El Universo y los cuerpos celestes

Page 1

El Universo

y los cuerpos celestes




El El Universo y los cuerpos celestes Copyright, Diseño Gráfico V Primera edición: Julio 2011 Prohibida la reproducción total o parcial de esta obra mediante cualquier recurso o procedimiento, comprendidos la impresión, la reprografía, el microfilm, el tratamientos informatico o cualquier otro sistema, sin permiso escrito de la editorial. Agradecimientos Gracias, primero a Dios por darme la vida Y después el amor de esta, mi familia, que me ha apoyado en momentos difíciles y ha sonreído conmigo, por brindarme apoyo, una maravillosa formación, por su confianza, todo su amor, por contagiarme de sus mayores fortalezas, a mi novia Emily Borges por estar siempre pendiente de mi y apoyarme en todo, a cada uno de los profesores; por sus enseñanzas, su dedicación y su tiempo; en especial a los profesores Natasha Castillo y Ruben Rodriguez gracias por todo. Díaz Pedro


El Universo

y los cuerpos celestes



ÍNDICE

PROLOGO CAPÍTULO I EL SOL Características Nacimiento y muerte del sol Estructura Núcleo Zona conectiva Fotosfera Cromosfera Corona solar

7 8 12 13 14 15 16 17 18 19

CAPÍTULO II LA LUNA Origen de la luna Características Formación Revoluciones de la luna Movimiento de traslación lunar Órbita de la luna Traslación de la luna alrededor del sol Las mareas Agua en la luna Atmósfera de la luna

20 24 26 27 28 29 30 31 32 33 34

CAPÍTULO III LAS ESTRELLAS Generalidades Ciclo de vida Formación y evolución de las estrellas Agrupación y distribución estelar Estructura estelar Composición

36 40 41 42 43 44 45

CAPÍTULO IV EL UNIVERSO Evolución Descripción física Homogenidad e isotropía Estructura agregadas del universo Las estrellas Los planetas Los satelites Asteroides y cometas CAPÍTULO V EL SISTEMA SOLAR Mercurio Venus Tierra Marte Jupiter Saturno Urano Neptuno Pluton

46 50 51 52 54 56 57 58 59

60 62 68 76 86 92 98 104 110 116



PRÓLOGO

El trabajo de recopilación e investigación que presentó bajo el título de “El universo y los cuerpos celeste” sin perjuicio de evidenciar directamente la presencia del tiempo cíclico desde la creación del Universo, incluido por cierto nuestro Sistema Solar el cual está formado por una estrella central, el Sol, los cuerpos que le acompañan y el espacio que queda entre ellos. Hay nueve planetas que giran alrededor del Sol: Mercurio, Venus, la Tierra, Marte, Júpiter, Saturno, Urano, Neptuno y Plutón. La Tierra es nuestro planeta y tiene un satélite, la Luna. Algunos planetas tienen satélites, otros no. Los asteroides son rocas más pequeñas que también giran, la mayoría entre Marte y Júpiter. Además, están los cometas que se acercan y se alejan mucho del Sol. Desde siempre los humanos hemos observado el cielo. Hace 300 años se inventaron los telescopios. Pero la auténtica exploración del espacio no comenzó hasta la segunda mitad del siglo XX. Desde entonces se han lanzado muchísimas naves. Los astronautas se han paseado por la Luna. Vehículos equipados con instrumentos han visitado algunos planetas y han atravesado el Sistema Solar. Más allá, la estrella más cercana es Alfa Centauro. Su luz tarda 4,3 años en llegar hasta aquí. Ella y el Sol son sólo dos entre los 200 billones de estrellas que forman la Vía Láctea, nuestra Galaxia. Hay millones de galaxias que se mueven por el espacio intergaláctico. Entre todas forman el Universo, cuyos límites todavía no conocemos. Pero los astrónomos continúan investigando.


