Inference for heavy tailed data applications in insurance and finance 1st edition liang peng All Cha

Page 1


Visit to download the full and correct content document: https://textbookfull.com/product/inference-for-heavy-tailed-data-applications-in-insura nce-and-finance-1st-edition-liang-peng/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Exact Statistical Inference for Categorical Data 1st Edition Shan

https://textbookfull.com/product/exact-statistical-inference-forcategorical-data-1st-edition-shan/

R Programming for Data Science 1st Edition Roger Peng

https://textbookfull.com/product/r-programming-for-datascience-1st-edition-roger-peng/

Big Data for Insurance Companies 1st Edition Marine Corlosquet-Habart

https://textbookfull.com/product/big-data-for-insurancecompanies-1st-edition-marine-corlosquet-habart/

Polymer Materials for Energy and Electronic Applications 1st Edition Huisheng Peng

https://textbookfull.com/product/polymer-materials-for-energyand-electronic-applications-1st-edition-huisheng-peng/

A Multivariate Claim Count Model for Applications in Insurance

https://textbookfull.com/product/a-multivariate-claim-countmodel-for-applications-in-insurance-daniela-anna-selch/

Grammatical Inference: Algorithms, Routines and Applications 1st Edition Wojciech Wieczorek (Auth.)

https://textbookfull.com/product/grammatical-inferencealgorithms-routines-and-applications-1st-edition-wojciechwieczorek-auth/

Computer Age Statistical Inference Algorithms Evidence and Data Science 1st Edition Bradley Efron

https://textbookfull.com/product/computer-age-statisticalinference-algorithms-evidence-and-data-science-1st-editionbradley-efron/

Computer Age Statistical Inference Algorithms Evidence and Data Science 1st Edition Bradley Efron

https://textbookfull.com/product/computer-age-statisticalinference-algorithms-evidence-and-data-science-1st-editionbradley-efron-2/

Metaprogramming in R: Advanced Statistical Programming for Data Science, Analysis and Finance 1st Edition Thomas

https://textbookfull.com/product/metaprogramming-in-r-advancedstatistical-programming-for-data-science-analysis-andfinance-1st-edition-thomas-mailund/

Inferencefor Heavy-Tailed Data

INFERENCEFOR HEAVY-TAILED DATA

Applicationsin Insuranceand

Finance

LiangPeng

GeorgiaStateUniversity DepartmentofRiskManagementandInsurance RobinsonCollegeofBusiness Atlanta,GA30303,USA

YongchengQi

UniversityofMinnesota–Duluth DepartmentofMathematicsandStatistics 1117UniversityDrive Duluth,MN55812,USA

AcademicPressisanimprintofElsevier 125LondonWall,LondonEC2Y5AS,UnitedKingdom 525BStreet,Suite1800,SanDiego,CA92101-4495,UnitedStates 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom

Copyright © 2017LiangPengandYongchengQi.PublishedbyElsevierLtd.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans, electronicormechanical,includingphotocopying,recording,oranyinformationstorageand retrievalsystem,withoutpermissioninwritingfromthepublisher.Detailsonhowtoseek permission,furtherinformationaboutthePublisher’spermissionspoliciesandourarrangements withorganizationssuchastheCopyrightClearanceCenterandtheCopyrightLicensingAgency, canbefoundatourwebsite: www.elsevier.com/permissions

Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythe Publisher(otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperience broadenourunderstanding,changesinresearchmethods,professionalpractices,ormedical treatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluating andusinganyinformation,methods,compounds,orexperimentsdescribedherein.Inusingsuch informationormethodstheyshouldbemindfuloftheirownsafetyandthesafetyofothers, includingpartiesforwhomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors, assumeanyliabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterofproducts liability,negligenceorotherwise,orfromanyuseoroperationofanymethods,products, instructions,orideascontainedinthematerialherein.

LibraryofCongressCataloging-in-PublicationData

AcatalogrecordforthisbookisavailablefromtheLibraryofCongress

BritishLibraryCataloguing-in-PublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary

ISBN:978-0-12-804676-0

ForinformationonallAcademicPresspublications visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: CandiceJanco

