INSTRUCTOR’S SOLUTIONS MANUAL P ROBABILITY AND S TATISTICAL I NFERENCE TENTH EDITION
Robert V. Hogg Elliot A. Tanis Dale L. Zimmerman
The author and publisher of this book have used their best efforts in preparing this book. These efforts include the development, research, and testing of the theories and programs to determine their effectiveness. The author and publisher make no warranty of any kind, expressed or implied, with regard to these programs or the documentation contained in this book. The author and publisher shall not be liable in any event for incidental or consequential damages in connection with, or arising out of, the furnishing, performance, or use of these programs. Reproduced by Pearson from electronic files supplied by the author. Copyright © 2020, 2015, 2010 Pearson Education, Inc. Publishing as Pearson, 330 Hudson Street, NY NY 10013 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher. Printed in the United States of America.
ISBN-13: 978-0-13-518948-1 ISBN-10: 0-13-518948-9
iii
Contents Preface
v
1 Probability 1.1 Properties of Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2 Methods of Enumeration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.3 Conditional Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.4 Independent Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.5 Bayes’ Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1 1 2 3 4 5
2 Discrete Distributions 2.1 Random Variables of the Discrete Type . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2 Mathematical Expectation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.3 Special Mathematical Expectations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.4 The Binomial Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.5 The Hypergeometric Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.6 The Negative Binomial Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.7 The Poisson Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7 7 9 11 14 16 17 18
3 Continuous Distributions 3.1 Random Variables of the Continuous Type . . . . . . . . . . . . . . . . . . . . . . . . . 3.2 The Exponential, Gamma, and Chi-Square Distributions . . . . . . . . . . . . . . . . . 3.3 The Normal Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.4 Additional Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
19 19 26 28 30
4 Bivariate Distributions 4.1 Bivariate Distributions of the Discrete Type . . . . . . . . . . . . . . . . . . . . . . . . 4.2 The Correlation Coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.3 Conditional Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.4 Bivariate Distributions of the Continuous Type . . . . . . . . . . . . . . . . . . . . . . 4.5 The Bivariate Normal Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33 33 34 36 37 41
5 Distributions of Functions of Random Variables 45 5.1 Functions of One Random Variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 5.2 Transformations of Two Random Variables . . . . . . . . . . . . . . . . . . . . . . . . 47 5.3 Several Random Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 5.4 The Moment-Generating Function Technique . . . . . . . . . . . . . . . . . . . . . . . 53 5.5 Random Functions Associated with Normal Distributions . . . . . . . . . . . . . . . . 55 5.6 The Central Limit Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 5.7 Approximations for Discrete Distributions . . . . . . . . . . . . . . . . . . . . . . . . . 59 5.8 Chebyshev’s Inequality and Convergence in Probability . . . . . . . . . . . . . . . . . 61 5.9 Limiting Moment-Generating Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 62
c 2020 Pearson Education, Inc. Copyright °
iv
Contents
6 Point Estimation 6.1 Descriptive Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.2 Exploratory Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.3 Order Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.4 Maximum Likelihood Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.5 A Simple Regression Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.6 Asymptotic Distributions of Maximum Likelihood Estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.7 Sufficient Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.8 Bayesian Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
63 63 65 70 73 76
7 Interval Estimation 7.1 Confidence Intervals for Means . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.2 Confidence Intervals for the Difference of Two Means . . . . . . . . . . . . . . . . . . . 7.3 Confidence Intervals For Proportions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.4 Sample Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.5 Distribution-Free Confidence Intervals for Percentiles . . . . . . . . . . . . . . . . . . . 7.6 More Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.7 Resampling Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
87 87 88 90 91 92 93 99
81 81 84
8 Tests of Statistical Hypotheses 107 8.1 Tests About One Mean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 8.2 Tests of the Equality of Two Means . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 8.3 Tests for Variances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 8.4 Tests about Proportions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 8.5 Some Distribution-Free Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 8.6 Power of a Statistical Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 8.7 Best Critical Regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 8.8 Likelihood Ratio Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 9 More Tests 127 9.1 Chi-Square Goodness-of-Fit Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 9.2 Contingency Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 9.3 One-Factor Analysis of Variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 9.4 Two-Way Analysis of Variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 9.5 General Factorial and 2k Factorial Designs . . . . . . . . . . . . . . . . . . . . . . . . . 135 9.6 Tests Concerning Regression and Correlation . . . . . . . . . . . . . . . . . . . . . . . 136 9.7 Statistical Quality Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
c 2020 Pearson Education, Inc. Copyright °
Preface
v
Preface This solutions manual provides answers for the even-numbered exercises in Probability and Statistical Inference, tenth edition, by Robert V. Hogg, Elliot A. Tanis, and Dale L. Zimmerman. Complete solutions are given for most of these exercises. You, the instructor, may decide how many of these solutions and answers you want to make available to your students. Note that the answers for the odd-numbered exercises are given in the textbook. Our hope is that this solutions manual will be helpful to each of you in your teaching. All of the figures in this manual were generated using Maple, a computer algebra system. Most of the figures were generated and many of the solutions, especially those involving data, were solved using procedures that were written by Zaven Karian from Denison University. We thank him for providing these. These procedures are available free of charge for your use. They are available for down load at http://www.math.hope.edu/tanis/. Short descriptions of these procedures are provided on the “Maple Card.” Complete descriptions of these procedures are given in Probability and Statistics: Explorations with MAPLE, second edition, 1999, written by Zaven Karian and Elliot Tanis, published by Prentice Hall (ISBN 0-13-021536-8). You can download a slightly revised edition of this manual at http://www.math.hope.edu/tanis/MapleManual.pdf. We also want to acknowledge the many suggestions/corrections that were made by our accuracy checker, Kyle Siegrist. If you find an error or wish to make a suggestion, please send them to dale-zimmerman@uiowa.edu. These errata will be posted on http://homepage.divms.uiowa.edu/∼dzimmer/. E.A.T. D.L.Z.
c 2020 Pearson Education, Inc. Copyright °
Chapter 1 Probability
1
Chapter 1
Probability 1.1
Properties of Probability
1.1-2 Sketch a figure and fill in the probabilities of each of the disjoint sets. Let A = {insure more than one car}, P (A) = 0.85. Let B = {insure a sports car}, P (B) = 0.23.
Let C = {insure exactly one car}, P (C) = 0.15.
It is also given that P (A ∩ B) = 0.17. Since A ∩ C = φ, P (A ∩ C) = 0. It follows that
P (A ∩ B ∩ C 0 ) = 0.17. Thus P (A0 ∩ B ∩ C 0 ) = 0.06 and P (B 0 ∩ C) = 0.09.
1.1-4 (a) S = {HHHH, HHHT, HHTH, HTHH, THHH, HHTT, HTTH, TTHH, HTHT, THTH, THHT, HTTT, THTT, TTHT, TTTH, TTTT}; (b) (i) 5/16, (ii) 0, (iii) 11/16, (iv) 4/16, (v) 4/16, (vi) 9/16, (vii) 4/16. 1.1-6 (a) P (A ∪ B) = 0.5 + 0.6 − 0.4 = 0.7; (b)
A = (A ∩ B 0 ) ∪ (A ∩ B) P (A) = P (A ∩ B 0 ) + P (A ∩ B) 0.5 = P (A ∩ B 0 ) + 0.4 0 P (A ∩ B ) = 0.1;
(c) P (A0 ∪ B 0 ) = P [(A ∩ B)0 ] = 1 − P (A ∩ B) = 1 − 0.4 = 0.6. 1.1-8 Let A ={lab work done}, B ={referral to a specialist}, P (A) = 0.41, P (B) = 0.53, P ([A ∪ B]0 ) = 0.21. P (A ∪ B) = P (A) + P (B) − P (A ∩ B) 0.79 = 0.41 + 0.53 − P (A ∩ B) P (A ∩ B) = 0.41 + 0.53 − 0.79 = 0.15.
1.1-10
A∪B∪C = A ∪ (B ∪ C) P (A ∪ B ∪ C) = P (A) + P (B ∪ C) − P [A ∩ (B ∪ C)] = P (A) + P (B) + P (C) − P (B ∩ C) − P [(A ∩ B) ∪ (A ∩ C)] = P (A) + P (B) + P (C) − P (B ∩ C) − P (A ∩ B) − P (A ∩ C) + P (A ∩ B ∩ C).
1.1-12 (a) 1/3; (b) 2/3; (c) 0; (d) 1/2.
c 2020 Pearson Education, Inc. Copyright °
2
Section 1.2 Methods of Enumeration √ √ 2[r − r( 3/2)] 3 =1− . 1.1-14 P (A) = 2r 2 1.1-16 Note that the respective probabilities are p0 , p1 = p0 /4, p2 = p0 /42 , · · ·. ∞ X p0 = 1 4k k=0
p0 1 − 1/4 p0
=
1
=
3 4 15 1 = . 16 16
1 − p 0 − p1 = 1 −
1.2
Methods of Enumeration
1.2-2 (a) (4)(5)(2) = 40; (b) (2)(2)(2) = 8. µ ¶ 6 1.2-4 (a) 4 = 80; 3 (b) 4(26 ) = 256; (c)
(4 − 1 + 3)! = 20. (4 − 1)!3!
1.2-6 S ={ DDD, DDFD, DFDD, FDDD, DDFFD, DFDFD, FDDFD, DFFDD, FDFDD, FFDDD, FFF, FFDF, FDFF, DFFF FFDDF, FDFDF, DFFDF, FDDFF, DFDFF, DDFFF } so there are 20 possibilities. Note that the winning player (2 choices) must win the last set and two of the previous sets, so the number of outcomes is ·µ ¶ µ ¶ µ ¶¸ 2 3 4 2 + + = 20. 2 2 2 1.2-8 3 · 3 · 212 = 36,864. ¶ ¶ µ µ n−1 n−1 + 1.2-10 r−1 r
1.2-12
0
2
n
=
=
n! (n − r)(n − 1)! + r(n − 1)! = = = r!(n − r)! r!(n − r)! µ ¶ n n µ ¶ X X n n . (−1)r (−1)r (1)n−r = (1 − 1)n = r r r=0 r=0 n
(1 + 1) =
n µ ¶ X n r=0
µ
(n − 1)! (n − 1)! + r!(n − 1 − r)! (r − 1)!(n − r)!
=
r
r
(1) (1)
n−r
=
¶ 5 − 1 + 29 33! 1.2-14 = = 40,920. 29 29!4! ¶ µ ¶µ 19 52 − 19 102,486 6 3 µ ¶ = 0.2917; = 1.2-16 (a) 52 351,325 9
n µ ¶ X n r=0
r
.
c 2020 Pearson Education, Inc. Copyright °
µ ¶ n . r
Chapter 1 Probability µ
3
¶µ ¶µ ¶µ ¶µ ¶µ ¶µ ¶ 10 7 3 5 2 6 7,695 2 1 0 1 0 2 µ ¶ = 0.00622. = (b) 52 1,236,664 9 P5 1.2-18 (a) P (A) = n=1 (1/2)n = 1 − (1/2)5 ; P10 (b) P (B) = n=1 (1/2)n = 1 − (1/2)10 ; 19 3
(c) P (A ∪ B) = P (B) = 1 − (1/2)10 ;
(d) P (A ∩ B) = P (A) = 1 − (1/2)5 ;
(e) P (C) = P (B) − P (A) = (1/2)5 − (1/2)10 ; (f ) P (B 0 ) = 1 − P (B) = (1/2)10 .
1.3
Conditional Probability
1.3-2 (a)
1041 ; 1456
(b)
392 ; 633
(c)
649 . 823
(d) The proportion of women who favor a gun law is greater than the proportion of men who favor a gun law. 1.3-4 (a) P (HH) =
1 13 12 · = ; 52 51 17
(b) P (HC) =
13 13 13 · = ; 52 51 204
(c) P (Non-Ace Heart, Ace) + P (Ace of Hearts, Non-Heart Ace) =
12 4 1 3 51 1 · + · = = . 52 51 52 51 52 · 51 52
1.3-6 Let H ={died from heart disease}; P ={at least one parent had heart disease}. P (H | P 0 ) =
N (H ∩ P 0 ) 110 = . 0 N (P ) 648
3 2 1 1 · · = ; 20 19 18 1140 µ ¶µ ¶ 3 17 1 1 1 2 µ ¶ · (b) = ; 20 17 380 3 ¶ µ ¶µ 17 3 9 X 35 1 2 2k − 2 µ ¶ = = 0.4605; · (c) 20 20 − 2k 76 k=1 2k
1.3-8 (a)
c 2020 Pearson Education, Inc. Copyright °
4
Section 1.4 Independent Events (d) Draw second. The probability of winning is 1 − 0.4605 = 0.5395. 52 51 50 49 48 47 8,808,975 · · · · · = = 0.74141; 52 52 52 52 52 52 11,881,376 (b) P (A0 ) = 1 − P (A) = 0.25859.
1.3-10 (a) P (A) =
1.3-12 (a) It doesn’t matter because P (B1 ) = (b) P (B) =
1 2 = on each draw. 18 9
1 1 1 , P (B5 ) = , P (B18 ) = ; 18 18 18
1.3-14 (a) 5 · 4 · 3 = 60; (b) 5 · 5 · 5 = 125. 1.3-16
1.4
3 5 2 4 23 · + · = . 5 8 5 8 40
Independent Events P (A ∩ B) = P (A)P (B) = (0.3)(0.6) = 0.18; P (A ∪ B) = P (A) + P (B) − P (A ∩ B) = 0.3 + 0.6 − 0.18 = 0.72; P (A ∩ B) 0 (b) P (A|B) = = = 0. P (B) 0.6
1.4-2 (a)
1.4-4 Proof of (b): P (A0 ∩ B)
Proof of (c): P (A0 ∩ B 0 )
1.4-6
P [A ∩ (B ∩ C)]
= P (B)P (A0 |B) = P (B)[1 − P (A|B)] = P (B)[1 − P (A)] = P (B)P (A0 ). = P [(A ∪ B)0 ] = 1 − P (A ∪ B) = 1 − P (A) − P (B) + P (A ∩ B) = 1 − P (A) − P (B) + P (A)P (B) = [1 − P (A)][1 − P (B)] = P (A0 )P (B 0 ).
= P [A ∩ B ∩ C] = P (A)P (B)P (C) = P (A)P (B ∩ C).
P [A ∩ (B ∪ C)]
P [A0 ∩ (B ∩ C 0 )]
= P [(A ∩ B) ∪ (A ∩ C)] = P (A ∩ B) + P (A ∩ C) − P (A ∩ B ∩ C) = P (A)P (B) + P (A)P (C) − P (A)P (B)P (C) = P (A)[P (B) + P (C) − P (B ∩ C)] = P (A)P (B ∪ C). = P (A0 ∩ C 0 ∩ B) = P (B)[P (A0 ∩ C 0 ) | B] = P (B)[1 − P (A ∪ C | B)] = P (B)[1 − P (A ∪ C)] = P (B)P [(A ∪ C)0 ] = P (B)P (A0 ∩ C 0 ) = P (B)P (A0 )P (C 0 ) = P (A0 )P (B)P (C 0 ) = P (A0 )P (B ∩ C 0 ).
c 2020 Pearson Education, Inc. Copyright °
Chapter 1 Probability
5
P [A0 ∩ B 0 ∩ C 0 ]
1.4-8
= P [(A ∪ B ∪ C)0 ] = 1 − P (A ∪ B ∪ C) = 1 − P (A) − P (B) − P (C) + P (A)P (B) + P (A)P (C)+ P (B)P (C) − P A)P (B)P (C) = [1 − P (A)][1 − P (B)][1 − P (C)] = P (A0 )P (B 0 )P (C 0 ).
1 2 3 1 4 3 5 2 3 2 · · + · · + · · = . 6 6 6 6 6 6 6 6 6 9
9 3 3 · = ; 4 4 16 9 1 3 3 2 ; (b) · + · = 4 4 4 4 16 2 1 2 4 10 (c) · + · = . 4 4 4 4 16 µ ¶3 µ ¶2 1 1 ; 1.4-12 (a) 2 2 µ ¶3 µ ¶2 1 1 (b) ; 2 2 µ ¶3 µ ¶2 1 1 ; (c) 2 2 µ ¶3 µ ¶2 5! 1 1 (d) . 3! 2! 2 2
1.4-10 (a)
1.4-14 (a) 1 − (0.4)3 = 1 − 0.064 = 0.936;
(b) 1 − (0.4)8 = 1 − 0.00065536 = 0.99934464.
1.4-16 (a)
µ ¶2k ∞ X 1 4
k=0
(b)
5 5
=
5 ; 9
3 1 4 3 1 4 3 2 1 1 + · · + · · · · = . 5 5 4 3 5 4 3 2 1 5
1.4-18 (a) 7; (b) (1/2)7 ; (c) 63; (d) No! (1/2)63 = 1/9,223,372,036,854,775,808. 1.4-20 No. The equations that must hold are (1 − p1 )(1 − p2 ) = p1 (1 − p2 ) + p2 (1 − p1 ) = p1 p2 . There are no real solutions.
1.5
Bayes’ Theorem
1.5-2 (a)
(b)
P (G)
= P (A ∩ G) + P (B ∩ G) = P (A)P (G | A) + P (B)P (G | B) = (0.40)(0.85) + (0.60)(0.75) = 0.79;
P (A | G)
=
P (A ∩ G) P (G)
=
(0.40)(0.85) = 0.43. 0.79
c 2020 Pearson Education, Inc. Copyright °
6
Section 1.5 Bayes’ Theorem 1.5-4 Let event B denote an accident and let A1 be the event that age of the driver is 16–25. Then (0.1)(0.05) P (A1 | B) = (0.1)(0.05) + (0.55)(0.02) + (0.20)(0.03) + (0.15)(0.04) =
50 50 = = 0.179. 50 + 110 + 60 + 60 280
1.5-6 Let B be the event that the policyholder dies. Let A1 , A2 , A3 be the events that the deceased is standard, preferred and ultra-preferred, respectively. Then (0.60)(0.01) P (A1 | B) = (0.60)(0.01) + (0.30)(0.008) + (0.10)(0.007) 60 60 = = 0.659; = 60 + 24 + 7 91 24 P (A2 | B) = = 0.264; 91 7 = 0.077. P (A3 | B) = 91 1.5-8 Let A be the event that the tablet is under warranty. (0.40)(0.10) P (B1 | A) = (0.40)(0.10) + (0.30)(0.05) + (0.20)(0.03) + (0.10)(0.02) 40 40 = = 0.635; = 40 + 15 + 6 + 2 63 15 P (B2 | A) = = 0.238; 63 6 P (B3 | A) = = 0.095; 63 2 = 0.032. P (B4 | A) = 63 1.5-10 (a) P (D + ) = (0.02)(0.92) + (0.98)(0.05) = 0.0184 + 0.0490 = 0.0674; 0.0490 0.0184 (b) P (A− | D+ ) = = 0.727; P (A+ | D+ ) = = 0.273; 0.0674 0.0674 9310 (0.98)(0.95) (c) P (A− | D− ) = = = 0.998; (0.02)(0.08) + (0.98)(0.95) 16 + 9310 P (A+ | D− ) = 0.002; (d) Yes, particularly those in part (b).
1.5-12 Let D = {defective roll}. Then P (I ∩ D) P (I | D) = P (D) = = =
P (I) · P (D | I) P (I) · P (D | I) + P (II) · P (D | II) (0.60)(0.03) (0.60)(0.03) + (0.40)(0.01) 0.018 0.018 = = 0.818. 0.018 + 0.004 0.022
c 2020 Pearson Education, Inc. Copyright °
Chapter 2 Discrete Distributions
7
Chapter 2
Discrete Distributions 2.1
Random Variables of the Discrete Type
2.1-2 (a)
(b)
0.6, 0.3, f (x) = 0.1,
x = 1, x = 5, x = 10;
f(x)
0.6 0.5 0.4 0.3 0.2 0.1 1
2
3
4
5
6
7
8
9
10
x
Figure 2.1–2: A probability histogram
2.1-4 (a)
9 X
x=1
log10
µ
x+1 x
¶
=
x=1
= =
(b)
0, log10 n, F (x) = 1,
9 X
[log10 (x + 1) − log10 x]
log10 2 − log10 1 + log10 3 − log10 2 + · · · + log10 10 − log10 9
log10 10 = 1;
x < 1, n − 1 ≤ x < n, 9 ≤ x.
n = 2, 3, . . . , 9,
c 2020 Pearson Education, Inc. Copyright °
8
Section 2.1 Random Variables of the Discrete Type 2.1-6 (a) f (x) = (b)
1 , 10
x = 0, 1, 2, · · · , 9;
N ({0})/150 = 11/150 = 0.073;
N ({5})/150 = 13/150 = 0.087;
N ({2})/150 = 13/150 = 0.087;
N ({7})/150 = 16/150 = 0.107;
N ({1})/150 = 14/150 = 0.093;
N ({6})/150 = 22/150 = 0.147;
N ({3})/150 = 12/150 = 0.080;
N ({8})/150 = 18/150 = 0.120;
N ({4})/150 = 16/150 = 0.107; (c)
N ({9})/150 = 15/150 = 0.100.
f(x), h(x) 0.14 0.12 0.10 0.08 0.06 0.04 0.02 1
2
3
5
4
6
7
8
9
x
Figure 2.1–6: Michigan daily lottery digits
2.1-8 (a) f (x) = (b)
6 − |7 − x| , x = 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12; 36 f(x)
0.16 0.14 0.12 0.10 0.08 0.06 0.04 0.02 1
2
3
4
5
6
7
8
9
10 11 12
x
Figure 2.1–8: Probability histogram for the sum of a pair of dice
c 2020 Pearson Education, Inc. Copyright °
Chapter 2 Discrete Distributions
9
2.1-10 (a) The space of W is S = {0, 1, 2, 3, 4, 5, 6, 7}. 1 1 1 · = , assuming independence. 2 4 8 1 1 1 P (W = 1) = P (X = 0, Y = 1) = · = , 2 4 8 1 1 1 P (W = 2) = P (X = 2, Y = 0) = · = , 2 4 8 1 1 1 P (W = 3) = P (X = 2, Y = 1) = · = , 2 4 8 1 1 1 P (W = 4) = P (X = 0, Y = 4) = · = , 2 4 8 1 1 1 P (W = 5) = P (X = 0, Y = 5) = · = , 2 4 8 1 1 1 P (W = 6) = P (X = 2, Y = 4) = · = , 2 4 8 1 1 1 P (W = 7) = P (X = 2, Y = 5) = · = . 2 4 8 1 That is, f (w) = P (W = w) = , w ∈ S. 8 P (W = 0) = P (X = 0, Y = 0) =
(b)
f (w) 0.12 0.10 0.08 0.06 0.04 0.02 1
2
3
4
5
6
7
w
Figure 2.1–10: Probability histogram of sum of two special dice 2.1-12 Let x equal the number of orange balls and 144 − x the number of blue balls. Then x 144 − x 144 − x x x x − 1 144 − x 143 − x · + · = · + · 144 143 144 143 144 143 144 143 x2 − x + 144 · 143 − 144x − 143x + x2 = 2 · 144x − 2 · x2 x2 − 144x + 5,148 = 0 (x − 78)(x − 66) = 0 Thus there are 78 orange balls and 66 blue balls.
2.2
Mathematical Expectation µ ¶ µ ¶ µ ¶ 4 1 4 + (0) + (1) = 0; 9 9 9 µ ¶ µ ¶ µ ¶ 4 1 4 8 E(X 2 ) = (−1)2 + (0)2 + (1)2 = ; 9 9 9 9
2.2-2 E(X) = (−1)
c 2020 Pearson Education, Inc. Copyright °
10
Section 2.3 Special Mathematical Expectations E(3X 2 − 2X + 4) = 3
2.2-4
1
µ ¶ 20 8 − 2(0) + 4 = . 9 3
6 X
=
f (x) =
x=0
c
=
E(Payment)
=
2.2-6 Note that
E(X) =
¶ µ 9 1 1 1 1 1 1 +c + + + + + 10 1 2 3 4 5 6
2 ; 49 µ ¶ 1 71 2 1 1 1 1 1· +2· +3· +4· +5· = units. 49 2 3 4 5 6 490
∞ 6 6 X 1 6 π2 = = 2 = 1, so this is a pdf. 2 2 2 2 π x π x=1 x π 6 x=1 ∞ X
∞ X
x
x=1
∞
6 X 1 6 = 2 = +∞ 2 2 π x π x=1 x
and it is well known that the sum of this harmonic series is not finite.
2.2-8 E(|X − c|) = When c = 5,
1X |x − c|, where S = {1, 2, 3, 5, 15, 25, 50}. 7
E(|X − 5|) =
x∈S
1 [(5 − 1) + (5 − 2) + (5 − 3) + (5 − 5) + (15 − 5) + (25 − 5) + (50 − 5)] . 7
If c is either increased or decreased by 1, this expectation is increased by 1/7. Thus c = 5, the median, minimizes this expectation while b = E(X) = 101/7 minimizes E[(X − b) 2 ].
2.2-10 (1) ·
21 −6 −1 15 + (−1) · = = ; 36 36 36 6
(1) ·
15 21 −6 −1 + (−1) · = = ; 36 36 36 6
(4) ·
6 30 −6 −1 + (−1) · = = . 36 36 36 6
2.2-12 (a) The average class size is (b)
0.4, 0.3, f (x) = 0.3,
(16)(25) + (3)(100) + (1)(300) = 50; 20
x = 25, x = 100, x = 300;
(c) E(X) = 25(0.4) + 100(0.3) + 300(0.3) = 130.
c 2020 Pearson Education, Inc. Copyright °
Chapter 2 Discrete Distributions
2.3
11
Special Mathematical Expectations
2.3-2 (a)
µ
=
E(X) 3 X x =
= = E[X(X − 1)]
= = =
σ2
= = =
(b)
µ
=
µ ¶x µ ¶3−x 3! 1 3 x! (3 − x)! 4 4 x=1 µ ¶X µ ¶k µ ¶2−k 2 1 1 3 2! 3 4 k! (2 − k)! 4 4 k=0 ¶2 µ ¶µ 1 3 3 1 + = ; 3 4 4 4 4 µ ¶x µ ¶3−x 3 X 3! 1 3 x(x − 1) x! (3 − x)! 4 4 x=2 µ ¶2 µ ¶3 1 3 1 2(3) +6 4 4 4 µ ¶2 µ ¶µ ¶ 3 1 1 ; 6 =2 4 4 4 E[X(X − 1)] + E(X) − µ2 µ ¶µ ¶ µ ¶ µ ¶2 3 1 3 3 (2) + − 4 4 4 4 µ ¶µ ¶ µ ¶µ ¶ µ ¶µ ¶ 3 1 3 1 1 3 (2) + =3 ; 4 4 4 4 4 4
E(X) 4 X x =
= =
µ ¶x µ ¶4−x 4! 1 1 x! (4 − x)! 2 2 x=1 µ ¶k µ ¶3−k µ ¶X 3 1 1 1 3! 4 2 k! (3 − k)! 2 2 k=0 µ ¶µ ¶3 1 1 1 4 + = 2; 2 2 2
E[X(X − 1)]
= = =
σ2
=
µ ¶x µ ¶4−x 1 1 4! x! (4 − x)! 2 2 x=2 µ ¶4 µ ¶4 µ ¶4 1 1 1 + (6)(4) + (12) 2(6) 2 2 2 µ ¶4 µ ¶2 1 1 48 = 12 ; 2 2 µ ¶2 µ ¶2 1 4 4 (12) + − = 1. 2 2 2 4 X
x(x − 1)
2.3-4 E[(X − µ)/σ] = (1/σ)[E(X) − µ] = (1/σ)(µ − µ) = 0; E{[(X − µ)/σ]2 } = (1/σ 2 )E[(X − µ)2 ] = (1/σ 2 )(σ 2 ) = 1. 2.3-6 f (1) =
2 3 3 , f (2) = , f (3) = , 8 8 8
c 2020 Pearson Education, Inc. Copyright °
12
Section 2.3 Special Mathematical Expectations 3 2 3 + 2 · + 3 · = 2, 8 8 8 3 2 3 3 σ 2 = 12 · + 22 · + 32 · − 22 = . 8 8 8 4 µ=1·
2.3-8
E(X)
=
4 X
x·
4 X
x2 ·
x=1
50 = 3.125; 16
= E(X 2 )
=
x=1
=
σ
=
2x − 1 16
85 ; 8
= Var(X)
2x − 1 16
µ ¶2 85 25 55 − = 0.8594; = 8 8 64 √ 55 = 0.9270. 8
2.3-10 µ = E(X) = (−5)(1/16) + (−1)(5/8) + (3)(5/16) = 0 so E[(X −µ)3 ] = E(X 3 ) = (−5)3 (1/16)+(−1)3 (5/8)+(33 )(5/16) = (−125−10+135)/16 = 0. Thus the index of skewness likewise equals 0. The distribution is not symmetric, however.
2.3-12 (a) f (x) = (b)
(c)
µ
µ
=
σ2
=
σ
=
364 365
¶x−1 µ
1 365
¶
,
x = 1, 2, 3, . . . ;
1 = 365, 1 365 364 365 = 132,860, µ ¶2 1 365 364.500;
P (X > 400)
=
P (X < 300)
=
¶400 364 = 0.3337, 365 µ ¶299 364 1− = 0.5597. 365 µ
2.3-14 P (X ≥ 100) = P (X > 99) = (0.99)99 = 0.3697. 2.3-16 (a) f (x) = (1/2)x−1 , x = 2, 3, 4, . . .; (b)
M (t)
=
tx
E[e ] = ∞ X
∞ X
etx (1/2)x−1
x=2
(et /2)x
=
2
=
e2t 2(et /2)2 = , 1 − et /2 2 − et
x=2
t < ln 2;
c 2020 Pearson Education, Inc. Copyright °
Chapter 2 Discrete Distributions
(c)
M 0 (t)
=
µ
=
M 00 (t)
=
σ2
=
13
4e2t − e3t (2 − et )2 M 0 (0) = 3; (2 − et )2 (8e2t − 3e3t ) − (4e2t − e3t )2 ∗ (2 − et )(−et ) (2 − et )4 00 2 M (0) − µ = 11 − 9 = 2;
(d) (i) P (X ≤ 3) = 3/4; (ii) P (X ≥ 5) = 1/8; (iii) P (X = 3) = 1/4. 2.3-18
P (X > k + j | X > k)
=
P (X > k + j) P (X > k)
=
q k+j = q j = P (X > j). qk
2.3-20 (a) Construct a square in the first quadrant with lengths of sides equal to one. Within this square construct squares with one vertex at the origin and side lengths equal to 1 − 1/2x ; ¶2 µ ¶2 µ 1 (2x−1 − 1)2 (2x − 1)2 1 = − (b) f (x) = 1 − x − 1 − x−1 2 2 22x 22x−2 =
(2x − 1)2 22 (2x−1 − 1)2 (2x − 1)2 (2x − 2)2 − = − 22x 22x 22x 22x
2x+1 − 3 22x − 2 · 2x + 1 − 22x + 22 · 2x − 4 = , x = 1, 2, 3, . . . ; 2x 2 22x ¸ X ¸ ∞ · x+1 ∞ · X 3 3 3/4 4/4 2 2 · 2x (c) − − − = 2 − 1 = 1; = = 2x 2x 2x x 2 2 2 4 1 − 1/2 1 − 1/4 x=1 x=1 =
(d) M (t) = E(e
tX
)=
∞ X
e
tx
x=1
(e)
M 0 (t)
µ (f )
M 00 (t)
σ2
¸ ∞ · 3(etx) 2et 3et 2x+1 − 3 X 2(2et )x = − = − ; · 22x 4x 4x 2 − et 4 − et x=1
=
4et − 2e2t + 2e2t 12et − 3e2t + 3e2t − t 2 (2 − e ) (4 − et )2
=
12et 4et − t 2 (2 − e ) (4 − et )2
=
M 0 (0) = 4 − =
=
12 8 = ; 9 3
(2 − et )2 · 4et − 4et − 4et · 2(2 − et )(−et ) − (2 − et )4 (4 − et )2 · 12et − 12et − 12et · 2(4 − et )(−et ) (4 − et )4 µ ¶2 8 4 + 8 108 + 72 8 00 2 − − M (0) − µ = = . 1 81 3 3
c 2020 Pearson Education, Inc. Copyright °
14
Section 2.4 The Binomial Distribution
2.4
The Binomial Distribution 11 7 , f (1) = ; 18 18 11 7 4 µ = (−1) + (1) =− ; 18 18 18 ¶2 µ ¶ µ ¶2 µ ¶ µ 11 7 4 77 4 . + 1+ = σ 2 = −1 + 18 18 18 18 81
2.4-2 f (−1) =
The variance can also be computed by noting that X 2 = 1 so µ ¶2 4 77 2 2 σ =1−µ =1− − . = 18 81
2.4-4 (a) X is b(7, 0.15); (b)
(i)
P (X ≥ 2)
=
1 − P (X ≤ 1) = 1 − 0.7166 = 0.2834;
(ii)
P (X = 1)
=
P (X ≤ 1) − P (X ≤ 0) = 0.7166 − 0.3206 = 0.3960;
(iii)
P (X ≤ 3)
=
0.9879.