EL SOL Capítulo I Características Nacimiento y muerte del sol Estructura Núcleo Zona conectiva Fotosfera Cromosfera Corona solar



EL SOL El Sol (del latín sol, solis y ésta a su vez de la raíz proto-indoeuropea sauel-)es una estrella del tipo espectral G2 que se encuentra en el centro del Sistema Solar, constituyendo la mayor fuente de energía electromagnética de este sistema planetario. La Tierra y otros cuerpos (incluyendo a otros planetas, asteroides, meteoroides, cometas y polvo) orbitan alrededor del Sol. Por sí solo, representa alrededor del 98,6% de la masa del Sistema Solar. La distancia media del Sol a la Tierra es de aproximadamente 149.600.000 de kilómetros, o 92.960.000 millas, y su luz recorre esta distancia en 8 minutos y 19 segundos. La energía del Sol, en forma de luz solar, sustenta a casi todas las formas de vida en la Tierra a través de la fotosíntesis, y determina el clima de la Tierra y la meteorología. Es la estrella del sistema planetario en el que se encuentra la Tierra; por tanto, es el astro con mayor brillo aparente. Su visibilidad en el cielo local determina, respectivamente, el día y la noche en diferentes regiones de diferentes planetas. El Sol es una estrella que se encuentra en la fase denominada secuencia principal, con un tipo espectral G2, que se formó entre 4.567,90 y 4.570,10 millones de años y permanecerá en la secuencia principal aproximadamente 5000 millones de años más. El Sol, junto con todos los cuerpos celestes que orbitan a su alrededor, incluida la Tierra, forman el Sistema Solar. A pesar de ser una estrella mediana (aun así, es más brillante que el 85% de las estrellas existentes en nuestra galaxia), es la única cuya forma se puede apreciar a simple vista, con un diámetro angular de 32’ 35” de arco en el perihelio y 31’ 31” en el afelio, lo que da un diámetro medio de 32’ 03”.

10

Capítulo I


Capítulo I

El Sol en 360º 11


CARACTERÍSTICAS DEL SOL

Capítulo I

Distancia media desde la Tierra 149.597.871 km (~1,5 × 1011 m) Brillo visual (V) –26,8m Diám. angular en el perihelio 32’ 35,64” Diám. angular en el afelio 31’ 31,34” Características físicas Diámetro 1.392.000 km (~1,4 × 109 m) Diámetro relativo (dS/dT) 109 Superficie 6,09 × 1012 km2 Volumen 1,41 × 1018 km3 Masa 1,9891 × 1030 kg Masa relativa a la de la Tierra 332946x Densidad 1411 kg/m3 Densidad relativa a la de la Tierra 0,26x Densidad relativa al agua 1,41x Gravedad en la superficie 274 m/s2 (27,9 g) Temperatura de la superficie 6 × 103 K Temperatura de la corona 5 × 106 K Temperatura del núcleo ~1,36 × 107 K Luminosidad (LS) 3,827 × 1026 W Características orbitales Periodo de rotación En el ecuador: 27d 6h 36min A 30° de latitud: 28d 4h 48min A 60° de latitud: 30d 19h 12min A 75° de latitud: 31d 19h 12min Periodo orbital alrededor del centro galáctico 2,2 × 108 años Composición de la fotosfera Hidrógeno 73,46% Helio 24,85% Oxígeno 0,77% Carbono 0,29% Hierro 0,16% Neón 0,12% Nitrógeno 0,09% Silicio 0,07% Magnesio 0,05% Azufre 0,04%

