledthediscrete semiflowgeneratedby S .Byanabuseoflanguagewemayrefertothemap S asadiscretesemiflow.
Definition1.2.2. Theprocess {Tn : X → X } isasymptoticallyautonomous ifthereexistsacontinuousmap S : X → X suchthat nj →∞,xj → x ⇒ lim j →∞ Snj (xj )= S (x).
Wealsosaythat {Tn } isasymptoticto S
Itiseasytoseefromthetriangleinequalitythatiflimn→∞ Sn = S uniformlyoncompactsets,thentheprocessgeneratedby {Sn } isasymptotic to S .
Lemma1.2.2. Let Tn : X → X , n ≥ 0,beanasymptoticallyautonomous discreteprocesswithlimit S : X → X .Thentheomegalimitsetofany precompactorbitof {Tn } isinternallychaintransitivefor S .
Proof. Let N+ = N+ ∪{∞}.Foranygivenstrictlyincreasingcontinuous function φ :[0, ∞) → [0, 1)with φ(0)=0and φ(∞)=1(e.g., φ(s)= s 1+s ), wecandefineametric ρ on N+ as ρ(m1 ,m2 )= |φ(m1 ) φ(m2 )|,forany m1 ,m2 ∈ N+ ,andthen N+ iscompactified.Let X := N+ × X .Definea mapping S : X → X by
S (m,x)=(1+ m,Sm (x)), S (∞,x)=(∞,S (x)), ∀m ∈ N+ ,x ∈ X.
ByDefinition 1.2.2, S : X → X iscontinuous.Let γ + (x)beaprecompact orbitof Tn .Since
S n ((0,x))=(n,Sn 1 ◦ Sn 2 ◦···◦ S1 ◦ S0 (x))=(n,Tn (x)), ∀n ≥ 0,
and N+ iscompact,itfollowsthattheorbit γ + ((0,x))of S n isprecompact and {∞}× ω (x)= ω (0,x),where ω (0,x)istheomegalimitsetof(0,x)for S n .ByLemma 1.2.1, ω (0,x)isinvariantandinternallychaintransitivefor S ,which,togetherwiththedefinitionof S ,impliesthat ω (x)isinvariantand internallychaintransitivefor S
Definition1.2.3. Let S : X → X beacontinuousmap.Asequence {xn } in X isanasymptoticpseudo-orbitof S if lim n→∞ d(S (xn ),xn+1 )=0.
Theomegalimitsetof {xn } isthesetoflimitsofsubsequences.
Let {Tn } beadiscreteprocessin X generatedbyasequenceofcontinuous maps Sn thatconvergestoacontinuousmap S : X → X uniformlyon compactsubsetsof X .Itiseasytoseethateveryprecompactorbitof Tn : X → X , n ≥ 0,isanasymptoticpseudo-orbitof S .
Example1.2.1. Considerthenonautonomousdifferenceequation xn+1 = f (n,xn ),n ≥ 0, onthemetricspace X .Ifwedefine Sn = f (n, ·): X → X,n ≥ 0,andlet
T0 = I,Tn = S
then xn = Tn (x0 ),and {xn : n ≥ 0} isanorbitofthediscreteprocess Tn .If f (n, ·) → f : X → X uniformlyoncompactsubsetsof X ,then Tn isasymptoticallyautonomouswithlimit f .Furthermore,inthiscaseany precompactorbitofthedifferenceequationisanasymptoticpseudo-orbitof f ,since d(f (xn ),xn+1 )= d(f (xn ),f (n,xn )) → 0.
Lemma1.2.3. Theomegalimitsetofanyprecompactasymptoticpseudoorbitofacontinuousmap S : X → X isnonempty,compact,invariant,and internallychaintransitive.
Proof. Let(N + ,ρ)bethecompactmetricspacedefinedintheproofof Lemma 1.2.2.Let {xn : n ≥ 0} beaprecompactasymptoticpseudo-orbit of S : X → X ,anddenoteitscompactomegalimitsetby ω .Defineametric space
Y =({∞}× X ) ∪{(n,xn ): n ≥ 0}
and g : Y → Y,g (n,xn )=(n +1,xn+1 ),g (∞,x)=(∞,S (x)).