2.4-6 (a) X is b(15, 0.75);
15 − X is b(15, 0.25);
(b) P (X ≥ 10) = P (15 − X ≤ 5) = 0.8516;
(c) P (X ≤ 10) = P (15 − X ≥ 5) = 1 − P (15 − X ≤ 4) = 1 − 0.6865 = 0.3135;
(d) P (X = 10) = P (X ≥ 10) − P (X ≥ 11) = P (15 − X ≤ 5) − P (15 − X ≤ 4) = 0.8516 − 0.6865 = 0.1651; √ (e) µ = (15)(0.75) = 11.25, σ 2 = (15)(0.75)(0.25) = 2.8125; σ = 2.8125 = 1.67705. 2.4-8 (a) 1 − 0.014 = 0.99999999;
(b) 0.994 = 0.960596.
2.4-10 (a) X is b(8, 0.90); (b)
(i)
P (X = 8)
=
P (8 − X = 0) = 0.4305;
(ii)
P (X ≤ 6)
=
P (8 − X ≥ 2)
=
1 − P (8 − X ≤ 1) = 1 − 0.8131 = 0.1869;
=
P (8 − X ≤ 2) = 0.9619.
(iii) P (X ≥ 6) 2.4-12 (a)
f (x) =
(b)
µ σ2 σ
125/216, 75/216,
x = −1, x = 1,
15/216,
x = 2,
1/216,
x = 3;
125 75 15 1 17 + (1) · + (2) · + (3) · = − ; 216 216 216 216 216 µ ¶2 269 17 = E(X 2 ) − µ2 = − − = 1.2392; 216 216 = 1.11;
=
(−1) ·
c 2020 Pearson Education, Inc. Copyright °
Chapter 2 Discrete Distributions
15
(c) See Figure 2.4-12. f(x)
0.5 0.4 0.3 0.2 0.1 –1
1
2
3
x
Figure 2.4–12: Losses in chuck-a-luck 2.4-14 Let X equal the number of winning tickets when n tickets are purchased. Then P (X ≥ 1)
(a)
1 − P (X = 0) µ ¶n 9 = 1− . 10
=
1 − (0.9)n
=
0.50
(0.9)n
=
0.50
n ln 0.9
=
ln 0.5
n
=
ln 0.5 = 6.58 ln 0.9
1 − (0.9)n
=
0.95
(0.9)n
=
0.05
n
=
ln 0.05 = 28.43 ln 0.9
so n = 7; (b)
so n = 29.
2.4-16 It is given that X is b(10, 0.10). We are to find M so that P (1000X ≤ M ) ≥ 0.99) or P (X ≤ M/1000) ≥ 0.99. From Appendix Table II, P (X ≤ 4) = 0.9984 > 0.99. Thus M/1000 = 4 or M = 4000 dollars.
2.4-18 Let X equal the number of infected individuals. X is b(5, 0.05). The expected number of tests is 1 P (X = 0) + 6 P (X > 0) = 1 (0.7738) + 6 (1 − 0.7738) = 2.131. 2.4-20 (a) (i) b(5, 0.7); (ii) µ = 3.5, σ 2 = 1.05; (iii) 0.1607; (b) (i) geometric, p = 0.3; (ii) µ = 10/3, σ 2 = 70/9; (iii) 0.51; (c) (i) Bernoulli, p = 0.55; (ii) µ = 0.55, σ 2 = 0.2475; (iii) 0.55;
c 2020 Pearson Education, Inc. Copyright °
16
Section 2.5 The Hypergeometric Distribution (d) (ii) µ = 2.1, σ 2 = 0.89; (iii) 0.7; (e) (i) discrete uniform on 1, 2, . . . , 10; (ii) 5.5, 8.25; (iii) 0.2.
2.5
The Hypergeometric Distribution
µ ¶µ ¶ 4 4 1 4 0 µ ¶ = 2.5-2 (a) ; 8 70 4 µ ¶µ ¶ 4 4 2 4 0 (b) 2 µ ¶ = . 8 70 4
µ ¶µ ¶ 3 17 91 137 0 5 2.5-4 P (X ≥ 1) = 1 − P (X = 0) = 1 − µ ¶ = 1 − = = 0.60. 20 228 228 5 2.5-6 We have N = N1 + N2 . Thus E[X(X − 1)]
=
n X
x=0
=
=
n X
x=2
x(x − 1)f (x) x(x − 1)
N1 ! N2 ! · x! (N1 − x)! (n − x)! (N2 − n + x)! µ ¶ N n
n X
(N1 − 2)! N2 ! · (x − 2)! (N − x)! (n − x)! (N 1 2 − n + x)! µ ¶ . N1 (N1 − 1) x=2 N n
In the summation, let k = x − 2, and in the denominator, note that ¶ µ ¶ µ N! N (N − 1) N − 2 N = = . n n!(N − n)! n(n − 1) n − 2 Thus
E[X(X − 1)]
=
=
n−2 X
N1 (N1 − 1) N (N − 1) k=0 n(n − 1)
µ
¶µ ¶ N2 N1 − 2 k n−2−k µ ¶ N −2 n−2
N1 (N1 − 1)(n)(n − 1) . N (N − 1)
µ ¶µ ¶ 5 65 1 1 0 5 µ ¶ · = ; 2.5-8 (a) 70 25 302,575,350 5
c 2020 Pearson Education, Inc. Copyright °
Chapter 2 Discrete Distributions
17
µ ¶µ ¶ 5 65 24 24 5 0 µ ¶ · = ; (b) 70 25 302,575,350 5 µ ¶µ ¶ 5 65 1 325 1 4 µ ¶ · (c) = ; 70 25 302,575,350 5
µ ¶µ ¶ 5 65 7,800 24 1 4 µ ¶ · (d) = ; 70 25 302,575,350 5 µ ¶µ ¶ 5 65 8,259,888 1 0 5 µ ¶ · = . (e) 70 25 302,575,350 5
2.5-10 (a) P (2, 1, 6, 10) means that 2 is in position 1 so 1 cannot be selected. Thus µ ¶µ ¶µ ¶ 1 1 8 4 56 0 1 5 µ ¶ P (2, 1, 6, 10) = = ; = 10 210 15 6 ¶ ¶µ ¶µ µ i−1 1 n−i r−1 1 k−r µ ¶ (b) P (i, r, k, n) = . n k
2.6
The Negative Binomial Distribution
2.6-2
µ
10 − 1 5−1
¶µ ¶5 µ ¶5 1 63 126 1 = . = 2 2 1024 512
2.6-4 Let “being missed” be a success and let X equal the number of trials until the first success. Then p = 0.01. P (X ≤ 50) = 1 − 0.9950 = 1 − 0.605 = 0.395. 2.6-6 (a)
(b)
= ln(1 − p + pet ), ¸ · pet R0 (t) = = p, 1 − p + pet t=0 · ¸ (1 − p + pet )(pet ) − (pet )(pet ) 00 R (t) = = p(1 − p); (1 − p + pet )2 t=0 R(t)
= n ln(1 − p + pet ), ¸ · npet 0 R (t) = = np, 1 − p + pet t=0 ¸ · (1 − p + pet )(pet ) − (pet )(pet ) 00 = np(1 − p); R (t) = n (1 − p + pet )2 t=0 R(t)
c 2020 Pearson Education, Inc. Copyright °
18
The Poisson Distribution (c)
R(t) R0 (t)
ln p + t − ln[1 − (1 − p)et ], · ¸ 1−p (1 − p)et 1 = 1+ = 1+ = , 1 − (1 − p)et t=0 p p
=
R00 (t)
=
R(t)
=
(d)
R0 (t) R00 (t)
£
¤ 1−p ; (−1){1 − (1 − p)et }2 {−(1 − p)et } t=0 = p2
r [ln p + t − ln{1 − (1 − p)et }] , ¸ · r 1 = , = r 1 − (1 − p)et t=0 p =
£ ¤ r(1 − p) . r (−1){1 − (1 − p)et }−2 {−(1 − p)et } t=0 = p2
2.6-8 (0.7)(0.7)(0.3) = 0.147.
2.6-10 (a) Let X equal the number of boxes that must be purchased. Then 10 X 1 = 29.29; E(X) = (11 − x)/10 x=1 (b)
2.7
100 · E(X) ≈ 8 years. 365
The Poisson Distribution
2.7-2 λ = µ = σ 2 = 3 so P (X = 2) = 0.423 − 0.199 = 0.224. 2.7-4
λ1 e−λ 1! −λ e λ(λ − 6) 3
λ2 e−λ 2! 0
= =
λ = 6 Thus P (X = 4) = 0.285 − 0.151 = 0.134. 2.7-6
t
M (t)
=
eλ(e −1) ,
M 0 (t)
=
eλ(e −1) λet ,
M 00 (t)
=
eλ(e −1) λ2 e2t + eλ(e −1) λet ,
M 000 (t)
=
E(X 3 )
=
eλ(e −1) λ3 e3t + eλ(e −1) λ2 · 2e2t + eλ(e −1) λ2 e2t + eλ(e −1) λet ,
γ
=
t
t
t
t
t
t
t
M 000 (0) = λ3 + 3λ2 + λ,
√ [λ3 + 3λ2 + λ − λ3 − 3λ(λ + λ2 ) + 3λ2 · λ]/λ3/2 = 1/ λ.
Thus the index of skewness is positive. As λ increases, the index of skewness deceases to zero. 2.7-8 np = 1000(0.005) = 5, (a) P (X ≤ 1) ≈ 0.040;
(b) P (X = 4, 5, 6) = P (X ≤ 6) − P (X ≤ 3) ≈ 0.762 − 0.265 = 0.497. √ 2.7-10 σ = 9 = 3, P (3 < X < 15) = P (X ≤ 14) − P (X ≤ 3) = 0.959 − 0.021 = 0.938. 2.7-12 Since E(X) = 0.2, the expected loss is (0.2)($100,000) = $2,000.
c 2020 Pearson Education, Inc. Copyright °
Chapter 3 Continuous Distributions
19
Chapter 3
Continuous Distributions 3.1
Random Variables of the Continuous Type R1
c ⇒ c = 6; 6 £ ¤0.6 R 0.6 (b) P (0.3 < X < 0.6) = 0.3 6(x − x2 ) dx = 3x2 − 2x3 0.3 = 0.432; Rπ (c) 0 0.50 6(x − x2 ) dx = 1/2 ⇒ π0.50 = 1/2.
3.1–2 (a)
0
c · (x − x2 ) dx =
3.1–4 X is U (4, 5);
(b) σ 2 = 1/12; (c) 0.5. Z 200 Z n 1 1 dx + [n − 5(x − n)] dx 3.1–6 E(profit) = [x − 0.5(n − x)] 200 200 n 0 · ¸n · ¸200 1 1 x2 (n − x)2 5x2 + = + 6nx − 200 2 4 200 2 n 0 ¤ 1 £ = −3.25n2 + 1200n − 100000 200 1 derivative = [−6.5n + 1200] = 0 200 1200 n = ≈ 185. 6.5 Z c 3.1–8 (a) (i) x3 /4 dx = 1 (a) µ = 9/2;
0
c4 /16
c (ii) F (x)
=
=
1
= 2; Z x f (t) dt −∞
=
Z x
t3 /4 dt
0
= 0, x4 /16, F (x) = 1,
x4 /16, −∞ < x < 0, 0 ≤ x < 2, 2 ≤ x < ∞;
c 2020 Pearson Education, Inc. Copyright °
20
Section 3.1 Random Variables of the Continuous Type
(iii) F(x)
f(x) 2.0
1.0
1.5
0.75
1.0
0.5
0.5
0.25
0.4
0.8
1.2
1.6
x
2.0
0.4
0.8
1.2
1.6
2.0
x
Figure 3.1–8: (a) Continuous distribution pdf and cdf
(iv)
µ
=
Z 2
(x)(x3 /4) dx =
8 ; 5
(x2 )(x3 /4) dx =
8 ; 3
0
E(X 2 )
=
Z 2 0
(b) (i)
Z c
σ2
=
γ
=
µ ¶2 8 8 8 − ; = 3 5 75 R2 3 3 √ √ x x /4 dx − 3 · (8/5) · (8/75) − (8/5)3 3 8 75 0 = − = − 1.04978; 70 (8/75)3/2
(3/16)x2 dx =
1
c3 /8
=
1
c Z x
=
2;
−c
(ii) F (x)
=
f (t) dt
−∞
=
Z x
(3/16)t2 dt
−2
=
· 3 ¸x t 16 −2
=
x3 1 + , 16 2
0, x3 1 + , F (x) = 16 2 1,
−∞ < x < −2, −2 ≤ x < 2, 2 ≤ x < ∞;
c 2020 Pearson Education, Inc. Copyright °
Chapter 3 Continuous Distributions
21
(iii)
–2
f(x) 1.0
F(x) 1.0
0.8
0.8
0.6
0.6
0.4
0.4
0.2
0.2
–1
1
2
x
–2
–1
1
Figure 3.1–8: (b) Continuous distribution pdf and cdf
(iv)
µ σ2
= =
Z 2
(x)(3/16)(x2 ) dx = 0;
−2 Z 2 −2
(c) (i)
R2
−2
(x2 )(3/16)(x2 ) dx =
x3 (3/16)x2 dx − 3 · (0) · (12/5) − 03
γ
=
Z 1
c √ dx = 1 x 2c = 1
0
c
12 ; 5
(12/5)3/2
=
= 0;
1/2.
The pdf in part (c) is unbounded. Z x f (t) dt (ii) F (x) = −∞
=
Z x
1 √ dt 0 2 t h√ ix √ t = x,
= 0, √ x, F (x) = 1,
0
−∞ < x < 0,
0 ≤ x < 1, 1 ≤ x < ∞;
c 2020 Pearson Education, Inc. Copyright °
2
x
22
Section 3.1 Random Variables of the Continuous Type (iii)
f(x) 2.0
–0.2
F(x) 1.0
1.5
0.75
1.0
0.5
0.5
0.25
0.2
0.4
0.6
1
0.8
x 1.2
0.2
0.4
0.6
0.8
1.0
x
Figure 3.1–8: (c) Continuous distribution pdf and cdf (iv)
3.1–10 (a)
µ
=
E(X 2 )
=
σ2
=
γ
=
Z ∞
c dx 2 x 1 · ¸∞ −c x 1
(b) E(X) =
Z 1
√ 1 (x)(1/2)/ x dx = ; 3 0 Z 1 √ 1 (x2 )(1/2)/ x dx = ; 5 0 µ ¶2 1 1 4 − = ; 5 3 45 R1 3 √ √ x /(2 x ) dx − 3 · (1/3) · (4/45) − (1/3)3 2 45 0 = = 0.63888. 21 (4/45)3/2
=
1
=
1
c
=
1;
Z ∞
x ∞ dx = [ln x]1 , which is unbounded. x2
1
c 2020 Pearson Education, Inc. Copyright °
Chapter 3 Continuous Distributions
23
0, (x3 + 1)/2, F (x) = 1,
3.1–12 (a)
−∞ < x < −1, −1 ≤ x < 1, 1 ≤ x < ∞; F(x)
f(x)
1.0
1.4 1.2
0.75
1.0 0.8
0.5
0.6 0.4
0.25
0.2 –1.0
–0.6
–0.2
0.2
0.6
1.0
x
–1.0 –0.75–0.50–0.25
0.25 0.5 0.75 1.0
x
Figure 3.1–12: (a) f (x) = (3/2)x2 and F (x) = (x3 + 1)/2
0, (x + 1)/2, F (x) = 1,
(b)
–1.0
–0.6
−∞ < x < −1, −1 ≤ x < 1, 1 ≤ x < ∞;
f(x) 1.0
F(x) 1.0
0.8
0.8
0.6
0.6
0.4
0.4
0.2
0.2
–0.2
0.2
0.6
1.0
x
–1.0
–0.6
–0.2
Figure 3.1–12: (b) f (x) = 1/2 and F (x) = (x + 1)/2
c 2020 Pearson Education, Inc. Copyright °
0.2
0.6
1.0
x
24
Section 3.1 Random Variables of the Continuous Type (c)
F (x) =
f(x) 1.0
–1.0
–0.6
0, (x + 1)2 /2,
−∞ < x < −1, −1 ≤ x < 0,
1 − (1 − x) /2, 1, 2
0 ≤ x < 1, 1 ≤ x < ∞; F(x) 1.0
0.8
0.8
0.6
0.6
0.4
0.4
0.2
0.2
–0.2
0.2
0.6
x
1.0
–1.0
–0.6
–0.2
Figure 3.1–12: (c) f (x) and F (x) for Exercise 3.1-12(c) 3.1–14 (a) σ 2 = (b) (c)
R1
x2 (3/2)x2 dx = 3/5 = 0.6; −1 R1 σ 2 = −1 x2 (1/2) dx = 1/3 = 0.333; R0 R1 σ 2 = −1 x2 (x + 1) dx + 0 x2 (1 − x) dx = 1/6 = 0.1667.
3.1–16 F (x) = (x + 1)2 /4,
−1 < x < 1.
(a) F (π0.64 ) = (π0.64 + 1)2 /4 π0.64 + 1
=
0.64 √ 2.56
π0.64
=
0.6;
2
(b) (π0.25 + 1) /4
=
π0.25 + 1
=
0.25 √ 1.00
π0.25
=
0;
2
(c) (π0.81 + 1) /4
=
π0.81 + 1
=
0.81 √ 3.24
π0.81
=
0.8.
=
c 2020 Pearson Education, Inc. Copyright °
0.2
0.6
1.0
x
Chapter 3 Continuous Distributions
25
3.1–18 (b)
0, x , 2 1 F (x) = , 2 x 1 − 2 2 1,
−∞ < x ≤ 0, 0 < x ≤ 1, 1 < x ≤ 2, 2 ≤ x < 3, 3 ≤ x < ∞;
f(x) 1.0
F(x) 1.0
0.8
0.8
0.6
0.6
0.4
0.4
0.2
0.2 0.5
1.0
1.5
2.0
2.5
3.0
x
0.5
1.0
1.5
Figure 3.1–18: f (x) and F (x) for Exercise 3.1-18(a) and (b) (c)
q1 2 q1
=
0.25
=
0.5;
(d) 1 ≤ m ≤ 2, not unique; (e)
3.1–20 (a)
q3 1 − 2 2 q3 2
=
0.75
5 4 5 . q3 = 2 Z 1 Z ∞ c x dx + dx = 1 x3 0 1 · 2 ¸1 h x c i∞ = 1 − 2 0 2x2 1 1 c + = 1 2 2 =
c (b) E(X) =
Z 1 0
x2 dx +
Z ∞ 1
=
1;
1 4 dx = ; 2 x 3
(c) the variance does not exist;
c 2020 Pearson Education, Inc. Copyright °
2.0
2.5
3.0
x
26
Section 3.2 The Exponential, Gamma, and Chi-Square Distributions
(d) P (1/2 ≤ X ≤ 2) =
Z 1
x dx +
1/2
Z 2 1
1 3 dx = . x3 4
(e) Since the median of this distribution is 1, π.82 must be greater than 1. Thus solve £ ¤π.82 Rπ 2 0.82 − 0.5 = 1 .82 (1/x3 ) dx = −(1/2x2 ) 1 = [1 − (1/π.82 )]/2 2 ⇒ 1 − (1/π.82 )
3.2
2 0.64 ⇒ 1/π.82 = 0.36 ⇒ π.82 = 1/(0.6) = 5/3.
=
The Exponential, Gamma, and Chi-Square Distributions
µ ¶ 2 −2x/3 3.2–2 (a) f (x) = e , 0 ≤ x < ∞; 3 Z ∞ h i∞ 2 −2x/3 (b) P (X > 2) = e dx = −e−2x/3 = e−4/3 . 3 2 2 3.2–4 Let F (x) = P (X ≤ x). Then P (X > x + y | X > x)
=
P (X > y)
1 − F (x + y) = 1 − F (y). 1 − F (x) That is, with g(x) = 1 − F (x), g(x + y) = g(x)g(y). This functional equation implies that 1 − F (x) = g(x) = acx = e(cx) ln a = ebx where b = c ln a. That is, F (x) = 1 − ebx . Since F (∞) = 1, b must be negative, say b = −λ with λ > 0. Thus F (x) = 1 − e−λx , 0 ≤ x, the distribution function of an exponential distribution. Z ∞ 3 −3x/100 e dx 3.2–6 (a) P (X > 40) = 100 40 £ ¤∞ = −e−3x/100 40 = e−1.2 ; (b) Flaws occur randomly so we are observing a Poisson process. 3.2–8 Either use integration by parts or F (x)
=
P (X ≤ x)
=
1−
α−1 X k=0
(λx)k e−λx . k!
Thus, with λ = 1/θ = 1/4 and α = 2, µ ¶ 5 −5/4 −5/4 e P (X < 5) = 1 − e − 4 = 0.35536. 3.2–10 The moment generating function of X is M (t) = (1 − θt)−α , t < 1/θ. Thus M 0 (t)
=
αθ(1 − θt)−α−1
M 00 (t)
=
α(α + 1)θ 2 (1 − θt)−α−2 .
The mean and variance are
c 2020 Pearson Education, Inc. Copyright °
Chapter 3 Continuous Distributions
27
µ
= M 0 (0) = αθ
σ2
= M 00 (0) − (αθ)2 = α(α + 1)θ 2 − (αθ)2 = αθ 2 .
3.2–12 (a) W has a gamma distribution with α = 7, θ = 1/16. (b) Using Table III in the Appendix, P (W ≤ 0.5)
= =
1−
6 X 8k e−8
k=0
k!
1 − 0.313 = 0.687,
because here λw = (16)(0.5) = 8. 3.2–14 a = 5.226, b = 21.03. 3.2–16 Note that λ = 5/10 = 1/2 is the mean number of arrivals per minute. Thus θ = 2 and the pdf of the waiting time before the eighth toll is 1 f (x) = x8−1 e−x/2 Γ(8)28 1 µ ¶ x16/2−1 e−x/2 , 0 < x < ∞, = 16 16/2 Γ 2 2 the pdf of a chi-square distribution with r = 16 degrees of freedom. Using Table IV, P (X > 26.30) = 0.05. 3.2–18 Note that X = 80 + Y where Y has a gamma distribution with shape parameter 2 and scale parameter 50. (a) E(X) = 80 + E(Y ) = 80 + 2 · 50 = 180 and Var(X) = Var(Y ) = 2 · 502 = 5000;
(b) The same calculus argument shows that the median of the gamma distribution in general is (α − 1)θ. So the median is X is 80 + (1)50 = 130; (c) P (X < 200) = P (Y < 120) = 0.6916 using tables or computer software or calculus: · ¸200 Z 200 x − 80 −(x−80)/50 x − 80 −(x−80)/50 −(x−80)/50 e dx = − e −e 502 50 80 80
3.2–20
E[v(T )]
= = = =
Z 3
=
−120 −120/50 e − e−120/50 + 1 50
=
1−
0
100(23−t − 1)e−t/5 /5dt
0
−20e−t/5 dt + 100
Z 3
Z 3
17 −12/5 e = 0.6916 = 69.16%. 5
e(3−t) ln 2 e−t/5 /5dt
0
−100(1 − e−0.6 ) + 100e3 ln 2
Z 3
·
e−t ln 2 e−t/5 /5dt
0
−100(1 − e−0.6 ) + 100e3 ln 2 −
e−(ln 2+0.2)t ln 2 + 0.2
¸3 0
c 2020 Pearson Education, Inc. Copyright °
= $121.734.
28
Section 3.3 The Normal Distribution M 0 (t)
=
M 00 (t)
=
M 000 (t)
=
3.2–22
r , (1 − 2t)(r/2)+1 r(r + 2) , (1 − 2t)(r/2)+2 r(r + 2)(r + 4) ⇒ E(X 3 ) = M 000 (0) = r(r + 2)(r + 4). (1 − 2t)(r/2)+3
Thus E[(X − µ)3 ] = E(X 3 ) − 3µσ 2 − µ3 = r(r + 2)(r + 4) − 3(r)(2r) − r 3 = 8r, so 8r γ= = (2r)3/2
r
8 , r
which decreases as r increases.
3.3
The Normal Distribution
3.3–2 (a) 0.2823:
(b) 0.4931;
(c) 0.2474;
(d) 0.0536;
(e) 0.1038;
(f ) 0.3174;
(g) 0.0456;
(h) 0.0026.
3.3–4 (a) 1.282;
(b)−1.645;
(c) −1.66;
(d) −1.82.
2
3.3–6 M (t) = e166t+400t /2 , − ∞ < t < ∞, so (a) µ = 166;
(b) σ 2 = 400;
(c) P (170 < X < 200) = P (0.2 < Z < 1.7) = 0.3761; (d) P (148 ≤ X ≤ 172) = P (−0.9 ≤ Z ≤ 0.3) = 0.4338. 3.3–8 We must solve f 00 (x) = 0. We have √ ln f (x) = − ln( 2π σ) − (x − µ)2 /2σ 2 , f 0 (x) f (x)
f (x)f 00 (x) − [f 0 (x)]2 [f (x)]2 f 00 (x) (x − µ)2 σ4 x−µ
=
−2(x − µ) 2σ 2
−1 σ2 ½ · 0 ¸¾ −1 f (x) + = 0 = f (x) σ2 f (x) 1 = σ2 = ±σ or x = µ ± σ. =
Here is an alternative solution: 2 1 φ(z) = √ e−z /2 2π φ0 (z) = −zφ(z) φ00 (z)
=
00
=
φ (z)
−φ(z) + z 2 φ(z)
0 ⇒ −1 + z 2 = 0 ⇒ z = ±1,
the inflection points. Now let
c 2020 Pearson Education, Inc. Copyright °
Chapter 3 Continuous Distributions
f (x)
=
f 0 (x)
=
f 00 (x)
=
f 00 (x)
=
29
¸ ¶ · µ 1 1 (x − µ)2 x−µ √ exp − = φ 2σ 2 σ σ σ 2π ¶ µ 1 0 x−µ φ σ2 σ µ ¶ 1 00 x − µ φ σ3 σ µ ¶2 x−µ x−µ 0 ⇒ −1 + =0 ⇒ = ±1. σ σ
Thus the points of inflection are at x = µ ± σ. 3.3–10
G(y)
P (Y ≤ y) = P (aX + b ≤ y) µ ¶ y−b = P X≤ if a > 0 a Z (y−b)/a 2 2 1 √ e−(x−µ) /2σ dx = σ 2π −∞
=
Let w = ax + b so dw = a dx. Then Z y 2 2 2 1 √ e−(w−b−aµ) /2a σ dw G(y) = −∞ aσ 2π which is the distribution function of the normal distribution N (b + aµ, a2 σ 2 ). The case when a < 0 can be handled similarly. 3.3–12 X is N (500, 2500); so [(X − 500)/50]2 is χ2 (1) and " # µ ¶2 X − 500 P 2.706 ≤ ≤ 5.024 = 0.975 − 0.900 = 0.075. 50 3.3–14
G(x)
g(x)
=
P (X ≤ x)
=
P (eY ≤ x)
=
P (Y ≤ ln x)
=
Z ln x
=
2 1 1 G0 (x) = √ e−(ln x−10) /2 , x 2π
2 1 √ e−(y−10) /2 dy = Φ(ln x − 10) 2π −∞
P (10,000 < X < 20,000)
0 < x < ∞.
=
P (ln 10,000 < Y < ln 20,000)
=
Φ(ln 20,000 − 10) − Φ(ln 10,000 − 10)
=
0.461557 − 0.214863 = 0.246694.
3.3–16 (a) N (0, 1); (b) N (−1, 1); (c) N (2, 1). Note the slopes of these graphs at 0.
c 2020 Pearson Education, Inc. Copyright °
30
Section 3.4 Additional Models
3.4
Additional Models
3.4–2 With b = ln 1.1, G(w)
=
h a w ln 1.1 a i 1 − exp − e + ln 1.1 ln 1.1
G(64) − G(63)
=
0.01
a
=
0.00002646 =
P (W ≤ 71 | 70 < W )
=
P (70 < W ≤ 71) P (70 < W )
=
0.0217.
3.4–4
λ(w) H(w)
using Maple
aebw + c Rw = 0 (aebt + c) dt
=
¢ a ¡ bw e − 1 + cw b h a¡ i ¢ 1 − exp − ebw − 1 − cw , b
=
3.4–6
1 37792.19477
G(w)
=
g(w)
=
0<w<∞
a − (ebw − 1) − cw (aebw + c)e b ,
(a) 1/4 − 1/8 = 1/8;
(b) 1/4 − 1/4 = 0;
(c) 3/4 − 1/4 = 1/2;
(d) 1 − 1/2 = 1/2;
(e) 3/4 − 3/4 = 0;
(f ) 1 − 3/4 = 1/4.
0 < w < ∞.
3.4–8 There is a discrete point of probability at x = 0, P (X = 0) = 1/3, and F 0 (x) = (2/3)e−x for 0 < x. Thus Z ∞ µ = E(X) = (0)(1/3) + x(2/3)e−x dx 0
= 2
E(X )
=
(2/3) [−xe
−x
2
(0) (1/3) +
∞
− e−x ]0
Z ∞
= 2/3,
x2 (2/3)e−x dx
0
= so σ2
3.4–10
=
T =
= 4/3, (2/3)[−x2 e−x − 2xe−x − 2e−x ]∞ 0
Var(X) = 4/3 − (2/3)2 = 8/9. (
X, 4,
X ≤ 4,
4 < X;
c 2020 Pearson Education, Inc. Copyright °
Chapter 3 Continuous Distributions
E(T )
Z 4 µ ¶ Z ∞ µ ¶ 1 −x/5 1 −x/5 x e dx + 4 e dx 5 5 0 4 £ ¤4 £ ¤∞ −xe−x/5 − 5e−x/5 0 + 4 −e−x/5 4
= = =
5 − 4e−4/5 − 5e−4/5 + 4e−4/5
=
5 − 5e−4/5 ≈ 2.753.
3.4–12 (a)
(b)
31
t =
ln x
x =
et
dx dt
=
et
g(t)
=
f (et )
t
=
α + β ln w
dt dw
=
β w
h(w)
=
eα+β ln w e−e
=
βwβ−1 eα e−w e ,
3.4–14 (a) (0.03)
Z 1
2/30
t dx = et e−e , dt
α+β ln w
µ ¶ β w
β α
0 < w < ∞.
6(1 − x)5 dx = 0.0198;
(b) E(X) = (0.97)(0) + 0.03
Z 1 0
3.4–16
−∞ < t < ∞;
x6(1 − x)5 dx = 0.0042857;
The expected payment is E(X) · [$ 30,000] = $ 128.57. Z 2 Z 1 1 −x/10 1 −x/10 e dx + (m/2) e dx = 200 m 10 10 1 0 m[1 − e−1/10 ] + 0.5m[e−1/10 − e−2/10 ]
=
200
m − 0.5me−1/10 − 0.5me−2/10
=
200
m
= =
200 1 − 0.5e−1/10 − 0.5e−2/10 1447.