AcquisitionEditor: GlynJones

EditorialProjectManager: LindsayLawrence

ProductionProjectManager: OmerMukthar

Designer: MatthewLimbert

TypesetbyVTeX

CONTENTS

About the Aurho(s Preface

1. Introduction

1.1. Basic ProbabilityTheory , .2. Basic Extreme Value Theory

2. Heavy Tailed Independent Data

2.1. HeavyTail

2.2. Tail Index Estimation

2.2.1. Hill Estimator

2.2.2. OtherTail Index Estimators

2.3. High Quantile Estimation

2.4. Extreme Tail Probability Estimation

2.5. Interval Estimation

2.S.1. Confidence Intervals for Tail Index

2.5.2. Confidence Intervals for High Quantile

2.6. Goodness-of-Fit Tests

2.7. Estimation of Mean

2.8. Expected Shortfall

2.9. Haezendonck-Goovaerts (H-G) Risk Measure

3. Heavy Tailed Dependent Data

3.1. Tail Empirical Process andTail Quantile Process

3.2. Heavy Tailed Dependent Sequence

3.3. ARMA Model

3.4. Stochastic Difference Equations

3.5. Heavy Tailed GARCH Sequences

3.6. Double AR(1) Model

3.7. Conditional Value-at-Risk

3.8. Heavy Tailed AR-GARCH Sequences

3.9. Self·WeightedEstimation for ARMA-GARCH Models

3.10. Unit RootTests With Infinite Variance Errors

4. Multivariate Regular Variation

4.1. Multivariate RegularVariation

4.2. Hidden Multivariate Regular Variation

4.3. Tail Dependence and Extreme Risks Under Multivariate RegularVariation

4.4. Loss Given Default Under Multivariate Regular Variation

4.5.

Applications

5.1. Some Visualization Tools for Preliminary Analysis

5.1.1. Hill Plot

5.1.2. Alternative Hill Plot

5.1.3. Log·Quantile Plot

5.2. Heuristic Approach for Training Data

5.3. Applications to Independent Data

5.3.1. Automobile Bodily Injury Claims

5.3.2. Automobile Insurance Claims

5.3.3. Hospital Costs

5.3.4. Danish Fire Losses Data

5.4. Applications to Dependent Data

5.4.1. Dally Foreign Exchange Rates

5.4.2. Quarterly S&P 500 Indices

5.4.3. S&P 500 Weighted Daily Returns

5.5. Some Comments

ABOUTTHEAUTHORS

LiangPeng isThomasBowlesProfessorofActuarialScienceintheDepartmentofRiskManagementandInsuranceatGeorgiaStateUniversity. HeobtainedhisPh.D.fromErasmusUniversityRotterdamintheNetherlands.Sofarhehaswrittenmorethan130articlesonextremevaluetheory, empiricallikelihoodmethods,timeseriesanalysisandriskanalysis.

YongchengQi isProfessorofStatisticsintheDepartmentofMathematics andStatisticsatUniversityofMinnesota–Duluth.HeobtainedhisPh.D. fromPekingUniversityinChinaandUniversityofGeorgiainUSA.Sofar hehaswrittenmorethan87articlesonextremevaluetheory,probability theory,andnonparametricstatistics.

PREFACE

Heavytaileddatafrequentlyappearininsuranceandfinance,andaloss variablewithaheavytailrarelycreatesunusuallyhugelosses.Unfortunately suchanextremelossoftencausesseveredamagestooursociety.Extreme valuetheoryhasbeendevelopedtomodel,analyzeandpredictsuchan extremeeventfordecades.

Severalexcellentbooksonextremevaluetheoryhavebeenavailablein themarketsuchasLeadbetteretal. [67],Resnick [91],Embrechtsetal. [36],Coles [22],Beirlantetal. [5],deHaanandFerreira [27] andNovak [75].Withlittleoverlappingwiththeseexistingbooks,thisshortbook aimstocollectsomerecentstatisticalinferencemethodsforanalyzingheavy taileddata.Thiscollectionheavilyreliesonourownresearchexperience andunderstandingofdifficultiesinapplyingextremevaluetheorytoreal lifedataininsuranceandfinance,andsowesurelymissmanyothergood methods.

Chapter 1 collectssomedefinitionsandnotationsinprobabilitytheory andextremevaluetheory.Chapter 2 usesawell-knowntailindexestimatortoaddressissuesandmethodsforanalyzingheavytailedindependent datasuchastheapplicationsoftailempiricalprocess,tailquantileprocess andinequalitiesforaregularlyvaryingfunction,thechoiceofsamplefractionintailindexestimationandhighquantileestimation,goodness-of-fit testsforheavytaileddistributionfunctions,andexpectedshortfallwitha possibleinfinitevarianceloss.Chapter 3 collectssomemethodsforanalyzingheavytaileddependentdatawithafocusontimeseriesmodelssuchas ARMAmodelsandGARCHmodels.Chapter 4 collectssomeapplications ofmultivariateregularvariationinriskanalysis.Finallythecollectedinferenceproceduresareappliedtosomerealdatasetsininsuranceandfinance inChapter 5.

Writingsuchashortbookisnoteasyunlikewethoughtandplanned inthebeginning.Selectingtopicsandunifyingnotationsarequitetimeconsuming.Wearegratefultoourfamiliesfortheirsupport.Withouttheir understanding,wecannotsacrificesomuchofourfamilytimetofinish thisbookontime.

x Preface

WealsothankLindsayLawrence,GlynJonesandtheteamatElsevier forguidanceandhelpthroughoutthepublishingprocess.

LiangPeng,Atlanta,Georgia

YongchengQi,Duluth,Minnesota

May2017

CHAPTER1 Introduction

Thischaptercollectssomeusefuldefinitionsandnotationsinprobability theoryandextremevaluetheory.

1.1BASICPROBABILITYTHEORY

Let Ω beaspace,whichisanarbitrary,nonemptyset.Write ω ∈ Ω if ω is anelementof Ω ,andwrite A ⊆ Ω if A isasubsetof Ω .

