The Geroscience Hypothesis: Is It Possible to Change the Rate of Aging?
Steven N. Austad
Etiological Role of Aging in Chronic Diseases: From Epidemiological Evidence to the New Geroscience
Linda P. Fried and Luigi Ferrucci
Impact of Aging on Cancer Progression and Treatment
Aging in COPD and Idiopathic Pulmonary Fibrosis
HIV and Aging: Parallels and Synergistic Mechanisms Leading to Premature Disease and Functional
The Way Forward: Translation
Contributors
Jayakrishna Ambati
Julie K. Andersen, Ph.D.
USA
Steven N. Austad, Ph.D.
Andrzej Bartke, Ph.D.
Paula Busse, M.D.
Ying Ann Chiao, Ph.D.
Shankar Chinta, Ph.D.
Dao-Fu Dai, M.D., Ph.D.
Luigi Ferrucci
Roger B. Fillingim, Ph.D.
Linda P. Fried
Julie Glowacki, Ph.D.
Nicola A. Hanania, M.D., M.S.
Shenghui He, Ph.D.
Anna Hearps, Ph.D.
John P. Higgins, M.D.
Kevin High, M.D.
Geoffrey A. Kerchner
Stuart K. Kim, Ph.D.
James L. Kirkland, M.D., Ph.D.
Edward Lakatta, M.D.
Alan Landay, Ph.D.
Changhan Lee, Ph.D.
Richard F. Loeser, M.D.
Valter Longo, Ph.D.
Martin Lotz, M.D.
Simon Melov, Ph.D.
Nicolas Musi, M.D.
Contributors
Peter Rabinovitch, M.D., Ph.D.
Contributors
Clifford J. Rosen, M.D.
Cecilia G. Sanchez, Ph.D.
Katherine Schafer, M.D.
Norman E. Sharpless, M.D.
Farida Sohrabji, Ph.D.
Tamar Tchkonia, Ph.D.
Dennis C. Turk, Ph.D.
Zoltan Ungvari, M.D., Ph.D.
Tamara Vokes, M.D.
Charles Wright
Tony Wyss-Coray
Robert P. Yezierski, Ph.D.
Abbreviations
Aβ Amyloid beta
ACL Anterior cruciate ligament
ADE Adverse drug events
AGE Advanced glycation end product
ANI Asymptomatic neurocognitive impairment
APP Amyloid precursor protein
BBB Blood brain barrier
Coronary artery calcium
CD Cluster of differentiation
CDC Center for Disease Control and Prevention
CFB Complement factor B
CNS Central nervous system
DA Dopamine
DAergic Dopaminergic
DBP Diastolic blood pressure
DBS Deep brain stimulation
DC Dendritic cell
DDI Drug-drug interactions
DG Dentate gyrus
DPP Diabetes prevention program
Abbreviations
Abbreviations
DXA
Dual energy X-ray absorptiometry
E2 Estradiol
FDA Food and Drug Administration
FFA Free fatty acid
GTT Glucose tolerance test
I-FABP Intestinal fatty acid binding protein
IFN Interferon
IGFBP IGF binding protein
IGT Insulin glucose tolerance test
iPS/iPSC Induced pluripotent stem cell
ITP Interventions Testing Program
LBP LPS binding protein
L-DOPA Levo-DOPA
Abbreviations
Abbreviations
NIA National Institute on Aging containing 3
Neural precursor/progenitor cell
Osteoprotegerin
PGC-1α PGE2 Prostaglandin E2
Polg DNA polymerase gamma
PSNL Partial sciatic nerve ligation
SA-βGal Senescence-associated beta galactosidase
Abbreviations
SBP Systolic blood pressure
sCD Soluble cluster of differentiation
Abbreviations
SNAE Serious non-AIDS events
SNpc Substantia nigra pars compacta
STAT Signal transducer and activator of transcription
T Testosterone
TB Tuberculosis
TGFβ
TNFα
tPA Tissue plasminogen activator
UPS Unfolded protein stress
The Geroscience Hypothesis: Is It Possible to Change the Rate of Aging?
