Cretacix types

Page 1

Types. The rocks and sediments of the Cretaceous System show considerable variation in their lithologic character and the thickness of their sequences. Mountain-building episodes accompanied by volcanism and plutonic intrusion took place in the circumPacific region and in the area of the present-day Alps. The erosion of these mountains produced clastic sediments, such as conglomerates, sandstones, and shales, on their flanks. The igneous rocks of Cretaceous age in the circum-Pacific area are widely exposed. The Cretaceous Period was a time of great inundation by shallow seas that created swamp conditions favourable for the accumulation of fossil fuels at the margin of land areas. Coalbearing strata are found in some parts of Cretaceous sequences in Siberia, Australia, New Zealand, Mexico, and the western United States. Farther offshore, chalks are widely distributed in the Late Cretaceous. Another rock type called the "Urgonian" limestone is similarly widespread in the Upper Barremian-Lower Aptian. This massive limestone facies, whose name is commonly associated with rudists (a reef-building bivalve of the Mesozoic), is found in Mexico, Spain, southern France, Switzerland, Bulgaria, the southern Soviet Union, and North Africa. The mid-Cretaceous was a time of extensive deposition of carbon-rich shale with few or no benthic fossils. These so-called black shales result when there is severe deficiency of oxygen in the bottom waters of the oceans. Poor ocean circulation is suggested as the cause, and the poor circulation is thought to have resulted from the generally warmer climate that prevailed during the Cretaceous, the much smaller than present temperature difference between the poles and the equator, and the restriction of the North Atlantic, South Atlantic, and Tethys. Cretaceous black shales are extensively distributed on various continental areas, such as the western interior of North America, the Alps, the Apennines of Italy, western South America, Western Australia, western Africa, and southern Greenland. They also occur in the Atlantic Ocean, as revealed by the Deep Sea Drilling Program (a scientific program initiated in 1968 to study the ocean bottom), and in the Pacific, as noted on several seamounts. In North America the Nevadan orogeny took place in the Sierra Nevada and Klamath Mountains from Late Jurassic to Early Cretaceous times; the Sevier orogeny produced mountains in Utah and Idaho in the mid-Cretaceous; and the Laramide orogeny, with its thrust faulting, gave rise to the Rocky Mountains and Sierra Madre Oriental during the Late Cretaceous to Early Tertiary. In the South American Andean system, mountain building reached its climax in mid-Late Cretaceous. In Japan the Sakawa orogeny proceeded through a number of phases during the Cretaceous. In typical examples of circum-Pacific orogenic systems, regional metamorphism of the high-temperature type and large-scale granitic emplacement occurred on the inner continental side, whereas sinking, rapid sedimentation, and regional metamorphism predominated on the outer oceanic side. The intrusion of granitic rocks, accompanied in some areas by extrusion of volcanic rocks, had a profound effect on geologic history. This is exemplified by the upheaval of the Sierra Nevada, with the intermittent emplacement of


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.