Definition1.1. Anonemptyclass A ofsubsetsof Ω iscalledan algebra if i) thecomplementaryset Ac ∈ A whenever A ∈ A;and ii) theunion A1 ∪ A2 ∈ A whenever A1 ∈ A and A2 ∈ A. Moreover, A iscalleda σ -algebra ora σ -field if,inadditiontoi)andii), iii) ∪∞ i=1 Ai ∈ A whenever Ai ∈ A for i ≥ 1.

Definition1.2. If A isa σ -algebrawithrespecttothespace Ω ,then thepair (Ω, A) iscalleda measurablespace.Thesetsof A arecalled measurablesets.

Definition1.3. Theelementsofthe σ -algebra B generatedbytheclass ofinfiniteintervalsoftheform [−∞, x) for −∞ < x < ∞ arecalled Borel sets.Themeasurablespace (R =[−∞, ∞], B ) iscalled Borelspace

Definition1.4. If (Ω1 , A1 ) and (Ω2 , A2 ) aretwomeasurablespacesand f isamappingfrom Ω1 to Ω2 ,then f issaidtobea measurabletransformation/mapping if f 1 (A) ∈ A1 forany A ∈ A2 ,where f 1 (A) ={ω : ω ∈ Ω1 , f (ω) ∈ A} .

Definition1.5. Forameasurablespace (Ω, A) ,asetfunction P defined on A iscalleda probability if i) P (∅) = 0,where ∅ denotestheemptyset; ii) P (A ∪ B) = P (A) + P (B) fordisjointevents A, B ∈ A (i.e., A ∩ B =∅ ); iii) P (∪∞ i=1 Ai ) = ∞ i=1 P (Ai ) fordisjointevents Ai ∈ A, i = 1, 2, ··· . Inthiscase, (Ω, A, P ) iscalleda probabilityspace

Definition1.6. Areal-valuedmeasurablefunction X onaprobability space (Ω, A, P ) iscalleda randomvariable.Thefunction

F (x) = P (X ≤ x) := P ({ω ∈ Ω : X (ω) ≤ x}) for x ∈ R = (−∞, ∞)

InferenceforHeavy-TailedData.

DOI: http://dx.doi.org/10.1016/B978-0-12-804676-0.00001-8

Copyright © 2017LiangPengandYongchengQi.PublishedbyElsevierLtd.Allrightsreserved.

iscalledthe cumulativedistributionfunction or distributionfunction of X .

Definition1.7. Asequenceofrandomvariables {Xn }∞ n=1 definedona probabilityspace (Ω, A, P ) iscalled independent ifforany m ≥ 1,1 ≤ i1 < ··· < im < ∞ and −∞ < x1 , ··· , xm < ∞ P (Xi1 ≤ x1 , , Xim ≤ xm ) = m j =1 P (Xij ≤ xj ).

Definition1.8. If {Xn }∞ n=0 isasequenceofrandomvariablesonaprobabilityspace (Ω, A, P ) ,then {Xn }∞ n=1 issaidto convergeinprobability to X0 (notation: Xn p → X0 )ifforany > 0 lim n→∞ P (|Xn X0 | > ) = 0.

Definition1.9. If {Xn }∞ n=0 isasequenceofrandomvariablesonaprobabilityspace (Ω, A, P ) withcorrespondingcumulativedistributionfunctions {Fn (x)}∞ n=0 ,then {Xn }∞ n=1 issaidto convergeindistribution to X0 (notation: Xn d → X0 or Xn d → F0 )ifforanycontinuitypoint x of F0

lim n→∞ Fn (x) = F0 (x).

Definition1.10. Asequenceofrandomvariables {Xn } onaprobability space (Ω, A, P ) issaidtobe boundedinprobability ifforany > 0, thereexistconstants C > 0andinteger N suchthat

P (|Xn | > C ) ≤ forall n ≥ N .

Let {Xn } beasequenceofrandomvariablesonaprobabilityspace (Ω, A, P ) and {bn } beasequenceofpositiveconstants.Wewrite Xn = op (bn ) if Xn /bn p → 0,andwrite Xn = Op (bn ) if Xn /bn isboundedinprobability.

Definition1.11. A stochasticprocess isacollection {Xt : t ∈ T } ,where T isasubsetof R and Xt isarandomvariableonaprobabilityspace (Ω, A, P ) .

Definition1.12. A Wienerprocess {W (t ) : t ≥ 0} isacontinuous-time stochasticprocesssatisfying i) W (0) = 0;

ii) W (t + u) W (t ) isindependentofthe σ -algebrageneratedby {W (s) : 0 < s ≤ t } forany u > 0;

iii) W (t + u) W (t ) hasanormaldistributionwithmeanzeroandvariance u forany u > 0.

Definition1.13. If W (t ) for t ≥ 0isaWienerprocess,then B(t ) = W (t ) t T W (T ) iscalleda BrownianBridge on [0, T ] .Inthiscase,

B(0) = B(T ) = 0and E B(s)B(t ) = s(T t ) for0 ≤ s < t ≤ T ,buttheincrementsarenolongerindependent.

