Grids & guides

Page 1



90°

120°

60°

150°

30°

180°

330°

210°

240°

300°

270°

7 π

π 2

12

5 π 12

2 π

π

3

3

3 π

π

4

4

5 π

π

6

6

11 π

π

12

12

π

0

13 π

23 π

12

2

7 π

11 π

6

6

5 π

7 π

4

4 4 π

5 π

3

3 17 π 12

3 π 2

19 π 12


1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38








90°

120°

60°

150°

30°

180°

330°

210°

240°

300°

270°

7 π

π 2

12

5 π 12

2 π

π

3

3

3 π

π

4

4

5 π

π

6

6

11 π

π

12

12

π

0

13 π

23 π

12

2

7 π

11 π

6

6

5 π

7 π

4

4 4 π

5 π

3

3 17 π 12

3 π 2

19 π 12


1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38






GE OME TRY

SQUARE

RECTANGLE

TR APEZOID

a

PAR ALLELOGR A M

a

b

a

c

h

a

d

h

a

b

b

a + b 2

A = a2

A = ab

A = h

P = 4a

P = 2a + 2b

P = a + b + c + d

P = 2a + 2b

RHOMBUS

TRIANGLE

RIGHT TRIANGLE

CIRCLE

A = bh

(PY THAGOREAN THEOREM)

d1

h

a

c

d2

r

c

b b

A  =

a

1 A  =  b h 2

1 d  d 2 1 2

RECTANGUL AR PRISM

A = pr2

P = a + b + c

a  + b  = c

CONE

CYLINDER

2

2

a r

c

SPHERE

r

h b

P = 2pr

2

r

h

a 1 p r 2h 3

V = abc

V  =

S = 2ab + 2ac + 2bc

S   =   p r 2  +   p r a

GOLDEN R ATIO

4 pr3 3

V   =   p r 2h

V =

S = 2pr(r + h)

S = 4pr2

EULER’S POLYHEDRON THEOREM

The number of faces (f), vertices (v), and edges (e) of a convex polyhedron

b

are related by the formula:

f + v = e + 2

a + b

Rhombic Dodecahedron

a e a a+b

a

a

b

φ

1.6180339887...

v

f

For the twelve basic shapes shown above, equations are given for area (A), perimeter (P), volume (V) and surface area (S).


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.