ByDefinition 1.2.3 andthefactthat d(xn+1 ,S (x)) ≤ d(xn+1 ,S (xn ))+ d(S (xn ),S (x))for x ∈ X,n ≥ 0,iteasilyfollowsthat g : Y → Y iscontinuous.Let γ + (0,x0 )= {(n,xn ): n ≥ 0} bethepositiveorbitof(0,x0 )for thediscretesemiflow g n : Y → Y,n ≥ 0.Then γ + (0,x0 )isprecompactin Y , anditsomegalimit ω (0,x0 )is {∞}× ω ,whichbyLemma 1.2.1 isinvariant andinternallychaintransitivefor g .Applyingthedefinitionof g ,weseethat ω isinvariantandinternallychaintransitivefor S .
Let A and B betwononemptycompactsubsetsof X .Recallthatthe Hausdorffdistancebetween A and B isdefinedby
dH (A,B ):=max(sup{d(x,B ): x ∈ A}, sup{d(x,A): x ∈ B })
Wethenhavethefollowingresult.
Lemma1.2.4. Let S,Sn : X → X , ∀n ≥ 1,becontinuous.Let {Dn } bea sequenceofnonemptycompactsubsetsof X with lim n→∞ dH (Dn ,D )=0 for somecompactsubset D of X .Assumethatforeach n ≥ 1, Dn isinvariant andinternallychaintransitivefor Sn .If Sn → S uniformlyon D ∪ (∪n≥1 Dn ), then D isinvariantandinternallychaintransitivefor S
Proof. Observethattheset K = D (∪n≥1 Dn )iscompact.Indeed,since anopencoverof K alsocovers D ,afinitesubcoverprovidesaneighborhood of D thatmustalsocontain Dn foralllarge n.If x ∈ D ,thenthereexist xn ∈ Dn suchthat xn → x.Since Sn (xn ) ∈ Dn and Sn (xn ) → S (x),wesee that S (x) ∈ D .Thus S (D ) ⊂ D .Ontheotherhand,thereexist yn ∈ Dn such that Sn (yn )= xn .Since dH (Dni ,D ) → 0,wecanassumethat yni → y ∈ D forsomesubsequence yni .Then xni = Sni (yni ) → S (y )= x,showingthat S (D )= D
Byuniformcontinuityanduniformconvergence,forany > 0thereexist δ ∈ (0, /3)andanaturalnumber N suchthatfor n ≥ N and u,v ∈ K with d(u,v ) <δ ,wehave
d(Sn (u),S (v )) ≤ d(Sn (u),S (u))+ d(S (u),S (v )) < /3
Fix n>N suchthat dH (Dn ,D ) <δ .Forany a,b ∈ D ,therearepoints x,y ∈ Dn suchthat d(x,a) <δ and d(y,b) <δ .Since Dn isinternallychain transitivefor Sn ,thereisa δ -chain {z1 = x,z2 ,...,zm+1 = y } in Dn for Sn connecting x to y .Foreach i =2,...,m wecanfind wi ∈ D with d(wi ,zi ) <δ , since Dn iscontainedinthe δ -neighborhoodof D .Let w1 = a,wm+1 = b.We thenhave
d(S (wi ),wi+1 ) ≤ d(S (wi ),Sn (zi ))+ d(Sn (zi ),zi+1 )+ d(zi+1 ,wi+1 ) < /3+ δ + δ<
1.2ChainTransitivityandAttractivity13
for i =1,...,m.Thus {w1 = a,w2 ,...,wm+1 = b} isan -chainfor S in D connecting a to b.