Definition1.14. Thespace D[0, 1] denotesthespaceoffunctionson [0, 1] thatarerightcontinuousandhaveleft-handlimits.

Forthespace (E ,ε) ,let CK (E ) bethesetofallcontinuous,realvalued functionson E withcompactsupport,and C + K (E ) bethesubsetof CK (E ) consistingofcontinuous,nonnegativefunctionswithcompactsupport.Let M+ (E ) bethesetofallnonnegativeRadonmeasureson (E ,ε) anddefine μ+ (E ) tobethesmallest σ -fieldofsubsetsof M+ (E ) makingthemaps m → m(f ) = E fdm from M+ (E ) → R measurableforall f ∈ C + K (E ) .Here Radon meansthemeasureofcompactsetsisalwaysfinite.

Definition1.15. ξ isa randommeasure ifitisameasurablemapfrom aprobabilityspace (Ω, A, P ) into (M+ (E ),μ+ (E )) .

Definition1.16. For μn ,μ ∈ M+ (E ) ,wesay μn convergesvaguely to μ (written μn v → μ )if μn (f ) → μ(f ) forall f ∈ C + K (E )

Definition1.17. C ⊂ Rd isa cone if t x ∈ C forevery t > 0and x ∈ C .

Let Λ denotetheclassofstrictlyincreasing,continuousmappingsof [0, 1] ontoitselfwith λ(0) = 0and λ(1) = 1foreach λ ∈ Λ .Given x and y inthespace D[0, 1] ,define d (x, y) tobetheinfimumofthosepositive forwhichthereexistsa λ ∈ Λ suchthat

sup t |λ(t ) t |≤ and sup t |x(t ) y(λ(t ))|≤ .

Inthisway, d (x, y) definesthe Skorohodtopology

Definition1.18. Let F bethecumulativedistributionfunctionofarandomvariable X .Thenthe generalizedinverse of F isdefinedas

F (u) = inf{t : F (t ) ≥ u} for0 < u < 1. (1.1)

Lemma1.1. LetFbeacumulativedistributionfunction.

i) Foranyx ∈ R andu ∈ (0, 1) ,F (u) ≤ xifandonlyifu ≤ F (x) .

ii) IfUisarandomvariablewithuniformdistributionover (0, 1) ,thenthe distributionfunctionofF (U ) isF (x) .

iii) IfFiscontinuous,thenF (F (u)) = ufor 0 < u < 1.

Proof. i)If u ≤ F (x) ,then x ∈{t : F (t ) ≥ u} ,whichimpliesthat

).

Nextassumethat F (u) ≤ x.Since F isrightcontinuous,wehave

Henceparti)follows.

ii)Itfollowsfromparti)that P (F (U ) ≤ x) = P (U ≤ F (x)) = F (x) for any x.Thatis, F (U ) hasthedistributionfunction F (x) . iii)Itfollowsobviously.

LikeCsörg ˝ oetal. [25],weusethefollowingconventionsconcerning integrals.

When a < b and g isaleft-continuousand f isaright-continuousfunction,then

whenevertheseintegralsmakesenseasLebesgue–Stieltjesintegrals.Inthis casetheusualintegrationbypartsformula

isvalid.

ForanyBrownianbridge {B(s) : 0 ≤ s ≤ 1} ,andwith0 ≤ a < b ≤ 1and thefunctions f and g asabovewedefinethefollowingstochasticintegral

andthesameformulafor g replacing f .

1.2BASICEXTREMEVALUETHEORY

Let X1 , ··· , Xn bearandomsampleofsize n fromadistributionfunction F ,thatis, X1 , ··· , Xn areindependentandidenticallydistributed(i.i.d.) randomvariableswithdistributionfunction F .The univariateextreme valuetheory isbasedontheassumptionthatthereexistconstants an > 0 and bn ∈ R suchthat

where G isanon-degeneratedistributionfunction.Inthiscase G iscalled an extremevaluedistribution and F issaidtobeinthe domainof (maximum)attraction oftheextremevaluedistribution G (notation: F ∈ D(G ) ).Toclassify G ,weneedthefollowingdefinition.

Definition1.19. Twodistributionfunctions F (x) and G (x) aresaidto havethe sametype ifforsomeconstants a > 0and b ∈ R G (x) = F (ax + b) forall x ∈ R.

Lemma1.2. Let {Xn }, U , VberandomvariablessuchthatneitherUnorV isdegenerate(i.e.,bothUandVarenon-constant).Ifthereareconstantsan > 0, αn > 0,bn ∈ R, βn ∈ R suchthat

then

Proof. SeeProposition0.2ofResnick [91].

Usingtheabovenotionofthesametype,itiswell-knownthatthe limitingdistribution G in (1.5) mustbeoneofthefollowingthreetypes: • ReversedWeibulldistribution Φα (x) = exp( ( x)α ), x <

• Gumbeldistribution

Λ(x) = exp( e x ), x ∈ R;

• Fréchetdistribution

Ψα (x) = 0, x ≤ 0, exp( x α ), x > 0,

where α> 0.

