Integration

Page 1

Introduction to Integration Shirleen Stibbe

www.shirleenstibbe.co.uk

OPEN UNIVERSITY

My badge for this session

M203 Pure Mathematics Summerschool


How to find the area under a graph Chop it into chunks – sum areas of rectangles

!

a 0

f(x) dx

Overestimate

Underestimate

Partition, P: Divides [a, b] into sub-intervals x0 = a < x1 < x2 < … < xn = b P = { [x0, x1], [x1, x2], … [xn-1, xn] } ith interval: [xi-1, xi], length: δxi = xi – xi-1 Standard partition for [0, 1] :

xi = i/n, δxi = 1/n

Pn = { [0, 1/n], [1/n, 2/n], …, [(n-1)/n, 1] }, Mesh P = ||P|| = max {δxi} mi

δxi

f(x)

On the ith interval: mi = inf f(x), Mi = sup f(x)

Mi

Areas: = miδxi

a

xi-1

xi

b

= Miδxi

n

Lower Riemann Sum : L(f, P) = ∑ mi δxi i=1 n

Upper Riemann Sum : U(f, P) = ∑ Mi δxi i=1

2


Add extra points: L(f, P) increases, U(f, P) decreases Suppose ||P|| → 0, and let

L = lim L(f, Pn ) n →∞

U = lim U(f, Pn ) n →∞

If L = U, then f is integrable on [a, b] and b

∫a f(x)dx = L = U General result: If f is monotonic (or continuous) on [a, b] then f is integrable on [a, b] To show f is integrable on [a, b]: Find ONE sequence {Pn} with ||Pn|| → 0, for which L = U To show f is not integrable on [a, b]: Find ONE sequence {Pn} with ||Pn|| → 0, for which L ≠ U 3


Stuff you'll need …

You must remember this n

n (n + 1) 1 + 2 + ... + n = ∑ i = 2 i=1 And by the way: n

∑i

n

=

i=1

n

∑ λi i=1

∑i

i= 0

n

= λ∑ i, i=1

n

∑ (i − 1) i=1

λ ≠i

n −1

=

∑i

i= 0

n −1

=

∑i i=1

⎛ n ⎞ n (n + 1) n2 + n − 2 ∑ i = ⎜⎜ ∑ i ⎟⎟ − 1 = 2 − 1 = 2 ⎝ i=1 ⎠ i=2 n

4


Example: Let f(x) =

x, 0 ≤ x < 1 0, x = 1

Find L(f, P) and U(f, P). Is f integrable on [0, 1]?

Standard partition for [0, 1] : Pn = { [0, 1/n], [1/n, 2/n], …, [(n-1)/n, 1] }, δxi = 1/n 1

Mi

Mn

mi

f increasing on [0, 1[, so mi = f((i-1)/n) = (i-1)/n, i ≤ n-1 Mi = f (i/n) = i/n, i ≤ n-1

mn i−1 n

i n

and mn = 0, Mn = 1 = n/n

1

n −1

n −1

i−1 1 1 n −2 L( f, Pn ) = ∑ mi δxi = ∑ = 2 ∑i n n i= 0 i=1 i=1 n 1 (n − 2)(n − 1) n2 − 3n + 2 = 2 = 2 n 2n2 n

n

i 1 1 U( f, Pn ) = ∑ Mi δxi = ∑ = 2 n i=1 i=1 n n

n

∑i i=1

1 n(n + 1) n2 + n = 2 = 2 n 2n2 L(f, P) =

1 3 2 − + 2 → 1/2 2 2n 2n

1 1 U(f, P) = + → 1/2 2 2n

as n → ∞

as n → ∞

L = U, so f is integrable on [0, 1] 1

∫0 f

= 1/2 5


Fundamental theorem of integration If f is integrable on [a, b], and F is a primitive for f on [a, b], i.e. F (x) = f(x), then b

∫a f(x) dx

= F(b) − F( a)

[ ∫f = F + c, c constant ]

Combination rules If f, g have primitives F, G respectively Sum rule:

∫ (f + g)

=F+G +c

Multiple rule:

∫ λf = λF + c

Scaling rule:

∫ f(λx)dx

= (1/ λ) F(λx) + c

Integrals you really really need to know

∫ xa

= ( 1 a +1 ) xa+1 , a ≠ -1

∫ x-1

= logex

∫ ex

= ex

∫ cos x

= sin x

Table of Standard Primitives HB p 95

∫ sin x = - cos x 6


Inequalities If f and g are integrable on [a, b], and x ∈ [a, b]:

1)

b

f(x) ≤ g(x) ⇒

2)

b

∫a f ≤ ∫a g b

m ≤ f(x) ≤ M ⇒ m(b − a) ≤ ∫ f ≤ M(b − a) a

Example: Prove that

Solution:

1

3 2

≤∫

For 0 ≤ x ≤ 1,

x2 (1 + x)

1

2

1 ≤ (1 + x)

dx ≤ 1

2

1 3

≤ 2

1 1 ≤ ≤1 1 2 (1 + x) 2

x2 x2 2 ≤ ≤ x ⇒ 2 (1 + x) 12 Then

Since

1 1 2 x dx ≤ ∫ 0 2

x2

∫0 (1 + x) 12

dx ≤

1

∫0

x2dx

1

1 3 ⎤ 1 ⎡ ∫0 x dx = ⎢⎣3 x ⎥⎦ 0 = 3 it follows that 1

2

1

3 2

Note:

1

0.2357

≤∫

x2 (1 + x)

1

2

dx ≤

0.2533 ≤

1 3

0.3333

7


Differentiation: Product rule (fg)' = f'g + fg' ⇒ f'g = (fg)' – fg' Integration by parts: Reduction formula:

∫f'g

= ∫(fg)' - ∫fg' = fg - ∫fg'

Let I n =

!

b a

fn (x) dx, n " 0

Find a relationship between In and In-1, and use it to calculate individual values

1

x n Example: Let In = ∫ e x dx, n ≥ 0 0

Prove that In = e − nIn −1 and evaluate I0 and I2

Solution: where So Then

1

1

x n

In = ∫ e x dx = ∫ f'(x) g(x)dx 0

0

f'(x) = ex, f(x) = ex, g(x) = xn, g'(x) = nxn-1

In = e x xn

[

I0 =

1

∫0 e

]10 − n∫01 exxn−1dx

x

dx =

x 1 e 0

[ ]

= e − nIn −1

= e −1

I2 = e − 2I1 = e − 2(e − I0 ) = e − 2(e − (e − 1) ) = e − 2

(*)

(**) using (*) twice from (**) 8


Twiddles:

f, g positive functions, domain R f(n) ∼ g(n) as n → ∞ means

f(n) → 1 as n → ∞ g(n) n!

Stirling's formula:

∼ 2πn (n / e)n

2n λ 2 2 n Example: Find a real λ for which ⎛⎜ ⎞⎟ ∼ ⎝ n ⎠ n

Solution:

(

2n n

)

= = = ∼

=

(2n) ! n!(2n ! n) ! (2n) ! n!n! 2"2n (2n / e)2n 2"n (n / e)n 2"n (n / e)n 1

(2n)2n e n e n e2n

"n =

1 "n

2n

2

nn nn so # =

1 " 9


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.