Let Φ(t): X → X , t ≥ 0,beacontinuous-timesemiflow.Thatis,(x,t) → Φ(t)x iscontinuous, Φ(0)=Iand Φ(t) ◦ Φ(s)= Φ(t + s)for t,s ≥ 0.A nonemptyinvariantset A ⊂ X for Φ(t)(i.e., Φ(t)A = A, ∀t ≥ 0)issaidtobe internallychaintransitiveifforany a,b ∈ A andany > 0,t0 > 0,thereisa finitesequence {x1 = a,x2 ,...,xm 1 ,xm = b; t1 ,...,tm 1 } with xi ∈ A and ti ≥ t0 , 1 ≤ i ≤ m 1,suchthat d(Φ(ti ,xi ),xi+1 ) < forall1 ≤ i ≤ m 1.The sequence {x1 ,...,xm ; t1 ,...,tm 1 } iscalledan( ,t0 )-chainin A connecting a and b.Wethenhavethefollowingresult.
Lemma 1.2.1 Let Φ(t): X → X , t ≥ 0,beacontinuous-timesemiflow. Thentheomega(alpha)limitsetofanyprecompactpositive(negative)orbit isinternallychaintransitive.
Proof. Let ω = ω (x)betheomegalimitsetofaprecompactorbit γ (x)= {Φ(t)x : t ≥ 0} in X .Then ω isnonempty,compact,invariantand limt→∞ d(Φ(t)x,ω )=0.Let > 0and t0 > 0begiven.Bytheuniform continuityof Φ(t)x for(t,x)inthecompactset[t0 , 2t0 ] × ω ,thereisa δ = δ ( ,t0 ) ∈ (0, 3 )suchthatforany t ∈ [t0 , 2t0 ]and u and v intheopen δ -neighborhood U of ω with d(u,v ) <δ ,wehave d(Φ(t)u,Φ(t)v ) < 3 .It thenfollowsthatthereexistsasufficientlylarge T0 = T0 (δ ) > 0suchthat Φ(t)x ∈ U ,forall t ≥ T0 .Forany a,b ∈ ω ,thereexist T1 >T0 and T2 >T0 with T2 >T1 + t0 suchthat d(Φ(T1 )x,Φ(t0 )a) < 3 and d(Φ(T2 )x,b) < 3 .Let m bethegreatestintegerthatisnotgreaterthan T2 T1 t0 .Then m ≥ 1.Set
y1 = a,yi = Φ(T1 +(i 2)t0 )x,i =2,...,m +1,ym+2 = b, and ti = t0 for i =1,...,m; tm+1 = T2 T1 (m 1)t0
Then tm+1 ∈ [t0 , 2t0 ).Itfollowsthat d(Φ(ti )yi ,yi+1 ) < 3 forall i =1,...,m + 1.Thusthesequence
{y1 = a,y2 ,...,ym+1 ,ym+2 = b; t1 ,t2 ,...,tm+1 }
isan( 3 ,t0 )-chainin X connecting a and b.Since yi ∈ U for i =2,...,m +1, wecanchoose zi ∈ ω suchthat d(zi ,yi ) <δ .Let z1 = a and zm+2 = b.It thenfollowsthat d(Φ(ti )zi ,zi+1 ) ≤ d(Φ(ti )zi ,Φ(ti )yi )+ d(Φ(ti )yi ,yi+1 )+ d(yi+1 ,zi+1 ) < /3+ /3+ /3,i =1,...,m +1.
Thisprovesthatthesequence {z1 = a,z2 ,...,zm+1 ,zm+2 = b; t1 ,t2 ,...,tm+1 } isan( ,t0 )-chainin ω connecting a and b.Therefore, ω isinternallychaintransitive.Byasimilarargumentwecanprovetheinternalchaintransitivityof alphalimitsetsofprecompactnegativeorbits.
WithLemma 1.2.1 itiseasytoseethatthereareanaloguesofLemmas 1.2.2 and 1.2.3 forcontinuous-timesemiflows.Thefollowingresultisan analogueofLemma 1.2.4 forcontinuous-timesemiflows.
Lemma 1.2.4 Let Φ and Φn becontinuous-timesemiflowson X for n ≥ 1
Let {Dn } beasequenceofnonemptycompactsubsetsof X with limn→∞ dH (Dn ,D )=0 forsomecompactsubset D of X .Assumethatfor each n ≥ 1, Dn isinvariantandinternallychaintransitivefor Φn .Ifforeach T> 0, Φn → Φ uniformlyfor (x,t) ∈ (D ∪ (∪n≥1 Dn )) × [0,T ],then D is invariantandinternallychaintransitivefor Φ.
