D6 - The inside story

Page 1

D6 - The Inside Story

Shirleen Stibbe s.stibbe@open.ac.uk

Notation

D6 = 〈 r, s : r6 = s2 = e; sr = r5s = r 1s 〉

Standard form

rm, rms, (m = 0,1,...,5),

IB2 Orders of elements

IB4 Normal Subgroups

Order

1 2 2 3 6

N1 N2 N3 N4 N5

= = = = =

Note:

rm = r[2πm/6],

rms = q[πm/6] (assuming s = q[0]),

Type

Element

identity reflection rotation rotation rotation

e rms, (m = 0,1,...,5) r3 r 2, r 4 r, r5

3

{e, r } 2 4 {e, r , r } 2 4 2 4 {e, r , r , s, r s, r s} 2 4 3 5 {e, r , r , rs, r s, r s} 2 3 4 5 {e, r, r , r , r , r }

≅ ≅ ≅ ≅ ≅

srm = r ms −

Number

1 6 1 2 2

C2 C3 D3 D3 C6

Note: I’ve use Cn rather than Zn for all cyclic subgroups of order n, since they’re usually groups of rotations.

r2 is rotation through 2π/3; this explains why N3 and N4 are isomorphic to D3

IB4 Non-normal subgroups

Order 2:

K m = { e , r ms }

Order 4:

H 1 = { e , r 3, s , r 3s } ≅ C2 × C2 ≅ D2 H2 = {e, r3, rs, r4s} ≅ C2 × C2 ≅ D2 H3 = {e, r3, r2s, r5s} ≅ C2 × C2 ≅ D2

GR2 Internal Direct Product (Th'm 1.1, HB p24)

a) D6 = N1 N3 b) N1∩ N3 = {e} c) N1 and N3 are normal in D6

≅ C 2,

m = 0, 1, 2, 3, 4, 5

So D6 ≅ N1 × N3 ≅ C2 × D3 Note: N1 and N4 also satisfy the conditions for Theorem 1.1 3

5

2

4

2

4

3

5

GR4 Conjugacy

Conjugacy classes: {e}, {r }, {r, r }, {r , r }, {s, r s, r s}, {rs, r s, r s} [Elements split as: rotations: through the same angle; reflections: axes through (a) vertices, (b) edges.] Class equation: 12 = 1 + 1 + 2 + 2 + 3 + 3

GR4 Centre

Centre of D6: Z(D6) = {e, r } (= N1) 3 Note: r = r[π] commutes with everything

GR4 Correspondence Theorem (& Proofs & Strategies 3.9)

3

Quotient Group D6/Nm

D6/N1: eN1 rN 1 r 2N 1 sN 1 rsN1 r 2s N 1 D6/N1

= = = = = =

3

r N1 r 4N 1 r 5N 1 r 3s N 1 r 4s N 1 r5 sN 1

3

{e, r } 4 {r, r } 2 5 {r , r } 3 {s, r s} 4 {rs, r s} 2 5 {r s, r s}

= = = = = = 2

Nm contained in

Subgroups of D6/Nm

N5 normal in D6

N5/N1 = {eN1, rN1, r N1} Normal

H 1, H 2, H 3 all non-normal in D6

2

= {eN1 , rN1, r N1 , sN1, rsN1, r sN1} ≅ D3

Expect: D6/N1 has 1 normal and 3 non-normal subgroups

2

H1/N1 ={eN1, sN1} Non-normal H2/N1 = {eN1, rsN1} Non-normal 2

H3/N1 = {eN1, r sN1} Non-normal

http://www.shirleenstibbe.co.uk/m336


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
D6 - The inside story by Shirleen Stibbe - Issuu