Sol naciente 12


NACIMIENTO Y MUERTE DEL SOL El Sol se formó hace 4.650 millones de años y tiene combustible para 5.500 millones más. Después, comenzará a hacerse más y más grande, hasta convertirse en una gigante roja. Finalmente, se hundirá por su propio peso y se convertirá en una enana blanca, que puede tardar un billón de años en enfriarse. Se formó a partir de nubes de gas y polvo que contenían residuos de generaciones anteriores de estrellas. Gracias a la metalicidad de dicho gas, de su disco circumestelar surgieron, más tarde, los planetas, asteroides y cometas del Sistema Solar. En el interior del Sol se producen reacciones de fusión en las que los átomos de hidrógeno se transforman en helio, produciéndose la energía que irradia. Actualmente, el Sol se encuentra en plena secuencia principal, fase en la que seguirá unos 5000 millones de años más quemando hidrógeno de manera estable . Llegará un día en que el Sol agote todo el hidrógeno en la región central al haberlo transformado en helio. La presión será incapaz de sostener las capas superiores y la región central tenderá a contraerse gravitacionalmente, calentando progresivamente las capas adyacentes.

Capítulo I do únicamente el núcleo solar que se transformará en una enana blanca y, mucho más tarde, al enfriarse totalmente, en una enana negra. El Sol no llegará a estallar como una supernova al no tener la masa suficiente para ello. Si bien se creía en un principio que el Sol acabaría por absorber además de Mercurio y Venus a la Tierra al convertirse en gigante roja, la gran pérdida de masa que sufrirá en el proceso hizo pensar por un tiempo que la órbita terrestre -al igual que la de los demás planetas del Sistema Solar- se expandiría posiblemente salvándola de ese destino. Sin embargo, un artículo reciente postula que ello no ocurrirá y que las interacciones mareales así como el roce con la materia de la cromosfera solar harán que nuestro planeta sea absorbido. Otro artículo posterior también apunta en la misma dirección.

El exceso de energía producida hará que las capas exteriores del Sol tiendan a expandirse y enfriarse y el Sol se convertirá en una estrella gigante roja. El diámetro puede llegar a alcanzar y sobrepasar al de la órbita de la Tierra, con lo cual, cualquier forma de vida se habrá extinguido. Cuando la temperatura de la región central alcance aproximadamente 100 millones de kelvins, comenzará a producirse la fusión del helio en carbono mientras alrededor del núcleo se sigue fusionando hidrógeno en helio. Ello producirá que la estrella se contraiga y disminuya su brillo a la vez que aumenta su temperatura, convirtiéndose el Sol en una estrella de la rama horizontal. Al agotarse el helio del núcleo, se iniciará una nueva expansión del Sol y el helio empezará también a fusionarse en una nueva capa alrededor del núcleo inerte -compuesto de carbono y oxígeno y que por no tener masa suficiente el Sol no alcanzará las presiones y temperaturas suficientes para fusionar dichos elementos en elementos más pesados que lo convertirá de nuevo en una gigante roja, pero ésta vez de la rama asintótica gigante y provocará que el astro expulse gran parte de su masa en la forma de una nebulosa planetaria, quedan13


ESTRUCTURA DEL SOL

Capítulo I

Como toda estrella el Sol posee una forma esférica, y a causa de su lento movimiento de rotación, tiene también un leve achatamiento polar. Como en cualquier cuerpo masivo toda la materia que lo constituye es atraída hacia el centro del objeto por su propia fuerza gravitatoria. Sin embargo, el plasma que forma el Sol se encuentra en equilibrio ya que la creciente presión en el interior solar compensa la atracción gravitatoria produciéndose un equilibrio hidrostático. Estas enormes presiones se generan debido a la densidad del material en su núcleo y a las enormes temperaturas que se dan en él gracias a las reacciones termonucleares que allí acontecen. Existe además de la contribución puramente térmica una de origen fotónico. Se trata de la presión de radiación, nada despreciable, que es causada por el ingente flujo de fotones emitidos en el centro del Sol.