Proof. Itiseasytoseethat K = D (∪n≥1 Dn )iscompactand D isinvariant for Φ.Byuniformcontinuityanduniformconvergence,forany > 0and t0 > 0thereexists δ ∈ (0, /3)andanaturalnumber N suchthatfor n ≥ N , t ∈ [0, 2t0 ],and u,v ∈ K with d(u,v ) <δ ,wehave d(Φn t (u),Φt (v )) ≤ d(Φn t (u),Φt (u))+ d(Φt (u),Φt (v )) < /3.Fix n>N suchthat dH (Dn ,D ) <δ
Forany a,b ∈ D ,therearepoints x,y ∈ Dn suchthat d(x,a) <δ and d(y,b) <δ .Since Dn ischaintransitivefor Φn ,thereisa(δ,t0 )-chain {z1 = x,z2 ,...,zm+1 = y ; t1 ,...,tm } in Dn for Φn ,with t0 ≤ ti < 2t0 connecting x to y .Foreach i =2,...,m wecanfind wi ∈ D with d(wi ,zi ) <δ ,since Dn is containedinthe δ -neighborhoodof D .Let w1 = a,wm+1 = b.Wethenhave
d(Φti (wi ),wi+1 ) ≤ d(Φti (wi ),Φn ti (zi ))+ d(Φn ti (zi ),zi+1 )+ d(zi+1 ,wi+1 ) < /3+ δ + δ< for i =1,...,m.Thus {w1 = a,w2 ,...,wm+1 = b; t1 ,...,tm } isan( ,t0 )chainfor Φ in D connecting a to b
Example1.2.2. NotethatifinLemma 1.2.4 Dn isanomegalimitsetfor Φn (andthereforeinternallychaintransitivebyLemma 1.2.1 ),theset D neednotbeanomegalimitsetforthelimitsemiflow Φ,althoughitmustbe chaintransitive.Easyexamplesareconstructedwith Φn = Φ, ∀n ≥ 1.For example,considertheflowgeneratedbytheplanarvectorfieldgiveninpolar coordinatesby r =0,θ =1 r.
Theunitcircle D = {r =1},consistingofequilibria,ischaintransitivebutis notanomegalimitsetofanypoint,yet D istheHausdorfflimitoftheomega limitsets Dn = {r =1+ 1 n }.
Lemma1.2.5. Anonemptycompactinvariantset M isinternallychaintransitiveifandonlyif M istheomegalimitsetofsomeasymptoticpseudo-orbit of f in M
Proof. ThesufficiencyfollowsfromLemma 1.2.3.Toprovethenecessity, wecanchooseapoint x ∈ M since M isnonempty.Forany > 0, thecompactnessof M impliesthatthereisafinitesequenceofpoints
{x1 = x,x2 ,...,xm ,xm+1 = x} in M suchthatits -netin X covers M ; i.e., M ⊂∪m i=1 B (xi , ),where B (xi , ):= {y ∈ X : d(y,xi ) < }.Foreach 1 ≤ i ≤ m,since M isinternallychaintransitive,thereisafinite -chain {y i 1 = xi ,y i 2 ,...,y i ni ,y i ni +1 = xi+1 } in M connecting xi and xi+1 .Thenthe sequence {y 1 1 ,...,y 1 n1 ,y 2 1 ,...,y 2 n2 ,...,y m 1 ,...,y m nm ,y m nm +1 } isafinite -chain in M connecting x and x,andits -netin X covers M . Foreachinteger k ,letting = 1 k intheaboveclaim,wehaveafinite 1 kchain {z k 1 = x,z k 2 ,...,z k lk ,z k lk +1 = x} in M whose 1 k -netin X covers M .It theneasilyfollowsthattheinfinitesequenceofpoints
{z 1 1 ,...,z 1 l1 ,z 2 1 ,...,z 2 l2 ,...,z k 1 ,...,z k lk ,... }
isanasymptoticpseudo-orbitof f in M anditsomegalimitsetis M
Block–FrankeLemma ([33], TheoremA) Let K beacompactmetric spaceand f : K → K acontinuousmap.Then x ∈ R (K,f ) ifandonly ifthereexistsanattractor A ⊂ K suchthat x ∈ W s (A) \ A.