Steven N. Austad
1 Introduction
In the 200,000 year history of anatomically modern humans, we have never lived remotely as long as we do today. The rate of change in our life expectancy has been breathtaking. For the past 175 years, the mean age-at-death has increased steadily by about 2.5 years per decade, or 6 h per day, among the longest-lived countries [1]. While in the early part of the twentieth century, the rise in life expectancy was
S.N.
Fig. 1 Distribution of deaths as a function of age among Swedish women from the years 1900 and from 2000. Birth and death data from Swede are among the most reliable in the world. Note that more than 90 % of the population reached age 65 in the year 2000 compared with only 50 % reaching that age in 1900. Numbers in parentheses are life expectancies at birth (Data from the Human Mortality Database (downloaded November 2014))
The Geroscience Hypothesis: Is It Possible to Change the Rate of Aging?
driven mainly by reduced infant and young adult mortality, more recently bigger advances have been made in combating later life diseases (Fig. 1). As a consequence chronic health problems associated with aging, such as sarcopenia, osteoporosis, and Alzheimer’s disease, which were once rare, have become common. As the global population continues to age over the coming decades, maladies of aging threaten to overwhelm our healthcare infrastructure, disrupt our national economies, and potentially poison relations among generations. Fortunately, understanding of the basic biology of aging has also progressed rapidly in the past several decades such that the promise of medical interventions that enhance and lengthen healthy life is no longer an empty promise promulgated only by avaricious quacks and charlatans. The economic impact of generalized health extension could be stunning. According to one analysis, slowing the rate of human aging by 20 % would be worth more than $7 trillion over the next 50 years in the United States alone [2].
The likelihood that we will ultimately be able to slow human aging depends on our understanding of underlying processes. I have claimed that such understanding has progressed rapidly in recent decades. What is the evidence for such a claim? How realistic is the promise of medically extended healthy life? Those are the topics of this chapter.
2 Aging and Its Relation to Disease
No 60 year old – even the healthiest, hardest-training, and most disease-free 60 year old – can sprint as fast or throw as far as she could as a healthy 25 year old. This is prima facie evidence that aging, the progressive decline in physical function that accompanies growing older, occurs even in the absence of disease. However aging is so intimately intertwined with numerous diseases and disabling conditions that almost any discussion that begins with aging ends on disease. Although aging occurs
Table 1 Death rates from selected diseases in the United States (2010) * indicates the disease is essentially nonexistent at this age.
Data from Murphy et al. [3]
Rates are per 100,000 population in the specific age group based on the 2010 U.S. Census
S.N. Austad
even in the absence of disease, it clearly increases vulnerability to multiple diseases. In other words, aging is a risk factor for diseases. In fact, it is by far the biggest risk factor for virtually all of the chronic diseases that strain our health care system today and it increases the chances that a given disease will be fatal (Table 1). For instance in 2010, an American 75–84 years old had a 42-fold greater chance of dying of cancer, and a 45-fold greater chance of dying of heart disease, than a 35–44 year old. The chances of dying from Alzheimer’s disease increase more than 600-fold between age 50 and 80 [3]. For comparison, smoking only increases overall mortality rate by threefold compared with nonsmokers (http://www.cdc.gov/tobacco/data_statistics/ fact_sheets/health_effects/tobacco_related_mortality/) and having two copies of the ApoE4 allele, the most common genetic risk factor for Alzheimer’s disease, increases an individual’s chances of contracting that disease by only 12-fold relative to those with two copies of the ApoE3 allele [4]. Looked at from this perspective, aging is by far the biggest threat to human health in the developed world today. Geroscience, the topic of this book, is an interdisciplinary field seeking to understand the basis for the relationship between aging and disease vulnerability.