Según este modelo, el Sol está formado por: 1) Núcleo 2) Zona radiante 3) Zona convectiva 4) Fotosfera 5) Cromosfera 6) Corona 7) Manchas solares 8) Granulación 9) Viento solar

Casi todos los elementos químicos terrestres (aluminio, azufre, bario, cadmio, calcio, carbono, cerio, cobalto, cobre, cromo, estaño, estroncio, galio, germanio, helio, hidrógeno, hierro, indio, magnesio, manganeso, níquel, nitrógeno, oro, oxígeno, paladio, plata, platino, plomo, potasio, rodio, silicio, sodio, talio, titanio, tungsteno, vanadio, circonio y zinc) y diversos compuestos (tales como cianógeno, óxido de carbono y amoniaco) han sido identificados en la constitución del astro rey, por lo que se ha concluído que si nuestro planeta se calentara hasta la temperatura solar tendría un espectro luminoso casi idéntico al Sol. Incluso el helio fue descubierto primero en el Sol y luego se constató su presencia en nuestro planeta. El Sol presenta una estructura en capas esféricas o en “capas de cebolla”. La frontera física y las diferencias químicas entre las distintas capas son difíciles de establecer. Sin embargo, se puede establecer una función física que es diferente para cada una de las capas. En la actualidad, la astrofísica dispone de un modelo de estructura solar que explica satisfactoriamente la mayoría de los fenómenos observados.

14

Estructura y partes del sol


NÚCLEO

Capítulo I

Ocupa unos 139 000 km del radio solar, 1/5 del mismo, y es en esta zona donde se verifican las reacciones termonucleares que proporcionan toda la energía que el Sol produce. El Sol está constituido por un 81 % de hidrógeno, 18 % de helio y el 1 % restante que se reparte entre otros elementos. En su centro se calcula que existe un 49 % de hidrógeno, 49 % de helio y el 2 % restante en otros elementos que sirven como catalizadores en las reacciones termonucleares. A comienzos de la década de los años 30 del siglo XX, el físico austriaco Fritz Houtermans (1903-1966) y el astrónomo inglés Robert d’Escourt Atkinson (1898-1982) unieron sus esfuerzos para averiguar si la producción de energía en el interior del Sol y en las estrellas se podía explicar por las transformaciones nucleares.

El ciclo ocurre en las siguientes etapas:

La reacción puede producirse de dos maneras algo distintas: 1H1 + 1H1 → 1H2 + e+ + neutrino ; 1H1 + 1H2 → 2He3 ; 2He3 + 2He3 → 2He4 + 2 1H1. El primer ciclo se da en estrellas más calientes y con mayor masa que el Sol, y la cadena protón-protón en las similares al Sol. En cuanto al Sol, hasta el año 1953 creyó que su energía era producida casi exclusivamente por el ciclo de Bethe, pero se demostró durante estos últimos años que el calor solar viene en la mayoría (~75%) del ciclo protón-protón. En los últimos estadios de su evolución, el Sol fusionará también el helio producto de éstos procesos para dar carbono y oxígeno. Véase Proceso triple-alfa.

1H1 + 6C12 → 7N13 ; 7N13 → 6C13 + e+ + neutrino ; 1H1 + 6C13 → 7N14 ; 1H1 + 7N14 → 8O15 ; 8O15 → 7N15 + e+ + neutrino ; 1H1 + 7N15 → 6C12 + 2He4. Sumando todas las reacciones y cancelando los términos comunes, se tiene: 4 1H1 → 2He4 + 2e+ + 2 neutrinos = 26,7 MeV. La energía neta liberada en el proceso es 26,7 MeV, o sea cerca de 6,7·1014 J por kg de protones consumidos. El carbono actúa como catalizador, pues al final del ciclo se regenera. Otra reacción de fusión que ocurre en el Sol y en las estrellas, es el ciclo de Critchfiel o protón-protón. Charles Critchfield (1910-1994) era en 1938 un joven físico alumno de George Gamow (1904-1968) en la Universidad George Washington, y tuvo una idea completamente diferente, al darse cuenta que en el choque entre dos protones muy rápidos puede ocurrir que uno pierda su carga positiva y se convierta en un neutrón, que permanece unido al otro protón constituyendo un deuterón, es decir, un núcleo de hidrógeno pesado.