Lemma1.2.6. Anonemptycompactinvariantset M isinternallychaintransitiveifandonlyif f |M : M → M hasnoproperattractor.
Proof. Necessity. Assumethatthereisaproperattractor A for f |M : M → M .Then A = ∅ and M \ A = ∅.Since A isanattractor,thereisan 0 > 0such that A attractstheopen 0 -neighborhood U of A in M .Choose a ∈ M \ A and b ∈ A andlet {x1 = a,x2 ,...,xm = b} bean 0 -chainin M connecting a and b.Let k =min{i :1 ≤ i ≤ m,xi ∈ A}.Since b ∈ A and a ∈ A,we have2 ≤ k ≤ m.Since d(f (xk 1 ),xk ) < 0 ,wehave f (xk 1 ) ∈ U andhence xk 1 ∈ W s (A) \ A.BytheBlock–Frankelemma, xk 1 ∈ R (M,f ),which provesthat M isnotinternallychainrecurrent,andafortiorinotinternally chaintransitive.
Sufficiency. Foranysubset B ⊂ X wedefine ω (B )tobethesetoflimits ofsequencesoftheform {f nk (xk )},where nk →∞ and xk ∈ B .Since f |M : M → M hasnoproperattractor,theBlock–Frankelemmaimpliesthat M is internallychainrecurrent.Given a,b ∈ M and > 0,let V bethesetofall points x in M forwhichthereisan -chainin M connecting a to x;thisset contains a.Forany z ∈ V ,let {z1 = a,z2 ,...,zm 1 ,zm = z } bean -chainin M connecting a to z .Since
lim x→z d(f (zm 1 ),x)= d(f (zm 1 ),z ) < , thereisanopenneighborhood U of z in M suchthatforany x ∈ U , d(f (zm 1 ),x) < .Then {z1 = a,z2 ,...,zm 1 ,x} isan -chainin M connecting a and x,andhence U ⊂ V .Thus V isanopensetin M .We furtherclaimthat f (V ) ⊂ V .Indeed,forany z ∈ V ,bythecontinuityof f at z ,wecanchoose y ∈ V suchthat d(f (y ),f (z )) < .Let {y1 = a,y2 ,...,ym 1 ,ym = y } bean -chainin M connecting a and y .It
thenfollowsthat {y1 = a,y2 ,...,ym 1 ,ym = y,ym+1 = f (z )} isan -chain in M connecting a and f (z ),andhence f (z ) ∈ V .Bythecompactnessof M and[141,Lemma2.1.2]appliedto f : M → M ,itthenfollowsthat ω (V ) isnonempty,compact,invariant,and ω (V )attracts V .Since f (V ) ⊂ V ,we have ω (V ) ⊂ V andhence ω (V )= f (ω (V )) ⊂ V .Then ω (V )isanattractor in M .Nowthenonexistenceofaproperattractorfor f : M → M implies that ω (V )= M andhence V = M .Clearly, b ∈ M = V ,andhence,bythe definitionof V ,thereisan -chainin M connecting a and b.Therefore, M is internallychaintransitive.
1.2.2AttractivityandMorseDecompositions
Recallthatanonemptyinvariantsubset M of X issaidtobeisolatedfor f : X → X ifitisthemaximalinvariantsetinsomeneighborhoodofitself.
