D6 - The Inside Story
Shirleen Stibbe s.stibbe@open.ac.uk
Notation
D6 = 〈 r, s : r6 = s2 = e; sr = r5s = r 1s 〉
Standard form
rm, rms, (m = 0,1,...,5),
IB2 Orders of elements
IB4 Normal Subgroups
−
Order
1 2 2 3 6
N1 N2 N3 N4 N5
= = = = =
Note:
rm = r[2πm/6],
rms = q[πm/6] (assuming s = q[0]),
Type
Element
identity reflection rotation rotation rotation
e rms, (m = 0,1,...,5) r3 r 2, r 4 r, r5
3
{e, r } 2 4 {e, r , r } 2 4 2 4 {e, r , r , s, r s, r s} 2 4 3 5 {e, r , r , rs, r s, r s} 2 3 4 5 {e, r, r , r , r , r }
≅ ≅ ≅ ≅ ≅
srm = r ms −
Number
1 6 1 2 2
C2 C3 D3 D3 C6
Note: I’ve use Cn rather than Zn for all cyclic subgroups of order n, since they’re usually groups of rotations.
r2 is rotation through 2π/3; this explains why N3 and N4 are isomorphic to D3
IB4 Non-normal subgroups
Order 2:
K m = { e , r ms }
Order 4:
H 1 = { e , r 3, s , r 3s } ≅ C2 × C2 ≅ D2 H2 = {e, r3, rs, r4s} ≅ C2 × C2 ≅ D2 H3 = {e, r3, r2s, r5s} ≅ C2 × C2 ≅ D2
GR2 Internal Direct Product (Th'm 1.1, HB p24)
a) D6 = N1 N3 b) N1∩ N3 = {e} c) N1 and N3 are normal in D6
≅ C 2,
m = 0, 1, 2, 3, 4, 5
So D6 ≅ N1 × N3 ≅ C2 × D3 Note: N1 and N4 also satisfy the conditions for Theorem 1.1 3
5
2
4
2
4
3
5
GR4 Conjugacy
Conjugacy classes: {e}, {r }, {r, r }, {r , r }, {s, r s, r s}, {rs, r s, r s} [Elements split as: rotations: through the same angle; reflections: axes through (a) vertices, (b) edges.] Class equation: 12 = 1 + 1 + 2 + 2 + 3 + 3
GR4 Centre
Centre of D6: Z(D6) = {e, r } (= N1) 3 Note: r = r[π] commutes with everything
GR4 Correspondence Theorem (& Proofs & Strategies 3.9)
3
Quotient Group D6/Nm
D6/N1: eN1 rN 1 r 2N 1 sN 1 rsN1 r 2s N 1 D6/N1
= = = = = =
3
r N1 r 4N 1 r 5N 1 r 3s N 1 r 4s N 1 r5 sN 1
3
{e, r } 4 {r, r } 2 5 {r , r } 3 {s, r s} 4 {rs, r s} 2 5 {r s, r s}
= = = = = = 2
Nm contained in
Subgroups of D6/Nm
N5 normal in D6
N5/N1 = {eN1, rN1, r N1} Normal
H 1, H 2, H 3 all non-normal in D6
2
= {eN1 , rN1, r N1 , sN1, rsN1, r sN1} ≅ D3
Expect: D6/N1 has 1 normal and 3 non-normal subgroups
2
H1/N1 ={eN1, sN1} Non-normal H2/N1 = {eN1, rsN1} Non-normal 2
H3/N1 = {eN1, r sN1} Non-normal
http://www.shirleenstibbe.co.uk/m336