Z ∞ µ ¶3 4 4 t 3.4–18 P (X > x) = e−(t/4) dt = e−(x/4) ; 4 x
P (X > 5) e−625/256 = = e−369/256 . P (X > 4) e−1 Z 60 h i 2 60 2x −(x/50)2 dx = −e−(x/50) = e−16/25 − e−36/25 ; 3.4–20 (a) e 2 50 40 40 i h 2 ∞ (b) P (X > 80) = −e−(x/50) = e−64/25 . P (X > 5 | X > 4) =
80
c 2020 Pearson Education, Inc. Copyright °
Chapter 4 Bivariate Distributions
33
Chapter 4
Bivariate Distributions 4.1
Bivariate Distributions of the Discrete Type
4.1–2
4 16
4
1 • 16
1 • 16
1 • 16
1 • 16
4 16
3
1 • 16
1 • 16
1 • 16
1 • 16
4 16
2
1 • 16
1 • 16
1 • 16
1 • 16
4 16
1
1 • 16
1 • 16
1 • 16
1 • 16
1
2
3
4
4 16
4 16
4 16
4 16
(e) Independent, because fX (x)fY (y) = f (x, y). 4.1–4
1 25
12
1 • 25
1 25
11
1 • 25
2 25
10
1 • 25
1 • 25
2 25
9
1 • 25
1 • 25
3 25
8
1 • 25
1 • 25
1 • 25
2 25
7
1 • 25
1 • 25
3 25
6
1 • 25
1 • 25
1 • 25
2 25
5
1 • 25
1 • 25
3 25
4
1 • 25
1 • 25
1 • 25
2 25
3
1 • 25
1 • 25
2 25
2
1 • 25
1 • 25
1 25
1
1 • 25
1 25
0
1 • 25
0 1 5
1
2 1 5
3
4 1 5
5
6
7
1 5
c 2020 Pearson Education, Inc. Copyright °
8 1 5
34
Section 4.2 The Correlation Coefficient (c) Not independent, because fX (x)fY (y) 6= f (x, y) and also because the support is not rectangular. 4.1–6
25! (0.30)7 (0.40)8 (0.20)6 (0.10)4 = 0.00405. 7!8!6!4!
4.1–8 (a) x = 0, 1, . . . , 6, y = max(0, x − 2), . . . , min(x, 4); 1/15, 2/15, fX (x) = 3/15, fY (y) = 3/15,
x = 0, 6, x = 1, 5, x = 2, 3, 4; y = 0, 1, 2, 3, 4;
(b) x = 0, 1, 2, 3, 4, y = max(0, x − 2), . . . , x; 1/12, 2/12, fX (x) = 3/12, 3/12, 2/12, fY (y) = 1/12,
x = 0, x = 1, x = 2, 3, 4; y = 0, 1, 2, y = 3, y = 4;
(c) x = 0, 1, 2, 3, 4, y = max(2 − x, x − 2), . . . , min(2 + x, 6 − x); 1/13, 3/13, fX (x) = 5/13, 1/13, 3/13, fY (y) = 5/13,
4.1–10 (a) f (x, y) =
y = 0, 4, y = 1, 3, y = 2.
7! (0.78)x (0.01)y (0.21)7−x−y , x!y!(7 − x − y)!
(b) X is b(7, 0.78),
4.2
x = 0, 4, x = 1, 3, x = 2;
0 ≤ x + y ≤ 7;
x = 0, 1, . . . , 7.
The Correlation Coefficient
4.2–2 (c)
µX
=
0.5(0) + 0.5(1) = 0.5,
µY
=
0.2(0) + 0.6(1) + 0.2(2) = 1,
2 σX
=
(0 − 0.5)2 (0.5) + (1 − 0.5)2 (0.5) = 0.25,
σY2
=
(0 − 1)2 (0.2) + (1 − 1)2 (0.6) + (2 − 1)2 (0.2) = 0.4,
Cov(X, Y )
=
(0)(0)(0.2) + (1)(2)(0.2) + (0)(1)(0.3) +
(1)(1)(0.3) − (0.5)(1) = 0.2, √ 0.2 √ ρ = √ = 0.4; 0.25 0.4 Ã√ ! √ 0.4 (d) y = 1 + 0.4 √ (x − 0.5) = 0.6 + 0.8x. 0.25 4.2–4 Note that X is b(3, 1/6), Y is b(3, 1/2) so
c 2020 Pearson Education, Inc. Copyright °
Chapter 4 Bivariate Distributions
35
(a) E(X) = 3(1/6) = 1/2; (b) E(Y ) = 3(1/2) = 3/2; (c) Var(X) = 3(1/6)(5/6) = 5/12; (d) Var(Y ) = 3(1/2)(1/2) = 3/4; (e) Cov(X, Y )
=
0 + (1)f (1, 1) + 2f (1, 2) + 2f (2, 1) − (1/2)(3/2)
=
(1)(1/6) + 2(1/8) + 2(1/24) − 3/4
=
−1/4;
−1/4 −1 (f ) ρ = r =√ . 5 5 3 · 12 4 4.2–6 (b)
1 6
2
• 16
2 6
1
• 16
• 16
3 6
0
• 16
• 16
• 61
0
1
2
3 6
2 6
1 6
µ ¶ µ ¶µ ¶ 2 2 1 4 −5 1 − = − = ; (c) Cov(X, Y ) = (1)(1) 6 3 3 6 9 18 µ ¶2 2 2 4 5 2 + − = σY2 , (d) σX = = 6 6 3 9 −5/18 1 ρ = p = − ; 2 (5/9)(5/9) s µ ¶ 2 1 5/9 2 (e) y = − x− 3 2 5/9 3 1 y = 1 − x. 2 2 4.2–8 (a) µX = 3, µY = 2, σX = 8/3, σY2 = 2, Cov(X, Y ) = 2, ρ =
(b) µX =
√ 3/2 = 0.886;
227 2 227 19 2 181 181 29 , µY = ,σ = ,σ = , Cov(X, Y ) = ,ρ= = 0.7974; 12 12 X 144 Y 144 144 227
2 = 14/13, σY2 = 14/13, Cov(X, Y ) = 0, ρ = 0. (c) µX = 2, µY = 2, σX
4.2–10 (a) fX (1) = 0.15, fX (2) = 0.25, fX (3) = 0.45, fX (4) = 0.15; fY (1) = 0.35, fY (2) = 0.65; µX = 2.60; µY = 1.65; 2 σX = 0.8400; σY2 = 0.2275;
(b) Cov(X, Y ) = −0.0900; ρ = −0.2059;
(c) E(C) = $34.70. 4.2–12 Note that h(v)
= = =
E{[(X − µX ) + v(Y − µY )]2 }
E[(X − µX )2 + 2E[(X − µX )(Y − µY ) + E[(Y − µY )2 ]
2 σX + 2Cov(X, Y )v + σY2 v 2 ≥ 0.
Thus the discriminant of this quadratic must be less than or equal to 0. So we have
c 2020 Pearson Education, Inc. Copyright °
36
Section 4.3 Conditional Distributions 2 2 [Cov(X, Y )]2 − σX σY ρ2 −1
4.3
≤ 0 ≤ 1 ≤ ρ ≤ 1.
Conditional Distributions
4.3–2 2
1
1 4
3 4
g(x | 2)
3 4
1 4
g(x | 1)
1
2
equivalently, g(x | y) =
3 − 2|x − y| , 4
x = 1, 2, for y = 1 or 2;
h(y | 1)
h(y | 2)
2
1 4
3 4
1
3 4
1 4
1
2
equivalently, h(y | x) =
3 − 2|x − y| , 4
y = 1, 2, for x = 1 or 2;
µX |1 = 5/4, µX |2 = 7/4, µY |1 = 5/4, µY |2 = 7/4; 2 2 2 2 σX |1 = σX |2 = σY |1 = σY |2 = 3/16.
4.3–4 (a) X is b(400, 0.75); (b) E(X) = 300, Var(X) = 75; (c) b(300, 2/3); (d) E(Y | X = 300) = 200, Var(Y | X = 300) = 200/3. 4.3–6 (a) P (X = 500) = 0.40, P (Y = 500) = 0.35, P (Y = 500 | X = 500) = 0.50, P (Y = 100 | X = 500) = 0.25;
2 (b) µX = 485, µY = 510, σX = 118,275, σY2 = 130,900;
(c) µX |Y =100 = 2400/7, µY |X =500 = 525; (d) Cov(X, Y ) = 49650; (e) ρ = 0.399. 4.3–8 (a) X and Y have a trinomial distribution with n = 30, pX = 1/6, pY = 1/6; (b) The conditional pmf of X, given Y = y, is µ
pX b n − y, 1 − pY
¶
= b(30 − y, 1/5).
c 2020 Pearson Education, Inc. Copyright °
Chapter 4 Bivariate Distributions
37
(c) Since E(X) = 5 and Var(X) = 25/6, E(X 2 ) = Var(X) + [E(X)]2 = 25/6 + 25 = 175/6. Similarly, E(Y ) = 5, Var(Y ) = 25/6, E(Y 2 ) = 175/6. The correlation coefficient is ρ=− so E(XY ) = −1/5 Thus
p
(1/6)(1/6) = −1/5 (5/6)(5/6)
(25/6)(25/6) + (5)(5) = 145/6.
µ ¶ µ ¶ 145 175 120 175 −4 +3 = = 20. E(X − 4XY + 3Y ) = 6 6 6 6 2
2
4.3–10 (a) f (x, y) = 1/[10(10 − x)], (b) fY (y) =
y X
x = 0, 1, · · · , 9, y = x, x + 1, · · · , 9;
1 , 10(10 − x) x=0
(c) E(Y |x) = (x + 9)/2,
4.4
s
y = 0, 1, . . . , 9; x = 0, 1, . . . , 9.
Bivariate Distributions of the Continuous Type
4.4–2 (a) fX (x)
=
Z 1
(x + y) dy ¸1 · 1 1 0 ≤ x ≤ 1; = xy + y 2 = x + , 2 2 0 Z 1 1 fY (y) = 0 ≤ y ≤ 1; (x + y) dx = y + , 0 ¶µ 2 ¶ µ 1 1 y+ = fX (x)fY (y); f (x, y) = x + y 6= x + 2 2 ¶ · ¸1 Z 1 µ 1 1 3 1 2 7 (b) (i) µX = x x+ dx = x + x ; = 2 3 4 12 0 0 ¶ Z 1 µ 7 1 ; dy = (ii) µY = y y+ 2 12 0 ¸1 ¶ · Z 1 µ 5 1 1 4 1 3 2 2 = (iii) E(X ) = x x+ x + x , dx = 2 4 6 12 0 0 µ ¶2 5 7 11 2 = E(X 2 ) − µ2X = σX − ; = 12 12 144 0
(iv)
4.4–4 (a)
Similarly, σY2 =
P
¡
0 ≤ X ≤ 12
11 . 144
¢
=
Z 21 Z 1 0
=
Z 12 0
3 dy dx x2 2
3 11 (1 − x2 ) dx = ; 2 16
c 2020 Pearson Education, Inc. Copyright °
38
Section 4.4 Bivariate Distributions of the Continuous Type
(b)
(c)
P
¡1
2 ≤Y
≤1
¢
=
Z 1 Z √y 1 2
0
3 dx dy 2
µ ¶3/2 1 3√ ; y dy = 1 − = 1 2 2 2 Z 1 Z √y ¡ ¢ 3 1 1 dx dy P X ≥ 2, Y ≥ 2 = 1 1 2 2 2 ¶ Z 1 µ 3 √ 1 = y− dy 1 2 2 2 µ ¶3/2 5 1 ; = − 8 2 Z 1
(d) X and Y are dependent. 4.4–6 (a) The variances are · 5 ¸1 3 2 3 3x x · x dx = = σX = E(X ) − 0 = 2 10 −1 5 −1 2
2
2
Z 1
2
=
Z 1
and σY2 = E(Y 2 ) − 02
=
−1 Z 0
y 2 (1 − |y|) dy 2
y (1 + y) dy +
−1
Z 1 0
y 2 (1 − y) dy
1 1 1 1 1 − + − = ; 3 4 3 4 6 Z 1Z 1 Z 0Z 1 3 2 3 2 x (1 − y) dxdy + x (1 + y) dxdy −y 2 0 −1 −y 2 =
(b)
P (−X ≤ Y )
=
1 1 1 1 1 1 1 1 1 − + − + − − + = . 2 4 8 10 2 4 8 10 2 Z 1 Z 0 15 2 15 2 x (1 − x2 ) dx + x· x dx x· 7 7 0 −1 · ¸0 · ¸1 15 x4 x6 15 x4 − + 7 4 6 −1 7 4 0 · ¸ · ¸ 15 −1 1 15 1 5 + = + , 7 4 6 7 4 14 Z 1 Z 0 15 2 2 2 15 2 x (1 − x ) dx + x2 · x dx x · 7 7 0 −1 · ¸0 · ¸1 x7 15 x5 15 x5 − + 7 5 7 −1 7 5 0 · ¸ · ¸ 15 1 27 15 1 1 − , + = 7 5 7 7 5 49 µ ¶2 27 5 83 − ; = 49 14 196 =
4.4–8
µX = E(X)
= = =
E(X 2 )
=
= = 2 σX
=
c 2020 Pearson Education, Inc. Copyright °
Chapter 4 Bivariate Distributions
µY = E(Y )
= = =
E(Y 2 )
= = =
σY2
=
Z 1
39
10 (y + y 4 ) dy 7 0 · ¸1 y6 10 y 3 + 7 3 6 0 · ¸ 5 10 1 1 = + 7 3 6 7 Z 1 10 (y + y 4 ) dy y2 · 7 0 · ¸1 y7 10 y 4 + 7 4 7 0 · ¸ 10 1 1 55 + = 7 4 7 98 µ ¶2 5 5 55 = − . 98 7 98 y·
4.4–10 The area of the space is Z 6 Z 14−2t2 2
dt1 dt2 =
1
Z 6 2
(13 − 2t2 ) dt2 = 20;
Thus P (T1 + T2 > 10)
Z 4 Z 14−2t2
=
2
10−t2
1 dt1 dt2 20
Z 4
4 − t2 dt2 20 2 ¸4 · 1 (4 − t2 )2 = . − 40 10 2
= =
4.4–12 E[a1 u1 (X1 , X2 ) + a2 u2 (X1 , X2 )] X X = [a1 u1 (x1 , x2 ) + a2 u2 (x1 , x2 )]f (x1 , x2 ) (x1 ,x2 ) ∈R
=
a1
X X
u1 (x1 , x2 )f (x1 , x2 ) + a2
(x1 , x2 ) ∈R
(x1 , x2 ) ∈R
=
4.4–14 (a)
fX (x)
a1 E[u1 (X1 , X2 )] + a2 E[u2 (X1 , X2 )].
=
Z 1 x
fY (y)
=
Z y 0
8xy dy = 4x(1 − x2 ), 8xy dx = 4y 3 ,
X X
0 ≤ x ≤ 1,
0 ≤ y ≤ 1;
c 2020 Pearson Education, Inc. Copyright °
u2 (x1 , x2 )f (x1 , x2 )
40
Section 4.4 Bivariate Distributions of the Continuous Type
(b)
µX
Z 1
=
0
µY
Z 1
=
0
2 σX
Z 1
=
0
σY2
Z 1
=
0
Cov(X, Y )
(x − 8/15)2 4x(1 − x2 ) dx = (y − 4/5)2 ∗ 4y 3 dy = Z 1Z 1 x
0
(c) y =
=
20 4x + . 33 11
Z 1 0
11 , 225
2 , 75
(x − 8/15)(y − 4/5)8xy dy dx =
√ 2 66 p = ; 33 (11/225)(2/75)
2 1 1 , µY = , and E(Y 2 ) = ; 3 3 2 1 1 2 , σX = − 6 6
2x2 (1 − x) dx =
Cov(X, Y ) =
Z 1Z 1 0
x
2xy dy dx −
µ ¶2 µ ¶2 1 1 1 1 2 = = , σY2 = − ; 3 18 2 3 18
µ ¶µ ¶ 1 2 1 2 1 − = , = 3 3 4 9 36
so ρ= p 4.4–18 (b)
Z x 1/8 dy 0 Z x 1/8 dy fX (x) = x−2 Z 4 1/8 dy
(c) fY (y) =
x/8,
0 ≤ x ≤ 2,
=
1/4,
2 < x < 4,
=
(6 − x)/8,
4 ≤ x ≤ 6;
1/8 dx = 1/4,
y
(d)
h(y | x) =
1/36 1 p = . 2 1/18 1/18
=
x−2
Z y+2
0 ≤ y ≤ 4;
1/x,
0 ≤ y ≤ x,
0 ≤ x ≤ 2,
1/2,
x − 2 < y < x,
2 < x < 4,
1/(6 − x),
x − 2 ≤ y ≤ 4,
4 ≤ x ≤ 6;
(e) g(x | y) = 1/2,
4 , 225
4/225
4.4–16 From Example 4.4–3, µX =
E(X 2 ) =
4 , 5
y ∗ 4y 3 dy =
=
ρ
8 , 15
x4x(1 − x2 ) dx =
y ≤ x ≤ y + 2,
0 ≤ y ≤ 4;
c 2020 Pearson Education, Inc. Copyright °
Chapter 4 Bivariate Distributions (f )
Z x µ ¶ 1 y dy x 0 Z x 1 y · dy E(Y | x) = 2 x−2 Z 4 y dy x−2 6 − x
(g) E(X | y) = 4
41
y
Z y+2 y
x·
= = =
x , 2 · 2 ¸x y = x − 1, 4 x−2 ¸4 · x+2 y2 = , 2(6 − x) x−2 2
· 2 ¸y+2 x 1 dx = = y + 1, 2 4 y 4
3
3
2
2
1
1
1
2
3
4
5
6
E(Y | x) = Thus
Z 1
4 ≤ x < 6;
y
x
1
2
3
4
5
(i) x = E(X | y)
(x + 1)y x+1 dy =
0
·
¸1 x + 1 x+2 x+1 = y , x+2 x+2 0
E(Y | X) =
= E[E(Y | X)] =
Z 2 1
1 < x < 2.
X +1 , X +2
and E(Y )
2 < x < 4,
0 ≤ y ≤ 4.
Figure 4.4–18: (h) y = E(Y | x) 4.4–20
0 ≤ x ≤ 2,
x+1 dx = x+2
Z 2µ 1
1 1− x+2
¶
dx
2
= [x − ln(x + 2)]1 = 2 − ln 4 − (1 − ln 3) = 1 − ln(4/3) = 0.7123.
4.5
The Bivariate Normal Distribution
4.5–2
q(x, y)
= =
(x − µX )2 [y − µY − ρ(σY /σX )(x − µX )]2 + 2 σY2 (1 − ρ2 ) σX · 2 2ρ(x − µX )(y − µY ) 1 (y − µY ) − 2 2 1−ρ σY σX σY
¸ 2 ρ2 (x − µX )2 2 (x − µX ) + (1 − ρ ) 2 2 σX σX "µ ¶2 µ ¶µ ¶ µ ¶2 # x − µX x − µX y − µY y − µY 1 + − 2ρ 1 − ρ2 σX σX σY σY +
=
c 2020 Pearson Education, Inc. Copyright °
6
x
42
Section 4.5 The Bivariate Normal Distribution µ ¶ 5 13 (76 − 70) = 83; 13 10 " µ ¶2 # 5 (b) Var(Y | X = 76) = 169 1 − = 144; 13 ¶ µ 86 − 83 = Φ(0.25) = 0.5987. (c) P (Y ≤ 86 | X = 76) = P Z ≤ 12
4.5–4 (a) E(Y | X = 76) = 80 +
4.5–6 (a) P (19.9 < Y < 26.9) = Φ(1.2) − Φ(−0.8) = 0.8849 − 0.2119 = 0.6730; Note that using an electronic device, you may get 0.88493 − 0.21186 = 0.67307; (b) E(Y | x) = 22.7 + 0.78(3.5/4.2)(x − 22.7) = 0.65x + 7.945; (c) Var(Y | x) = 12.25(1 − 0.782 ) = 4.7971; (d) P (19.9 < Y < 26.9 | X = 23) = Φ(1.8286) − Φ(−1.3674) = 0.9663 − 0.0857 = 0.8806; (e) P (19.9 < Y < 26.9 | X = 25) = Φ(1.2350) − Φ(−1.9610) = 0.8914 − 0.0249 = 0.8665; (f ) 0.16 0.12 0.08 0.04 20
x
25
14
18
26 22 y
30
Figure 4.5–6: Conditional pdfs of Y , given x = 21, 23, 25
4.5–8 (a) P (13.6 < Y < 17.8) = Φ(0.20) − Φ(−0.85) = 0.3816; (b) E(Y | x) = 17 + 0(4/3)(x − 8) = 17; (c) Var(Y | x) = 16(1 − 02 ) = 16; (d) P (13.6 < Y < 17.8 | X = 9.1) = 0.3816. 4.5–10 (a) P (2.80 ≤ Y ≤ 5.35) = Φ(1.50) − Φ(0) = 0.4332; µ ¶ 1.7 (b) E(Y | X = 82.3) = 2.80 + (−0.57) (82.3 − 72.30) = 1.877; 10.5 Var(Y | X = 82.3) = 2.89[1 − (−0.57)2 ] = 1.9510; P (2.76 ≤ Y ≤ 5.34 | X = 82.3)
= Φ(2.479) − Φ(0.632) = 0.9934 − 0.7363 = 0.2571.
c 2020 Pearson Education, Inc. Copyright °
Chapter 4 Bivariate Distributions
4.5–12
fX (x)
= = =
43
Z ∞
Z ∞ 2 2 1 −(x2 +y2 )/2 1 −(x2 +y2 )/2 e dy + e xye−(x +y −2)/2 dy 2π 2π −∞ −∞ Z 1 −x2 /2 ∞ 1 −y2 /2 √ e √ e dy + 0 2π 2π −∞ 2 1 √ e−x /2 , −∞ < x < ∞. 2π
Note that the first integrand is the product of two N (0, 1) pdfs and the integral of a pdf is equal to 1. The second integral is an odd function so it is equal to 0. 2 1 Similarly, fY (y) = √ e−y /2 , −∞ < y < ∞. 2π R∞ R∞ R∞ It also follows that −∞ −∞ f (x, y) dx dy = −∞ fX (x) dx = 1.
c 2020 Pearson Education, Inc. Copyright °
Chapter 5 Distributions of Functions of Random Variables
45
Chapter 5
Distributions of Functions of Random Variables 5.1
Functions of One Random Variable
5.1–2 The linear transformation is one-to-one with inverse transformation X = (Y − b)/a, so the pdf of Y is g(y) =
5.1–4 Here x =
√
y,
F (x) =
ac1 + b < y < ac2 + b.
1 dx = √ and 0 < x < ∞ maps onto 0 < y < ∞. Thus dy 2 y g(y) =
5.1–6 (a)
1 f [(y − b)/a], |a|
Z x
√
¯ ¯ ¯ 1 ¯ 1 y e−y/2 ¯¯ √ ¯¯ = e−y/2 , 2 y 2
0,
x < 0,
2t dt = x2 ,
0
(b) Let y = x2 ; so x =
0 ≤ x < 1, 1 ≤ x;
1, √
0 < y < ∞.
y. Let Y be U (0, 1); then X =
√
Y has the given x-distribution;
(c) Repeat the procedure outlined in part (b) ten times. 5.1–8 The cdf of X is 1 , 1 + e−x
−∞ < x < ∞.
Y = F (X) =
1 1 + e−X
F (x) = By Theorem 5.1-2,
is U (0, 1).
c 2020 Pearson Education, Inc. Copyright °
46
Section 5.1 Functions of One Random Variable
5.1–10
x
=
dx dy
=
f (x)
=
g(y)
= =
³ y ´10/7
5 µ ¶ 10 ³ y ´3/7 1 7 5 5
e−x ,
0<x<∞ µ ¶µ ¶3/7 1 2 10/7 y 3/7 e−(y/5) 7 5 10/7 3/7 −(y/5)10/7 , y e 510/7
0 < y < ∞.
(The reason for writing the pdf in that form is because Y has a Weibull distribution with α = 10/7 and β = 5.) 5.1–12 X has cdf F given by
F (x) =
0 x+1 4 1,
x < −1, −1 ≤ x ≤ 3
,
3 < x.
The cdf G of Y is given by √ √ G(y) = P (Y ≤ y) = P (− y ≤ X ≤ y).
√ √ Taking cases then gives G(y) = y/2 for 0 ≤ y ≤ 1 and G(y) = ( y + 1)/4 for 1 ≤ y ≤ 9. Taking derivatives then gives the pdf
g(y) =
5.1–14
E(X)
= = =
1 , 4√ y
1 √ , 8 y
0 < y < 1, 1 ≤ y < 9.
Z ∞
x dx π(1 + x2 ) −∞ ¸0 ¸b · · 1 1 lim ln(1 + x2 ) + lim ln(1 + x2 ) a→−∞ 2π b→+∞ 2π a · ¸ 0 1 2 2 lim {− ln(1 + a )} + lim ln(1 + b ) . b→+∞ 2π a→−∞
E(X) does not exist because neither of these limits exists. 5.1–16 The cdf of Y = |X| is given by G(y)
= =
P (Y ≤ y) = P (−y ≤ X ≤ y) Φ(y) − Φ(−y) = 2Φ(y) − 1,
0 < y < ∞,
where Φ is the standard normal cdf. Taking derivatives then gives the pdf 2 2 g(y) = 2φ(y) = √ e−y /2 , 2π
0 < y < ∞.
c 2020 Pearson Education, Inc. Copyright °
Chapter 5 Distributions of Functions of Random Variables
47
5.1–18 (a) First note that the cdf of X is F (x) = (x2 + 2x + 1)/9 , −1 < x < 2. Then √ √ √ √ G(y) = P (X 2 < y) = P (− y < X < y ) = F ( y ) − F (− y ) ( √ √ √ [(y + 2 y + 1)/9] − [y − 2 y + 1)/9] = 4 y/9, 0 < y < 1, = √ √ (y + 2 y + 1)/9 − 0 = (y + 2 y + 1)/9, 1 ≤ y < 4. 0
Thus g(y) = G (y) =
2 9√ y ,
1 1 + √ , 9 9 y
0 < y < 1, 1 ≤ y < 4;
(b) First note that the cdf of X is F (x) = (x2 + 4x + 4)/9 , −2 < x < 1. Then √ √ √ √ G(y) = P (X 2 < y) = P (− y < X < y ) = F ( y ) − F (− y ) ( √ √ √ [(y + 4 y + 4)/9] − [(y − 4 y + 4)/9] = 8 y/9, 0 < y < 1, = √ 1 − [(y − 4 y + 4)/9], 1 ≤ y < 4. 0
Thus g(y) = G (y) =
5.2
4 9√ y ,
1 2 − + √ , 9 9 y
0 < y < 1, 1 ≤ y < 4.
Transformations of Two Random Variables
5.2-2 (a) The joint pdf of X1 and X2 is f (x1 , x2 ) =
1 r /2−1 r2 /2−1 −(x1 +x2 )/2 ³r ´ ³r ´ x11 x2 e , 1 2 (r1 +r2 )/2 Γ Γ 2 2 2 0 < x1 < ∞, 0 < x2 < ∞.
Let Y1 = (X1 /r1 )/(X2 /r2 ) and Y2 = X2 . The Jacobian of the transformation is (r1 /r2 )y2 . Thus g(y1 , y2 ) =
1 ³r ´ ³r ´ 2 1 Γ 2(r1 +r2 )/2 Γ 2 2
µ
r 1 y1 y2 r2
¶r1 /2−1
r /2−1 −(y2 /2)(r1 y1 /r2 +1)
y2 2
e
0 < y1 < ∞, 0 < y2 < ∞; Z ∞ (b) The marginal pdf of Y1 is g1 (y1 ) = g(y1 , y2 ) dy2 . 0
µ ¶ y2 r 1 y1 + 1 . Then Make the change of variables w = 2 r2 µ ¶µ ¶r1 /2 r1 + r 2 r1 r /2−1 y1 1 Γ 2 r2 0 < y1 < ∞. g1 (y1 ) = ¶(r +r )/2 · 1, ³ r ´ ³ r ´µ r 1 y1 1 2 1 2 Γ Γ 1+ 2 2 r2
5.2-4 (a) F0.05 (9, 24) = 2.30; (b) F0.95 (9, 24) =
1 1 = = 0.3448; F0.05 (24, 9) 2.90
c 2020 Pearson Education, Inc. Copyright °
µ
r 1 y2 r2
¶
,
48
Section 5.2 Transformations of Two Random Variables ¶ µ ¶ 1 1 1 =P > > 3.61 = 0.025; W 0.277 W P (0.277 ≤ W ≤ 2.70) = P (W ≤ 2.70) − P (W ≤ 0.277) = 0.975 − 0.025 = 0.95. µ ¶ X1 F (w) = P ≤w , 0<w<1 X1 + X 2 Z ∞Z ∞ xα−1 x2β−1 e−(x1 +x2 )/θ 1 = dx2 dx1 Γ(α)Γ(β)θ α+β (1−w)x1 /w 0 µ ¶ Z ∞ −xα−1 [(1 − w)x1 /w]β−1 e−[x1 +(1−w)x1 /w]/θ −1 1 0 x1 dx1 f (w) = F (w) = Γ(α)Γ(β)θ α+β w2 0 Z e−x1 /θw (1 − w)β−1 ∞ xα+β−1 1 1 dx1 = β+1 α+β Γ(α)Γ(β) w θ 0
(c) P (W < 0.277) = P
5.2-6
5.2-8 (a)
E(X)
=
µ
=
Γ(α + β) (θw)α+β (1 − w)β−1 Γ(α + β) wβ+1 θα+β
=
Γ(α + β) α−1 w (1 − w)β−1 , Γ(α)Γ(β)
Z 1
0 < w < 1.