The Geroscience Hypothesis posits that, because aging underlies so many diseases and disabling conditions, interventions that would retard aging would also simultaneously prevent or delay the onset of multiple chronic diseases. In recent years there has been success at delaying cardiovascular diseases. Over the first decade of the twenty-first century, the age-adjusted death rate from heart diseases fell by more than 30 % and for stroke fell by more than 35 % [5, 3]. One contributing factor is the discovery of treatments that address underlying risk factors such as high blood pressure and high cholesterol. There has also been progress against a major behavioral risk factor – smoking. Importantly though, aging is a bigger risk to health than high blood pressure, cholesterol, and smoking combined. If we could similarly learn to treat the risk factor of aging, the health benefits would be enormous, not only for delaying fatal diseases but in delaying many nonfatal conditions such as hearing and vision loss, osteoporosis, and arthritis that degrade the quality of later life.
3 Experimental Organisms in Aging Research
3.1 Uses and Caveats in the Use of Model Organisms
For most of its history, basic aging research relied on standard laboratory animals such as fruit flies, mice, and rats. The chief advantage of these animals was that their laboratory husbandry was established and that they were short-lived. That is, rats and mice are short-lived among mammals, fruit flies are relatively short-lived among insects. Initially, basic aging research focused on describing physiological changes occurring during aging in the hope that the nature of these changes would reveal underlying aging mechanisms. Short-lived animals were useful because individuals could be monitored throughout their lives and the longevity of different
groups could be compared and contrasted. Until recently, lengthening of life was assumed to be sufficient evidence that aging had been slowed. This view has recently been questioned as will be discussed later, but it has dominated the history of experimental aging research.
After dietary restriction (DR), simply reducing the amount of available food, was discovered to lengthen life in many laboratory rats and mice, attention shifted to searching for mechanism(s) by which DR had these effects and also searching for other methods of life extension. Again, the rate limiting step for such studies was the length of the animals’ lives. But even the shortest-lived species commonly used in this research lived months (fruit flies) or years (mice and rats), and because the focus was on increasing lifespan, aging studies were particularly time-consuming compared with other areas of biomedical research.
It is important to understand why the focus so quickly fell on lengthening life rather than shortening it. In principle, understanding basic aging processes could be studied much more quickly by accelerating them rather than retarding them. The practical difficulty with this logical approach is that there are many ways to shorten animals’ lives by inducing pathological processes that may have nothing to do with normal aging processes. The problem is how would we know the difference between those aberrant pathologies and normal aging processes? This doesn’t mean that so-called accelerated aging models, which do exist, are not informative. It does mean that such models are difficult to evaluate with respect to normal aging and findings from them need to be interpreted with considerable care. For instance, the so-called Senescence Accelerated Mouse (SAM mouse) is a series of exceptionally short-lived mouse strains, created by accidental outbreeding of an AKR/J inbred strain with an unknown other strain. Despite their short lives – most live less than 1 year – they have had virtually no impact on the larger mouse aging research field, because like all so-called accelerated aging models, they replicate at best a few of the features of normal aging and the fidelity of that replication is not clear.
Experiments that lengthen life are much less problematic to interpret. Animals are unlikely to live longer if we haven’t retarded at least some normal aging process, such as the increasing susceptibility to cancer. We may not have retarded them all (however many that may be), but we must have retarded some. To verify that one had identified a mechanism regulating aging, generally, the mantra for many years was that both mean (or median) and maximum longevity must be extended. Maximum longevity is generally defined as the mean longevity of the oldest x% of the starting population, where x often equals 10 %. The focus on maximum longevity implies that ameliorating a specific disease process may impact mean longevity, but only by affecting aging itself would both the mean and the length of life of the longest-lived animals be longer. For example, if group A displays longer mean or median survival, but no difference in maximum survival than group B, then group A must have experienced higher mortality rate than group B in the latter part of life. Higher mortality late in life is not a trait that one would associate with slower aging. For this reason exercise, which consistently increases mean longevity in both rats and people [6, 7] and has manifold beneficial health-preserving effects, is not genThe Geroscience Hypothesis: Is It
Another random document with no related content on Scribd:
The Project Gutenberg eBook of Hurmioituneet kasvot
This ebook is for the use of anyone anywhere in the United States and most other parts of the world at no cost and with almost no restrictions whatsoever. You may copy it, give it away or re-use it under the terms of the Project Gutenberg License included with this ebook or online at www.gutenberg.org. If you are not located in the United States, you will have to check the laws of the country where you are located before using this eBook.