15


ZONA CONECTIVA

Capítulo I

Esta región se extiende por encima de la zona radiativa y en ella los gases solares dejan de estar ionizados y los fotones son absorbidos con facilidad volviéndose el material opaco al transporte de radiación. Por lo tanto, el transporte de energía se realiza por convección, de modo que el calor se transporta de manera no homogénea y turbulenta por el propio fluido. Los fluidos se dilatan al ser calentados y disminuyen su densidad. Por lo tanto, se forman corrientes ascendentes de material desde la zona caliente hasta la zona superior, y simultáneamente se producen movimientos descendentes de material desde las zonas exteriores frías. Así a unos 200 000 km bajo la fotosfera del Sol, el gas se vuelve opaco por efecto de la disminución de la temperatura; en consecuencia, absorbe los fotones procedentes de las zonas inferiores y se calienta a expensas de su energía. Se forman así secciones convectivas turbulentas, en las que las parcelas de gas caliente y ligero suben hasta la fotosfera, donde nuevamente la atmósfera solar se vuelve transparente a la radiación y el gas caliente cede su energía en forma de luz visible, enfriándose antes de volver a descender a las profundidades. El análisis de las oscilaciones solares ha permitido establecer que esta zona se extiende hasta estratos de gas situados a la profundidad indicada anteriormente. La observación y estudio de estas oscilaciones solares constituye el sujeto de estudio de la heliosismología.

El sol en desplazamiento 16


FOTOSFERA La fotosfera es la zona visible donde se emite luz visible del Sol. La fotosfera se considera como la «superficie» solar y, vista a través de un telescopio, se presenta formada por gránulos brillantes que se proyectan sobre un fondo más oscuro. A causa de la agitación de nuestra atmósfera, estos gránulos parecen estar siempre en agitación. Puesto que el Sol es gaseoso, su fotosfera es algo transparente: puede ser observada hasta una profundidad de unos cientos de kilómetros antes de volverse completamente opaca. Normalmente se considera que la fotosfera solar tiene unos 100 o 200 km de profundidad. Aunque el borde o limbo del Sol aparece bastante nítido en una fotografía o en la imagen solar proyectada con un telescopio, se aprecia fácilmente que el brillo del disco solar disminuye hacia el borde. Este fenómeno de oscurecimiento del centro al limbo es consecuencia de que el Sol es un cuerpo gaseoso con una temperatura que disminuye con la distancia al centro. La luz que se ve en el centro procede en la mayor parte de las capas inferiores de la fotosfera, más caliente y por tanto más luminosa.

Capítulo I El diámetro medio de los gránulos individuales es de unos 700 a 1000 km y resultan particularmente notorios en los períodos de mínima actividad solar. Hay también movimientos turbulentos a una escala mayor, la llamada “supergranulación”, con diámetros típicos de unos 35 000 km. Cada supergranulación contiene cientos de gránulos individuales y sobrevive entre 12 a 20 horas. Fue Richard Christopher Carrington (1826-1875), cervecero y astrónomo aficionado, el primero en observar la granulación fotosférica en el siglo XIX. En 1896 el francés Pierre Jules César Janssen (1824-1907) consiguió fotografiar por primera vez la granulación fotosférica.