Γ(α + β) α−1 x (1 − x)β−1 dx Γ(α)Γ(β) Z 1 Γ(α + β)Γ(α + 1) Γ(α + 1 + β) α+1−1 . x (1 − x)β−1 dx Γ(α)Γ(α + β + 1) 0 Γ(α + 1)Γ(β) x
0
=
(α)Γ(α)Γ(α + β) (α + β)Γ(α + β)Γ(α) α = ; α+β Z Γ(α + β)Γ(α + 2) 1 Γ(α + 2 + β) α+2−1 2 x (1 − x)β−1 dx E(X ) = Γ(α)Γ(α + 2 + β) 0 Γ(α + 2)Γ(β) =
=
(α + 1)α . (α + β + 1)(α + β)
=
α(α + 1) α2 αβ − = ; 2 (α + β + 1)(α + β) (α + β) (α + β + 1)(α + β)2
Thus σ2 (b)
f (x)
=
f 0 (x)
=
Γ(α + β) α−1 x (1 − x)β−1 Γ(α)Γ(β) ¤ Γ(α + β) £ (α − 1) xα−2 (1 − x)β−1 − (β − 1) xα−1 (1 − x)β−2 . Γ(α)Γ(β)
Set f 0 (x) equal to zero and solve for x:
Γ(α + β) α−2 x (1 − x)β−2 [(α − 1)(1 − x) − (β − 1) x] = 0 Γ(α)Γ(β) α − αx − 1 + x − βx + x = 0 (α + β − 2)x
=
x =
c 2020 Pearson Education, Inc. Copyright °
α−1
α−1 . α+β−2
Chapter 5 Distributions of Functions of Random Variables
49
5.2-10 Use integration by parts two times to show ·µ ¶ µ ¶ µ ¶ ¸p Z p 6 4 6! 3 6 5 6 6 2 2 1 0 y (1 − y) dy = y (1 − y) + y (1 − y) + y (1 − y) 4 5 6 0 3!2! 0 =
6 µ ¶ X n y=4
5.2-12 (a) w1 = 2x1 and
y
py (1 − p)6−y .
dw1 = 2. Thus dx1 f (x1 ) =
2 , π(1 + 4x21 )
−∞ < x1 < ∞;
(b) For x2 = y1 − y2 , x1 = y2 , | J | = 1. Thus
(c) g1 (y1 ) =
Z ∞
g(y1 , y2 ) = f (y2 )f (y1 − y2 ),
−∞
(d)
g1 (y1 )
= = = = = = =
−∞ < yi < ∞, i = 1, 2;
f (y2 )f (y1 − y2 ) dy2 ;
Z ∞ 2 2 · dy = h(y2 ) dy2 2 2 π[1 + 4(y1 − y2 )2 ] −∞ −∞ π[1 + 4y2 ] Z ∞ 1 4 1 · dy2 π 2 −∞ [1 + 2iy2 ][1 − 2iy2 ] [1 + 2i(y1 − y2 )][1 − 2i(y1 − y2 )] Z 4 ∞ 1 1 1 −1 1 −1 −1 1 · · · · · · · dy2 π 2 −∞ 2i y2 − 2i 2i y2 + 2i 2i y2 − (y1 − 2i ) 2i y2 − (y1 + 2i ) · µ ¶ µ ¶¸ i i 4(2πi) Res h(y2 ); y2 = + Res h(y2 ); y2 = y1 + π2 2 2 · ¸ 1 1 1 1 1 8πi 1 1 · · + · · π 2 16 i i − y1 −y1 y1 y1 + i i · · ¸ ¸ 1 1 1 1 1 1 y1 + i + y 1 − i · + · = 2π y1 y1 − i y1 + i 2π y1 (y1 − i)(y1 + i)
Z ∞
1 . π(1 + y12 )
c 2020 Pearson Education, Inc. Copyright °
50
Section 5.2 Transformations of Two Random Variables A Maple solution for Exercise 5.2-12: >f := x-> 2/Pi/(1 + 4*x^2); f := x− > 2
1 π (1 + 4 x2 )
>simplify(int(f(y[2])*f(y[1]-y[2]),y[2]=-infinity..infinity)); 1 π (1 + y12 ) A Mathematica solution for Exercise 5.2-12: In[1]:= f[x_] := 2/(Pi*(1 + 4(x)^2)) g[y1_,y2_] := f[y2]*f[y1-y2] In[3]:= Integrate[g[y1,y2], {y2, -Infinity,Infinity}] Out[3]= 1 _____________ 2 Pi + Pi y1 5.2-14 The joint pdf is x −(x+y)/5 e , 53
h(x, y) = z
=
x
=
x , y zw,
w
=
y
y
=
w
0 < x < ∞, 0 < y < ∞;
The Jacobian is J
The joint pdf of Z and W is zw f (z, w) = 3 e−(z+1)w/5 w, 5
=
¯ ¯ w ¯ ¯ ¯ 0
¯ z ¯¯ ¯ = w. 1 ¯
0 < z < ∞, 0 < w < ∞;
The marginal pdf of Z is fZ (z)
= = =
Z ∞
zw −(z+1)w/5 e w dw 53 0 µ ¶3 Z ∞ 5 Γ(3)z w3−1 e−w/(5/[z+1]) dw 3 5 z+1 Γ(3)(5/[z + 1])3 0
2z , (z + 1)3
0 < z < ∞.
c 2020 Pearson Education, Inc. Copyright °
Chapter 5 Distributions of Functions of Random Variables
51
5.2-16 Y = 1/W is a one-to-one transformation from SW = {w : w > 0} to SY = {y : y > 0}, with dw 1 inverse W = g −1 (Y ) = 1/Y and derivative (of the inverse transformation) = − 2. dy y Thus, the pdf of Y is ¯ ¯ ¯ dw ¯ ¯ fY (y) = fW [g −1 (y)] ¯¯ dy ¯ ¯ ¯ Γ[(r1 + r2 )/2] (r1 /r2 )r1 /2 (1/y)r1 /2−1 ¯¯ 1 ¯¯ − = Γ(r1 /2)Γ(r2 /2) [1 + (r1 /r2 )(1/y)](r1 +r2 )/2 ¯ y 2 ¯ à ! r /2 Γ[(r1 + r2 )/2] (1/y)r1 /2−1 r11 = (1/y 2 ) r /2 (r1 +r2 )/2 Γ(r1 /2)Γ(r2 /2) r 1 [(r + r y)/(r y)] 1 2 2 2 à ! ! à r /2 r1 /2 r2 /2 (r1 +r2 )/2 r11 r r y Γ[(r1 + r2 )/2] 2 2 y −1−r1 /2 = Γ(r1 /2)Γ(r2 /2) rr1 /2 (r + r2 y)(r1 +r2 )/2 1 2 à ! r /2 Γ[(r1 + r2 )/2] r1 /2 (−1−r1 /2)+(r1 +r2 )/2 r22 = r y r /2 r /2 Γ(r1 /2)Γ(r2 /2) 1 [1 + (r2 /r1 )y](r1 +r2 )/2 r 1 r 2 1
1
r2 /2 r2 /2−1
=
Γ[(r1 + r2 )/2] (r2 /r1 ) y , Γ(r1 /2)Γ(r2 /2) [1 + (r2 /r1 )y](r1 +r2 )/2
y > 0,
which is the pdf of an F (r2 , r1 ) distribution. You could also note by Theorem 5.2-1 that the F (r1 , r2 ) distribution of W is the distribution of (U/r1 )/(V /r2 ) where U and V are independent chi-square variables with r1 and r2 degrees of freedom, respectively. It follows that 1/W is the distribution of (V /r 2 )/(U/r1 ). By the same theorem, this is the F (r2 , r1 ) distribution. 5.2-17 The pdf of W is f (w) =
(r1 /r2 )r1 /2 Γ[(r1 + r2 )/2]wr1 /2−1 . Γ(r1 /2)Γ(r2 /2)[1 + (r1 w/r2 )](r1 +r2 )/2
Let α = r1 /2 and β = r2 /2. Then the pdf becomes f (w) =
(α/β)α Γ[(α + β]w α−1 . Γ(α)Γ(β)[1 + αw/β](α+β)
We are given z
=
w
=
dw dz
=
1 1 + αw/β ¶ µ µ ¶ β 1−z β 1 −1 = α z α z −
β 1 α z2
It follows that the pdf of Z is g(z)
µ ¶α · µ ¶¸α−1 µ ¶ β 1 α β 1−z z α+β β α z α z2
=
Γ(α + β) Γ(α)Γ(β)
=
Γ(α + β) (1 − z)α−1 z β−1 , Γ(α)Γ(β)
0 < z < 1.
c 2020 Pearson Education, Inc. Copyright °
52
Section 5.3 Several Random Variables
5.3
Several Random Variables
5.3–2 (a)
P (X1 = 2, X2 = 4)
=
"
3! 2!1!
µ ¶2 µ ¶1 #" µ ¶4 µ ¶1 # 5! 1 1 1 1 2 2 4!1! 2 2
15 15 = ; 8 2 256 (b) {X1 + X2 = 7} can occur in the two mutually exclusive ways: {X1 = 3, X2 = 4} and {X1 = 2, X2 = 5}. The sum of the probabilities of the two latter events is =
" µZ 1.0
5.3–4 (a)
µ ¶3 #" µ ¶5 # " µ ¶3 #" µ ¶5 # 5! 1 3! 1 5! 1 3! 1 5+3 1 + = = . 3!0! 2 4!1! 2 2!1! 2 5!0! 2 28 32
2e−2x1 dx1
0.5
¶µZ 1.2
2e−2x2 dx2
0.7
¶
=
(e−1 − e−2 )(e−1.4 − e−2.4 )
=
(0.368 − 0.135)(0.247 − 0.091)
=
(0.233)(0.156) = 0.036;
(b) E(X1 ) = E(X2 ) = 0.5,
5.3–6
E[X1 (X2 − 0.5)2 ] = E(X1 )Var(X2 ) = (0.5)(0.25) = 0.125. · µ ¶ ¸1 Z 1 Z 1 1 3 4 2 3 3 = ; x E(X) = x6x(1 − x )dx = (6x − 6x ) dx = 2x − 2 2 0 0 0 ·µ ¶ µ ¶ ¸1 Z 1 3 4 3 6 5 E(X 2 ) = (6x3 − 6x4 ) dx = = x − x . 2 5 10 0 0 Thus
µX
=
µY
=
3 1 1 1 2 = ; σX − = , and 2 10 4 20 1 1 1 1 1 + = 1; σY2 = + = . 2 2 20 20 10
5.3–8 Let Y = max(X1 , X2 ). Then G(y)
= = =
[P (X ≤ y)]2 ·Z y
¸2 4 dx 5 1 x ¸2 · 1 1− 4 , y
1<y<∞
G0 (y) ¶µ ¶ µ 4 1 , 1 < y < ∞; = 2 1− 4 y y5 µ ¶µ ¶ Z ∞ 1 4 E(Y ) = y·2 1− 4 dy y y5 1 Z ∞ = 8 [y −4 − y −8 ] dy g(y)
=
1
=
32 21
(in 1000s of dollars).
c 2020 Pearson Education, Inc. Copyright °
Chapter 5 Distributions of Functions of Random Variables
53
µ ¶"µ ¶µ ¶2 #µ ¶ 27 3 1 3 3 = 5.3–10 (a) P (X1 = 1)P (X2 = 3)P (X3 = 1) = ; 4 4 4 4 1024 (b) 3P (X1 = 3, X2 = 1, X3 = 1) + 3P (X1 = 2, X2 = 2, X3 = 1) = ¶ µ ¶ µ 162 27 27 +3 = ; 3 1024 1024 1024 ¶3 µ ¶3 µ 15 3 3 1 = . (c) P (Y ≤ 2) = + · 4 4 4 16 µZ ∞ ¶3 −x 3 5.3–12 P (1 < min Xi ) = [P (1 < Xi )] = e dx = e−3 = 0.05. 1
5.3–14
P (Y > 1000)
= P (X1 > 1000)P (X2 > 1000)P (X3 > 1000) = e−1 e−2/3 e−1/2 = e−13/6 = 0.1146.
5.3–16 Denote the three lifetimes by X1 , X2 , X3 and let Y = X1 + X2 + X3 . E(Y ) = E(X1 + X2 + X3 ) = E(X1 ) + E(X2 ) + E(X3 ) = 3 · 2 · 2 = 12. Var(X1 + X2 + X3 ) = Var(X1 ) + Var(X2 ) + Var(X3 ) = 3 · 2 · 22 = 24. 5.3–18
ρ
=
Cov(W, V ) σW σV
=
E(W V ) − µW µV σW σV
=
E(X 2 )E(Y ) − E(X)E(Y )E(X) σXY σX
= = = 5.3–20 Var( X )
p p
2 + µ2X )(µY ) − µ2X µY (σX
E(X 2 Y 2 ) − [E(X)E(Y )]2 σX µY σ X
2 + µ2 )(σ 2 + µ2 ) − µ2 µ2 (σX X Y Y X Y µY σ X p . 2 σ 2 + σ 2 µ2 + σ 2 µ2 σX Y X Y Y X
=
n µ ¶2 X 1 i=1
n
2
σ +2
X X µ 1 ¶µ 1 ¶ i<j
n
n
σ2 + ρσ = n 2
µ
2 n2
¶µ
n(n − 1) 2
¶
ρσ 2
2
=
σ [1 + (n − 1)ρ]. n
Since 1 + (n − 1)ρ > 1, this variance is larger than the variance of X when the variables are uncorrelated.
5.4
The Moment-Generating Function Technique
5.4–2
MY (t)
=
E[et(X1 +X2 ) ] = E[etX1 ]E[etX2 ]
=
(q + pet )n1 (q + pet )n2 = (q + pet )n1 +n2 ,
−∞ < t < ∞.
c 2020 Pearson Education, Inc. Copyright °
54
Section 5.4 The Moment-Generating Function Technique Thus Y is b(n1 + n2 , p). 5.4–4
E[et(X1 +···+Xn ) ]
n Y
=
E[etXi ] =
n Y
t
eµi (e −1)
i=1
i=1
(µ1 +µ2 +···+µn )(et −1)
= e , −∞ < t < ∞, the moment generating function of a Poisson random variable with mean µ1 + µ 2 + · · · + µ n . 5.4–6 (a)
E[etY ]
= E[et(X1 +X2 +X3 +X4 +X5 ) ] = E[etX1 etX2 etX3 etX4 etX5 ] = E[etX1 ]E[etX2 ]E[etX3 ]E[etX4 ]E[etX5 ] (1/3)et (1/3)et (1/3)et · · · 1 − (2/3)et 1 − (2/3)et 1 − (2/3)et ¸ · 5 (1/3)et = 1 − (2/3)et
=
=
[(1/3)et ]5 , [1 − (2/3)et ]5
t < − ln(1 − 1/3);
(b) So Y has a negative binomial distribution with p = 1/3 and r = 5. 5.4–8
E[etW ]
=
E[et(X1 +X2 +···+Xh ) ] = E[etX1 ]E[etX2 ] · · · E[etXh ]
=
[1/(1 − θt)]h = 1/(1 − θt)h ,
t < 1/θ,
the moment generating function for the gamma distribution with mean hθ. 5.4–10 (a) E[etX ] = (1/4)(e0t + e1t + e2t + e3t ), tY
0t
4t
8t
(b) E[e ] = (1/4)(e + e + e + e (c)
E[e
tW
]
t(X+Y )
),
−∞ < t < ∞;
−∞ < t < ∞;
=
E[e
=
E[etX ]E[etY ]
=
(1/16)(e0t + e1t + e2t + e3t )(e0t + e4t + e8t + e12t )
=
(1/16)(e0t + e1t + e2t + e3t + · · · e15t ),
(d) P (W = w) = 1/16,
]
12t
w = 0, 1, 2, . . . , 15.
−∞ < t < ∞;
5.4–12 First die has 0 on four faces and 2 on four faces; second die has faces numbered 0, 1, 4, 5, 8, 9, 12, 13. 5.4–14 Let X1 , X2 , X3 be the number of accidents in weeks 1, 2, and 3, respectively. Then Y = X1 + X2 + X3 is Poisson with mean λ = 6 and P (Y = 7) = 0.744 − 0.606 = 0.138. 5.4–16 Let X1 , X2 , X3 , X4 be the number of sick days for employee i, i = 1, 2, 3, 4, respectively. Then Y = X1 + X2 + X3 + X4 is Poisson with mean λ = 8 and P (Y > 10) = 1 − P (Y ≤ 10) = 1 − 0.816 = 0.184. 5.4–18 Let Xi equal the number of cracks in mile i, i = 1, 2, . . . , 40. Then Y =
40 X
Xi
is Poisson with mean
λ = 20.
i=1
c 2020 Pearson Education, Inc. Copyright °
Chapter 5 Distributions of Functions of Random Variables It follows that P (Y < 15) = P (Y ≤ 14) =
55
14 X 20y e−20 y=0
y!
= 0.1049.
5.4–20 Y = X1 + X2 + X3 + X4 has a gamma distribution with α = 6 and θ = 10. So Z ∞ 1 y 6−1 e−y/10 dy = 1 − 0.8843 = 0.1157. P (Y > 90) = 6 90 Γ(6)10 5.4–22 (a)
E(etY )
1 (1 − 2t)r/2
E(etX2 )
=
E(etX1 etX2 )
=
E(etX1 )E(etX2 )
= =
(b) X2 is χ2 (r−r1 ).
1 E(etX2 ) (1 − 2t)r1 /2 1 ; (1 − 2t)(r−r1 )/2
5.4–24 (a) MX (t) =
µ
1 [1 − 2(t/4)]r/2
¶4
=
1 , [1 − (1/2)t]2r
t < 2;
(b) Gamma with α = 2r and θ = 1/2.
5.5
Random Functions Associated with Normal Distributions
5.5–2 0.4
0.3 n = 36 0.2 n =9 0.1 n=1 40
50
60
Figure 5.5–2: X is N (50, 36), X is N (50, 36/n), n = 9, 36 5.5–4 (a) P (X < 6.0171) = P (Z < −1.645) = 0.05;
(b) Let W equal the number of boxes that weigh less than 6.0171 pounds. Then W is b(9, 0.05) and P (W ≤ 2) = 0.9916; µ ¶ 6.035 − 6.05 (c) P ( X ≤ 6.035) = P Z ≤ 0.02/3 =
P (Z ≤ −2.25) = 0.0122.
c 2020 Pearson Education, Inc. Copyright °
56
Section 5.5 Random Functions Associated with Normal Distributions 5.5–6 (a) X is N (µ, 4/100) and Y is N (µ, 9/n). Equating 4/100 to 9/n yields n = 225; (b) Y − X is N [µ − µ, (4/100) + (9/225)], i.e, N (0, 0.08). So µ
0.2 P ( Y − X > 0.2) = P Z > √ 0.08
¶
= P (Z > 0.71) = 0.2389.
5.5–8 X − Y is N (184.09 − 171.93, 39.37 + 50.88); µ
X − Y − 12.16 0 − 12.16 √ P (X > Y ) = P > 9.5 90.25
¶
= P (Z > −1.28) = 0.8997.
5.5–10 Let Y = X1 + X2 + · · · + Xn . Then Y is N (800n, 1002 n). Thus
P
µ
P (Y ≥ 10000) = 0.90 ¶ 10000 − 800n Y − 800n √ √ = 0.90 ≥ 100 n 100 n −1.282
=
10000 − 800n √ 100 n
√ 800n − 128.2 n − 10000
=
0.
√ Either use the quadratic formula to solve for n or use Maple to solve for n. We find that √ n = 3.617 or n = 13.08 so use n = 14 bulbs. 5.5–12 (a) The joint pdf of X1 and X2 is 2 1 1 r/2−1 −x2 /2 x e , f (x1 , x2 ) = √ e−x1 /2 r/2 2 Γ(r/2)2 2π p y1 = x1 / x2 /r, y 2 = x2
x1
=
y1
The Jacobian is J
p
y2 /r,
=
x2
¯ p ¯ y2 /r ¯ ¯ ¯ 0
The joint pdf of Y1 and Y2 is
=
−∞ < x1 < ∞, 0 < x2 < ∞;
y2
−1/2
y1 ( 12 )y2
1
√ ¯ / r ¯¯ p ¯ = y2 /r. ¯
√ 1 1 −y12 y2 /2r r/2−1 −y2 /2 y2 √ , y e g(y1 , y2 ) = √ e r Γ(r/2)2r/2 2 2π
−∞ < y1 < ∞, 0 < y2 < ∞;
(b) The marginal pdf of Y1 is g1 (y1 )
= =
Z ∞
√ y2 2 1 1 r/2−1 −y2 /2 √ e−y1 y2 /2r √ dy2 y e 2 r/2 r Γ(r/2)2 2π 0 Z ∞ 1 Γ[(r + 1)/2] (r+1)/2−1 −(y2 /2)(1+y12 /r) √ . y2 e (r+1)/2 πr Γ(r/2) 0 Γ[(r + 1)/2]2
Let u = y2 (1 + y12 /r). Then y2 =
dy2 1 u and = . So 2 1 + y1 /r du 1 + y12 /r
c 2020 Pearson Education, Inc. Copyright °
Chapter 5 Distributions of Functions of Random Variables
g1 (y1 )
= =
57
Z ∞
√
Γ[(r + 1)/2] πr Γ(r/2)(1 + y12 /r)(r+1)/2
√
Γ[(r + 1)/2] , πr Γ(r/2)(1 + y12 /r)(r+1)/2
0
1 u(r+1)/2−1 e−u/2 Γ[(r + 1)/2]2(r+1)/2 −∞ < y1 < ∞.
5.5–14 Because Z is N (0, 1), E(Z) = 1 and E(Z 2 ) = 1. U is χ2 (r) so it follows that Z ∞ √ 1 1 √ E[1/ U ] = ur/2−1 e−u/2 du r/2 u Γ(r/2)2 0 Z Γ[(r − 1)/2] ∞ 1 √ = u(r−1)/2−1 e−u/2 du 2 Γ(r/2) 0 Γ[(r − 1)/2]2(r−1)/2 Γ[(r − 1)/2] √ . 2 Γ(r/2)
=
Note that the last integral is equal to one because the integrand is the pdf of a χ 2 (r −1) random variable. To find E(1/U ) we have Z ∞ 1 1 ur/2−1 e−u/2 du E[1/U ] = r/2 u Γ(r/2)2 0 Z Γ[(r − 2)/2] ∞ 1 u(r−2)/2−1 e−u/2 du = 2 Γ(r/2) Γ[(r − 2)/2]2(r−2)/2 0 =
Γ(r/2 − 1) 1 = . 2Γ(r/2 − 1) (r/2 − 1) r−2
Note that the last integral is equal to one because the integrand is the pdf of a χ 2 (r −2) random variable. " # Z E(T ) = E p U/r p = E[Z]E[1/ U/r]
Var(T )
5.5–16 T =
·√
rΓ[(r − 1)/2] √ 2 Γ(r/2)
=
0
=
E(T 2 ) − 02
=
E[Z 2 ]E[r/U ]
=
r , r−2
¸
= 0
provided r ≥ 2;
provided r ≥ 3.
X −µ √ is t with r = 9 − 1 = 8 degrees of freedom. S/ 9
(a) t0.025 (8) = 2.306.
c 2020 Pearson Education, Inc. Copyright °
58
Section 5.6 The Central Limit Theorem
−t0.025
(b)
S −t0.025 √ n S −X − t0.025 √ n S X − t0.025 √ n
5.6
≤
X −µ √ S/ n
≤
t0.025
≤
X −µ
≤
S t0.025 √ n
≤
−µ
≤
≤
µ
S −X + t0.025 √ n S ≤ X + t0.025 √ . n
The Central Limit Theorem
5.6–2 If
(3/2)x2 , −1 < x < 1, Z 1 x(3/2)x2 dx = 0; =
f (x)
=
E(X)
−1
Var(X)
=
Z 1
(3/2)x4 dx =
−1
Thus P (−0.3 ≤ Y ≤ 1.5)
5.6–4
P (39.75 ≤ X ≤ 41.25)
5.6–6 (a)
(b)
Ã
·
¸1 3 5 3 x = . 10 5 −1
−0.3 − 0 Y −0 1.5 − 0 p ≤p ≤p 15(3/5) 15(3/5) 15(3/5)
=
P
≈
P (−0.10 ≤ Z ≤ 0.50) = 0.2313.
=
P
Ã
≈
P (−0.50 ≤ Z ≤ 2.50) = 0.6853.
39.75 − 40 X − 40 41.25 − 40 p ≤p ≤ p (8/32) (8/32) (8/32)
!
!
¸2 · 2 4 x3 2 x = 2− − = ; 2 6 0 3 3 0 µ ¶2 Z 2 2 σ2 = x2 (1 − x/2) dx − 3 0 ¸ · 3 2 x4 2 x 4 − = ; = − 3 8 0 9 9 µ ¶ 2 2 5 2 2 X− 5 2 3 − 3 6 − 3 P = Pq ≤q 3 ≤q ≤X≤ 3 6 2 2 2 /18 /18 /18 µ
=
Z 2
x(1 − x/2) dx =
9
≈
9
9
P (0 ≤ Z ≤ 1.5) = 0.4332.
5.6–8 (a) E(X) = µ = 24.43; (b) Var(X) = (c)
σ2 2.20 = = 0.0733; n 30
P (24.17 ≤ X ≤ 24.82)
≈ P
µ
24.82 − 24.43 24.17 − 24.43 √ ≤Z≤ √ 0.0733 0.0733
= P (−0.96 ≤ Z < 1.44) = 0.7566. c 2020 Pearson Education, Inc. Copyright °
¶
Chapter 5 Distributions of Functions of Random Variables 5.6–10
E(X + Y )
=
30 + 50 = 80;
Var(X + Y )
=
2 σX + σY2 + 2ρσX σY
=
52 + 64 + 28 = 144;
59
25 X
(Xi + Yi ) is approximately N (25 · 80, 25 · 144). ¶ µ Z − 2000 2090 − 2000 1970 − 2000 < < Thus P (1970 < Z < 2090) = P 60 60 60 Z
=
i=1
≈
Φ(1.5) − Φ(−0.5)
=
0.9332 − 0.3085 = 0.6247.
5.6–12 Let Xi equal the time between sales of ticket i − P 1 and i, for i = 1, 2, . . . , 10. Each Xi has 10 a gamma distribution with α = 3, θ = 2. Y = i=1 Xi has a gamma distribution with parameters αY = 30, θY = 2. (a) Thus P (Y ≤ 60) =
Z 60 0
1 y 30−1 e−y/2 dy = 0.52428 using Maple; Γ(30)230
(b) The normal approximation is given by µ ¶ Y − 60 60 − 60 P √ ≈ Φ(0) = 0.5000. ≤ √ 120 120 5.6–14 We are given that Y =
P20
i=1 Xi has mean 200 and variance 80. We want to find y so that
P (Y > y) = P
µ
Y − 200 y − 200 √ > √ 80 80
¶
< 0.20.
We have that
5.7
y − 200 √ 80
=
0.842
y
=
207.5 ↑ 208 days.
Approximations for Discrete Distributions
5.7–2 (a) P (2 < X < 9) = 0.9532 − 0.0982 = 0.8550; ! Ã X − 25(0.2) 8.5 − 5 2.5 − 5 ≤p (b) P (2 < X < 9) = P ≤ 2 2 25(0.2)(0.8) ≈
P (−1.25 ≤ Z ≤ 1.75)
= 5.7–4
P (35 ≤ X ≤ 40)
≈ =
0.8543. µ ¶ 34.5 − 36 40.5 − 36 P ≤Z≤ 3 3
P (−0.50 ≤ Z ≤ 1.50) = 0.6247.
c 2020 Pearson Education, Inc. Copyright °
60
Section 5.7 Approximations for Discrete Distributions 5.7–6 µX = 84(0.7) = 58.8, Var(X) = 84(0.7)(0.3) = 17.64, µ ¶ 52.5 − 58.8 P (X ≤ 52.5) ≈ Φ = Φ(−1.5) = 0.0668. 4.2 µ ¶ X − 21.37 20.857 − 21.37 5.7–8 (a) P (X < 20.857) = P < 0.4 0.4 =
P (Z < −1.282) = 0.10;
(b) The distribution of Y is b(100, 0.10). Thus ! à 5.5 − 10 Y − 100(0.10) ≤ ≈ P (Z ≤ −1.50) = 0.0668; P (Y ≤ 5) = P p 3 100(0.10)(0.90) µ ¶ 21.39 − 21.37 21.31 − 21.37 (c) P (21.31 ≤ X ≤ 21.39) ≈ P ≤Z≤ 0.4/10 0.4/10 = P (−1.50 ≤ Z ≤ 0.50) = 0.6247. 5.7–10 The distribution of Y is b(1000, 18/38). Thus à ! 500.5 − 1000(18/38) P (Y > 500) ≈ P Z ≥ p = P (Z ≥ 1.698) = 0.0448. 1000(18/38)(20/38)
5.7–12 (a) E(X) = 100(0.1) = 10, Var(X) = 9, µ ¶ µ ¶ 14.5 − 10 11.5 − 10 P (11.5 < X < 14.5) ≈ Φ −Φ 3 3 = Φ(1.5) − Φ(0.5) = 0.9332 − 0.6915 = 0.2417; (b) P (X ≤ 14) − P (X ≤ 11) = 0.917 − 0.697 = 0.220; ¶ 14 µ X 100 (0.1)x (0.9)100−x = 0.2244. (c) x x=12
5.7–14 (a) E(Y ) = 24(3.5) = 84, Var(Y ) = 24(35/12) = 70, µ ¶ 85.5 − 84 √ P (Y ≥ 85.5) ≈ 1 − Φ = 1 − Φ(0.18) = 0.4286; 70 (b) P (Y < 85.5) ≈ 1 − 0.4286 = 0.5714;
(c) P (70.5 < Y < 86.5) ≈ Φ(0.30) − Φ(−1.61) = 0.6179 − 0.0537 = 0.5642.
5.7–16 (a) See Figure 5.7-16. (b) (i) When p = 0.1,
µ
¶ µ ¶ 1.5 −1.5 P (−1.5 < Y − 10 < 1.5) ≈ Φ −Φ = 0.6915 − 0.3085 = 0.3830; 3 3 (ii) When p = 0.5, µ ¶ µ ¶ 1.5 −1.5 P (−1.5 < Y − 50 < 1.5) ≈ Φ −Φ = 0.6179 − 0.3821 = 0.2358; 5 5 (iii) When p = 0.8, µ ¶ µ ¶ −1.5 1.5 P (−1.5 < Y − 80 < 1.5) ≈ Φ −Φ = 0.6462 − 0.3538 = 0.2924. 4 4
c 2020 Pearson Education, Inc. Copyright °
Chapter 5 Distributions of Functions of Random Variables 0.12
12
0.10
10
0.08
8
0.06
6
0.04
4
0.02
2 10
20
30
40
50
60
70
80
90 100
0
61
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Figure 5.7–16: Normal approximations of the pdfs of Y and Y /100, p = 0.1, 0.5, 0.8 5.7–18 X is N (0, 0.52 ). The probability that one item exceeds 0.98 in absolute value is P (|X| > 0.98)
1 − P (−0.98 ≤ X ≤ 0.98) µ ¶ X −0 0.98 − 0 −0.98 − 0 ≤ ≤ = 1−P 0.5 0.5 0.5
=
=
1 − P (−1.96 ≤ Z ≤ 1.96) = 1 − 0.95 = 0.05
If we let Y equal the number out of 100 that exceed 0.98 in absolute value, Y is b(100, 0.05). (a) Let λ = 100(0.05) = 5. P (Y ≥ 7) = 1 − P (Y ≤ 6) = 1 − 0.762 = 0.238; (b)
P (Y ≥ 7)
Ã
Y −5
6.5 − 5 p ≥ 2.179 100(0.05)(0.95)
=
P
≈
P (Z ≥ 0.688)
=
1 − 0.7543 = 0.2447;
!
(c) P (Y ≥ 7) = 1 − P (Y ≤ 6) = 1 − 0.7660 = 0.2340.
5.8
Chebyshev’s Inequality and Convergence in Probability
5.8–2 Var(X) = 298 − 172 = 9. (a)
P (10 < X < 24)
=
P (10 − 17 < X − 17 < 24 − 17)
=
P ( |X − 17| < 7) ≥ 1 −
because k = 7/3;
40 9 = , 49 49
9 = 0.035, because k = 16/3. 162 ¯ ¶ µ¯ ¯ ¯ Y (0.5)(0.5) − 0.5¯¯ < 0.08 ≥ 1 − = 0.609; 5.8–4 (a) P ¯¯ 100 100(0.08)2 p because k = 0.08/ (0.5)(0.5)/100; (b) P ( |X − 17| ≥ 16) ≤
c 2020 Pearson Education, Inc. Copyright °
62
Section 5.9 Limiting Moment-Generating Functions ¯ ¶ µ¯ ¯ ¯ Y ¯ < 0.08 ≥ 1 − (0.5)(0.5) = 0.922; ¯ − 0.5 ¯ ¯ 500 500(0.08)2 p because k = 0.08/ (0.5)(0.5)/500;
(b) P
¯ µ¯ ¶ ¯ ¯ Y (0.5)(0.5) ¯ ¯ − 0.5¯ < 0.08 ≥ 1 − = 0.961, (c) P ¯ 1000 1000(0.08)2 because k = 0.08/
5.8–6
P (75 < X < 85)
because k = 5/
5.9
p
p
(0.5)(0.5)/1000.
=
P (75 − 80 < X − 80 < 85 − 80)
=
P ( |X − 80| < 5) ≥ 1 −
60/15 = 0.84, 25
60/15 = 5/2.