Title: Hurmioituneet kasvot Runoja
Author: Elina Vaara
Yrjö Jylhä
Olavi Paavolainen
Ilmari Pimiä
Katri Vala
Lauri Viljanen
Release date: March 23, 2024 [eBook #73239]
Language: Finnish
Original publication: Porvoo: WSOY, 1925
Credits: Tuula Temonen
HURMIOITUNEET KASVOT
Runoja Kirj.
Elina Vaara
Katri Vala
Yrjö Jylhä
Olavi Lauri
Ilmari Pimiä
Lauri Viljanen
Porvoossa, Werner Söderström Osakeyhtiö, 1925.
SISÄLLYS:
ELINA VAARA: PALMURANNAT
Netkron sadusta
Suleika I-V
Odaliski
Luutun helähdyksiä
Yö keitaalla
KATRI VALA: OLEANDERISATU
Hajuherneet
Oleanderisatu
Ihana päällikkö
Meren rannalla
Venhelaulu
Valkoiset pyhimykset
Ikävä
Syksyinen kuu
YRJÖ JYLHÄ: PAINAJAISUNTA
Tyrmästä tullut
Ad astra
Jäätynyt
Painajaisuni
Kotimatkalla
Sirkuksessa
Härkätaistelija I-II
OLAVI LAURI: RYPÄLETERTTU
Iltatähti
Aamutunnelma
Sydänpäivä
Kuuma yö
Kaukana merellä
Tummat illat
Outo serenaadi
ILMARI PIMIÄ: NÄKINKENKÄ
Akordi
Herännyt kevät
Puutarha-odotus
Kuu paistaa
Syksyinen lähtö
Pitkä ilta
Tää kukkanen
Laulu iltatähdille
Näkinkenkä
LAURI VILJANEN: TÄHTIKEINU
Ensi hyväily
Poppelit
Pilvi
Eron tuska
Laskeva aurinko
Syksyinen kukkatarha
Syksy ja kevät
Hiljaisessa metsässä
Tähtikeinu
ELINA VAARA: PALMURANNAT
NETKRON SADUSTA.
Netkron laulu.
Ma kylven aamun noustessa Niilin rannalla, kun taivas sinihehkuvana palaa. Soi pääni yllä palmujen raikas humina, ja vesiheinä polviani halaa.
Mun ruumiini on nuori ja ruusuntuoksuva, sen syleilyynsä sulkee vilpas Niili.
Ma lootuskukan lailla keinun virran laineilla, mut poskeni on polttavat kuin hiili.
Ma lootuskukan lailla keinun virran laineilla, ja tyttö valkein kaupungissa lienen, mut poskeni on punaiset, ah, pelon hurmasta: on kotka vienyt sandaalini pienen!
Pyhä lintu.
Ja kedolla juur' oikeutta jakaa ruhtinas, kun huutoon puhkee tuhatpäinen kansa: sen yllä kaartaa korppikotka, ilman valtias, ja kohu kuuluu siiveniskuistansa!
Kuin tervehtien pudottaa se pienen sandaalin
nyt maahan mahtavimman jalkain juureen, ja taivaan sineen kohoo jälleen komein kaarroksin!
Jää kansa kaikki ihmetykseen suureen.
Mut papit viisaat selittää: »Oi poika Auringon, tää ennusmerkki onnea on tuova!
Näin pyhä lintu valinnut lie sulle puolison.
Oot hänen kanssaan kulta-ajan luova.»
»Ape rek!»
Tää mistä torven toitotus ja rumpuin pauhu tuo ja huudot, jotka valtatiellä kajaa?
Käy Farao nyt viininmyöjän, muukalaisen luo.
Hän majan eteen vaunuillansa ajaa.
On kautta pyramiidein maan hän neittä etsinyt, ken sandaalin vois tuta omaksensa.