Lemma1.2.7. (Butler–McGehee-typelemma) Let M beanisolatedinvariantsetand L acompactinternallychaintransitivesetfor f : X → X . Assumethat L ∩ M = ∅ and L ⊂ M .Then
(a)thereexists u ∈ L \ M suchthat ω (u) ⊂ M ; (b)thereexist w ∈ L \ M andanegativeorbit γ (w ) ⊂ L suchthatits α-limit setsatisfies α(w ) ⊂ M
Proof. Since M isanisolatedinvariantset,thereexistsan > 0suchthat M isthemaximalinvariantsetintheclosed -neighborhoodof M .Bythe assumption,wecanchoose a ∈ L ∩ M and b ∈ L with d(b,M ) > .For anyinteger k ≥ 1,bytheinternalchaintransitivityof L,thereexistsa 1 k -chain {y k 1 = a,...,y k lk +1 = b} in L connecting a and b,anda 1 k -chain {z k 1 = b,...,z k mk +1 = a} in L connecting b and a.Defineasequenceofpoints by {xn : n ≥ 0} := {y 1 1 ,...,y 1 l1 ,z 1 1 ,...,z 1 m1 ,...,y k 1 ,...,y k lk ,z k 1 ,...,z k mk ,... }
Thenforany k> 0andforall n ≥ N (k ):= k j =1 (lj + mj ),wehave d(f (xn ),xn+1 ) < 1 k+1 ,andhencelim n→∞ d(f (xn ),xn+1 )=0.Thus {xn }n≥0 ⊂ L isaprecompactasymptoticpseudo-orbitof f : X → X .Thenthereare twosubsequences xmj and xrj suchthat xmj = a and xrj = b forall j ≥ 1. Notethat d(xsj +1 ,f (x)) ≤ d(xsj +1 ,f (xsj ))+ d(f (xsj ),f (x)).Byinduction,it thenfollowsthatforanyconvergentsubsequence xsj → x ∈ X,j →∞, wehavelimj →∞ xsj +n = f n (x)foranyinteger n ≥ 0.Wecanfurther choosetwosequences lj and nj with lj <mj <nj andlimj →∞ lj = ∞ suchthat d(xlj ,M ) > , d(xnj ,M ) > ,and d(xk ,M ) ≤ foranyinteger k ∈ (lj ,nj ),j ≥ 1.Since {xn : n ≥ 0} isasubsetofthecompactset L,wecan assumethatupontakingaconvergentsubsequence, xlj → u ∈ L as j →∞. Clearly, d(u,M ) ≥ andhence u ∈ L \ M .Since u ∈ L and L isacompactinvariantset,wehave ω (u) ⊂ L.Wefurtherclaimthat ω (u) ⊂ M ,whichproves
Another random document with no related content on Scribd:
other counter jumping namby-pamby, goody-goodies of the Howells stripe, including his own weary history of himself, and the “Books Which Most Influence Him,” the baleful effects of which are legitimately and plainly perceptible in his works. There are shams in literature more dreadful than Mr. Howells, who is a turgid fact and no sham. For instance;
I know of one evanescently popular young creature who chronically contributes to the magazines, whose mother it is said, writes his tales which, she being a clever woman and he an uncommonly stupid man, appears credible to say the least; and there is another “man” I am told of whose sister is said to write his poems and modestly efface herself, and as the stories are good and the poems fairly readable, it should be the part of T P to disclose to the world the real authors and chastise these and other shams, for shams are the hardest hurdles in the steeplechase which Truth has to make in this world, since they substitute the false for the real and crown the fool with the laurels of the genius.
How much more might be said of the tasks you have to accomplish, brave P with your brawny arm and your good naked sword! So much that the very thought of it fatigues one and that, hailing you as the latest and best contestant in the tourney of Knighthood and yet, considering you as a publication in an embryonic stage, I am compelled to quote these lovely lines of Longfellow:
“Oh, little feet that such long years Must wander through this vale of tears, I, nearer to the wayside inn Where travail ends and rest begins, Grow weary thinking of your road.”
M S. H .
It is a land of free speech, Philistia, and if one of us chooses to make remarks concerning the work of the others no sense of modesty keeps us quiet. It is because we cannot say what we would in the periodicals which are now issued in a dignified, manner in various places, that we have made this book. In the afore-mentioned periodicals divers men chatter with great fluency, startling regularity and “damnable complacency,” each through his individual bonnet. Edward W. Bok, evidently assisted by Mrs. Lydia Pinkham and W. L. Douglas, of Brocton, Massachusetts, prints the innermost secrets of dead women told by their living male relatives for six dollars a column. Thereby the authors are furnished with the price of a week’s board, and those of us who may have left some little sense of decency, wonder what manner of man it may be who sells his wife’s heart to the readers of Bok. But the “unspeakable Bok” is “successful.” His magazine flourishes like a green bay tree. Many readers write him upon subjects of deportment and other matters in which he is accomplished. So, the gods give us joy! Let him drive on, and may his Home Journal have five million readers before the year is out—God help them!