Limiting Moment-Generating Functions
5.9–2 Using Table III with λ = np = 400(0.005) = 2, P (X ≤ 2) = 0.677. 5.9–4 Let Y =
n X
Xi , where X1 , X2 , . . . , Xn are mutually independent χ2 (1) random variables.
i=1
Then µ = E(Xi ) = 1 and σ 2 = Var(Xi ) = 2, i = 1, 2, . . . , n. Hence Y − nµ Y −n √ = √ 2 2n nσ has a limiting distribution that is N (0, 1).
c 2020 Pearson Education, Inc. Copyright °
Chapter 6 Point Estimation
63
Chapter 6
Point Estimation 6.1
Descriptive Statistics
6.1–2 x = 3.58; s = 0.5116. 6.1–4 (a)
Class Interval (303.5, 307.5) (307.5, 311.5) (311.5, 315.5) (315.5, 319.5) (319.5, 323.5) (323.5, 327.5) (327.5, 331.5) (331.5, 335.5)
Class Limits (304, 307) (308, 311) (312, 315) (316, 319) (320, 323) (324, 327) (328, 331) (332, 335)
Frequency fi 1 5 6 10 11 9 7 1
Class Mark,ui 305.5 309.5 313.5 317.5 321.5 325.5 329.5 333.5
(b) x = 320.1, s = 6.7499; (c)
h(x) 0.06 0.05 0.04 0.03 0.02 0.01
*
*
*
*
*
303.5 307.5 311.5 315.5 319.5 323.5 327.5 331.5 335.5
x
Figure 6.1–4: Melting points of metal alloys There are 31 observations within one standard deviation of the mean (62%) and 48 observations within two standard deviations of the mean (96%).
c 2020 Pearson Education, Inc. Copyright °
64
Section 6.1 Descriptive Statistics 6.1–6 (a) With the class boundaries 0.5, 5.5, 17.5, 38.5, 163.5, 549.5, the respective frequencies are 11, 9, 10, 10, 10; h(x)
(b)
0.04 0.03 0.02 0.01
100
200
300
400
x
500
Figure 6.1–6: Mobil home losses (c) This is a skewed to the right distribution. 6.1–8 (a) With the class boundaries 3.5005, 3.5505, 3.6005, . . . , 4.1005, the respective class frequencies are 4, 7, 24, 23, 7, 4, 3, 9, 15, 23, 18, 2; (b)
h(x) 3.5 3.0 2.5 2.0 1.5 1.0 0.5 3.6
3.7
3.8
3.9
4.0
4.1
x
Figure 6.1–8: Weights of mirror parts (c) This is a bimodal histogram. 6.1–10 (a) 50/204 = 0.245; 93/329 = 0.283; (b) 124/355 = 0.349; 21/58 = 0.362; (c) 174/559 = 0.311; 114/387 = 0.295; (d) Although Player J’s batting average is higher than Player H’s on both grass and artificial turf, Player H’s is higher over all. Note the different numbers of at bats on grass and artificial turf and how this affects the batting averages.
c 2020 Pearson Education, Inc. Copyright °
Chapter 6 Point Estimation
6.2
65
Exploratory Data Analysis
6.2–2 (a) Baby carrots: 1.02, 1.03, 1.04, 1.04, 1.06; Regular-size carrots: 1.00, 1.15, 1.21, 1.26, 1.43; (b)
1
1.1
1.2
1.3
1.4
Figure 6.2–2: (b) Box-and-whisker diagrams of small and regular-size carrots (c) Regular-size packages tend to be heavier. 6.2–4 (a) The five-number summary is: min = 1, qe1 = 6.75, m e = 32, qe3 = 90.75, max = 527;
0 100 200 300 400 500 Figure 6.2–4: (a) Box-and-whisker diagram of mobile home losses (b) IQR = 90.75 − 6.75 = 84. The inner fence is at 216.75 and the outer fence is at 342.75;
c 2020 Pearson Education, Inc. Copyright °
66
Section 6.2 Exploratory Data Analysis (c)
0 100 200 300 400 500 Figure 6.2–4: (c) Box-and-whisker diagram of losses with fences and outliers 6.2–6 (a) Stems 0• 1∗ 1• 2∗ 2• 3∗ 3• 4∗ 4• 5∗ 5•
Leaves 55555555555555555556666666666666677777778888888999999 0000001111111222334 5555666677889 0111133444 5 4 5 5 5
(b) The five-number summary is: min = 5, qe1 = 6, m e = 9, qe3 = 15, max = 55.
20 30 50 10 40 Figure 6.2–6: (b) Box-and-whisker diagram of maximum capital
c 2020 Pearson Education, Inc. Copyright °
Freq 53 19 13 10 1 1 1 0 1 0 1
Chapter 6 Point Estimation
67
(c) IQR = 15 − 6 = 9. The inner fence is at 28.5 and the outer fence is at 42.
10 20 30 40 50 Figure 6.2–6: (d) Box-and-whisker diagram of maximum capital with outliers and fences (e) The 90th percentile is 22.8. 6.2–8 (a) Stems 101 102 103 104 105 106 107 108 109 110
Leaves 7 000
89 133667788 379 8 139 022
Frequency 1 3 0 0 2 9 3 1 3 3
(Multiply numbers by 10−1 .) Table 6.2–8: Ordered stem-and-leaf diagram of weights of indicator housings
c 2020 Pearson Education, Inc. Copyright °
68
Section 6.2 Exploratory Data Analysis (b) min = 101.7, qe1 = 106.0, m e = 106.7, qe3 = 108.95, max = 110.2;
(c) The interquartile range in IQR = 108.95 − 106.0 = 2.95. The inner fence is located at 106.0 − 1.5(2.95) = 101.575 so there are no suspected outliers.
102
104
106
108
110
Figure 6.2–8: (b) Weights of indicator housings
6.2–10 (a) With the class boundaries 2.85, 3.85, . . . , 16.85 the respective frequencies are 1, 0, 2, 4, 1, 14, 20, 11, 4, 5, 0, 1, 0, 1;
h(x) 0.30 0.25 0.20 0.15 0.10 0.05 3.85
5.85
7.85
9.85
11.85
13.85
Figure 6.2–10: (a) Lead concentrations
c 2020 Pearson Education, Inc. Copyright °
15.85
x
Chapter 6 Point Estimation
69
(b) x = 9.422, s = 2.082; (c)
h(x) 0.30 0.25 0.20 0.15 0.10 0.05 3.85
*5.85
*7.85
*9.85
*
11.85
*
13.85
15.85
x
Figure 6.2–10: (c) Lead concentrations showing x, x ± s, x ± 2s There are 48 (48/64 = 75%) within one standard deviation of the mean and 60 (60/64 = 93.75%) within two standard deviations of the mean; (d) 1976 Leaves
Stems
1 92 9 9943200 98875544443221100000 986632210 766554331100 975320 961 2
2 3 4 5 6 7 8 9 10 11 12 13 14 15 17
1
1977 Leaves 9
07 3568 3 0112223677788899 1123333444455678889999 22345579 0469 0346 8 7
Multiply numbers by 10−1 Table 6.2–10: (d) Back-to-Back Stem-and-Leaf Diagram of Lead Concentrations
c 2020 Pearson Education, Inc. Copyright °
70
Section 6.3 Order Statistics (e)
1977
1976
2
4
6
8
10
12
14
16
Figure 6.2–10: (e) Box-and-whisker diagrams of 1976 and 1977 lead concentrations
6.3
Order Statistics
6.3–2 (a) The location of the median is (0.5)(17 + 1) = 9, thus the median is m e = 5.2.
The location of the first quartile is (0.25)(17 + 1) = 4.5. Thus the first quartile is qe1 = (0.5)(4.3) + (0.5)(4.7) = 4.5.
The location of the third quartile is (0.75)(17 + 1) = 13.5. Thus the third quartile is qe3 = (0.5)(5.6) + (0.5)(5.7) = 5.65;
(b) The location of the 35th percentile is (0.35)(18) = 6.3. Thus π e0.35 = (0.7)(4.8) + (0.3)(4.9) = 4.83.
The location of the 65th percentile is (0.65)(18) = 11.7. Thus
6.3–4
g(y)
=
=
=
5 ½ X
π e0.65 = (0.3)(5.6) + (0.7)(5.6) = 5.6.
6! (k)[F (y)]k−1 f (y)[1 − F (y)]6−k k!(6 − k)! k=3 ¾ 6! [F (y)]k (6 − k)[1 − F (y)]6−k−1 [−f (y)] + 6[F (y)]5 f (y) + k!(6 − k)! 6! 6! [F (y)]2 f (y)[1 − F (y)]3 − [F (y)]3 [1 − F (y)]2 f (y) 2!3! 3!2! 6! 6! [F (y)]3 f (y)[1 − F (y)]2 − [F (y)]4 [1 − F (y)]1 f (y) + 3!2! 4!1! 6! 6! + [F (y)]4 f (y)[1 − F (y)]1 − [F (y)]5 [1 − F (y)]0 f (y) + 6[F (y)]5 f (y) 4!1! 5!0! 6! [F (y)]2 [1 − F (y)]3 f (y), a < y < b. 2!3! c 2020 Pearson Education, Inc. Copyright °
Chapter 6 Point Estimation 6.3–6 (a)
(b)
71
F (x)
=
x,
g1 (w)
=
n[1 − w]n−1 (1),
gn (w)
=
E(W1 )
0 < w < 1;
n[w]n−1 (1), 0 < w < 1; Z 1 (w)(n)(1 − w)n−1 dw = =
E(Wn )
0 < x < 1. Thus
=
·
0
¸1 1 1 n+1 (1 − w) . −w(1 − w) − = n+1 n + 1 0 · ¸1 Z 1 n n (w)(n)w n−1 dw = wn+1 = ; n + 1 n + 1 0 0 n
(c) The pdf of Wr is gr (wr )
=
n! [wr ]r−1 [1 − wr ]n−r · 1 (r − 1)!(n − r)!
=
Γ(r + n − r + 1) r−1 w (1 − wr )n−r+1−1 . Γ(r)Γ(n − r + 1) r
Thus Wr has a beta distribution with α = r, β = n − r + 1. Z 1 n! 2 w2 wr−1 (1 − w)n−r dw 6.3–8 (a) E(Wr ) = (r − 1)!(n − r)! 0 Z 1 r(r + 1) (n + 2)! wr+1 (1 − w)n−r dw = (n + 2)(n + 1) 0 (r + 1)!(n − r)! =
r(r + 1) (n + 2)(n + 1)
since the integrand is like that of a pdf of the (r + 2)th order statistic of a sample of size n + 2 and hence the integral must equal one; (b) Var(Wr ) =
r(r + 1) r2 r(n − r + 1) − = . (n + 2)(n + 1) (n + 1)2 (n + 2)(n + 1)2
6.3–10 g(yi , yj )dyi dyj is the probability that i − 1 of the sample variables are less than yi , one variable is in the infinitesimal interval of length dyi about yi , j − i − 1 variables are between yi and yj , one variable is in the infinitesimal interval of length dyj about yj , and n − j variables are greater than yj . By independence and combinatorics, the probability is n! [F (yi )]i−1 f (yi )dyi [F (yj )−F (yi )]j−1+1 f (yj )dyj [1−F (yj )]n−j . (i − 1)!1!(j − i − 1)!1!(n − j)! Thus, for −∞ < yi < yj < ∞, g(yi , yj ) =
n! [F (yi )]i−1 [F (yj )−F (yi )]j−1+1 [1−F (yj )]n−j f (yi )f (yj ). (i − 1)!(j − i − 1)!(n − j)!
c 2020 Pearson Education, Inc. Copyright °
72
Section 6.3 Order Statistics 6.3–12
k
Strengths
p = k/10
z1−p
k
Strengths
p = k/10
z1−p
1 2 3 4 5
7.2 8.9 9.7 10.5 10.9
0.10 0.20 0.30 0.40 0.50
−1.282 −0.842 −0.524 −0.253 0.000
6 7 8 9
11.7 12.9 13.9 15.3
0.60 0.70 0.80 0.90
0.253 0.524 0.842 1.282
2
1
0
8
10
12
14
16
–1
–2
Figure 6.3–12: q-q plot of N (0, 1) quantiles versus data quantiles It seems to be an excellent fit. 6.3–14 (a)
X
Y
133 134 135 136 137 138 139 Figure 6.3–14: q-q plot of N (0, 1) quantiles versus data quantiles (b) It looks like an excellent fit.
c 2020 Pearson Education, Inc. Copyright °
Chapter 6 Point Estimation
6.4
73
Maximum Likelihood Estimation
6.4–2 The likelihood function is " n # · ¸n/2 X 1 2 L(θ) = exp − (xi − µ) /2θ , 2πθ i=1
0 < θ < ∞.
The logarithm of the likelihood function is n n 1 X n (xi − µ)2 . ln L(θ) = − (ln 2π) − (ln θ) − 2 2 2θ i=1
Setting the first derivative equal to zero and solving for θ yields d ln L(θ) dθ
=
θ
=
Thus
n n 1 X (xi − µ)2 = 0 + 2 2θ 2θ i=1 n 1X (xi − µ)2 . n i=1
−
n
θb =
1X (Xi − µ)2 . n i=1
To see that θb is an unbiased estimator of θ, note that à ! n σ 2 X (Xi − µ)2 σ2 b E(θ) = E = · n = σ2, n i=1 σ2 n
since (Xi − µ)2 /σ 2 is χ2 (1) and hence the expected value of each of the n summands is equal to 1. For the unbiased property, it could also be noted that θb is the sample mean from a random sample of size n from the distribution of (X − µ)2 . The sample mean is always an unbiased estimator of the distribution mean, which in this case is σ 2 . 6.4–4 The joint probability of {3, 2, 3, 1} when θ = −1 is µ ¶µ ¶µ ¶µ ¶ 2 3 1 18 3 = 4. P ({3, 2, 3, 1}; θ = −1) = 6 6 6 6 6 In similar fashion we find that the joint probability of {3, 2, 3, 1} when θ = 0 is µ ¶µ ¶µ ¶µ ¶ 2 2 2 2 16 P ({3, 2, 3, 1}; θ = 0) = = 4, 6 6 6 6 6 and the joint probability of {3, 2, 3, 1} when θ = 1 is µ ¶µ ¶µ ¶µ ¶ 1 2 1 3 6 P ({3, 2, 3, 1}; θ = 1) = = 4. 6 6 6 6 6 Since the likelihood function is largest when θ = −1, the maximum likelihood estimate is θb = −1.
c2 = 5.0980. 6.4–6 θb1 = µ b = 33.4267; θb2 = σ
c 2020 Pearson Education, Inc. Copyright °
74
Section 6.4 Maximum Likelihood Estimation
6.4–8 (a)
L(θ)
=
µ
1 θn
¶Ã Y n
xi
i=1
!1/θ−1
,
0<θ<∞
¶ Y n 1 xi − 1 ln ln L(θ) = −n ln θ + θ i=1 n Y d ln L(θ) −n 1 = − 2 ln xi = 0 dθ θ θ i=1 n 1 Y xi θb = − ln n i=1 n 1X = − ln xi ; n i=1 µ
(b) We first find E(ln X): E(ln X) =
Z 1
ln x(1/θ)x1/θ−1 dx.
0
Using integration by parts, with u = ln x and dv = (1/θ)x1/θ−1 dx, i1 h E(ln X) = lim x1/θ ln x − θx1/θ = −θ. a→0
a
Thus
n
6.4–10 (a) x = 1/p so pe = 1/X = n/
E( θb ) = −
Pn
1X (−θ) = θ. n i=1
i=1 Xi ;
(b) pe equals the number of successes, n, divided by the number of Bernoulli trials, Pn i=1 Xi ; (c) 20/252 = 0.0794.
6.4–12 (a) E( X ) = E(Y )/n = np/n = p; (b) Var( X ) = Var(Y )/n2 = np(1 − p)/n2 = p(1 − p)/n; (c)
E[ X(1 − X )]
= = =
2
[E( X ) − E( X )]
{p − [p2 + p(1 − p)/n]} = [p(1 − 1/n) − p2 (1 − 1/n)] (1 − 1/n)p(1 − p)/n = (n − 1)p(1 − p)/n;
(d) From part (c), the constant c = n/(n − 1). ( · ¸1/2 ) cσ (n − 1)S 2 6.4–14 (a) E(cS) = E √ σ2 n−1 Z ∞ 1/2 (n−1)/2−1 −v/2 v v e cσ µ ¶ dv = √ n − 1 n−1 0 Γ 2(n−1)/2 2 √ cσ 2 Γ(n/2) , = √ n − 1 Γ[(n − 1)/2)] √ n − 1 Γ[(n − 1)/2] √ so c = ; 2 Γ(n/2) √ √ √ (b) When n = 5, c = 8/(3 2π ) and when n = 6, c = 3 5π/(8 2 );
c 2020 Pearson Education, Inc. Copyright °
Chapter 6 Point Estimation (c)
75
c 1.18 1.16 1.14 1.12 1.10 1.08 1.06 1.04 1.02 1.00 0.98 0.96 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
n
Figure 6.4–14: c as a function of n We see that lim c = 1.
n→∞
6.4–16 The experiment has a hypergeometric distribution with n = 8 and N = 64. From the sample, x = 1.4667. Using this as an estimate for µ we have µ ¶ N1 f1 = 11.73. 1.4667 = 8 implies that N 64 A guess for the value of N1 is therefore 12.
6.4–18 L=
µ
1 2πσ 2
¶kn/2
µ ¶¸2 k · n X X k+1 xij − c − d j − exp − /(2σ 2 ) . 2 i=1 j=1
To find b c and db try to minimize S=
n X k · X i=1 j=1
We have
¶¸2 µ k+1 . xij − c − d j − 2
· µ ¶¸ k n X X k+1 ∂S 2 xij − c − d j − (−1) = 0. = ∂c 2 i=1 j=1
Because
¶ µ k X k+1 = 0, d j− 2 j=1
b c=
Pn
i=1
Pk
j=1 xij
kn
= x, say.
· µ ¶¸· µ ¶¸ k n X X k+1 k+1 ∂S 2 xij − c − d j − − j− = 0. = ∂d 2 2 i=1 j=1 Thus db =
Pn
Pk
j=1 (xij − x)(j − {k + 1}/2) = Pn P k 2 j=1 (j − {k + 1}/2) i=1
i=1
Pn
i=1
Pk
Pk
j=1 xij (j − {k + 1}/2)
j=1 n(j − {k + 1}/2)
c 2020 Pearson Education, Inc. Copyright °
2
.
76
Section 6.5 A Simple Regression Problem
6.4–20 (a) F (y) =
Z y 0
y
(1/θ) dx = [(x/θ)]0 = y/θ, so the desired pdf is gn (y) = n(y/θ)n−1 (1/θ) = ny n−1 /θn ,
(b) E(Yn ) =
Z θ
(ny n /θn ) dy =
0
·
0 < y < θ;
¸θ nθ ny n+1 ; = n (n + 1)θ 0 n+1
(c) c = (n + 1)/n, since E{[(n + 1)/n]Yn } = [(n + 1)/n] · [nθ/(n + 1)] = θ; (d)
E(Yn2 ) =
Z θ 0
· ¸θ ny n+2 ny n+1 nθ2 dy = , so = θn (n + 2)θ n 0 n+2 "
¶2 # µ 2 nθ nθ = c2 − n+2 n+1 · ¸ n n2 θ2 (n + 1)2 2 θ − ; = = n2 n + 2 (n + 1)2 n(n + 2)
Var(cYn )
(e) Var(2X ) = (4/n)Var(X1 ) = (4/n)(θ 2 /12) = θ 2 /(3n). Since 3n < n(n + 2) for n > 1, Var(2X ) is larger.
6.5
A Simple Regression Problem
¸ (yi − βxi )2 √ 6.5–2 (a) L(β, σ ) = exp − 2σ 2 2πσ 2 i=1 µ ¶n/2 ¸ · Pn 2 1 i=1 (yi − βxi ) = . exp − 2πσ 2 2σ 2 Maximizing L or equivalently maximizing Pn (yi − βxi )2 n ln L(β, σ 2 ) = ln(2πσ 2 ) + i=1 2 2σ 2 Pn requires selecting β to minimize H(β) = i=1 (yi − βxi )2 . n X 0 (yi − βxi )(−xi ) = 0 H (β) = 2 n Y
2
·
1
i=1
βb =
Pn x i yi Pi=1 n 2 i=1 xi
∂ ln L(β, σ 2 ) ∂(σ 2 )
=
b = 2 Pn x2 > 0. which is a point of minimum since H 00 (β) i=1 i
(b) βb =
à n X i=1
c2 σ x2i
n − 2σ 2
Pn
i=1 (yi − βxi ) 2(σ 2 )2
2
= 0
n
=
!−1 n X i=1
1X b i )2 ; (yi − βx n i=1 xi Yi . Since βb is a linear combination of independent normal
random variables, it is normal with mean
c 2020 Pearson Education, Inc. Copyright °
Chapter 6 Point Estimation
b E(β)
=
77 Ã n X
x2i
i=1
=
à n X
=
x2i x2i
i=1
=
xi E(Yi )
i=1
i=1
à n X
!−1 n X
!−1 n X
xi (βxi )
β
x2i
!−1
i=1
à n X i=1
β
!
and variance b Var(β)
à n X
=
x2i
i=1
à n X
=
x2i Var(Yi )
i=1
x2i
i=1
= σ2
!−2 n X
n ±X
!−2 n X
x2i σ 2
i=1
x2i .
i=1
Also n X i=1
(Yi − βxi )2
=
n X i=1
=
n X i=1
b i + (βb − β)xi ]2 [Yi − βx
b i )2 + (βb − β)2 (Yi − βx
n X
x2i .
i=1
Pn Because Yi ∼ independent N (βxi , σ 2 ) and βb ∼ N (β, σ 2 i=1 x2i ), Pn
i=1 (Yi − βxi ) σ2
2
∼ χ2 (n)
and
Pn (βb − β)2 i=1 x2i ∼ χ2 (1). σ2
By Theorem 9.3-1, n X i=1
(c) βb =
b i )2 ∼ χ2 (n−1); (Yi − βx
3 c2 [1 − (3/5)(1)]2 + [1 − (3/5)(2)]2 1 (1)(1) + (2)(1) = , σ = = ; 12 + 2 2 5 2 10
(d) y1 − yb1 = 1−(3/5) = 2/5, y2 − yb2 = 1−(6/5) = −1/5, and their sum is (2/5)−(1/5) = 1/5 6= 0. c 2020 Pearson Education, Inc. Copyright °
78
Section 6.5 A Simple Regression Problem 6.5–4 (a) x
y
x2
xy
y2
2.0 3.3 3.7 2.0 2.3 2.7 4.0 3.7 3.0 2.3
1.3 3.3 3.3 2.0 1.7 3.0 4.0 3.0 2.7 3.0
4.00 10.89 13.69 4.00 5.29 7.29 16.00 13.69 9.00 5.29
2.60 10.89 12.21 4.00 3.91 8.10 16.00 11.10 8.10 6.90
1.69 10.89 10.89 4.00 2.89 9.00 16.00 9.00 7.29 9.00
0.361716 0.040701 0.027725 0.009716 0.228120 0.206231 0.006204 0.217630 0.014900 0.676310
29.0
27.3
89.14
83.81
80.65
1.849254
α b
y = 27.3/10 = 2.73;
=
βb =
(b)
yb =
(y − yb)2
83.81 − (29.0)(27.3)/10 4.64 = = 0.9206; 89.14 − (29.0)(29.0)/10 5.04 2.73 + (4.64/5.04)(x − 2.90); y 4.0 3.5 3.0 2.5 2.0 1.5 1.5
2.0
2.5
3.0
3.5
4.0
x
Figure 6.5–4: Earned grade (y) versus predicted grade (x) c2 = (c) σ
6.5–6 (a) α b
1.849254 = 0.184925. 10 =
βb = yb =
=
395 = 26.333, 15 9292 − (346)(395)/15 180.667 = = 0.506, 8338 − (346)2 /15 356.933 µ ¶ 180.667 346 26.333 + x− 356.933 15 0.506x + 14.657;
c 2020 Pearson Education, Inc. Copyright °
Chapter 6 Point Estimation
79
(b)
y 32 30 28 26 24 22 20 18 16 16 18 20 22 24 26 28 30 32
x
Figure 6.5–6: ACT natural science (y) versus ACT social science (x) scores (c)
c2 nσ
=
26.33, βb = 0.506,
=
211.8861,
c2 σ
=
α b
=
10, 705 −
3952 − 0.5061636(9292) + 0.5061636(346)(395)/15 15
211.8861 = 14.126. 15
6.5–8 (a) y = 3.575 + 1.225x; (b) 35 34 33 32 31 30 29 28 27 26 18 19
20
21
22
23
24
25
26
27
Figure 6.5–8: (b) Highway mpg (y) versus City mpg (x)
c 2020 Pearson Education, Inc. Copyright °
80
Section 6.6 Asymptotic Distributions of Maximum Likelihood Estimators (c) y = 55.6745 − 0.0075x.
35 34 33 32 31 30 29 28 27 26 3100 3200 3300 3400 3500 3600 3700 3800 3900
Figure 6.5–8: (c) Highway mpg (y) versus Curb Weight (x)
6.5–10 (b) The least squares regression line for y = a + b versus b is yb = 1.360 + 1.626b; (c) y = φx = 1.618x is added on the right figure below;
280 260 240 220 200 180 160 140 120 100 80 60 40
280 260 240 220 200 180 160 140 120 100 80 60 40 20
40
60
80
100 120 140 160 180
20
40
60
80
100 120 140 160 180
Figure 6.5–10: Scatter plot of a + b versus b with least squares regression line and with y = φx
(d) The sample mean of the points (a+b)/b is 1.647 which is close to the value of φ = 1.618.
c 2020 Pearson Education, Inc. Copyright °
Chapter 6 Point Estimation
6.6
81
Asymptotic Distributions of Maximum Likelihood Estimators f (x; p)
=
px (1 − p)1−x ,
ln f (x; p)
=
x ln p + (1 − x) ln(1 − p)
6.6–2 (a)
∂ ln f (x; p) ∂p ∂ 2 ln f (x; p) ∂p2 · ¸ X −1 X E 2− p (1 − p)2
= =
x = 0, 1
x x−1 + p 1−p x x−1 − 2+ p (1 − p)2
p p−1 1 − = . 2 2 p (1 − p) p(1 − p) p(1 − p) ; Rao-Cramér lower bound = n (b)
p(1 − p)/n = 1. p(1 − p)/n
6.6–4 (a)
ln f (x; θ) ∂ ln f (x; θ) ∂θ ∂ 2 ln f (x; θ) ∂θ2 ¸ · 2X 2 E − 2+ 3 θ θ
=
=
−2 ln θ + ln x − x/θ
2 x − + 2 θ θ 2 2x = − 3 2 θ θ 2(2θ) 2 2 = 2 = − 2+ θ θ3 θ θ2 ; Rao-Cramér lower bound = 2n =
(b) Very similar to (a); answer = (c)
ln f (x; θ) ∂ ln f (x; θ) ∂θ ∂ 2 ln f (x; θ) ∂θ2 E[ ln X ]
= = = = =
− ln θ +
¶ 1−θ ln x θ
1 1 − − 2 ln x θ θ 1 2 + 3 ln x θ2 θ Z 1 ln x (1−θ)/θ 1 x dx. Let y = ln x, dy = dx. x 0Z θ ∞ y −y(1−θ)/θ −y − e e dy = −θ Γ(2) = −θ. θ 0
Rao-Cramér lower bound =
6.7
µ
θ2 ; 3n
θ2 1 ¶= . 1 2 n n − 2+ 2 θ θ µ
Sufficient Statistics
6.7–2 The distribution of Y is Poisson with mean nλ. Thus, since y = Σ x i ,
c 2020 Pearson Education, Inc. Copyright °
82
Section 6.7 Sufficient Statistics
P (X1 = x1 , X2 = x2 , · · · , Xn = xn | Y = y)
=
(λΣ xi e−nλ )/(x1 ! x2 ! · · · xn !) (nλ)y e−nλ /y!
=
y! , x1 ! x 2 ! · · · x n ! n y
which does not depend on λ. 6.7–4 (a) f (x; θ) = e(θ−1) ln x+ln θ ,
0 < θ < ∞;
0 < x < 1,
so K(x) = ln x and thus Y =
n X i=1
is a sufficient statistic for θ;
ln Xi = ln(X1 X2 · · · Xn )
L(θ)
=
θ n (x1 x2 · · · xn )θ−1
ln L(θ)
=
n ln θ + (θ − 1) ln(x1 x2 · · · xn )
=
n + ln(x1 x2 · · · xn ) = 0. θ
(b)
d ln L(θ) dθ Hence
θb = −n/ ln(X1 X2 · · · Xn ),
which is a function of Y ; (c) Since θb is a single valued function of Y with a single valued inverse, knowing the value of θb is equivalent to knowing the value of Y , and hence it is sufficient.
6.7–6 (a)
f (x1 , x2 , . . . , xn )
=
(x1 x2 · · · xn )α−1 e−Σ xi /θ [Γ(α)]n θαn
=
µ −Σ xi /θ ¶µ ¶ e (x1 x2 · · · xn )α−1 . θαn [Γ(α)]n
The second Pnfactor is free of θ. The first factor is a function of the xi s through only, so i=1 xi is a sufficient statistic for θ; Pn (b) ln L(θ) = ln(x1 x2 · · · xn )α−1 − i=1 xi /θ − ln[Γ(α)]n − αn ln θ d ln L(θ) dθ
=
αnθ
=
Y =
n X
θb =
Pn
i=1 xi /θ
Pn
2
Pn
i=1 xi
− αn/θ = 0
i=1 xi n
1 X Xi . αn i=1
Xi has a gamma distribution with parameters αn and θ. Hence
i=1
b = E(θ)
6.7–8 tZ
E(e ) =
Z ∞
−∞
···
Z ∞µ −∞
1 √ 2πθ
¶n
"
exp −
1 (αnθ) = θ. αn
n X x2 i
i=1
2θ
#
exp
¸ · Pn t i=1 ai xi Pn dx1 dx2 . . . dxn . i=1 xi
√ √ Let xi / θ = yi , i = 1, 2, . . . , n. The Jacobian is ( θ )n . Hence
c 2020 Pearson Education, Inc. Copyright °
Chapter 6 Point Estimation
tZ
E(e )
=
=
83
" n # ¶n ¸ · Pn Z ∞ √ µ X y2 t ai yi 1 i n exp − dy1 dy2 . . . dyn . ··· ( θ) √ exp Pi=1 n 2 2πθ −∞ −∞ i=1 yi i=1 " n # ¶n · Pn ¸ Z ∞ Z ∞µ X y2 t i=1 ai yi 1 i √ exp − ··· exp Pn dy1 dy2 . . . dyn 2 2π −∞ −∞ i=1 yi i=1 Z ∞
which is free of θ. Since the distribution of Z is free of θ, Z and Y = statistics, are independent.
Pn
2 i=1 Xi , the sufficient
6.7–10 The joint pdf can be written " n Y
i=1
xi (1 − xi )
so by definition
#θ ·
Γ(2θ) {Γ(θ)}2
n Y
i=1
is a sufficient statistics for θ.
¸n
1 ; [ i=1 xi (1 − xi )] Qn
Xi (1 − Xi )
6.7–12 The joint pdf of Y1 , Y2 , . . . , Yn , letting c=
µ
√
1 2πσ 2
¶n
,
is c · exp = c · exp = c · exp = c · exp = φ
µ Pn
i=1 [yi − α − β(xi − x)] 2σ 2
µ Pn
2
¶
2 2 2 2 i=1 [yi + α + β (xi − x) − 2αyi − 2β(xi − x)yi + 2αβ(xi − x)] 2σ 2
µ Pn
2 i=1 yi − 2α
µ Pn
à n X i=1
Pn
i=1 yi − 2β
2 i=1 yi − 2(α + βx)
yi ,
n X i=1
yi2 ,
n X i=1
Pn
Pn
i=1 yi (xi − x) + quantities that don’t involve the yi ’s 2σ 2
i=1 yi − 2β
xi yi ; α, β, σ
2
!