Oi Netkro, synnyinhetkelläs on tähti hymyillyt: sun ruhtinas nyt nostaa rinnallensa!
Oi Netkro, laske viiniruukku kädestäsi pois, mi liian kaunis halpaan ompi työhön.
Hän vaunuissaan sua odottaa, ei viipyvän sun sois.
Vain kiinnä kukka tummain hiustes yöhön!
SULEIKA.
I.
Minä talomme katolta kerran sun ohitse kulkevan näin, ja niinkuin erämaan palmupuu sa olit silmissäin. Tosin kertoivat köyhyydestä sun ryysyiset vaattehes, mut kuitenkin korkein haaveeni ois olla arvoises.
Sillä mustien silmäisi liekki oli ylpeä, ylhäinen. Ah, tuhkaksi palaa tahtoisin ma tulessa liekin sen! En muuta autuutta tunne, kuin että sinut nään: jos ohi talon taas et käy, ma kuolen ikävään!
II.
Joka ilta sun askeleesi mun luokseni johtavat ja raoista ristikkoportin sataa kuumat suudelmat. Mikä onni: on kolkassa muurin tuo tuuhea öljypuu. Sen ryhmyiset oksat suojellen yli päittemme kaareutuu.
Kas, tähtivalo kirkas läpi lehvien lankeaa! Sen taakse tummat kasvonsa yötaivas hunnuttaa. Sano, tyttöä lempiä
III.
voitko, jok' on huntunsa poistanut? Joka yö minä nyyhkytän vuoteellain, kun oot mua suudellut.
IV.
Minä riemusta väristen varron sitä päivää, mi valjetessaan sinut vieraaksi isäni huoneeseen tuo tytärtä anelemaan! Sinä viet minut matalaan majaan. On puutarha ympäri sen. Minä puutarhurin vaimo olen nuori, onnellinen.
Käyn aamuin kaivolla kantain saviruukkua päällä pään. Ma jauhan, leivon, askaroin ain' iltapimeään. Kukat, hedelmät, joilla ei vertaa, sinä vaalit ja korjailet. Yön tullen käymme nukkumaan kuin pesässä kyyhkyset.
V.
Oi, miksi halvan neidon näin petit, mahtavin? Et köyhä armaani ollutkaan, josta lauloin, haaveksin! Oot rikas, kultaa sulla on täynnä kammiot ja kallein helmin kivetyt sun linnasi permannot.
Tuhat vaimoa haaremissas on kaunista, kiemailevaa. Mua kaipaat hetken leluksi vain, millä ikävääs haihduttaa. Mut vaikka parvessa neitoin olen halvin, mitättömin, on puhdas lempeni liian kallis kaliifin linnaankin!
Minä koraaninlausetta silkkiin nyt kirjailen viheriään. Voi häntä, ken enää armastaan ei kohtaa eläissään! Sen poskilta punaiset valmut pian haaltuu, varisee, pois hiusten kimmel katoaa, säde silmäin himmenee.
Yks ajatus mieltäni vainoo, en rauhaa siltä saa: hänen omansa olla voisin nyt, hänen luonansa asustaa. Oi Allah, ankarasti et takana kuoleman mua tuominne, jos rintahain ma tikarin painallan!
ODALISKI.
Hän lojuu pieluksilla divaanin, ja olkapäältä liukuu silkkihiha. On huulet punaiset kuin luumun liha, mut kasvot kuultaa lailla balsamin.
Ja ikkunansa peittyin ruusuihin kuin hiillos hehkuu silmissään on viha: ei riitä niille puisto, pylväspiha, ne köynnösverkoin kietoo seraljin.
Niin tukehduttaa lemu myrhan, myskin, ja unhottunut ilmain heleyskin on tällä puolen tumman ristikon.
Ah, siellä virta välkkyy auringossa, ja täysin purjein keinuu aallokossa nyt laiva lähtövalmis, levoton —!
LUUTUN HELÄHDYKSIÄ.
Keltainen onni.