Aunifiedexpressionfor G in (1.5) is

Here γ ∈ R iscalledthe extremevalueindex,and γ< 0,γ = 0,γ> 0 correspondtothereversedWeibulldistribution,Gumbeldistribution, Fréchetdistribution,respectively.Formodelinglossesininsuranceandfinance,thisbookfocusesonthecaseof γ> 0,i.e.,theFréchetdistribution in (1.5).

Forthestudyofextremecomovementoffinancialmarkets,multivariate extremevaluetheoryisneeded,whichisbasedontheassumptionthatthere existconstantvectors an > 0, bn ∈ Rd andanon-degenerate d -dimensional distributionfunction H suchthat

where {Zi = (Zi1 , ··· , Zid )T , i ≥ 1} isasequenceofi.i.d.randomvectors in Rd withacommondistributionfunction F (z1 , ··· , zd ) andmarginal distributions Fj (zj ) for j = 1, ··· , d .Throughoutweuse AT todenotethe transposeofthevectorormatrix A

Liketheunivariateextremevaluetheory, H in (1.7) iscalledamultivariateextremevaluedistributionand F issaidtobeinthedomainofattraction of H (notation: F ∈ D(H ) ).Sincetheconvergenceofthejointdistributions formultivariateextremesimpliestheconvergenceofthemarginaldistributions,themarginaldistribution Hi of H mustbeoneofthethreetypes ofextremevaluedistributions.Also H isacontinuousfunctionsinceits marginaldistributionsarecontinuous.

Alsonotethat (1.7) isequivalentto lim n→∞ F n (an1 z1 + bn1 , , and zd + bnd ) = H (z1 , , zd ) (1.8)

forall (z1 , ··· , zd ) ∈ Rd ,whichisequivalentto

lim n→∞ n{1 F (an1 z1 + bn1 , ··· , and zd + bnd )}=− log H (z1 , ··· , zd )

forall (z1 , ··· , zd ) suchthat0 < H (z1 , ··· , zd )< 1.Thiscanfurtherbe decomposedasthefollowingmarginalconditions

Fj ∈ D(Hγj ) with Hγj givenin (1.6) and γj ∈ R (1.9) for j = 1, ··· , d ,andthefollowingdependencecondition

limn→∞ n{1 F (U1 (nx1 ), , Ud (nxd ))}=− log H ( x γ1 1 1 γ1 , ,

d d 1 γd ) =: l (x1 , ··· , xd ), (1.10)

where Ui (x) = Fi (1 1/x) for i = 1, ··· , d .Thelimitingfunction l (x1 , , xn ) in (1.10) iscalleda taildependencefunction,whichis ahomogeneousfunctionsatisfying

l (tx1 , ··· , txd ) = t 1 l (x1 , ··· , xd ) forany t > 0.

Thishomogeneoustaildependencefunctionplaysanimportantroleinextrapolatingmultivariatedataintoafartailregionforpredictinganextreme event.

CHAPTER2

HeavyTailedIndependentData

Thischaptercollectssomeknownstatisticalinferencemethodsforanalyzingunivariateindependentdatawithacommondistributionfunctionin thedomainofattractionofanextremevaluedistributionwithapositive extremevalueindex,i.e., (1.5) and (1.6) holdwithsome γ> 0.

2.1HEAVYTAIL

Definition2.1. Adistributionfunction F (x) issaidtohavea (right) heavytail withtailindex α> 0ifitsatisfiesthat

lim t →∞ 1 F (tx) 1 F (t ) = x α forall x > 0 (2.1)

Likewise,arandomvariable X withsuchadistributionfunction F in (2.1) iscalledaheavytailedrandomvariable.

Definition2.2. Ameasurablefunction a(x) definedover (0, x0 ) forsome x0 > 0issaidtobe regularlyvarying ora regularvariation atzerowith anexponent ρ ∈ R (notation a(x) ∈ RV 0 ρ )if lim t →0 a(tx) a(t ) = xρ forall x > 0.

Itistruethat a(x) ∈ RV 0 ρ ifandonlyif a(1/x) ∈ RV ∞ ρ .Hence,when (2.1) holds,thesurvivalfunction, F (x) := 1 F (x) ,isalsosaidtobea regularlyvaryingfunctionatinfinitywithindex α .Moreover,if (2.1) holdswith α = 0,then F (x) iscalleda slowlyvarying functionatinfinity. Itisknownthat F ∈ D(Gγ ) withsome γ> 0isequivalentto F ∈ RV ∞ 1/γ ,where Gγ isgivenin (1.6)

Put x+ = max(x, 0) .Whenthedistributionfunctionofarandomvariable X satisfies (2.1),wehavethat E (X γ + ) =∞ forany γ>α and E (X γ + )< ∞ forany0 <γ<α .Someheavytaileddistributionfunctionsinclude:

• Fréchetdistribution: F (x) = 1 exp x α for x > 0,where α> 0.The tailindexis α .

