Algebra(3) 5° 1b

Page 1

COLEGIO DE CIENCIAS LORD KELVIN

MULTIPLIACION I. Objetivos Específicos: 1. Evita operaciones innecesarias sobre todo multiplicaciones, ubicando directamente el resultado en este caso el producto. 2. Consigue rapidez en la reducción de expresiones cuyas formas aparentemente son operativas. 3. Conoce artificios diversos para minimizar el tiempo de resolución de los ejercicios. 4. Interpreta geométricamente los productos notables. 5. Identifica los productos notables a partir de los factores. Así como el reconocimiento de los factores a partir del producto. II. Procedimientos: A. Iniciales El razonamiento deductivo y las demostraciones matemáticas Si las matemáticas tienen tanto prestigio entre las demás ciencias, se debe al papel especial que desempeña en las matemáticas el razonamiento deductivo, base de las demostraciones matemáticas. Demostrar una propiedad es deducirla de otras anteriormente demostradas. Este tipo de razonamiento garantiza la verdad de la conclusión si la información de la que se parte (las premisas) es verdadera (o se supone verdadera). La “demostración matemática” tiene las siguientes características : - Se sabe ya la conclusión a la que se quiere llegar. - Inducción y deducción son inseparables en matemáticas - Es un concepto relativo que varía con el tiempo. S5AL31B

5to. Año Secundaria

39

40

1er. Año Secundaria

Otra particularidad de la demostración matemática es que establece propiedades que son verdaderas y válidas en todos los casos, si se dan las mismas condiciones iniciales. Una vez demostrado el teorema de Pitágoras, por ejemplo, sabemos que es verdadero para cualquier triángulo rectángulo, con lados que tengan milímetros o kilómetros de largo. La generalización que produce la demostración permite la aplicación de un teorema dado a cualquier caso particular. Hay otra razón que hace necesarias las demostraciones matemáticas: La geometría, por ejemplo, no es una colección fortuita de verdades sobre propiedades especiales de las figuras, es también un “sistema axiomático” o “deductivo” en el que cada teorema se deduce de otro, demostrado previamente, hasta llegar a un pequeño número de “axiomas” o “postulados” que no pueden ser demostrados y que hay que aceptar como verdaderos.

Afirma Raymond Wilder (E.U.A. 1898): “Lo que constituye una “demostración” varía de una cultura a otra y de una época a otra”. Morris Kline, profesor de matemáticas de la Universidad de New York, escribe: “La típica actitud en el siglo XVIII era: ¿Para qué preocuparse tanto por demostrar lo evidente mediante abstrusos razonamiento, cosas que nunca se pusieron en duda? ¿Para qué demostrar lo evidente mediante lo menos evidente? Incluso la geometría euclidiana fue criticada por presentar demostraciones que no se consideraban necesarias” La primera “demostración” tal como se entiende hoy en matemáticas parece haber sido hecha por Tales de Mileto unos 600 años antes de nuestra era; él demostró que “todo diámetro biseca a la circunferencia”. ¿Por qué esa necesidad de demostrar lo que es evidente e incontrovertible?

Pruebas Geométricas En cuanto se descubrió el conjunto de los números irracionales, se observó que la colección de las magnitudes geométricas (por ejemplo los segmentos) era más completa que el conjunto de los números racionales, entonces se construyó una herramienta matemática más amplia denominada álgebra geométrica. Los principales elementos del álgebra geométrica fueron los segmentos de recta, donde a partir de ellos se definieron las operaciones de cálculo, por ejemplo, la adición se interpretaba como la unión de los segmentos. (En forma colineal uno a continuación de otro), la sustracción como la eliminación de una parte del segmento minuendo igual al segmento sustraendo, la multiplicación de segmentos originó la aparición del sistema bidimensional (la representación en el plano cartersiano), la división resultaba posible sólo bajo la condición de que la dimensión (tamaño del

Una razón es que ninguna ciencia exacta puede basarse sistemáticamente en lo que es “obvio” o “evidente”. Lo “obvio” es siempre subjetivo, inestable y sospechoso, casi nunca permite llegar a resultados importantes y menos cuando la ciencia se vuelve más y más abstracta. La demostración pretende convencer a todos los interlocutores, incluso a uno mismo: también pretende, y eso es importante en la docencia, aclarar y hacer comprender mejor lo que se quiere enseñar. Si la demostración no va a facilitar la comprensión, es mejor descartarla. Es lo que hicieron los matemáticos chinos en el siglo XVII cuando, a través de los misioneros jesuitas descubrieron la geometría euclidiana: adoptaron todo el contenido de la obra de Euclides excepto las demostraciones, que les parecieron demasiado verbosas y no explicaban nunca cómo se habían descubierto.

“El nuevo símbolo de una buena educación....”

ÁLGEBRA

S5AL31B

segmento) dividendo era mayor que la dimensión del divisor. Pruebas geométricas de algunas identidades algebraicas: El álgebra geométrica también interpretaba las identidades algebraicas. Los ejemplos siguientes, conocidos desde tiempos inmemoriales, muestran claramente el uso de áreas de figuras geométricas para “demostrar” identidades algebraicas. Trinomio Cuadrado Perfecto

B a b ab a

a2

b C b2 = ab

+ ab + ab + b 2

a2

D

A

Area de ABCD= (a+b)(a+b)=a2+ab+ab+b2 (a

+ b )2 = a 2 + 2 ab + b2

b

a-b

b2 a b

b (a-b)

2

a-b

a (a - b)2= a2 - b(a - b) - b(a - b) - b2 (a

− b )2

= a 2 − 2 ab + b2

Diferencia de cuadrados a-b b a

a b a-b =

a

b a-b

a+b

a 2 − b 2 = (a + b ) . (a − b )

Desarrollo de un Trinomio al cuadrado:

“El nuevo símbolo de una buena educación...."


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.