¶
Pn
¶
i=1 yi xi + quantities that don’t involve the yi ’s 2σ 2
· 1.
The result follows immediately by the Factorization Theorem.
c 2020 Pearson Education, Inc. Copyright °
¶
84
Section 6.8 Bayesian Extimation
6.8
Bayesian Estimation
6.8–2 (a)
g(τ | x1 , x2 , . . . , xn )
∝
(x1 x2 · · · xn )α − 1 τ nα τ α0 − 1 e−τ /θ0 e−Σxi /(1/τ ) [Γ(α)]n Γ(α0 )θ0α0
τ αn + α0 − 1 e−(1/θ0 + Σxi )τ ¶ θ0 which is Γ nα + α0 , ; 1 + θ0 Σxi ∝
µ
(b)
E(τ | x1 , x2 , . . . , xn )
θ0 1 + θ0 Xn
=
(nα + α0 )
=
α0 θ0 αnθ0 + 1 + θ0 nX 1 + nθ0 X
=
nα + α0 ; 1/θ0 + nX
(c) The posterior distribution is Γ(30 + 10, 1/[1/2 + 10 x ]). Select a and b so that P (a < τ < b) = 0.95 with equal tail probabilities. Then Z b
(1/2 + 10 x )40 40−1 −w(1/2 + 10 x) dw = w e Γ(40) a
Z b(1/2+10x) a(1/2+10x)
1 z 39 e−z dz, Γ(40)
making the change of variables w(1/2 + 10 x ) = z. Let v0.025 and v0.975 be the quantiles for the Γ(40, 1) distribution. Then a=
v0.025 ; 1/2 + 10 x
b=
v0.975 . 1/2 + 10 x
It follows that P (a < τ < b) = 0.95.
6.8–4 3 3 g(θ | x1 , x2 , . . . , xn ) ∝ (3θ)n (x1 x2 · · · xn )2 e−θΣxi · θ4 − 1 e−4θ ∝ θn + 3 e−(4 + Σxi )θ
µ which is Γ n + 4,
¶ 1 . Thus 4 + Σ x3i E(θ | x1 , x2 , . . . , xn ) =
n+4 . 4 + Σ x3i
c 2020 Pearson Education, Inc. Copyright °
Chapter 6 Point Estimation
85
g(y | θ)
=
ny n−1 , θn
g(y | θ)h(θ)
∝
θn+β+1
k(θ | y)
=
c
=
6.8–6 (a)
1 c θn+β+1
0<y<θ ,
max(α, y) < θ < ∞
,
max(α, y) < θ < ∞
(n + β)[max(α, y)]n+β by
Z ∞
max(α,y)
E(θ | y)
Z ∞
= =
w(Y )
µ
=
[max(α, y)]n+β (n + β) dθ θn+β+1 ¶ max(α, y) = w(y)
(θ)
max(α,y)
µ
k(θ | y) dθ = 1
n+β n+β−1 n+β n+β−1
¶
max(α, Y );
(b) With n = 4, α = 1, β = 2, k(θ | y) =
[max(1, y)]6 (6) , θ7
max(1, y) < θ.
Since Loss = |θ − w(Y )|, we want w(y) 1 2
=
median
=
Z w(y)
=
1−
[max(1, y)]6 (6) dθ θ7 max(1,y) [max(1, y)]6 [w(y)]6
so w(Y ) = 6.8–8 L=
µ
√
1 2πσ 2
¶n
(
exp −
√ 6
n X i=1
2 max(1, Y ).
2
[yi − α − β(xi − x)] /2σ
2
)
.
The summation in the exponent can be written as follows: n X i=1
α − α)2 + (βb − β)2 [yi − α − β(xi − x)] = n(b
n X i=1
(xi − x)2 +
n X i=1
b i − x)]2 . [yi − α b − β(x
Note: Let’s say σ 2 is known in the exercise. Then α has prior N (α1 , σ12 ); so posterior of α (eliminating factors not involving α) is
c 2020 Pearson Education, Inc. Copyright °
86
Section 6.8 Bayesian Extimation
posterior of α
Ã
!
¸ · ¸ −n(α − α b )2 −(α − α1 )2 exp 2σ12 2σ 2 2πσ12 · ¸ (α2 − 2αα1 ) (nα2 − 2nb αα) ∝ exp − − + terms not involving α 2σ12 2σ 2 · ½ µ ¶ µ ¶¾¸ n nb α α1 1 + + = exp − α2 − 2α + 2σ12 2σ 2 2σ12 2σ 2
∝
p
1
exp
·
terms not involving α ¶½ ¾¸ · µ α1 /(2σ12 ) + nb α/(2σ 2 ) n 1 2 α − 2α + = exp − + 2σ12 2σ 2 1/(2σ12 ) + n/(2σ 2 ) terms not involving α " µ ¶½ ¾2# α1 /(2σ12 ) + nb α/(2σ 2 ) n 1 = exp − + + 2 α− 2σ12 2σ 1/(2σ12 ) + n/(2σ 2 ) terms not involving α. This is normal with posterior mean equal to α1 nb α + 2 σ12 σ . n 1 + σ12 σ2 Now β has prior N (β0 , σ02 ); so posterior of β is " # b 2 Pn (xi − x)2 (β − β) (β − β0 )2 i=1 − posterior of β ∝ exp − 2σ 2 2σ02 à P ! # " µP ¶ n n 2 βb i=1 (xi − x)2 1 β0 i=1 (xi − x) 2 ∝ exp − + 2 β +2 + 2 β 2σ 2 2σ0 2σ 2 2σ0 ( )2 ¶ µ Pn 2 b Pn (xi − x)2 /σ 2 + β0 /σ 2 β x) (x − 1 i 0 i=1 . β − Pni=1 + 2 ∝ exp− 2 2 2 2σ 2 2σ0 i=1 (xi − x) /σ + 1/σ0 This is normal with posterior mean
Pn βb i=1 (xi − x)2 /σ 2 + β0 /σ02 Pn 2 . 2 2 i=1 (xi − x) /σ + 1/σ0
Hence the posterior mean of α + β(x − x) is
Pn βb i=1 (xi − x)2 nb α β0 α1 + + 2 σ12 σ2 σ2 σ0 + Pn (x − x). 2 1 n 1 i=1 (xi − x) + + σ12 σ2 σ2 σ02
c 2020 Pearson Education, Inc. Copyright °
Chapter 7 Interval Estimation
87
Chapter 7
Interval Estimation 7.1
Confidence Intervals for Means
7.1–2 (a) [77.272, 92.728];
(b) [79.12, 90.88];
(c) [80.065, 89.935];
(d) [81.154, 88.846].
7.1–4 (a) x = 56.8; √ √ ¤ £ (b) 56.8 − 1.96(2/ 10 ), 56.8 + 1.96(2/ 10 = [55.56, 58.04] ; ¶ µ 52 − 56.8 = P (Z < −2.4) = 0.0082. (c) P (X < 52) = P Z < 2 · µ ¶ µ ¶¸ 11.80 11.80 7.1–6 11.95 − 1.96 √ , 11.95 + 1.96 √ = [8.15, 15.75]. 37 37 If more extensive t-tables are available or if a computer program is used, we have ¶ µ ¶¸ · µ 11.80 11.80 , 11.95 + 2.028 √ = [8.016, 15.884]. 11.95 − 2.028 √ 37 37 7.1–8 (a) x = 46.42; √ (b) 46.42 ± 2.132s/ 5
or
[40.26, 52.58].
7.1–10 (a) x = 3.580; (b) s = 0.512;
√ (c) [0, 3.580 + 1.833(0.512/ 10 ] = [0, 3.877].
7.1–12 (a) x = 245.80, s = 23.64, so a 95% confidence interval for µ is √ √ [245.80 − 2.145(23.64)/ 15 , 245.80 + 2.145(23.64)/ 15 ] = [232.707, 258.893];
c 2020 Pearson Education, Inc. Copyright °
88
Section 7.2 Confidence Intervals for the Difference of Two Means (b)
220
240
260
280
Figure 7.1–12: Box-and-whisker diagram of signals from detectors (c) The standard deviation is quite large. √ √ √ 7.1–14 (a) ( x + 1.96σ/ 5 ) − ( x − 1.96σ/ 5 ) = 3.92σ/ 5 = 1.753σ; √ √ √ (b) ( x + 2.776s/ 5 ) − ( x − 2.776s/ 5 ) = 5.552s/ 5. √ √ 2 Γ(5/2)σ 3 πσ From Exercise 6.4–14 with n = 5, E(S) = √ = 5/2 = 0.94σ, so that 2 4 Γ(4/2) √ E[5.552S/ 5 ] = 2.334σ. 7.1–16
P (X − 1 < µ < X + 1)
=
n
=
0.90
P (−1 < µ − X < 1) = 0.90 ¶ X −µ 1 −1 √ < √ < √ P = 0.90 3/ n 3/ n 3/ n √ n = 1.645 3 √ n = 3(1.645) µ
7.2
24.35 % 25.
Confidence Intervals for the Difference of Two Means
7.2–2 x = 539.2, s2x = 4,948.7, y = 544.625, s2y = 4,327.982, sp = 67.481, t0.05 (11) = 1.796, so the confidence interval is [−74.517, 63.667]. 7.2–4 (a) x − y = 1511.714 − 1118.400 = 393.314;
(b) s2x = 49, 669.905, s2y = 15, 297.600, r = [8.599] = 8, t0.025 (8) = 2.306, so the confidence interval is [179.148, 607.480].
7.2–6 (a) x = 2.584, y = 1.564, s2x = 0.1042, s2y = 0.0428, sp = 0.2711, t0.025 (18) = 2.101. Thus a 95% confidence interval for µX − µY is [0.7653, 1.2747];
c 2020 Pearson Education, Inc. Copyright °
Chapter 7 Interval Estimation
89
(b)
X
Y
1.5
2.0
2.5
3.0
Figure 7.2–6: Box-and-whisker diagrams, wedge on (X) and wedge off (Y ) (c) Yes. 7.2–8 From (a), (b), and (c), we know s· ¸Á (nX − 1)SX2 (nY − 1)SY2 X − Y − (µX − µY ) s (nX + nY − 2) ÷ (d) + dσY2 σY2 dσY2 σY2 + nX nY has a t(nX +nY −2) distribution. Clearly, this ratio does not depend upon σY2 ; so s ¶ µ 1 d (nX − 1)s2X /d + (nY − 1)s2Y + x − y ± tα/2 (nX +nY −2) nX + n Y − 2 nX nY provides a 100(1 − α)% confidence interval for µX − µY . 7.2–10 (a) d = 0.07875;
√ (b) [ d − (1.714)(0.25492)/ 24, ∞) = [−0.0104, ∞); (c) not necessarily.
7.2–12 (a) x = 136.61, y = 134.87, s2x = 3.2972, s2y = 1.0957; (b) Using Welch with r = 18 degrees of freedom, the 95% confidence interval is [0.436, 3.041]. Assuming equal variances with r = 20 degrees of freedom, the 95% confidence interval is [0.382, 3.095];
c 2020 Pearson Education, Inc. Copyright °
90
Section 7.3 Confidence Intervals for Proportions (c) The five-number summary for the X observations is 133.30, 135.625, 136.95, 137.80, 139.40. The five-number summary for the Y observations is 132.70, 134.15, 134.95, 135.825, 136.00;
X
Y
133 134 135 136 137 138 139 Figure 7.2–12: Hardness of hot (X) and cold (Y ) water (d) The mean for hot seems to be larger than the mean for cold.
7.3
Confidence Intervals For Proportions
7.3–2 (a) pb =
142 = 0.71; 200 r
# r (0.71)(0.29) (0.71)(0.29) , 0.71 + 1.645 = [0.657, 0.763]; (b) 0.71 − 1.645 200 200 p 0.71 + 1.6452 /400 ± 1.645 0.71(0.29)/200 + 1.6452 /(4 · 2002 ) = [0.655, 0.760]; (c) 1 + 1.6452 /200 "
142 + 1.6452 /2 142 + 1.3530 = = 0.7072; 200 + 1.6452 200 + 2.7060 " # r (0.7072)(0.2928) 0.7072 ± 1.645 = [0.6546, 0.7598]; 202.7060 # " r (0.71)(0.29) , 1 = [0.669, 1]. (e) 0.71 − 1.282 200 " # r r (0.70)(0.30) (0.70)(0.30) 7.3–4 0.70 − 1.96 , 0.70 + 1.96 = [0.674, 0.726]. 1234 1234 " # r r (0.26)(0.74) (0.26)(0.74) , 0.26 + 2.326 7.3–6 0.26 − 2.326 = [0.247, 0.273]. 5757 5757 (d) pe =
388 = 0.3796; 1022 r (0.3796)(0.6204) (b) 0.3796 ± 1.645 1022
7.3–8 (a) pb =
or
[0.3546, 0.4046].
7.3–10 (a) pb1 = 28/194 = 0.144; c 2020 Pearson Education, Inc. Copyright °
Chapter 7 Interval Estimation (b) 0.144 ± 1.96
p
91 (0.144)(0.856)/194 or [0.095, 0.193];
(c) pb1 − pb2 = 28/194 − 11/162 = 0.076; " # r (0.144)(0.856) (0.068)(0.932) (d) 0.076 − 1.645 + ,1 194 162
7.3–12 (a) pbA = 170/460 = 0.37, pbB = 141/440 = 0.32, r (0.37)(0.63) (0.32)(0.68) 0.37 − 0.32 ± 1.96 + 460 440 (b) yes, the interval includes zero.
7.4
or
or
[0.044, 1].
[−0.012, 0.112];
Sample Size
7.4–2 n =
(1.96)2 (169) = 288.5 so the sample size needed is 289. (1.5)2
7.4–4 Approximately n =
(1.96)2 (34.9) = 537, rounded up to the nearest integer. (0.5)2
7.4–6 Approximately n =
(1.96)2 (33.7)2 = 175, rounded up to the nearest integer. 52
7.4–8 n =
(1.645)2 (0.394)(0.606) = 404, rounded up to the nearest integer. (0.04)2 2 zα/2 p∗ (1 − p∗ )
(1.6452 )(0.1)(0.9) = 2435; 0.012 2 zα/2 pb (1 − pb ) (1.6452 )(0.16)(0.84) (b) n = = = 3637; 2 ε 0.012 2 zα/2 1.6452 = = 6765. (c) n = 2 4ε (4)(0.012 )
7.4–10 (a) n =
7.4–12 m =
ε2
=
(1.96)2 (0.5)(0.5) = 601, rounded up to the nearest integer. (0.04)2
(a) n =
601 = 430; 1 + 600/1500
(b) n =
601 = 578; 1 + 600/15,000
(c) n =
601 = 587. 1 + 600/25,000
7.4–14 For the difference of two proportions with equal sample sizes r p∗1 (1 − p∗1 ) p∗2 (1 − p∗2 ) ε = zα/2 + n n or 2 zα/2 [p∗1 (1 − p∗1 ) + p∗2 (1 − p∗2 )] . n= ε2 For unknown p∗ , 2 2 zα/2 zα/2 [0.25 + 0.25] = . n= ε2 2ε2
c 2020 Pearson Education, Inc. Copyright °
92
Section 7.5 Distribution-Free Confidence Intervals for Percentiles
So n =
7.5
1.2822 = 329, rounded up. 2(0.05)2
Distribution-Free Confidence Intervals for Percentiles
7.5–2 (a) (y3 = 5.4, y10 = 6.0) is a 96.14% confidence interval for the median, m; (b) (y1 = 4.8, y7 = 5.8); P (Y1 < π0.3 < Y7 )
=
6 µ ¶ X 12 (0.3)k (0.7)12−k k
k=1
=
0.9614 − 0.0138 = 0.9476,
using Table II with n = 12 and p = 0.30. 7.5–4 (a) (y4 = 80.28, y11 = 80.51) is a 94.26% confidence interval for m; (b) (y6 = 80.32, y12 = 80.53); 11 µ ¶ X 14 (0.6)k (0.4)14−k = k k=6
8 µ ¶ X 14 (0.4)k (0.6)14−k k
k=3
= 0.9417 − 0.0398 = 0.9019. The interval is (y6 = 80.32, y12 = 80.53).
7.5–6 (a)
Leaves Stems 20f 5 20s 6677 88999 20• 21∗ 0000011 21t 2222233333333 21f 444444455555555 21s 66666666666667777777777 8888889999 21• 22∗ 000 (Multiply numbers by 10−1 .)
(b) (i) q1
=
q2
=
Frequency 1 4 5 7 13 15 23 10 3
y20 + y21 21.2 + 21.2 = = 21.2 2 2 m = y41 = 21.5
21.7 + 21.7 y61 + 762 = = 21.7; 2 2 (ii) π0.60 = 0.8y49 + 0.2y50 = 21.6; (iii) π0.15 = 0.7y12 + 0.3y13 = 21.0; q3
=
(c) (i) We first find i and j so that P (Yi < π0.25 < Yj ) ≈ 0.95. Let the distribution of W be b(81, 0.25). Then P (Yi < π0.25 < Yj ) = P (i ≤ W ≤ j − 1) µ ¶ j − 1 + 0.5 − 20.25 i − 0.5 − 20.25 √ √ ≈ P . ≤Z≤ 15.1875 15.1875 If we let i − 20.75 j − 20.75 √ = −1.96 and √ = 1.96 15.1875 15.1875 we find that i ≈ 13 and j ≈ 28. Furthermore P (13 ≤ W ≤ 28 − 1) ≈ 0.9453. Also note that the point estimate of π0.25 , π e0.25 = (y20 + y21 )/2 c 2020 Pearson Education, Inc. Copyright °
Chapter 7 Interval Estimation
93
falls near the center of this interval. So a 94.53% confidence interval for π0.25 is (y13 = 21.0, y28 = 21.3); (ii) Let the distribution of W be b(81, 0.5). Then P (i ≤ W ≤ 81 − i) µ ¶ i − 0.5 − 40.5 81 − i + 0.5 − 40.5 √ √ ≈ P . ≤Z≤ 20.25 20.25
P (Yi < π0.5 < Y82−i )
=
If
i − 41 = −1.96, 4.5
then i = 32.18 so let i = 32. Also 81 − i − 40 = 1.96 4.5 implies that i = 32. Furthermore P (Y32 < π0.5 < Y50 ) = P (32 ≤ W ≤ 49) ≈ 0.9544. So an approximate 95.44% confidence interval for π0.5 is (y32 = 21.4, y50 = 21.6); (iii) Similar to part (a), P (Y54 < π0.75 < Y69 ) ≈ 0.9453. Thus a 94.53% confidence interval for π0.75 is (y54 = 21.6, y69 = 21.8). 7.5–8 A 95.86% confidence interval for m is (y6 = 14.60, y15 = 16.20). = P (b(25, 0.5) ≤ 15) − P (b(25, 0.5) ≤ 8) = 0.8852 − 0.0539 = 0.8313; (b) Want P (Yr < π0.90 ) ≥ 0.95, that is, P (b(25, 0.9) ≥ r) ≥ 0.95. Now,
7.5–10 (a)
P (Y9 < π0.50 < Y16 )
P (b(25, 0.9) ≥ 21) = 0.9020,
and
P (b(25, 0.9) ≥ 20) = 0.9666.
So the desired r is 20, and y20 = 190, and the desired interval is [190, ∞). Because this interval straddles the water quality standard, it does not provide strong evidence of a violation. 8 µ ¶ X 8 (0.7)k (0.3)8−k = 0.2553; 7.5–12 (a) P (Y7 < π0.70 ) = k k=7 7 µ ¶ X 8 (b) P (Y5 < π0.70 < Y8 ) = (0.7)k (0.3)8−k = 0.7483. k k=5
7.6
More Regression
7.6–2 The mean of the observations is ∗
Y =
m
1 X ∗ Y , m i=1 i
∗
where Y1∗ , Y2∗ , . . . Ym∗ are the future observations at X = x∗ . Since Y is a linear combination of independent and normally distributed random variables, it is normally distributed with mean Ã
m
1 X ∗ Y E m i=1 i
!
m
=
1 X E(Yi∗ ) m i=1 m
= =
1 X [α + β(x∗ − x)] m i=1
α + β(x∗ − x)
c 2020 Pearson Education, Inc. Copyright °
94
Section 7.6 More Regression and variance à ! m 1 X ∗ Var Y m i=1 i
= =
Furthermore,
m 1 X Var(Yi∗ ) m2 i=1
m σ2 1 X 2 σ = . 2 m i=1 m ∗
b ∗ − x) Y −α b − β(x
is a linear combination of independent and normally distributed random variables, so it is normally distributed with mean
and variance
∗ b ∗ − x)] = α + β(x∗ − x) − α − β(x∗ − x) = 0 E[Y − α b − β(x
σ2 (x∗ − x)2 σ 2 σ2 + + P . m n (xi − x)2 ∗ c2 , we can form the t-statistic b, and βb are independent of σ Since Y , α ∗ b ∗ − x) Y −α b − β(x s 1 (x∗ − x)2 1 σ + +P (xi − x)2 m n s T = ∼ t(n−2). c2 nσ n−2
We can then obtain the following expression for the endpoints of the desired prediction interval: b ∗ − x) ± htα/2 (n−2) α b + β(x where
h=σ b
r
n n−2
7.6–4 (a) In Exercise 6.5–4 we found that βb = 4.64/5.04,
s
1 1 (x∗ − x)2 + +P . m n (xi − x)2
c2 = 1.84924, nσ
10 X i=1
(xi − x)2 = 5.04.
So the endpoints for the confidence interval are given by r r 1.8493 1 (x − 2.90)2 4.64 (x − 2.90) ± 2.306 + , 2.73 + 5.04 8 10 5.04 x=2:
[1.335, 2.468],
x=3:
[2.468, 3.176],
x = 4 : [3.096, 4.389]; (b) The endpoints for the prediction interval are given by r r 4.64 (x − 2.90)2 1.8493 1 2.73 + (x − 2.90) ± 2.306 + , 1+ 5.04 8 10 5.04 x=2:
[0.657, 3.146],
x=3:
[1.658, 3.986],
x=4:
[2.459, 5.026].
c 2020 Pearson Education, Inc. Copyright °
Chapter 7 Interval Estimation
95
y
y 4.5
4.0
4.0
3.5
3.5
3.0
3.0 2.5
2.5
2.0
2.0
1.5
1.5 2.0
2.5
3.0
3.5
4.0
x
1.0 2.0
2.5
3.0
3.5
Figure 7.6–4: A 95% confidence interval for µ(x) and a 95% prediction band for Y
7.6–6 (a) For these data, 10 X
xi = 55,
10 X
10 X
yi = 9811,
i=1
i=1
i=1
10 X
x2i = 385,
xi yi = 65,550,
i=1
10 X
yi2 = 11,280, 031.
i=1
Thus α b = 9811/10 = 981.1 and
11589.5 65,550 − (55)(9811)/10 = = 140.4788. βb = 2 385 − (55) /10 82.5
The least squares regression line is
(b)
y
yb = 981.1 + 140.4788(x − 5.5) = 208.467 + 140.479x;
1600 1400 1200 1000 800 600 400
1
2
3
4
5
6
7
8
9
10
Figure 7.6–6: Number of programs (y) vs. year (x) (c) 1753.733 ± 160.368 or [1593.365, 1914.101].
c 2020 Pearson Education, Inc. Copyright °
x
4.0
x
96
Section 7.6 More Regression
7.6–8 Let K(β1 , β2 , β3 ) =
n X i=1
∂K ∂β1
=
∂K ∂β2
=
∂K ∂β3
=
n X i=1 n X i=1 n X i=1
(yi − β1 − β2 x1i − β3 x2i )2 . Then
2(yi − β1 − β2 x1i − β3 x2i )(−1) = 0; 2(yi − β1 − β2 x1i − β3 x2i )(−x1i ) = 0; 2(yi − β1 − β2 x1i − β3 x2i )(−x2i ) = 0.
Thus, we must solve simultaneously the three equations ! ! à n à n n X X X nβ1 + x2i β3 = x1i β2 + yi i=1
i=1
à n X
!
x1i β1 +
i=1
à n X
We have
i=1
!
x2i β1 +
i=1
à n X
à n X
!
x21i β2 + !
!
x1i x2i β3 =
i=1
x1i x2i β2 +
i=1
i=1
à n X
à n X
x22i
i=1
!
n X
x1i yi
i=1
β3 =
n X
x2i yi .
i=1
12β1 + 4β2 + 4β3 = 23 4β1 + 26β2 + 5β3 = 75 4β1 + 5β2 + 22β3 = 37 so that 3852 βb2 = = 2.587, 1489
4373 = 0.734, βb1 = 5956
1430 βb3 = = 0.960. 1489
10 8
5
4 0
0
–4 –5
–8 –2
–1
x0 1
2
3
–2
–1
0y
1
2
3
–10
–2
–1
0 x
1
2
3
0 y
Figure 7.6–8: Two views of the points and the regression plane 7.6–10 (c) and (d)
(e) Linear regression is not appropriate. Finding the least-squares quadratic regression line using the raw data yields yb = −1.88 + 9.86x − 0.995x2 ; c 2020 Pearson Education, Inc. Copyright °
Chapter 7 Interval Estimation
97
y 8
24 22 20 18 16 14 12 10 8 6 4 2
6 4 2 0 –2
1
2
3
4
5
6
7
8
–4 –6 –8 1
2
3
5
4
6
7
8
9
x
Figure 7.6–10: (y) versus (x) with linear regression line and residual plot (f ) and (g)
y 1.8
24 22 20 18 16 14 12 10 8 6 4 2
1.4 1.0 0.6 0.2 –0.2
2
4
6
–0.6 –1.0 1
2
3
4
5
6
7
8
9
10
x –1.4
Figure 7.6–10: (y) versus (x) with quadratic regression curve and residual plot
7.6–12 The x is part of the exponent of e. However ln µ(x) = ln β1 + β2 x is linear in x. 7.6–14 Recall that
√
n( α b − α) α b−α =s T = T2 = s σ c2 c2 nσ σ σ 2 (n − 2)
n−2
has a t distribution with n − 2 degrees of freedom. Thus
c 2020 Pearson Education, Inc. Copyright °
8
9
98
Section 7.6 More Regression
P −tγ/2 (n−2) ≤ q
P −b α − tγ/2
s
α b−α
c2 /(n − 2) σ
≤ tγ/2 (n−2)
c2 σ ≤ −α ≤ −b α + tγ/2 n−2
b − tγ/2 P α
s
c2 σ ≤α≤α b + tγ/2 n−2
s
s
c2 σ n−2 c 2 σ n−2
=
1−γ
=
1−γ
=
1 − γ.
It follows that the endpoints for a 100(1 − γ)% confidence interval for α are s c2 σ α b ± tγ/2 (n−2) . n−2
c2 = 0.184925, n = 10. The endpoints for the 95% 7.6–16 Recall that α b = 2.73, βb = 4.64/5.04, σ confidence interval are r 0.184925 2.73 ± 2.306 or [2.379, 3.081] for α; 8 s 1.84925 or [0.4268, 1.4145] for β; 4.64/5.04 ± 2.306 8(5.04) · ¸ 1.84925 1.84925 , = [0.105, 0.848] for σ 2 . 17.54 2.180 Pn 7.6–18 (a) The given facts, plus the result from Exercise 6.5-2 that βb has a N (β, σ 2 / i=1 x2i ) distribution, imply that βb − β Pn 2 βb − β i=1 xi s =q c2 /[(n − 1) Pn x2 ] c2 /σ 2 nσ nσ i=1 i n−1
p
σ2 /
has a t(n−1) distribution. Thus, for γ ∈ (0, 1), b− β β ≤ tγ/2 (n−1) = 1 − γ, P −tγ/2 (n−1) ≤ q Pn 2 c 2 nσ /[(n−1) i=1 xi ]
and algebraic manipulation of the inequality to get β alone in the middle yields the 100(1 − γ)% confidence interval for βb as s c2 nσ Pn ; βb ± tγ/2 (n−1) (n − 1) i=1 x2i Pn (b) Yn+1 is N (βxn+1 , σ 2 ) and βb is [as noted in the solution to part (a)] N (β, σ 2 / i=1 x2i ), P n so Ybn+1 Yn+1 is N (βxn+1 − βxn+1 , σ 2 + x2n+1 σ 2 / i=1 x2i ), that is, N [0, σ 2 (1 + P− n 2 2 xn+1 / i=1 xi )]. This, plus the facts given in part (a), imply that q
Ybn+1 − Yn+1 Pn σ 2 (1 + x2n+1 / i=1 x2i ) Ybn+1 − Yn+1 s =q c2 /(n − 1)](1 + x2 / Pn x2 ) c2 /σ 2 [nσ nσ n+1 i=1 i n−1 c 2020 Pearson Education, Inc. Copyright °
Chapter 7 Interval Estimation
99
has a t(n−1) distribution. Thus, for γ ∈ (0, 1), bn+1 − Yn+1 Y P −tγ/2 (n−1) ≤ q ≤ tγ/2 (n−1) = 1 − γ, Pn 2 2 c 2 [nσ /(n − 1)](1 + xn+1 / i=1 xi )
and algebraic manipulation of the inequality to get Yn+1 alone in the middle yields the 100(1 − γ)% prediction interval for Yn+1 as v s n c2 u X u n σ t1 + x 2 / x2i . Ybn+1 ± tγ/2 (n−1) n+1 n−1 i=1 7.6–20 (a) W
=
=
βb + tγ/2 (n−2) 2tγ/2 (n−2)
s
s
(n − 2)
E(W )
i=1 (xi − x)
(n − 2)
c2 nσ Pn
=
E
Ã
=
4t2γ/2 (n−2)
(b) 2
c2 nσ Pn
i=1 (xi − x̄)
2
4t2γ/2 (n−2)
− βb − tγ/2 (n−2)
2
s
(n − 2)
c2 nσ Pn
i=1 (xi − x)
;
(n − 2)
(n − 2)
c2 nσ Pn
nσ 2 Pn
i=1 (xi − x)
i=1 (xi − x)
2
2
!
;
Pn (c) For the first data set, i=1 (xi − x)2 ) = 24 so E(W 2 ) = [4t2γ/2 (4)] · [6σ 2 ]/[(4)(24)] = Pn (1/4)t2γ/2 (4), while for the second data set, i=1 (xi −x)2 ) = 8 so E(W 2 ) = [4t2γ/2 (4)]· [6σ 2 ]/[(4)(8)] = (3/4)t2γ/2 (4). The expected squared width is smallest for the first data Pn set because its value of i=1 (xi − x)2 is larger.