Al mirar hacia el limbo, la dirección visual del observador es casi tangente al borde del disco solar por lo que llega radiación procedente sobre todo de las capas superiores de la fotosfera, más frías y emitiendo con menor intensidad que las capas profundas en la base de la fotosfera. Un fotón tarda un promedio de 10 días desde que surge de la fusión de dos átomos de hidrógeno, en atravesar la zona radiante y un mes en recorrer los 200 000 km de la zona convectiva, empleando tan sólo unos 8 minutos y medio en cruzar la distancia que separa la Tierra del Sol. No se trata de que los fotones viajen más rápidamente ahora, sino que en el exterior del Sol el camino de los fotones no se ve obstaculizado por los continuos cambios, choques, quiebros y turbulencias que experimentaban en el interior del Sol. Los gránulos brillantes de la fotosfera tienen muchas veces forma hexagonal y están separados por finas líneas oscuras. Los gránulos son la evidencia del movimiento convectivo y burbujeante de los gases calientes en la parte exterior del Sol. En efecto, la fotosfera es una masa en continua ebullición en el que las células convectivas se aprecian como gránulos en movimiento cuya vida media es tan solo de unos nueve minutos. 17


CROMOSFERA

Capítulo I

La cromosfera es una capa exterior a la fotosfera visualmente mucho más transparente. Su tamaño es de aproximadamente unos 10 000 km y es imposible observarla sin filtros especiales al ser eclipsada por el mayor brillo de la fotosfera. La cromosfera puede observarse sin embargo en un eclipse solar en un tono rojizo característico y en longitudes de onda específicas, notablemente en Hα, una longitud de onda característica de la emisión por hidrógeno a muy alta temperatura. Las prominencias solares ascienden ocasionalmente desde la fotosfera alcanzando alturas de hasta 150 000 km produciendo erupciones solares espectaculares.

Temperatura del sol 18


CORONA SOLAR

Capítulo I

La corona solar está formada por las capas más tenues de la atmósfera superior solar. Su temperatura alcanza los millones de kelvin, una cifra muy superior a la de la capa que le sigue, la fotosfera, siendo esta inversión térmica uno de los principales enigmas de la ciencia solar reciente. Estas elevadísimas temperaturas son un dato engañoso y consecuencia de la alta velocidad de las pocas partículas que componen la atmósfera solar. Sus grandes velocidades son debidas a la baja densidad del material coronal, a los intensos campos magnéticos emitidos por el Sol y a las ondas de choque que rompen en la superficie solar estimuladas por las células convectivas. Como resultado de su elevada temperatura, desde la corona se emite gran cantidad de energía en rayos X. En realidad, estas temperaturas no son más que un indicador de las altas velocidades que alcanza el material coronal que se acelera en las líneas de campo magnético y en dramáticas eyecciones de material coronal (EMCs). Lo cierto es que esa capa es demasiado poco densa como para poder hablar de temperatura en el sentido usual de agitación térmica. Todos estos fenómenos combinados ocasionan extrañas rayas en el espectro luminoso que hicieron pensar en la existencia de un elemento desconocido en la tierra al que incluso denominaron coronium hasta que investigaciones posteriores en 1942 concluyeron que se trataban de radiaciones producidas por átomos neutros de oxígeno de la parte externa de la misma corona, así como de hierro, níquel, calcio y argón altamente ionizados (fenómenos imposibles de obtener en laboratorios).

Eclipse solar 19


LA LUNA Capítulo II Origen de la luna Características Formación Revoluciones de la luna Movimiento de traslación lunar Órbita de la luna Traslación de la luna alrededor del sol Las mareas Agua en la luna Atmósfera de la luna