Verhottuna sitruunanväriseen silkkiin on minun tumma lemmittyni kuin auringonkukka sulttaanin suurissa puutarhoissa! Istuen jalat ristissä kultaompelein kirjaillulla matolla punaa hän kynsiään, joista jokainen on siromuotoinen ja kiiltävä kuin ihmeen pieni, soikea kuvastin.
Oletko ehtinyt laskea suudelmiani, armas?
Punainen onni.
Taivaalla paloi tulinen loimotus ja venheemme luutunsoittajineen keinui hiljaa virralla, jonka vesi oli kuin liekehtivää viiniä. Vedin pääsi puoleeni katoksen alla ja hämmästyin, sillä sinun suusi oli aivan veripunainen ja kuuma.
Kysyin syytä levottomana ja nauraen vastasit:
Olen syönyt sydämesi, rakas valtiaani!
Valkea onni.
Oletko lainkaan huomannut, että puutarhat lainehtivat tulvillaan jasmiinin valkeita kukkia?
Älä vihastu, oi minun rakas valtiaani, ymmärtämättömään orjattareesi, jos sanon, että monina unettomina öinä olen itkenyt lempemme tummaa paloa!
Emmekö nouse sen hiilloksesta, valtiaani, ennenkuin olemme tuhkaa?
Oi lausu, emmekö nyt laskeudu marmoriportaita puutarhaan, poimimaan valkeita kukkia sitoaksemme niistä köynnöksiä pylvässaleihimme!
YÖ KEITAALLA.
Kaivolta hiljaa kamelin kellot soivat.
Punaisin liekein leimuaa nuotion palo.
Jalkaisi juuressa uskollisna ma valvon, telttas on minulle armahin asuintalo.
Kaivolta hiljaa kamelin kellot soivat.
Muistatko kangastuksen kaupunkia?
Kuin sen korkeat minareetit hohti, hartain kaipuin kohoten taivahalle, niin minun sieluni halaa sinua kohti.
Muistatko kangastuksen kaupunkia?
Laulaa palmujen latvoissa tuulen humu.
Kylmä on yö, mutta poveni polttavan kuuma.
Hengitä oliivintummilta kasvoiltani suloisimpain yrttien tuoksu ja huuma!
Laulaa palmujen latvoissa tuulen humu.
KATRI VALA: OLEANDERISATU
HAJUHERNEET.
Hajuherneet, kukkani, jotka ylenette kuumassa yössä viileinä ja täynnä kuultavaa tuoksuvaa, teille tahdon sanoa salaisuuden, jota ei päivällä ole, mutta joka öisin saa minut niin väriseväksi.
Painan kasvoni poskianne vasten, te rakkaat, täynnä lempeätä hekumaa, sillä olen nyt kovin nuori ja tunnen punastuksen lyövän yli otsani: joku on suudellut olkapäitäni pitkään ja kiihkeästi.
Hymyilettekö te kaikki hievahtamattomassa yössä? En näe silmiänne, mutta tunnen hymyilynne lehahtavan kasvoilleni.
Itkien ja nauraen sukellan tuoksuvaan syliinne, ja teidän pienet kukkassuudelmanne putoavat kuumeisen ruumiini yli kuin lempeät, hiljaiset pisarat.
OLEANDERISATU.
Minä olen hyljätyn linnan pieni murheellinen neito; ja sinä olet suuri väkevä sankari kaukaa ihmeellisestä maailmasta. Ehkä olet jonkun kreikkalaisen jumalan poika.
Olemme kulkeneet koko päivän loistavassa metsässä.
Sinne on valunut sineä ja kultaa taivaalta ja putoilee yhä oleanderinkukkia.
Sinä ihana hullu, luulisi taivaan olevan viiniä täynnä! »Olet liian säteilevä tänään», sanot. »Mieluummin katson suoraan aurinkoon. Ja niin pieni olet, sopisit oikeaan käteeni!»
Ja silmäsi kääntyvät minuun täynnä jumaloivaa hellyyttä. ja minä katselen nauraen oikeaa kättäsi, väkevää ja kaunista ja minusta tuntuu, että ulottuisin suutelemaan sitä, jos nousisin varpailleni.