7.7
Resampling Methods
7.7–2 (a) > read ‘C:\\HTZ-CD\\Maple Examples\\stat.m‘: with(plots): read ‘C:\\HTZ-CD\\Maple Examples\\HistogramFill.txt‘: read ‘C:\\HTZ-CD\\Maple Examples\\ScatPlotCirc.txt‘: read ‘C:\\HTZ-CD\\Maple Examples\\Chapter_07.txt‘: XX := Exercise_7_7_2; XX := [12.0, 9.4, 10.0, 13.5, 9.3, 10.1, 9.6, 9.3, 9.1, 9.2, 11.0, 9.1, 10.4, 9.1, 13.3, 10.6] > Probs := [seq(1/16, k = 1 .. 16)]: XXPDF := zip((XX,Probs)-> (XX,Probs), XX, Probs): > for k from 1 to 200 do X := DiscreteS(XXPDF, 16): Svar[k] := Variance(X): od: Svars := [seq(Svar[k], k = 1 .. 200)]: > Mean(Svars); 1.972629584
c 2020 Pearson Education, Inc. Copyright °
2
100
Section 7.7 Resampling Methods > xtics := [seq(0.4*k, k = 1 .. 12)]: ytics := [seq(0.05*k, k = 1 .. 11)]: P1 := plot([[0,0],[0,0]], x = 0 .. 4.45, y = 0 .. 0.57, xtickmarks=xtics, ytickmarks=ytics, labels=[‘‘,‘‘]): P2 := HistogramFill(Svars,0 .. 4.4, 11): display({P1, P2}); The histogram is shown in Figure 7.7-2(ab). (b) > theta := Mean(XX) - 9; for k from 1 to 200 do Y := ExponentialS(theta,21): Svary[k] := Variance(Y): od: Svarys := [seq(Svary[k], k = 1 .. 200)]: θ := 1.31250000 > Mean(Svarys); 1.747515570 > xtics := [seq(0.4*k, k = 1 .. 14)]: ytics := [seq(0.05*k, k = 1 .. 15)]: P3 := plot([[0,0],[0,0]], x = 0 .. 5.65, y = 0 .. 0.62, xtickmarks=xtics, ytickmarks=ytics, labels=[‘‘,‘‘]): P4 := HistogramFill(Svarys,0 .. 5.6, 14): display({P3, P4}); 0.6
0.5
0.5
0.4
0.4
0.3
0.3
0.2
0.2
0.1
0.1 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0 4.4
0.4
1.2
2.0
2.8
3.6
4.4
5.2
2
Figure 7.7–2: (ab) Histogram of S s: Resampling on Left, From Exponential on Right
> Svars := sort(Svars): Svarys := sort(Svarys): > xtics := [seq(k*0.5, k = 1 .. 18)]: ytics := [seq(k*0.5, k = 1 .. 18)]: P5 := plot([[0,0],[5.5,5.5]], x = 0 .. 5.4, y = 0 .. 7.4, color=black, thickness=2, xtickmarks=xtics, ytickmarks=ytics, labels=[‘‘,‘‘]): P6 := ScatPlotCirc(Svars,Svarys): display({P5, P6});
c 2020 Pearson Education, Inc. Copyright °
Chapter 7 Interval Estimation
101
7 6 5 4 3 2 1 1
2
3
4
5
Figure 7.7–2: (c) q-q Plot of Exponential S 2 s Versus Resampling S 2 s Note that the variance of the sample variances from the exponential distribution is greater than the variance of the sample variances from the resampling distribution. 7.7–4 (a) > with(plots): read ‘C:\\HTZ-CD\\Maple Examples\\stat.m‘: read ‘C:\\HTZ-CD\\Maple Examples\\HistogramFill.txt‘: read ‘C:\\HTZ-CD\\Maple Examples\\Chapter_07.txt‘: XX := Example_7_7_4; XX := [261, 269, 271, 274, 279, 280, 283, 284, 286, 287, 292, 293, 296, 300, 304, 305, 313, 321, 322, 329, 341, 343, 356, 364, 391, 417, 476]; Probs := [seq(1/27, k = 1 .. 27)]: XXPDF := zip((XX,Probs)-> (XX,Probs), XX, Probs); XXPDF := [261, 1/27, 269, 1/27, 271, 1/27, 274, 1/27, 279, 1/27, 280, 1/27, 283, 1/27, 284, 1/27, 286, 1/27, 287, 1/27, 292, 1/27, 293, 1/27, 296, 1/27, 300, 1/27, 304, 1/27, 305, 1/27, 313, 1/27, 321, 1/27, 322, 1/27, 329, 1/27, 341, 1/27, 343, 1/27, 356, 1/27, 364, 1/27, 391, 1/27, 417, 1/27, 476, 1/27]; for j from 1 to 500 do X := DiscreteS(XXPDF, 27): Y := sort(X): YY[j] := Y[7]: od: Y7 := [seq(YY[k], k = 1 .. 500)]: Y7sorted := sort(Y7): Y7sorted[1]; 271 Y7sorted[500]; 304 >xtics := [seq(273 + 5*k, k = 0 .. 7)]: ytics := [seq(0.01*k, k = 1 .. 7)]: P1 := plot([[265,0],[265,0]], x = 268 .. 306, y = 0 .. 0.0771, xtickmarks=xtics, ytickmarks=ytics, labels=[‘‘,‘‘]): P2 := HistogramFill(Y7,270.5 .. 304.5, 7): display({P1, P2});
c 2020 Pearson Education, Inc. Copyright °
102
Section 7.7 Resampling Methods
0.07 0.06 0.05 0.04 0.03 0.02 0.01 273 278 283 288 293 298 303 Figure 7.7–4: (a) A histogram of N = 500 seventh order statistics (b)
>Here is an estimate of the first quartile. Mean(Y7); 141443 = 282.886; 500
(c)
>Here is an 82% confidence interval for the first quartile using, in an ordered Y7, the 44th number and the 206th number. [279, 283];
(d) In Exercise 7.5-2, the 82% confidence interval for π0.25 was [274, 287]. 7.7–6 (a) > with(plots): read ‘C:\\HTZ-CD\\Maple Examples\\stat.m‘: read ‘C:\\HTZ-CD\\Maple Examples\\ScatPlotPoint.txt‘: read ‘C:\\HTZ-CD\\Maple Examples\\EmpCDF.txt‘: read ‘C:\\HTZ-CD\\Maple Examples\\HistogramFill.txt‘: read ‘C:\\HTZ-CD\\Maple Examples\\ScatPlotCirc.txt‘: read ‘C:\\HTZ-CD\\Maple Examples\\Chapter_07.txt‘: Pairs := Exercise_7_7_6; Pairs := [[2.500, 72], [4.467, 88], [2.333, 62], [5.000, 87], [1.683, 57], [4.500, 94], [4.500, 91], [2.083, 51], [4.367, 98], [1.583, 59], [4.500, 93], [4.550, 86], [1.733, 70], [2.150, 63], [4.400, 91], [3.983, 82], [1.767, 58], [4.317, 97], [1.917, 59], [4.583, 90], [1.833, 58], [4.767, 98], [1.917, 55], [4.433, 107], [1.750, 61], [4.583, 82], [3.767, 91], [1.833, 65], [4.817, 97], [1.900, 52], [4.517, 94], [2.000, 60], [4.650, 84], [1.817, 63], [4.917, 91], [4.000, 83], [4.317, 84], [2.133, 71], [4.783, 83], [4.217, 70], [4.733, 81], [2.000, 60], [4.717, 91], [1.917, 51], [4.233, 85], [1.567, 55], [4.567, 98], [2.133, 49], [4.500, 85], [1.717, 65], [4.783, 102], [1.850, 56], [4.583, 86],[1.733, 62]]: > r := Correlation(Pairs); r := .9087434803 > xtics := [seq(1.4 + 0.1*k, k = 0 .. 37)]: ytics := [seq(48 + 2*k, k = 0 .. 31)]:
c 2020 Pearson Education, Inc. Copyright °
Chapter 7 Interval Estimation
103
P1 := plot([[1.35,47],[1.35,47]], x = 1.35 .. 5.15, y = 47 .. 109, xtickmarks = xtics, ytickmarks=ytics, labels=[‘‘,‘‘]): P2 := ScatPlotCirc(Pairs): display({P1, P2});
100 90 80 70 60 50 1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
Figure 7.7–6: (a) Scatterplot of the 50 Pairs of Old Faithful Data (b) > Probs := [seq(1/54, k = 1 .. 54)]: EmpDist := zip((Pairs,Probs)-> (Pairs,Probs), Pairs, Probs): > for k from 1 to 500 do Samp := DiscreteS(EmpDist, 54); RR[k] := Correlation(Samp): od: R := [seq(RR[k], k = 1 .. 500)]: rbar := Mean(R); rbar := .9079354926 (c) > xtics := [seq(0.8 + 0.01*k, k = 0 .. 20)]: ytics := [seq(k, k = 1 .. 25)]: > P3 := plot([[0.79, 0],[0.79,0]], x = 0.79 .. 1.005, y = 0 .. 23.5, xtickmarks=xtics, ytickmarks=ytics, labels=[‘‘,‘‘]): P4 := HistogramFill(R, 0.8 .. 1, 20): display({P3, P4}); The histogram is plotted in Figure 7.7-6 ce;
c 2020 Pearson Education, Inc. Copyright °
104
Section 7.7 Resampling Methods (d) Now simulate a random sample of 500 correlation coefficients, each calculated from a sample of size 54 from a bivariate normal distribution with correlation coefficient r = 0.9087434803. > for k from 1 to 500 do Samp := BivariateNormalS(0,1,0,1,r,54): RR[k] := Correlation(Samp): od: RBivNorm := [seq(RR[k], k = 1 .. 500)]: AverageR := Mean(RBivNorm); AverageR := .9073168034 > P5 := plot([[0.79, 0],[0.79,0]], x = 0.79 .. 1.005, y = 0 .. 18.5, xtickmarks=xtics, ytickmarks=ytics, labels=[‘‘,‘‘]): P6 := HistogramFill(RBivNorm, 0.8 .. 1, 20): display({P5, P6}); (e)
20
15
15 10 10 5
5
0.80
0.85
0.90
0.95
1
0.80
0.85
0.90
0.95
Figure 7.7–6: (ce) Histograms of Rs: From Resampling on Left, From Bivariate Normal on Right
c 2020 Pearson Education, Inc. Copyright °
1
Chapter 7 Interval Estimation
105
(f ) > R := sort(R): RBivNorm := sort(RBivNorm): xtics := [seq(0.8 + 0.01*k, k = 0 .. 20)]: ytics := [seq(0.8 + 0.01*k, k = 0 .. 20)]: P7 := plot([[0.8, 0.8],[1,1]], x = 0.8 .. 0.97, y = 0.8 .. 0.97, color=black, thickness=2, labels=[‘‘,‘‘], xtickmarks=xtics, ytickmarks=ytics): P8 := ScatPlotCirc(R, RBivNorm): display({P7, P8});
0.96 0.94 0.92 0.90 0.88 0.86 0.84 0.82 0.82 0.84 0.86 0.88 0.90 0.92 0.94 0.96
Figure 7.7–6: (f ) q-q Plot of the Values of R from Bivariate Normal Versus from Resampling
> StDev(R); StDev(RBivNorm); .01852854051 .02461716901 The means are about equal but the standard deviation of the values of R from the bivariate normal distribution is larger than that of the resampling distribution.
c 2020 Pearson Education, Inc. Copyright °
Chapter 8 Tests of Statistical Hypotheses
107
Chapter 8
Tests of Statistical Hypotheses 8.1
Tests About One Mean
8.1–2 (a) The critical region is z=
x − 13.0 x − 13.0 √ ≤ −1.96; √ = 0.2/ n 0.2/ 25
(b) The observed value of z, z=
12.9 − 13.0 = −2.5, 0.04
is less that -1.96 so we reject H0 . (c) The p-value of this test is P (Z ≤ −2.50) = 0.0062. 8.1–4 (a) |t| =
| x − 7.5 | √ ≥ t0.025 (9) = 2.262. s/ 10 0.4
0.3
T, r = 9 d.f.
0.2
0.1 α/2 = 0.025 –3
–2
α/2 = 0.025 –1
1
2
3
Figure 8.1–4: The critical region is | t | ≥ 2.262 | 7.55 − 7.5 | √ = 1.54 < 2.262, do not reject H0 . 0.1027/ 10 (c) A 95% confidence interval for µ is · µ ¶ µ ¶¸ 0.1027 0.1027 √ √ 7.55 − 2.262 , 7.55 + 2.262 = [7.48, 7.62]. 10 10
(b) |t| =
c 2020 Pearson Education, Inc. Copyright °
108
Section 8.1 Tests About One Mean Hence, µ = 7.50 is contained in this interval. We could have obtained the same conclusion from our answer to part (b). 8.1–6 (a) H0 : µ = 3.4; (b) H1 : µ > 3.4; (c) t = (x − 3.4)/(s/3);
(d) t ≥ 1.860;
0.4
0.3
T, r = 8 d.f.
0.2
0.1 α = 0.05 –3
–2
–1
1
2
3
Figure 8.1–6: The critical region is t ≥ 1.860 (e) t =
3.556 − 3.4 = 2.802 ; 0.167/3
(f ) 2.802 > 1.860, reject H0 ; (g) 0.01 < p-value < 0.025, p-value = 0.0116. 8.1–8 (a) | t | =
| x − 125 | √ ≥ t0.025 (14) = 2.145; s/ 15 0.4
0.3
T, r = 14 d.f.
0.2
0.1 α/2 = 0.025 –3
–2
α/2 = 0.025 –1
1
2
3
Figure 8.1–8: The critical region is | t | ≥ 2.145 (b) | t | =
| 127.667 − 125 | √ = 1.076 < 2.145, do not reject H0 . 9.597/ 15
c 2020 Pearson Education, Inc. Copyright °
Chapter 8 Tests of Statistical Hypotheses
109
8.1–10 (a) The test statistic and critical region are given by t=
x − 5.70 √ ≥ 1.895; s/ 8
(b) The observed value of the test statistic is t=
5.869 − 5.70 √ = 2.42; 0.19737/ 8
(c) The p-value is a little less than 0.025. Using the computer, the p-value = 0.023.
0.4
0.4
0.3
0.3
0.2
0.2
0.1
0.1 α = 0.05
–3
–2
–1
1
2
3
–3
–2
–1
1
2
3
Figure 8.1–10: A T (7) pdf showing the critical region on the left, p-value on the right 8.1–12 The critical region is t=
d−0 √ ≥ 1.746 = t0.05 (16). sd / 17
Because d = 4.765 and sd = 9.087, t = 2.162 > 1.746 and we reject H0 .
8.2
Tests of the Equality of Two Means
8.2–2 (a) t = s
x−y
¶ ≥ t0.01 (27) = 2.473; 1 1 + 27 16 13 415.16 − 347.40 (b) t = s µ ¶ = 5.570 > 2.473, reject H0 . 1 15(1356.75) + 12(692.21) 1 + 27 16 13 1356.75 (c) c = = 0.662, 1356.75 + 692.21 1 r r
15s2X + 12sy Y 2
= =
µ
0.6622 0.3382 + = 0.0387, 15 12 25.
The critical region is therefore t ≥ t0.01 (25) = 2.485. Because t = 5.570 > 2.485, we again reject H0 .
c 2020 Pearson Education, Inc. Copyright °
110
Section 8.2 Tests of the Equality of Two Means 8.2–4 (a) t = s (b) t = s
x−y µ ¶ ≤ −t0.05 (27) = −1.703; 12s2X + 15s2Y 1 1 + 27 13 16 72.9 − 81.7
(12)(25.6)2 + (15)(28.3)2 27
µ
1 1 + 13 16
¶ = −0.869 > −1.703, do not reject H0 ;
(c) 0.10 < p-value < 0.25. 2 8.2–6 (a) Assuming σX = σY2 ,
|t| = s
|x − y| µ ¶ ≥ t0.025 (18) = 2.101; 1 9sX + 9s2Y 1 + 18 10 10 2
(b) | − 2.151 | > 2.101, reject H0 ;
(c) 0.01 < p-value < 0.05; using a computer, p-value = 0.045;
(d) Yes. X
Y
110
120
130
140
150
Figure 8.2–6: Box-and-whisker diagram for stud 3 (X) and stud 4 (Y ) forces
8.2–8 t = s
x−y µ ¶ = 3.380 > 2.400 = t0.01 (52), 1 24s2X + 28s2Y 1 + 52 25 29
reject µX = µY . 8.2–10 t = r
4.1633 − 5.1050
11(0.91426) + 7(2.59149) 18
r
1 1 + 12 8
= −1.648. Because −1.330 < −1.648 < −1.734,
0.05 < p-value < 0.10. In fact, p-value = 0.058. We would reject H0 at an α = 0.05 significance level and fail to reject H0 at an α = 0.10 significance level. 8.2–12 (a) s
y−x
> 1.96;
s2 s2Y + X nY nX
(b) 9.01 > 1.96, reject µX = µY ;
c 2020 Pearson Education, Inc. Copyright °
Chapter 8 Tests of Statistical Hypotheses
111
(c) Yes. X
Y
5
6
7
8
9
10
11
Figure 8.2–12: Lengths of male (X) and female (Y ) green lynx spiders 8.2–14 (a) For these data, x = 5.9947, y = 4.3921, s2X = 6.0191, s2Y = 1.9776. Using the number of degrees of freedom given by Equation 7.2-1 (Welch) we have that r = b28.68c = 28. We have t= p
5.9947 − 4.3921
6.0191/19 + 1.9776/19
= 2.47 > 2.467 = t0.01 (28)
so we reject H0 . (b)
Beech
Maple
2 4 6 8 10 Figure 8.2–14: Tree dispersion distances in meters
8.3
Tests for Variances 10s2Y ≤ χ20.95 (10) = 3.940. 5252 The observed value of the test statistic, χ2 = 4.223 > 3.940, so we fail to reject H0 . s2 113108.4909 (b) F = X = = 0.9718 so we clearly accept the equality of the variances. 2 sY 116388.8545 (c) The critical region is | t | ≥ t0.025 (20) = 2.086.
8.3–2 (a) Reject H0 if χ2 =
x−y−0 3385.909 − 3729.364 t= p = = −2.378. 2 2 144.442 sX /11 + sY /11 Because | − 2.378 | > 2.086, we reject the null hypothesis. The p-value for this test is 0.0275.
c 2020 Pearson Education, Inc. Copyright °
112
Section 8.2 Tests of the Equality of Two Means 8.3–4 (a) The critical region is χ2 =
19s2 ≤ 10.12. (0.095)2
The observed value of the test statistic, χ2 =
19(0.065)2 = 8.895, (0.095)2
is less than 10.12, so the company was successful. (b) Because χ20.975 (19) = 8.907, p-value ≈ 0.025. 8.3–6 (a) Because χ20.975 (22) = 10.98
and
χ20.025 (22) = 36.78,
22s2 ≤ 10.98 100
or
χ2 =
100(10.98) = 49.91 22
or
s 2 ≥ c2 =
H0 will be rejected if χ2 =
22s2 ≥ 36.78 100
or, equivalently, if s2 ≤ c 1 =
100(36.78) = 167.18. 22
(b)
0.06
χ 2 (22)
0.04
0.02 α /2 = 0.025 10
χ2 = 32.52 20
30
α /2 = 0.025 40
Figure 8.3–6: Test about the variance of IQ scores (c) Because 49.91 < s2 = 147.82 < 167.18, H0 is not rejected. ¶ µ ¶2 µ 100 100 22S 2 (d) Var(S 2 ) = Var · = (2)(22) = 10,000/11. 22 100 22
(e) The 95% confidence interval for σ 2 , · ¸ (22)(147.82) (22)(147.82) , = [88.42, 296.18], 36.78 10.98 contains σ 2 = 100.
c 2020 Pearson Education, Inc. Copyright °
Chapter 8 Tests of Statistical Hypotheses
113
s2X 9.88 = 2.42 < 3.28 = F0.05 (12, 8), so fail to reject H0 . = s2Y 4.08 ¸ · ¸ · 9.88 9.88 9.88/4.08 9.88/4.08 , F0.05 (8, 12) , (2.85) = = [0.738, 6.901]. (b) F0.05 (12, 8) 4.08 3.28 4.08
8.3–8 (a)
s2X 12.92 = = 3.30 > 3.07 = F0.05 (9−1, 11−1), so we reject H0 . s2Y 7.12 93 − 132 = −8.12 < −1.645 so H0 is clearly rejected. A modification (b) z = p 12.92 /9 + 7.12 /11 of this test would be to use Welch’s t with 11 degrees of freedom. (See Equation 7.2-1.) This also leads to rejection of H0 .
8.3–10 (a) F =
8.3–12 F =
8.4
9201 = 1.895 < 3.37 = F0.05 (6, 9), so we fail to reject H0 . 4856
Tests about Proportions
8.4–2 (a) C = {x : x = 0, 1, 2}; (b) α = P (X = 0, 1, 2; p = 0.6) = (0.4)4 + 4(0.6)(0.4)3 + 6(0.6)2 (0.4)2 = 0.5248; β
= P (X = 3, 4; p = 0.4) = 4(0.4)3 (0.6) + (0.4)4 = 0.1792.
OR (a0 ) C = {x : x = 0, 1}; (b0 ) α = P (X = 0, 1; p = 0.6) = (0.4)4 + 4(0.6)(0.4)3 = 0.1792; β
= P (X = 2, 3, 4; p = 0.4) = 6(0.4)2 (0.6)2 + 4(0.4)3 (0.6) + (0.4)4 = 0.5248.
8.4–4 Using Table II in the Appendix, (a) (b)
α = P (Y ≥ 13; p = 0.40) = 1 − 0.8462 = 0.1538;
β
= P (Y ≤ 12; p = 0.60) = P (25 − Y ≥ 25 − 12) = 1 − 0.8462 = 0.1538.
where 25 − Y is b(25, 0.40)
8.4–6 The value of the test statistic is z=p
0.70 − 0.75
(0.75)(0.25)/390
= −2.280.
(a) Because z = −2.280 < −1.645, reject H0 .
(b) Because z = −2.280 > −2.326, do not reject H0 .
(c) p-value ≈ P (Z ≤ −2.280) = 0.0113. Note that 0.01 < p-value < 0.05.
8.4–8 Test H0 : p = 0.334 against H1 : p > 0.334. The computed test statistic is Z=p
(179/480) − 0.334
0.334(1 − 0.334)/480
= 1.81,
which exceeds the critical value of z0.05 = 1.645. So H0 is rejected at the 0.05 level of significance, indicating that the educational requirement is met. 8.4–10 (a) z = p
y/n − 0.65
(0.65)(0.35)/n
≥ 1.96;
c 2020 Pearson Education, Inc. Copyright °
114
Section 8.5 The Wilcoxon Tests 414/600 − 0.65 = 2.054 > 1.96, reject H0 at α = 0.025; (b) z = p (0.65)(0.35)/600 (c) Because the p-value ≈ P (Z ≥ 2.054) = 0.0200 < 0.0250, reject H0 at an α = 0.025 significance level; (d) A 95% one-sided confidence interval for p is p [0.69 − 1.645 (0.69)(0.31)/600 , 1] = [0.659, 1].
8.4–12 (a) | z | = p
| pb − 0.20 |
≥ 1.96; (0.20)(0.80)/n (b) Only 5/54 for which z = −1.973 leads to rejection of H0 , so 5% reject H0 ; (c) 5%; (d) 95%; 219/1124 − 0.20 (e) z = p = −0.43, so fail to reject H0 . (0.20)(0.80)/1124
pb1 − pb2 8.4–14 (a) z = p ≥ 1.645; pb(1 − pb)(1/n1 + 1/n2 ) 0.15 − 0.11 = 2.341 > 1.645, reject H0 ; (b) z = p (0.1325)(0.8675)(1/900 + 1/700) (c) z = 2.341 > 2.326, reject H0 ; (d) The p-value ≈ P (Z ≥ 2.341) = 0.0096.
−0.05 204/300 − 0.73 = = −1.95; 8.4–16 z = p 0.02563 (0.73)(0.27)/300 p-value ≈ P (Z < −1.95) = 0.0256 < α = 0.05 so we reject H0 . That is, the test indicates that there is progress.
8.5
Some Distribution-Free Tests
8.5–2 In the following display, those observations that were negative are underlined. |x| :
Ranks :
|x| :
Ranks :
1
2
2
2
2
3
4
4
4
5
6
6
1
3.5
3.5
3.5
3.5
6
8
8
8
10
12
12
6
7
7
8
11
12
13
14
14
17
18
21
12
14.5
14.5
16
17
18
19
20.5
20.5
22
23
24
The value of the Wilcoxon signed rank statistic is w
=
−1 − 3.5 − 3.5 − 3.5 + 3.5 − 6 − 8 − 8 − 8 − 10 − 12 + 12 + 12 + 14.5 + 14.5 + 16 + 17 + 18 + 19 − 20.5 + 20.5 + 22 + 23 + 24
=
132.
For a one-sided alternative, the approximate p-value is, using the one-unit correction, ! Ã W −0 132 − 1 − 0 ≥ P (W ≥ 132) = P p 70 24(25)(49)/6 ≈
P (Z ≥ 1.871) = 0.03064.
For a two-sided alternative, p-value = 2(0.03064) = 0.0613 > 0.05. Thus, we do not reject H0 .
c 2020 Pearson Education, Inc. Copyright °
Chapter 8 Tests of Statistical Hypotheses
115
8.5–4 In the following display, those observations that were negative are underlined. |x| :
0.0790
0.5901
0.7757
1.0962
1.9415
1
2
3
4
5
|x| :
3.0678
3.8545
5.9848
9.3820
74.0216
6
7
8
9
10
Ranks : Ranks :
The value of the Wilcoxon signed rank statistic is w = −1 + 2 − 3 − 4 − 5 − 6 + 7 − 8 + 9 − 10 = −19. Because
¯ ¯ ¯ −19 + 1 − 0 ¯ ¯ ¯ |z| = ¯ p ¯ = 0.917 < 1.96, ¯ 10(11)(21)/6 ¯
we do not reject H0 .
8.5–6 (a) In the following display, those differences that were negative are underlined. |xi − 50| :
2
2
2.5
3
4
4
4.5
6
7
Ranks :
1.5
1.5
3
4
5.5
5.5
7
8
9
|xi − 50| :
7.5
8
8
14.5
15.5
21
10
11.5
11.5
13
14
15
Ranks :
The value of the Wilcoxon signed rank statistic is w
= 1.5 − 1.5 + 3 + 4 + 5.5 − 5.5 − 7 − 8 + 9 + 10 + 11.5 + 11.5 − 13 + 14 + 15 = 50.
Because z=p
we do not reject H0 ;
50 − 1
15(16)(31)/6
= 1.392 < 1.645,
(b) The approximate p-value is, using the one-unit correction, p-value
= ≈
P (W Ã ≥ 50) P Z≥p
50 − 1
15(16)(31)/6
!
= P (Z ≥ 1.3915) = 0.0820.
8.5–8 The 24 ordered observations, with the x-values underlined and the ranks given under each observation are:
Ranks : Ranks : Ranks : Ranks :
0.7494
0.7546
0.7565
0.7613
0.7615
0.7701
1
2
3
4
5
6
0.7712
0.7719
0.7719
0.7720
0.7720
0.7731
7
8.5
8.5
10.5
10.5
12
0.7741
0.7750
0.7750
0.7776
0.7795
0.7811
13
14.5
14.5
16
17
18
0.7815
0.7816
0.7851
0.7870
0.7876
0.7972
19
20
21
22
23
24
c 2020 Pearson Education, Inc. Copyright °
116
Section 8.5 The Wilcoxon Tests (a) The value of the Wilcoxon rank sum statistic is w
=
1 + 2 + 3 + 5 + 6 + 7 + 8.5 + 8.5 + 10.5 + 13 + 14.5 + 16
=
95.
Thus Ã
p-value = P (W ≤ 95) ≈ P Z ≤ p
95.5 − 150
12(12)(25)/12
!
= P (Z ≤ −3.15) < 0.001,
so that we clearly reject H0 ; (b)
y 0.80 0.79 0.78 0.77 0.76 0.75 0.75
0.76
0.77
0.78
0.79
0.80
x
Figure 8.5–8: q-q plot of pill weights, (good, defective) = (x, y)
8.5–10 The ordered combined sample with the x observations underlined are: Ranks: Ranks: Ranks:
67.4
69.3
72.7
73.1
75.9
77.2
77.6
78.9
1
2
3
4
5
6
7
8
82.5
83.2
83.3
84.0
84.7
86.5
87.5
9
10
11
12
13
14
15
87.6
88.3
88.6
90.2
90.4
90.4
92.7
94.4
95.0
16
17
18
19
20.5
20.5
22
23
24
The value of the Wilcoxon rank sum statistic is w = 1 + 2 + 3 + 5 + 6 + 7 + 10 + 11 + 12 + 16 + 19 + 20.5 = 112.5. Because Ã
113 − (12)(25)/2 p-value = P (W ≤ 112.5) ≈ P Z ≤ p 12(12)(25)/12
!
= P (Z ≤ −2.136) < 0.05,
we reject H0 .
c 2020 Pearson Education, Inc. Copyright °
Chapter 8 Tests of Statistical Hypotheses
117
8.5–12 The ordered combined sample with the 48-passenger bus values underlined are: Ranks: Ranks: Ranks:
104
184
196
197
248
253
260
279
1
2
3
4
5
6
7
8
300
308
323
331
355
386
393
396
9
10
11
12
13
14
15
16
414
432
450
452
17
18
19
20
The value of the Wilcoxon statistic is w = 1 + 6 + 9 + 10 + 11 + 12 + 16 + 17 + 20 = 102. Because Ã
101.5 − (9)(21)/2 p-value = P (W ≥ 102) ≈ P Z > p (9)(11)(21)/12
!
= P (Z > 0.532) > 0.05,
we do not reject H0 .
8.5–14 (a) Here is the two-sided stem-and-leaf display. Young Subjects 97 33 98 88 85 68 50 04 86 81 79 77 76 69 65 61 96
Stems 3• 4∗ 4• 5∗ 5• 6∗ 6• 7∗ 7• 8∗ 8• 9∗
Older Subjects
63 38 49 73 88 90 94 26 27 53 74 28 18 35 63 88 36
(b) The value of the Wilcoxon rank sum statistic, the sum of the ranks for the younger subjects, is w = 1 + 2 + 3 + 5 + 6 + 7 + 8 + 9 + 12 + 13 + 14 + 16 + 17 + 18 + 19 + 20 + 28 = 198. Because Ã
198.5 − (17)(35)/2 p-value = P (W ≤ 198) ≈ P Z ≤ p 17(17)(35)/12
!
= P (Z ≤ −3.410) < 0.05,
we clearly reject H0 .
(c) The t test leads to the same conclusion. 8.5–16 (a) Using the Wilcoxon rank sum statistic, the sum of the ranks for the normal air is w = 2 + 3 + 4 + 5 + 6 + 7 + 8 + 10 + 12 + 13 + 15 + 17 = 102.
c 2020 Pearson Education, Inc. Copyright °
118
Section 8.6 Power of a Statistical Test Because Ã
102.5 − (12)(21)/2 p-value = P (W ≤ 102) ≈ P Z ≤ p 12(8)(21)/12
!
= P (Z ≤ −1.813) = 0.035,
we reject the null hypothesis.
(b) Using a t statistic, we failed to reject the null hypothesis at an α = 0.05 significance level. (c) For these data, the results are a little different with the Wilcoxon rank sum statistic leading to rejection of the null hypothesis while the t test did not reject H0 .
8.6
Power of a Statistical Test
8.6–2 (a)
K(µ)
P ( X ≤ 354.05; µ) ¶ µ 354.05 − µ √ ; µ = P Z≤ 2/ 12 µ ¶ 354.05 − µ √ = Φ ; 2/ 12
=
µ
354.05 − 355 √ (b) α = K(355) = Φ 2/ 12 (c)
¶
= Φ(−1.645) = 0.05;
K(354.05)
=
Φ(0) = 0.5;
K(353.1)
=
Φ(1.645) = 0.95;
K(µ) 1.00
0.75
0.50
0.25
353
353.5
354
354.5
355 √ Figure 8.6–2: K(µ) = Φ([354.05 − µ]/[2/ 12 ])
(d) x = 353.83 < 354.05, reject H0 ; (e)
p-value
= =
P ( X ≤ 353.83; µ = 355) P (Z ≤ −2.03) = 0.0212.
c 2020 Pearson Education, Inc. Copyright °
µ
Chapter 8 Tests of Statistical Hypotheses
119
P10 8.6–4 (a) α = P ( i=1 Xi ≤ 14; p = 0.4) = P (10 ≤ Y ≤ 14) where Y is distributed as negative binomial with parameters r = 10 and p = 0.4. So µ ¶ µ ¶ µ ¶ 9 10 11 10 0 10 1 α = 0.4 0.6 + 0.4 0.6 + 0.410 0.62 9 9 9 µ ¶ µ ¶ 12 13 10 3 + 0.4 0.6 + 0.410 0.64 9 9 =
0.0175;
(b) β = 1 − P (Y ≤ 14) where Y is distributed as negative binomial with parameters r = 10 and p = 0.7. So µ ¶ µ ¶ µ ¶ 11 10 9 10 1 10 0 0.710 0.32 0.7 0.3 − 0.7 0.3 − β = 1− 9 9 9 µ ¶ µ ¶ 13 12 10 3 0.710 0.34 0.7 0.3 − − 9 9 = 0.4158.