LA LUNA La Luna es el único satélite natural de la Tierra y el quinto satélite más grande del Sistema Solar. Es el satélite natural más grande en el Sistema Solar en relación al tamaño de su planeta, un cuarto del diámetro de la Tierra y 1/81 de su masa, y es el segundo satélite más denso después de Ío. Se encuentra en relación síncrona con la Tierra, siempre mostrando la misma cara; el hemisferio visible está marcado con oscuros mares lunares de origen volcánico entre las brillantes montañas antiguas y los destacados astroblemas. A pesar de ser el objeto más brillante en el cielo luego del Sol, su superficie es en realidad muy oscura, con una reflexión similar a la del carbón. Su prominencia en el cielo y su ciclo regular de fases han hecho de la Luna una importante influencia cultural desde la antigüedad dentro del lenguaje, el calendario, el arte y la mitología. La influencia gravitatoria de la Luna produce las corrientes marinas,[cita requerida] las mareas y el aumento de la duración del día. La distancia orbital de la Luna, cerca de treinta veces el diámetro de la Tierra, hace que tenga en el cielo el mismo tamaño que el Sol, permitiendo a la Luna cubrir exactamente al Sol en eclipses solares totales La Luna es el único cuerpo celeste en el que el hombre ha realizado un descenso tripulado. Aunque el programa Luna de la Unión Soviética fue el primero en alcanzar la Luna con una nave espacial no tripulada, el programa Apolo de Estados Unidos consiguió las únicas misiones tripuladas hasta la fecha, comenzando con la primera órbita lunar no tripulada por el Apolo 8 en 1968, y seis alunizajes tripulados entre 1969 y 1972, siendo el primero el Apolo 11 en 1969. Estas misiones regresaron con más de 380 kg de roca lunar, que han sido utilizadas para desarrollar una detallada comprensión geológica de los orígenes de la Luna (se cree que se ha formado hace 4,5 mil millones de años en un gran impacto), la formación de su estructura interna y su posterior historia. Desde la misión del Apolo 17 en 1972, ha sido visitada únicamente por sondas espaciales no tripuladas, en particular por los astromóviles soviéticos Lunojod. Desde 2004, Japón, China, India, Estados Unidos, y la Agencia Espacial Europea han enviado orbitadores.

22

Capítulo II


CapĂ­tulo II

La luna de yago 23


ORIGEN DE LA LUNA

Al descubrir que la composición de la Luna era la misma que la de la superficie terrestre se supuso que su origen tenía que venir de la propia Tierra. Un cuerpo tan grande en relación a nuestro planeta difícilmente podía haber sido capturado ni tampoco era probable que se hubiese formado junto a la Tierra. Así, la mejor explicación de la formación de la Luna es que ésta se originó a partir de los pedazos que quedaron tras una cataclísmica colisión con un protoplaneta del tamaño de Marte en los albores del sistema solar (hipótesis del gran impacto). Esta teoría también explica la gran inclinación axial del eje de rotación terrestre que habría sido provocada por el impacto. La enorme energía suministrada por el choque fundió la corteza terrestre al completo y arrojó gran cantidad de restos incandescentes al espacio. Con el tiempo, se formó un anillo de roca alrededor de nuestro planeta hasta que, por acreción, se formó la Luna. Su órbita inicial era mucho más cercana que la actual y el día terrestre era mucho más corto ya que la Tierra rotaba más deprisa. Durante cientos de millones de años, la Luna ha estado alejándose lentamente de la Tierra, a la vez que ha disminuido la velocidad de rotación terrestre debido a la transferencia de momento angular que se da entre los dos astros. Tras su formación, la Luna experimentó un periodo cataclísmico, datado en torno a hace 3800-4000 millones de años, en el que la Luna y los otros cuerpos del Sistema Solar interior sufrieron violentos impactos de grandes asteroides. Este período, conocido como bombardeo intenso tardío, formó la mayor parte de los cráteres observados en la Luna, así como en Mercurio. El análisis de la superficie de la Luna arroja importantes datos sobre este periodo final en la formación del Sistema solar. Posteriormente se produjo una época de vulcanismo consistente en la emisión de grandes cantidades de lava, que llenaron las mayores cuencas de impacto formando los mares lunares y que acabó hace 3.000 millones de años. Desde entonces, poco más ha acaecido en la superficie lunar que la formación de nuevos cráteres debido al impacto de asteroides. Recientemente, sin embargo, los datos enviados por la sonda japonesa SELENE han mostrado que dicho vulcanismo ha durado más de lo que se pensaba, habiendo acabado en la cara oculta hace 2500 millones de años. 24