• Paretodistribution: F (x) = x α for x ≥ 1,where α> 0.Thetailindexis α (notation:Pareto( α )).

InferenceforHeavy-TailedData.

DOI: http://dx.doi.org/10.1016/B978-0-12-804676-0.00002-X Copyright © 2017LiangPengandYongchengQi.PublishedbyElsevierLtd.Allrightsreserved.

• Cauchydistribution: F (x) = ∞ x 1 π(1+t 2 ) dt for −∞ < x < ∞ .Thetailindex is1.

• t-distribution: F (x) = ∞ x Γ((ν +1)/2) Γ(ν/2)√νπ (1 + t 2 ν ) ν +1 2 dt for −∞ < x < ∞ ,where ν> 0.Thetailindexis ν

• Burrdistribution: F (x) = (1 + xb ) a for x ≥ 0,where a, b > 0.Thetail indexis ab (notation:Burr(a, b)).

• Log-Gammadistribution: F (x) = ∞ x αβ Γ(β) (log t )β 1 t α 1 dt for x ≥ 1, where α> 0,β> 0.Thetailindexis α .

• Assumethat ξ and η aretwoindependentrandomvariables, η isaheavy tailedrandomvariable,and ξ ≥ 0.Then ξη canbeaheavytailedrandom variableaccordingtothefollowingBreiman’slemma.

Breiman’sLemma: therandomvariable ξη hasaheavytailwithindex α andsatisfies lim t →∞ P (ξη> t ) P (η> t ) = E (ξ α ) if lim t →∞

(η>

andthenonnegativerandomvariable ξ satisfies E ξ γ < ∞ forsome γ> α> 0.

Forstudyingtheasymptoticbehaviorofextremes,itisoftenconvenient towrite (2.1) intermsofitsinversefunction.Indeed, (2.1) isequivalentto

t →0 F (tx) F (t ) = x 1/α forall x > 0, (2.2) whichisequivalentto

where F (x) = F (1 x) for0 < x < 1,and F denotesthegeneralized inversefunctionof F asdefinedin (1.1).Hencecondition (2.1) (i.e., F (x) ∈ RV ∞ α )isequivalentto F (x) ∈ RV 0 1/α ,andisequivalentto x1/α F (x) ∈ RV 0 0

Inordertospecifyanapproximationratein (2.2) or (2.3),whichplays animportantroleinderivingtheasymptoticpropertiesofestimatorsfor thetailindex α andsomerelatedquantitiessuchasahighquantileand anextremetailprobability,onecouldassumethatthereexistafunction c (x) ≡ 0andafunction A(t ) → 0withaconstantsignnearzerosuchthat

t →0 (tx)1/α F (tx) t 1/α F (t ) A(t ) = c (x) forall x > 0.

Inthiscase, t 1/α F (t ) iscalleda Π -variation,andbyTheoremB.2.1of deHaanandFerreira [27],wecouldassumethatthereexistsome ρ ≥ 0 andafunction A(t ) ∈ RV 0 ρ with limt →0 A(t ) = 0suchthat

Whenwediscussbiascorrectedtailindexestimationlater,weneed tofurtherspecifyanapproximationratein (2.4).BydeHaanandStadtmüller [28],wecouldgenerallyassumethatthereexistsome γ ≥ 0anda function B(t ) ∈ RV 0 γ with limt →0 B(t ) = 0suchthat

Herecondition (2.5) isalsocalleda secondorderregularvariation conditionforthefunction t 1/α F (t ) .

Example2.1. Suppose1 F (x) = Cx α 1 + Dx ρα + o(x ρα ) forsome α> 0, C > 0, D = 0,ρ> 0as x →∞ .Then

i.e., (2.4) holdswith A(

.

Although (2.2), (2.4) and (2.5) aredefinedforeachfixed x > 0,they dohaveasortofuniformconvergencepropertyasdemonstratedbythe followinginequalities.Thistypeofuniformconvergenceplaysausefulrole inderivingtheasymptoticbehaviorofestimatorsandtestsinanalyzing extremes.

• Potter’sbound (Binghametal. [9]).Assume f (x) ∈ RV 0 ρ forsome ρ ∈ R. Thenforany > 0and δ> 0,thereexists t0 > 0suchthatforany 0 < t ≤ t0 and0 < tx ≤ t0 ,

and

Proof. Bytherepresentationtheoremofaregularvariation,thereexist a t1 > 0,functions b(t ) and c (t ) with lim t →0 c (t ) = c0 ∈ (0, ∞) and lim t →0 b(t ) =−ρ

suchthatforall0 < t < t1

f (t ) = c (t ) exp

1 t b(s) s ds .

Hence f (tx) f (t ) = c (tx) c (t ) exp t tx b(s) s ds , whichcanbeusedtoprove (2.6) and (2.7) straightforwardly.

• Inequalityfor Π -variation (TheoremB.2.18ofdeHaanandFerreira [27]).