P (S 2 < c | σ 2 = 10) ¶ µ (n − 1)c 2 (n − 1)S 2 < | σ = 10 = P σ2 σ2 µ ¶ 23c = P Y < , 10 23c where Y is distributed as χ2 (23). So = χ20.95 (23), i.e., c = (10/23)13.09 = 5.69; 10 (b) 0.9 = P (S 2 < c | σ 2 = 2) µ ¶ µ ¶ (n − 1)S 2 (n − 1)c 2 23c = P < |σ = 2 = P Y < σ2 σ2 2
8.6–6 (a)
0.05
=
23c = χ20.10 (23), i.e., c = (2/23)32.01 = 2.78. 2 µ ¶ 668.94 − µ 8.6–8 (a) K(µ) = P ( X ≤ 668.94; µ) = P Z ≤ ; µ 140/5 ¶ µ 668.94 − µ ; = Φ 140/5 µ ¶ 668.94 − 715 (b) α = K(715) = Φ 140/5 where Y is distributed as χ2 (23). So
=
(c)
Φ(−1.645) = 0.05;
K(668.94)
=
Φ(0) = 0.5;
K(622.88)
=
Φ(1.645) = 0.95;
c 2020 Pearson Education, Inc. Copyright °
120
Section 8.6 Power of a Statistical Test K(µ) 1.00
(d)
0.75
0.50
0.25
600
620
640
660
680
700
720
µ 740
Figure 8.6–8: K(µ) = Φ([668.94 − µ]/[140/5]) (e) (f )
x = 667.92 < 668.94, reject H0 ; p-value = P ( X ≤ 667.92; µ = 715) P (Z ≤ −1.68) = 0.0465.
=
8.6–10 (a) and (b) K(p) 1.00
K(p) 1.00
0.75
0.75
0.50
0.50
0.25
0.25
0.3
0.4
0.5
p 0.7
0.6
0.2
0.3
0.4
0.5
0.6
0.7
Figure 8.6–10: Power functions corresponding to different critical regions and different sample sizes
8.6–12 Let Y =
8 X
Xi . Then Y has a Poisson distribution with mean µ = 8λ.
=
P (Y ≥ 8; λ = 0.5) = 1 − P (Y ≤ 7; λ = 0.5)
i=1
(a)
α
=
1 − 0.949 = 0.051.
(b) K(λ) = 1 − (c)
7 X (8λ)y e−8λ y=0
K(0.75)
=
K(1.00)
=
K(1.25)
=
y!
.
1 − 0.744 = 0.256,
1 − 0.453 = 0.547,
1 − 0.220 = 0.780.
c 2020 Pearson Education, Inc. Copyright °
p
Chapter 8 Tests of Statistical Hypotheses
121
K(λ) 1.00
0.75
0.50
0.25
0.5
1.0
1.5
2.0
Figure 8.6–12: K(λ) = 1 − P (Y ≤ 7; λ) 8.6–14
K(θ)
= =
K(0)
=
K(10)
=
c−0 = c − 10 = 10 = n = c
8.7
=
P (X − (Y ) ≥ c; θ) ! Ã c−θ X −Y −θ √ ;θ ≥ P p 25/ n 400/n + 225/n c−0 √ = 1.645 0.05 ⇒ 25/ n c − 10 √ = −1.282 0.90 ⇒ 25/ n √ 1.645(25/ n) √ −1.282(25/ n) √ 2.927(25/ n) 53.55 % 54 √ 1.645(25/ 54) = 5.60.
Best Critical Regions L(4) L(16)
8.7–2 (a)
−
n X
3 x2 32 i=1 i n X i=1
(b)
0.05
=
=
√ (1/2 2π )n exp[−Σ x2i /8 ] √ (1/4 2π )n exp[−Σ x2i /32 ]
=
2n exp[−3Σ x2i /32 ] ≤ k
≤
ln k − ln 2n µ
¶ 32 ≥ − (ln k − ln 2n ) = c; 3 ! Ã 15 X 2 2 P Xi ≥ c; σ = 4
x2i
i=1
=
P
ÃP
15 2 i=1 Xi
4
c ≥ ; σ2 = 4 4
!
c 2020 Pearson Education, Inc. Copyright °
λ 2.5
122
Section 8.7 Best Critical Regions c = χ20.05 (15) = 25 and c = 100. 4 ! Ã 15 X Xi2 < 100; σ 2 = 16 = P
Thus (c)
β
i=1
=
8.7–4 (a)
P
ÃP
15 2 i=1 Xi
16
100 < = 6.25 16
L(0.9) (0.9)Σxi (0.1)n−Σxi = L(0.8) (0.8)Σxi (0.2)n−Σxi ·µ ¶µ ¶¸Pn xi · ¸n 1 2 1 9 8 1 2 ! à n X xi ln(9/4) i=1
y=
n X
xi
i=1
(b)
≈ 0.025.
≤
k
≤
k
≤
ln k + n ln 2
≤
ln k + n ln 2 = c. ln(9/4)
Recall that the distribution of the sum of Bernoulli trials, Y , is b(n, p). 0.10 = P [ Y ≤ n(0.85); p = 0.9 ] " # Y − n(0.9) n(0.85) − n(0.9) = P p ≤ p ; p = 0.9 . n(0.9)(0.1) n(0.9)(0.1) It is true, approximately, that
(c)
!
n(−0.05) √ n(0.3) n
β = P [ Y > n(0.85) = 51; p = 0.8 ]
= ≈
=
−1.282
= "
59.17 or n = 60.
Y − 60(0.8) 51 − 48 ; p = 0.8 P p > √ 9.6 60(0.8)(0.2) P (Z ≥ 0.97) = 0.166.
(d) Yes. 8.7–6 (a)
0.05
µ
c1 − 80 X − 80 = P ≥ 3/4 3/4 µ ¶ c1 − 80 = 1−Φ . 3/4
Thus c1 − 80 3/4 c1
=
1.645
=
81.234.
=
−1.645
=
78.766;
c3 3/4
=
1.96
c3
=
1.47.
¶
Similarly, c2 − 80 3/4 c2
c 2020 Pearson Education, Inc. Copyright °
#
Chapter 8 Tests of Statistical Hypotheses (b)
123
K1 (µ)
=
1 − Φ([81.234 − µ]/[3/4]);
K2 (µ)
=
Φ([78.766 − µ]/[3/4];
K3 (µ)
=
1 − Φ([81.47 − µ]/[3/4]) + Φ([78.53 − µ]/[3/4]).
K(µ) 1.00 K1
K2
0.75
0.50
0.25
K3 77
78
79
80
81
82
83
µ
Figure 8.7–6: Three power functions 8.7–8 Let L(θ) = θ
n
n Y
i=1
thus L(θ0 ) = θ0n
n Y
i=1
(1 − xi )θ−1 ;
(1 − xi )θ0 −1 = 1,
because θ0 = 1. So when θ > 1, a best critical region is 1 L(θ0 ) = n Qn ≤ k. L(θ) θ (1 − xi )θ−1 i=1
That is,
θ
n
" n Y
i=1
or
n Y
i=1
(1 − xi )
(1 − xi ) ≥
µ
#θ−1
1 kθn
≥
1 k
¶1/(θ−1)
= c.
This is true for all θ > 1; so it is a uniformly most powerful test. 8.7–10 By the Neyman-Pearson Theorem, the desired critical region is of the form L(1) ≤ k L(2) Pn (1/2)n exp (− i=1 |xi |) Pn ≤ k (1/4)n exp (− i=1 |xi |/2) Pn exp(− i=1 |xi |/2) ≤ (1/2)n k Pn
i=1 |xi |
≥
−2 log[(1/2)n k] = c.
c 2020 Pearson Education, Inc. Copyright °
124
Section 8.8 Likelihood Ratio Tests
8.8
Likelihood Ratio Tests
8.8–2 (a) If µ ∈ ω (that is, µ ≥ 10.35), then µ b = x if x ≥ 10.35, but µ b = 10.35 if x < 10.35. Thus λ = 1 if x ≥ 10.35; but, if x < 10.35, then Pn [1/(0.3)(2π)]n/2 exp[− 1 (xi − 10.35)2 /(0.06)] Pn λ= [1/(0.3)(2π)]n/2 exp[− 1 (xi − x)2 /(0.06)] h n i exp − (x − 10.35)2 0.06 n − (x − 10.35)2 0.06 x − 10.35 p 0.03/n
≤
k
≤
k
≤
ln k
≤
√ − −2 ln k
=
−z0.05
=
−1.645.
10.31 − 10.35 p = −1.633 > −1.645; do not reject H0 . 0.03/50
(b)
(c) p-value = P (Z ≤ −1.633) = 0.0513. Pn [1/(2πσ02 )]n/2 exp[− i=1 (xi − µ0 )2 /(2σ02 )] Pn 8.8–4 (a) λ = [1/(2πσ02 )]n/2 exp[− i=1 (xi − x)2 /(2σ02 )] Pn ¸ · Pn 2 − i=1 (xi − x + x − µ0 )2 i=1 (xi − x) + = exp 2σ02 2σ02 · ¸ −n(x − µ0 )2 = exp ≤ k 2σ02 −n(x − µ0 )2 2σ02
≤
ln k
|x − µ0 | √ σ0 / n
≥
c
|z|
=
| x − 59 | √ ≥ 1.96. 15/ n
| 56.13 − 59 | = | − 1.913| < 1.96, do not reject H0 ; 15/10 (c) p-value = P (|Z| ≥ 1.913) = 0.0558.
(b) |z| =
8.8–6 t =
324.8 − 335 √ = −1.051 > −1.337, do not reject H0 . 40/ 17
8.8–8 In Ω, µ b = x. Thus,
Pn (1/θ0 )n exp[− 1 xi /θ0 ] Pn (1/x)n exp[− 1 xi /x] µ ¶n x exp[−n(x/θ0 − 1)] θ0
λ=
≤
k
≤
k.
Plotting λ as a function of w = x/θ0 , we see that λ = 0 when x/θ0 = 0, it has a maximum when x/θ0 = 1, and it approaches 0 as x/θ0 becomes large. Thus λ ≤ k when x ≤ c1 or x ≥ c2 .
c 2020 Pearson Education, Inc. Copyright °
Chapter 8 Tests of Statistical Hypotheses
125 n
Because the distribution of
2 X Xi is χ2 (2n) when H0 is true, we could let the critical θ0 i=1
region be such that we reject H0 if n
2 X Xi ≤ χ21−α/2 (2n) θ0 i=1
n
or
2 X Xi ≥ χ2α/2 (2n). θ0 i=1
1.00
0.75
0.50
0.25
0.5
1.0
1.5
2.0
2.5
3.0
Figure 8.8–8: Likehood functions: solid, n = 5; dotted, n = 10
8.8–10 Referring to Exercise 6.4-19, we test H0 : γ 2 = 1 against H1 : γ 2 6= 1. # Ã n ! " n Y X (yi − µ 1 b)2 p exp − 2x2i 2πx2i i=1 i=1 λ = # ≤ k " n n 2 Y X (yi − µ 1 b ) exp − q c2 2 c2 x2 i=1 i=1 2 γ xi 2π γ i =
# " n n 2 2 X X (yi − µ (y − µ b ) b ) i n/2 c ≤ k + ( γ2 ) exp − c2 2 2x2i i=1 2 γ x i=1 i
= =
c2 )n/2 exp[−n γ c2 /2 + n/2] (γ
c2 )n/2 exp[n(1 − γ c2 )/2] ≤ k. (γ
This is a function of
where
≤ k
n X (yi − µ b)2 c2 = 1 γ n i=1 x2i
Pn yi /x2i µ b = Pi=1 n 2 . i=1 1/xi
c 2020 Pearson Education, Inc. Copyright °
Chapter 9 More Tests
127
Chapter 9
More Tests 9.1
Chi-Square Goodness-of-Fit Tests
9.1–2
q4
= =
(119 − 116)2 (130 − 116)2 (48 − 58)2 (59 − 58)2 (224 − 232)2 + + + + 232 116 116 58 58 3.784.
The null hypothesis will not be rejected at any reasonable significance level. Note that E(Q4 ) = 4 when H0 is true. 9.1–4
(30 − 39)2 (43 − 39)2 (11 − 13)2 (124 − 117)2 + + + 117 39 39 13 = 0.419 + 2.077 + 0.410 + 0.308 = 3.214 < 7.815 = χ20.05 (3). Thus we do not reject the Mendelian theory with these data. q3
=
9.1–6 Using Table II in Appendix B with p = 0.30, the hypothesized probabilities are p 0 = P (X = 0) = 0.343, p1 = P (X = 1) = 0.441, p2 = P (X = 2) = 0.189, p3 = P (X = 3) = 0.027. Thus the respective expected values are 68.6, 88.2, 37.8, and 5.4. The value of the chi-square goodness of fit statistic is: q
=
(95 − 88.2)2 (38 − 37.8)2 (10 − 5.4)2 (57 − 68.6)2 + + + 68.6 88.2 37.8 5.4
= 6.405 < 7.815 = χ20.05 (3). Do not reject the hypothesis that X is b(3, 0.30) at a 5% significance level. Limits for the p-value are 0.05 < p-value < 0.10 because χ20.10 (3) = 6.251 < 6.405 < χ20.05 (3) = 7.815. We find that pb = 201/600 = 0.335. Thus a 95% confidence interval for p is p 0.335 ± 1.96 (0.335)(0.665)/600 or [0.297, 0.373].
The pennies that were used were minted 1998 or earlier. See Figure 9.1-6. Repeat this experiment with similar pennies or with newer pennies and compare your results with those obtained by these students.
c 2020 Pearson Education, Inc. Copyright °
128
Section 9.1 Chi-Square Goodness-of-Fit Tests
0.4 0.3 0.2 0.1 0
1
2
3
Figure 9.1–6: The b(3, 3/10) probability histogram and the relative frequency histogram (shaded)
9.1–8 (a) Estimate λ by x = 50/40 = 1.25. Then [12 − (0.3581)(40)]2 [15 − (0.2865)(40)]2 + + q3 = (0.2865)(40) (0.3581)(40) [7 − (0.2238)(40)]2 [6 − (0.1316)(40)]2 + (0.2238)(40) (0.1316)(40) = 1.999 < χ20.05 (2) = 5.991; do not reject H0 ; (b) Estimate p by 1/y = 1/2.25 = 4/9. Then [15 − (4/9)(40)]2 [12 − (20/81)(40)]2 q3 = + + (4/9)(40) (20/81)(40) [6 − (125/729)(40)]2 [7 − (100/729)(40)]2 + (100/729)(40) (125/729)(40) = 1.415 < χ20.05 (2) = 5.991; do not reject H0 . 9.1–10 The respective probabilities and expected frequencies are 0.050, 0.149, 0.224, 0.224, 0.168, 0.101, 0.050, 0.022, 0.012 and 15.0, 44.7, 67.2, 67.2, 50.4, 30.3, 15.0, 6.6, 3.6. The last two cells could be combined to give an expected frequency of 10.2. From Exercise 3.5–12, the respective frequencies are 17, 47, 63, 63, 49, 28, 21, and 12 giving q7 =
(47 − 44.7)2 (12 − 10.2)2 (17 − 15.0)2 + + ··· + = 3.841. 15.0 44.7 10.2
Since 3.841 < 14.07 = χ20.05 (7), do not reject. The sample mean is x = 3.03 and the sample variance is s2 = 3.19 which also supports the hypothesis. The following figure compares the probability histogram with the relative frequency histogram of the data.
c 2020 Pearson Education, Inc. Copyright °
Chapter 9 More Tests
129
0.20 0.15 0.10 0.05
1
2
3
4
5
6
7
8
Figure 9.1–10: The Poisson probability histogram, λ = 3, and relative frequency histogram (shaded) 9.1–12 (a) For the infected snails, x = 84.74, sx = 64.79; For the control snails, y = 113.16, sy = 87.02; (b)
X
Y
0
50
100
150
200
250
300
Figure 9.1–12: Box-and-whisker diagrams for infected (X) and control (Y )
(c) We shall use 5 classes with equal probability for the control snails. Ai
Observed
Expected
q
[0, 25.25) [25.25, 57.81) [57.81, 103.69) [103.69, 182.13) [182.13, ∞)
4 9 5 6 7
6.2 6.2 6.2 6.2 6.2
0.781 1.264 0.232 0.006 0.103
31
31.0
2.386
The p-value for 5 − 1 − 1 = 3 degrees of freedom is 0.496 so we fail to reject the null hypothesis;
c 2020 Pearson Education, Inc. Copyright °
130
Section 9.2 Contingency Tables (d) We shall use 10 classes with equal probability for the infected snalis. Ai
Observed
Expected
q
[0, 22.34) [22.34, 34.62) [34.62, 46.09) [46.09, 57.81) [57.81, 70.49) [70.49, 84.94) [84.94, 102.45) [102.45, 125.76) [125.76, 163.37) [163.37, ∞)
3 3 8 4 2 4 4 4 2 5
3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9
0.208 0.208 4.310 0.003 0.926 0.003 0.003 0.003 0.926 0.310
39
39.0
6.900
The p-value for 10 − 1 = 9 degrees of freedom is 0.648 so we fail to reject the null hypothesis.
9.2
Contingency Tables
9.2–2 10.18 < 20.48 = χ20.025 (10), accept H0 . 9.2–4 In the combined sample of 45 observations, the lower third includes those with scores of 61 or lower, the middle third have scores from 62 through 78, and the higher third are those with scores of 79 and above. low
middle
high
Totals
Class U
9 (5)
4 (5)
2 (5)
15
Class V
5 (5)
5 (5)
5 (5)
15
Class W
1 (5)
6 (5)
8 (5)
15
Totals
15
15
15
45
Thus q = 3.2 + 0.2 + 1.8 + 0 + 0 + 0 + 3.2 + 0.2 + 1.8 = 10.4. Since q = 10.4 > 9.488 = χ20.05 (4), we reject the equality of these three distributions. (p-value = 0.034.) 9.2–6 q = 8.410 < 9.488 = χ20.05 (4), fail to reject H0 . (p-value = 0.078.) 9.2–8 q = 4.268 > 3.841 = χ20.05 (1), reject H0 . (p-value = 0.039.) 9.2–10 q = 7.683 < 9.210 = χ20.01 (2), fail to reject H0 . (p-value = 0.021.) 9.2–12 q = 8.792 > 7.378 = χ20.025 (2), reject H0 . (p-value = 0.012.)
c 2020 Pearson Education, Inc. Copyright °
Chapter 9 More Tests
131
9.2–14 The contingency table is: Eyes
A1
A2
A3
A4
Totals
Blue
22 (20)
17 (20)
21 (20)
20 (20)
80
Brown
14 (17.50)
20 (17.50)
20 (17.50)
16 (17.0)
70
Other
14 (12.50)
13 (12.50)
9 (12.50)
14 (12.50)
50
Totals
50
50
50
50
200
Because q = 3.603 < 12.59 = χ20.05 (6), do not reject the hypothesis of independent attributes. (p-value = 0.730.)
9.3
One-Factor Analysis of Variance
9.3–2 Source
SS
DF
MS
F
p-value
Treatment Error
388.2805 316.4597
3 12
129.4268 26.3716
4.9078
0.0188
Total
704.7402
15
F = 4.9078 > 3.49 = F0.05 (3, 12), reject H0 . 9.3–4 (a) Source
SS
DF
MS
F
p-value
Treatment Error
184.8 102.0
2 17
92.4 6.0
15.4
0.00015
Total
286.8
19
F = 15.4 > 3.59 = F0.05 (2, 17), reject H0 ; (b)
A
B
C 74
76
78
80
82
84
86
Figure 9.3–4: Box-and-whisker diagrams of strengths of different beams
c 2020 Pearson Education, Inc. Copyright °
132
Section 9.3 One-Factor Analysis of Variance
9.3–6 (a) F ≥ F0.05 (3, 24) = 3.01; (b)
Source
SS
DF
MS
F
p-value
Treatment Error
12,280.86 28,434.57
3 24
4,093.62 1,184.77
3.455
0.0323
Total
40,715.43
27
F = 3.455 > 3.01, reject H0 ; (c) 0.025 < p-value < 0.05. (d)
X1 X2 X3 X4 140
160
180
200
220
240
260
280
Figure 9.3–6: Box-and-whisker diagrams for cholesterol levels 9.3–8 (a) F ≥ F0.05 (4, 30) = 2.69; (b)
Source
SS
DF
MS
F
p-value
Treatment Error
0.00442 0.01157
4 30
0.00111 0.00039
2.85
0.0403
Total
0.01599
34
F = 2.85 > 2.69, reject H0 ;
c 2020 Pearson Education, Inc. Copyright °
Chapter 9 More Tests
133
(c)
X1 X2 X3 X4 X5 1.02
1.04
1.06
1.08
1.10
Figure 9.3–8: Box-and-whisker diagrams for nail weights
9.3–10 (a) t = s F =
92.143 − 103.000 µ ¶ = −2.55 < −2.179, reject H0 . 6(69.139) + 6(57.669) 1 1 + 12 7 7
412.517 = 6.507 > 4.75, reject H0 . 63.4048
The F and the t tests give the same results since t2 = F ; (b) F =
86.3336 = 0.7515 < 3.55, do not reject H0 . 114.8889
9.3–12 (a) Source
SS
DF
MS
F
p-value
Treatment Error
122.1956 860.4799
2 30
61.0978 28.6827
2.130
0.136
Total
982.6755
32
F = 2.130 < 3.32 = F0.05 (2, 30), fail to reject H0 ; (b) D6
D7
D 22 165
170
175
180
185
Figure 9.3–12: Box-and-whisker diagrams for resistances on three days
c 2020 Pearson Education, Inc. Copyright °
134
Section 9.4 Two-Way Analysis of Variance
9.3–14 (a) Source
SS
DF
MS
F
p-value
Worker Error
1.5474 17.2022
2 24
0.7737 0.7168
1.0794
0.3557
Total
18.7496
26
F = 1.0794 < 3.40 = F0.05 (2, 24), fail to reject H0 ; (b)
A
B
C 2 2.5 3 3.5 1 1.5 4 4.5 Figure 9.3–14: Box-and-whisker diagrams for workers A, B, and C The box plot confirms the answer from part (a).
9.4
Two-Way Analysis of Variance
9.4–2
µ + βj
6 10 8 8
3 7 5 5
7 11 9 9
8 12 10 10
µ + αi 6 10 8 µ=8
So α1 = −2, α2 = 2, α3 = 0 and β1 = 0, β2 = −3, β3 = 1, β4 = 2. 9.4–4
b a X X i=1 j=1
( X i· − X ·· )(Xij − X i· − X ·j + X ·· ) =
a X i=1
= =
a X
i=1 a X i=1
b a X X i=1 j=1
b a X X i=1 j=1
( X i· − X ·· ) ( X i· − X ·· )
b X
[(Xij − X i· ) − ( X ·j − X ·· )]
j=1 b X
j=1
(Xij − X i· ) −
b X j=1
( X ·j − X ·· )
( X i· − X ·· )(0 − 0) = 0;
( X ·j − X ·· )(Xij − X i· − X ·j + X ·· ) = 0, similarly; ( X i· − X ·· )( X ·j − X ·· ) =
( a X i=1
( X i· − X ·· )
) b X
j=1
( X ·j − X ·· )
c 2020 Pearson Education, Inc. Copyright °
= (0)(0) = 0 .
Chapter 9 More Tests
135
9.4–6
µ + βj
6 10 8 8
7 3 5 5
7 11 9 9
12 8 10 10
µ + αi 8 8 8 µ=8
So α1 = α2 = α3 = 0 and β1 = 0, β2 = −3, β3 = 1, β4 = 2 as in Exercise 9.4–2. However, γ11 = −2 because 8 + 0 + 0 + (−2) = 6. Similarly we obtain the other γij ’s : −2 2 0
2 −2 0
−2 2 0
2 −2 0
9.4–8 Source
SS
DF
MS
F
p-value
Row (A) Col (B) Int(AB) Error
5,103.0000 6,121.2857 1,056.5714 28,434.5714
1 1 1 24
5,103.0000 6,121.2857 1,056.5714 1,184.7738
4.307 5.167 0.892
0.049 0.032 0.354
Total
40,715.4286
27
(a) Since F = 0.892 < F0.05 (1, 24) = 4.26, do not reject HAB ; (b) Since F = 4.307 > F0.05 (1, 24) = 4.26, reject HA ; (c) Since F = 5.167 > F0.05 (1, 24) = 4.26, reject HB .
9.5
General Factorial and 2k Factorial Designs
9.5–4 (a)
(b)
[A] = −28.4/8 = −3.55, [B] = −1.45, [C] = 3.2, [AB] = −1.525, [AC] = −0.525, [BC] = 0.375, [ABC] = −1.2; Identity of Effect [A] [AB] [B] [ABC] [AC] [BC] [C]
Ordered Effect −3.550 −1.525 −1.450 −1.200 −0.525 0.375 3.20
Percentile 12.5 25.0 37.5 50.0 62.5 75.0 87.5
Percentile from N(0,1) −1.15 −0.67 −0.32 0.00 0.32 0.67 1.15
The main effects of temperature (A) and concentration (C) are significant.
c 2020 Pearson Education, Inc. Copyright °
136
Section 9.6 Tests Concerning Regression and Correlation
3 2
–3
[ABC] –2[B] –1 [AB]
[A]
[AC]
1
[C]
[BC]
1
2
3
–1 –2 –3
Figure 9.5–4: q-q plot
9.6
Tests Concerning Regression and Correlation
9.6–2 The critical region is t1 ≥ t0.025 (8) = 2.306. From Exercise 6.5–4, 10 X c2 = 1.84924; also βb = 4.64/5.04 and nσ (xi − x)2 = 5.04, so t1
=
0.9206 4.64/5.04 s = 4.299. = 0.2142 1.84924 8(5.04)
i=1
Since t1 = 4.299 > 2.306, we reject H0 . 9.6–4 For these data, r = −0.413. Since |r| = 0.413 < 0.7292, do not reject H 0 . 9.6–6 Following the suggestion given in the hint, the expression equals (n − 1)SY2 −
2RsX SY R2 s2X SY2 (n − 1)s2X (n − 1)Rs S + X Y s2X s4X u(R)
≈
u(ρ) + (R − ρ)u0 (ρ),
Var[u(ρ) + (R − ρ)u0 (ρ)]
=
[u0 (ρ)]2 Var(R)
9.6–8
u(ρ) Thus, taking k = 1,
(n − 1)SY2 (1 − 2R2 + R2 )
=
(n − 1)SY2 (1 − R2 ).
(1 − ρ2 )2 = c, which is free of ρ, n k/2 k/2 + , = 1−ρ 1+ρ µ ¶ k k k 1+ρ = − ln(1 − ρ) + ln(1 + ρ) = ln . 2 2 2 1−ρ =
u0 (ρ)
=
[u0 (ρ)]2
u(R) =
¸ µ ¶ · 1+R 1 ln 2 1−R
has a variance almost free of ρ.
c 2020 Pearson Education, Inc. Copyright °
Chapter 9 More Tests
137
9.6–10 (a) r = −0.4906, | r | = 0.4906 > 0.4258, reject H0 at α = 0.10; (b) | r | = 0.4906 < 0.4973, fail to reject H0 at α = 0.05.
9.6–12 (a) r = 0.339, | r | = 0.339 < 0.5325 = r0.025 (12), fail to reject H0 at α = 0.05; (b) r = −0.821 < −0.6613 = r0.005 (12), reject H0 at α = 0.005;
(c) r = 0.149, | r | = 0.149 < 0.5325 = r0.025 (12), fail to reject H0 at α = 0.05.
9.7
Statistical Quality Control
9.7–2 (a) x = 67.44, s = 2.392, R = 5.88; (b) UCL = x + 1.43(s) = 67.44 + 1.43(2.392) = 70.86; LCL = x − 1.43(s) = 67.44 − 1.43(2.392) = 64.02;
(c) UCL = 2.09(s) = 2.09(2.392) = 5.00; LCL = 0;
UCL
5
74
4
72
UCL
70
3 _ x
68 66
_ s
2 1
64
LCL 2
4
6
8
10 12 14 16 18 20
2
4
6
8
LCL 10 12 14 16 18 20
Figure 9.7–2: (b) x-chart using s and (c) s-chart
c 2020 Pearson Education, Inc. Copyright °
138
Section 9.7 Statistical Quality Control (d) UCL = x + 0.58(R) = 67.44 + 0.58(5.88) = 70.85; LCL = x − 0.58(R) = 67.44 − 0.58(5.88) = 64.03;
(e) UCL = 2.11(R) = 2.11(5.88) = 12.41; LCL = 0;
74
UCL
12
72
UCL
10 8
70 _ x
68
6 4
66
_ R
2
64
LCL 2
4
6
8
2
10 12 14 16 18 20
4
6
8
LCL 10 12 14 16 18 20
Figure 9.7–2: (d) x-chart using R and (e) R-chart (f ) Quite well until near the end. p 9.7–4 With p = 0.0254, UCL = p + 3 p(1 − p)/100 = 0.073; p with p = 0.02, UCL = p + 3 p(1 − p)/100 = 0.062;
In both cases we see that problems are arising near the end.
0.08
UCL
0.06
0.08 UCL
0.06
0.04
_ p
0.02
0.04 _ p
0.02
2
4
6
LCL 8 10 12 14 16 18 20 22 24
2
4
6
LCL 8 10 12 14 16 18 20 22 24
Figure 9.7–4: p-charts using p = 0.0254 and p = 0.02
c 2020 Pearson Education, Inc. Copyright °
Chapter 9 More Tests
139
√ √ 9.7–6 (a) UCL = c + 3 c = 1.80 + 3 1.80 = 5.825;
LCL = 0; UCL
6 5 4 3
_ c
2 1 2
4
6
8
LCL 10 12 14 16 18 20
Figure 9.7–6: c-chart (b) The process is in statistical control. 5101 = 34.0067, s = 2.8244, R = 7; 150 (b) UCL = x + 1.43(s) = 38.046 for the x chart; LCL = x − 1.43(s) = 29.968 for the x chart;
9.7–8 (a) x =
(c) UCL = 2.09(s) = 5.903 for the s chart; LCL = 0(s) for the s chart; UCL
38
UCL
6 5
36 4
__ x
34
_ s
3 2
32 LCL
30 0
5
10
15
20
25
30
1 0
5
10
Figure 9.7–8: (b) x-chart using s and (c) s-chart
c 2020 Pearson Education, Inc. Copyright °
15
20
25
LCL 30
140
Section 9.7 Statistical Quality Control (d) UCL = x + 0.58(R) = 38.0667; LCL = x − 0.58(R) = 29.9467;
(e) UCL = 2.11(R) = 2.11(7) = 14.77; LCL = 0(R) = 0; UCL
38
UCL 14 12
36
10
_ _ x
34
_ r
8 6
32
4 LCL
30 0
5
10
15
20
25
30
2 5
10
Figure 9.7–8: (d) x-chart using R and (e) R-chart (f ) Yes. √ 9.7–10 LCL = 1.4 − 3 1.4 < 0 so LCL = 0; √ U CL = 1.4 + 3 1.4 = 4.9496; (a) If λ = 3, P (X ≥ 5) = 1 − P (X ≤ 4) = 1 − 0.815 = 0.185;
(b) Y is b(10, 0.185). Thus P (at least 1) = 1 − P (Y = 0) =
1 − p0 q 10
=
1 − 0.81510
=
0.871.
c 2020 Pearson Education, Inc. Copyright °
15
20
25
LCL 30