Mr Gilder dishes up monthly beautifully printed articles which nobody cares about, but which everybody buys, because The Century looks well on the library table.
Mr. Howells maunders weekly in a column called “Life and Letters” in Harper’s journal of civilization. This “Life and Letters” reminds me
of the Peterkin’s famous picnic at Strawberry Nook. “There weren’t any strawberries and there wasn’t any nook, but there was a good place to tie the horses.”
So it goes through the whole list. There are people, however, who believe that Romance is not dead, and that there is literature to be made which is neither inane nor yet smells of the kitchen sink. This is a great big merry world, says Mr. Dana, and there’s much good to be got out of it, so toward those who believe as we do—we of Philistia—this paper starts upon its great and perilous voyage at one dollar a year.
It was Balzac, or some one else, who used to tell of a flea that lived on a mangy lion and boasted to all the rank outside fleas that he met: I have in me the blood of the King of Beasts.
It is a comforting thought that somewhere, at some time, every good thing on earth is brought to an accounting of itself. Thereby are the children of men saved from much tyranny. For the good things of earth are your true oppressors.
For such an accounting are Philistines born in every age. By their audit are men perpetually set free from trammels self-woven.
Earnest men have marvelled in all times that convention has imputed to husks and symbols the potency of the things they outwardly stand for. Many also have protested, and these, in reproach, have been called Philistines. And yet they have done no more than show forth that in all things the vital purpose is more than the form that shrines it. The inspirations of to-day are the shams of to-morrow—for the purpose has departed and only the dead form of custom remains. “Is not the body more than raiment”—and is not life more than the formulæ that hedge it in?
Wherefore men who do their own thinking, and eke women betimes, take honor rather than disparagement in the name which is meant to typify remorseless commonplace. They hesitate not to question custom, whether there be reason in it. They ask “Why?” when one makes proclamation:
“Lo! Columbus discovered America four hundred years ago! Let us give a dance.” There have been teachers who sought to persuade mankind that use alone is beauty—and these too have done violence to the fitness of things. On such ideals is the civilization of Cathay founded. Neither in the grossness of material things nor in the false refinements that “divorce the feeling from its mate the deed” is the core and essence of living.
It is the business of the true Philistine to rescue from the environment of custom and ostentation the beauty and the goodness cribbed therein. And so the Philistines of these days, whose prime type is the Knight of La Mancha, go tilting at windmills and other fortresses—often on sorry nags and with shaky lances, and yet on heroic errand bent. And to such merry joust and fielding all lovers of chivalry are bidden: to look on—perhaps to laugh, it may be to grieve at a woeful belittling of lofty enterprise. Come, such of you as have patience with such warriors. It is Sancho Panza who invites you.
The Chip-Munk has a bright reference in the issue of May 15 to Coventry, Patmore, Pater and Meredith. These are four great men, as The Chip-Munk boldly states.
The Chip-Munk further announces that the Only Original LynxEyed Proof Reader has not gone on a journey Really, I supposed of course he had been gone these many moons!
I wonder if Carman is still upon a diet of Mellin’s Food that he imagines people do not know that this poem
LITTLE LYRICS OF JOY—V.
Lord of the vasty tent of Heaven, Who hast to thy saints and sages given A thousand nights with their thousand stars, And the star of faith for a thousand years.
Grant me, only a foolish rover, All thy beautiful wide world over, A thousand loves in a thousand days, And one great love for a thousand years.
B C in The Chap Book, May, 1895.
was written years and years ago as follows:
The night has a thousand eyes, And the day but one; Yet the light of the bright world dies With the dying sun.
The mind has a thousand eyes, And the heart but one; Yet the light of a whole life dies When love is done.
—F W. B .
I desire to swipe him after this manner:
LITTLE DELIRICS OF BLISS.