Assumethat f (x) isameasurablefunctiondefinedon (0, x0 ) forsome x0 > 0,andthereexistsome ρ ≥ 0andafunction A(t ) ∈ RV 0 ρ with limt →0 A(t ) = 0suchthat

x > 0. (2.8)

Thenforany > 0and δ> 0thereis t0 ∈ (0, 1) suchthatforall0 < t ≤ t0 and0 < tx ≤ t0 | f (tx) f (t ) A(t ) xρ 1 ρ |≤

Proof. When ρ> 0,wehave f (0) := limt →0 f (t ) isfinite, a(t ) := f (t ) f (0) ∈ RV 0 ρ and a(t )/A(t ) → ρ 1 as t → 0,whichimply (2.9) byusing (2.7) andwritingthat

When ρ = 0,fora t1 > 0,define a(t ) = f (t ) t 1 t1 t f (s) ds.Thenwe have a(t ) A(t ) → 1, a(t ) ∈ RV 0 0 , and f (t ) = a(t ) + t1 t a(s) s ds. (2.10)

f (tx) f (t ) A(t ) log x = a(tx)/a(t ) 1 A(t )/a(t ) + 1 x

whichgives (2.9) byusing (2.7) and (2.10).

• Inequalityforsecondorderregularvariation (Lemma5.2ofDraisma etal. [30]).If (2.5) holds,thenforany > 0and δ> 0,thereexists t0 > 0suchthatforall0 < t ≤ t0 and0 < tx ≤ t0

Proof. Put H (t ) = t 1/α F (t ) .When ρ> 0,itfollowsfromdeHaanand Stadtmüller [28] that

Applying (2.9) with f (x) = x ρ A(x) and

,respectively, (2.11) followsfromthefollowingexpression

When ρ = 0and γ< 0,itfollowsfromdeHaanandStadtmüller [28] that

as t → 0.Applying (2.9) with f (x) = H (x) c

log(x) , (2.11) follows from (2.14) andthefollowingexpression

1 t h(s) s ds anditfollowsfromdeHaanandStadtmüller [28] that

Write H (tx) H (t ) A(t ) log x B(t ) 1 2 (log x)2

h(tx) h(t ) A(t )B(t ) log x 1 x 1 s h(ts) h(t ) A(t )B(t ) log s ds h(t ) A(t ) A(t )B(t ) 1 log x (2.17)

Thenitfollowsfrom (2.5), (2.16) and (2.17) that h(t ) A(t ) A(t )B(t ) → 1as t → 0. (2.18)

Applying (2.9) with f (x) = h(x) , (2.11) followsfrom (2.17) and (2.18).

Sincesomestatisticsinanalyzingextremesareconstructedintermsof logarithmsofdata,itbecomesconvenienttoexpress (2.2) and (2.4) as lim t →0 log F (tx) log F (t ) =− 1 α log x forall x > 0, (2.19)

and

(

x > 0, (2.20)

respectively.However,when ρ = γ , (2.5) maynotimplyasecondorderregularvariationconditionfor log F (t ) ;seeTheoremAofDraisma etal. [30].ThefollowingtheoremisslightlydifferentfromTheoremAof Draismaetal. [30],andshowsthat (2.5) doesimplyacorrespondingresult for log F (t ) underanadditionalcondition.Thistheoremisusefulinthe studyofbiascorrectedtailindexestimation.

Theorem2.1. Suppose (2.5) holdswith ρ> 0 and γ ≥ 0.Furtherassume

(2.21)

whereHρ,γ (x) isgivenin (2.5).Moreover,forany > 0 and δ> 0 thereexists t0 > 0 suchthatforall 0

Proof. Put f (t ) = t 1/α F (t ) .Then (2.5) impliesthat lim t →0 f (tx) f (t ) A(t ) = xρ 1 ρ , whichimpliesthat limt →0 f (t ) = c0 ∈ (0, ∞) since ρ> 0.By (2.5) wehave f (tx) f (t ) 1 = A(t ) f (t ) xρ 1 ρ + A(t )B(t ) f (t ) Hρ,γ (x)(1 + o(1)),

whichimpliesthat

i.e., (2.21) holds. When |l0 | < ∞ ,wehave γ = ρ and

Hence,when |l0 | < ∞ , (2.22) followsfromapplying (2.11) tothefunction log f (t ) .Othercasescanbeshownsimilarlybynoticingthat

Otherimportanttechniquesinstudyingextremesarethefollowing empiricalprocess,quantileprocess,tailempiricalprocessandtailquantile process.

Let U1 , ··· , Un beindependentandidenticallydistributedrandomvariableswithuniformdistributionon (0, 1) ,andlet Un,1 ≤···≤ Un,n denote theorderstatisticsof U1 , ··· , Un .Therefore,

(u) = 1 n n i=1 I (Ui ≤ u) and αn (u) = √n {Gn (u) u}

arecalledthe empiricaldistributionfunction and empiricalprocess, respectively.BytheChibisov–O’Reillytheorem, sup 0<u<1 |αn (u)| u1/4 = Op (1) and sup

where αn (u ) denotestheleft-handlimitof αn (u) .Italsofollowsfrom ShorackandWellner [98],Page404that sup Un,1 ≤u≤1 u Gn (u) = Op (1), sup 1 Un,n ≤u≤1 u 1 Gn (1 u) = Op (1), (2.24) sup 0<u<1

(u) u = Op (1) and sup 0<u<1

ByCsörg ˝ oetal. [25],thereexistsasequenceofBrownianbridges {Bn (u)} suchthatforany ν ∈[0, 1/4)

Put Qn (s) = Un,k if

for k = 1, ··· , n,and Qn (0) = Un,1 , whichiscalledthe quantilefunction.Further βn (s) = √n {Qn (s) s} is calledthe quantileprocess.AgainitfollowsfromCsörg ˝ oetal. [25] that forany ν ∈[0, 1/2) and λ> 0

where Bn (s) isgivenin (2.26).

Theorem2.2. Definethe tailempiricalprocess as

,k (u) = √k

whereksatisfies k = k(n) →∞

Thenforany ν ∈[0, 1/2)

whereWn (u) = n k Bn ( k n u) withBn givenin (2.26).

Proof. Notethat

,

Hence (2.29) followsfrom (2.26) and (2.28) when ν iscloseto1/2and u ≥ nUn,1 /k.When u < nUn,1 /k,wehave

≤ k 1/2+δ (nUn,1 )1 δ + u 1/2 δ | n ku Bn ( k n u)| = op (1).

Therefore (2.29) holdsfor ν near1/2,whichimpliesthatitholdsforany ν ∈[0, 1/2)

Theorem2.3. Definethe tailquantileprocess as βn,k (s) = √k n k Un,[ks] s fors > 0,

where [x] denotesthesmallestpositiveintegerlargerthanorequaltox,andk satisfies (2.28).Then,forany ν ∈[0, 1/2)

whereWn (s) isgivenin (2.29).

Proof. Write

Then (2.30) followsfrom (2.27).

Remark2.1. Notethat {Wn (s)} in (2.29) and (2.30) canbereplacedbya sequenceofstandardWienerprocesses.

2.2TAILINDEXESTIMATION

Throughoutthissection,weassume X , X1 , ··· , Xn areindependentand identicallydistributedrandomvariableswithdistributionfunction F (x) satisfying (2.1).Let Xn,1 ≤···≤ Xn,n denotetheorderstatisticsof X1 , ··· , Xn , andlet Fn (x) = 1 n n i=1 I (Xi ≤ x) denotetheempiricaldistributionfunction. Assume U1 , , Un areindependentandidenticallydistributedrandom variableswithuniformdistributionon (0, 1) andlet Un,1 ≤···≤ Un,n denotetheorderstatisticsof U1 , ··· , Un .Itfollowsfrom Lemma1.1 that F (U1 ), ··· , F (Un ) arealsoindependentrandomvariableswiththedistributionfunction F (x) ,and

and Xn,n , ··· , Xn,1 T

havethesamejointdistribution.Forconvenience,weoftenwritethat

Althoughmanyestimatorsofthetailindex α in (2.1) havebeenproposedintheliterature,wewillusethewell-knownHillestimator(Hill [56]) toaddresssomeimportantissuesandsolutionsinestimatingthetailindex α suchasoptimalchoiceofthesamplefraction k,biascorrectedestimation, highquantileestimation,intervalestimation,andgoodness-of-fittests.

2.2.1HillEstimator

Using (2.2) anditsPotter’sboundin (2.6),wehave

whichmotivatesustoestimate α by

where k satisfies (2.28).Thisistheso-calledHillestimatorintheliterature (seeHill [56]).AnotherusefulwaytoderivetheaboveHillestimator ˆ α(k) isviamaximizingacensoredlikelihoodfunctionasfollows.

Define δi = I (Xi > T ) forahighthreshold T andtemporarilyassume theconditionaldistributionof Xi given δi = 1is1 cx α .Here I (A) denotes theindicatorfunctionoftheset A.Thenacensoredlikelihoodfunctionfor (Xi ,δi )T n i=1 canbewrittenas

=1

whichismaximizedat

ThereforetheHillestimator ˆ α(k) in (2.31) isobtainedbytaking T = Xn,n k inthesecondequationof (2.33).

2.2.1.1AsymptoticProperties

TheasymptoticpropertiesoftheHillestimator ˆ α(k) aregivenbelow.

Theorem2.4. (i)Consistency.Underconditions (2.1) and (2.28),wehave

(ii)Asymptoticnormality.Underconditions (2.1), (2.4), (2.28) and

k A(k/n) (k/n)1/α F (k/n)

Proof. (i)Write

,whichimpliesthat

By (2.6),forany0 < < 1and0 <δ< 1/2,thereisa t0 > 0suchthat,for any i = 1, ··· , k and Un,k+1 ≤ t0

(2.35) Put Gn,k (s) = 1 k n i=1 I (Ui ≤ k n s) .Itfollowsfrom (2.29) and (2.30) that n k Un,k p → 1, n k Un,k+1 p → 1and sup 0<s≤1 |Gn,k (s) s| s

Another random document with no related content on Scribd:

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.