Capítulo II


Capítulo II

La Luna es el único satélite natural de la Tierra 25


CARACTERISTICAS

26

Capítulo II Elementos orbitales Inclinación 5,1454° Excentricidad 0,0549 Período orbital sideral 27d 7h 43,7m Radio orbital medio 384.400 km Satélite de la Tierra Características físicas Masa 7,349 × 1022 kg Densidad 3,34 g/cm3 Área de superficie 38 millones de km2 Diámetro 3.476 km Diámetro angular Perigeo 33’ 28,8” Apogeo 29’ 23,2” Medio 31’ 5,2” Gravedad 1,62 m/s2 Velocidad de escape 2,38 km/s Periodo de rotación 27d 7h 43,7min Inclinación axial 1,5424° Albedo 0,12 Composición corteza Oxígeno 43% Silicio 21% Aluminio 10% Calcio 9% Hierro 9% Magnesio 5% Titanio 2% Níquel 0,6% Sodio 0,3% Cromo 0,2% Potasio 0,1% Manganeso 0,1% Azufre 0,1% Fósforo 500 ppm Carbono 100 ppm Nitrógeno 100 ppm Hidrógeno 50 ppm Helio 20 ppm Características atmosféricas Presión 3 × 10-10 Pa Temperatura Mínima 40 K Media (día) 380 K Media (noche) 120 K Máxima 396 K Composición Helio 25% Neón 25% Hidrógeno 23% Argón 20%

Metano ? Amoníaco ? Dióxido de carbono trazas La Luna es excepcionalmente extensa en relación a la Tierra: un cuarto del diámetro del planeta y 1/81 de su masa. Es el satélite más grande del Sistema Solar en relación al tamaño de su planeta (aunque Caronte es más grande en relación al planeta enano Plutón). La superficie de la Luna es menos de un décimo de la Tierra; cerca de un cuarto del área continental de la Tierra. Sin embargo, la Tierra y la Luna siguen siendo consideradas un sistema planeta-satélite, en lugar de un sistema doble planetario, ya que su baricentro, está ubicado cerca de 1700 km (aproximadamente un cuarto del radio de la Tierra) bajo la superficie de la Tierra.


FORMACIÓN

Capítulo II

Varios mecanismos han sido propuestos para explicar la formación de la Luna hace 4.527 ± 0.010 mil millones de años. Esta edad es calculada en base a la datación del isótopo de las rocas lunares, entre 30 y 50 millones de años luego del origen del Sistema Solar. Estos incluyen la fisión de la Luna desde la corteza terrestre a través de fuerzas centrífugas, que deberían haber requerido también un giro inicial de la Tierra; la atracción gravitacional de la Luna en estado de formación, que hubiera requerido una extensión inviable de la atmósfera para disipar la energía de la Luna, que se encontraba pasando; y la co-formación de la Luna y la Tierra juntas en el disco de acreción primordial, que no explica la depleción de hierro en estado metálico. Estas hipótesis tampoco pueden explicar el fuerte momento angular en el sistema Tierra-Luna. La hipótesis general hoy en día es que el sistema Tierra-Luna se formó como resultado de un gran impacto: un cuerpo celeste del tamaño de Marte colisionó con la joven Tierra, volando material en órbita alrededor de esta, que se fusionó para formar la Luna.Se cree que impactos gigantescos eran comunes en el Sistema Solar primitivo. Los modelados de un gran impacto a través de simulaciones computacionales concuerdan con las mediciones del momento angular del sistema Tierra-Luna, y el pequeño tamaño del núcleo lunar; a su vez demuestran que la mayor parte de la Luna proviene del impacto, no de la joven Tierra. Sin embargo, meteoritos demuestran que las composiciones isotópicas del oxígeno y el tungsteno de otros cuerpos del Sistema Solar interior tales como Marte y Vesta son muy distintas a las de la Tierra, mientras que la Tierra y la Luna poseen composiciones isotópicas prácticamente idénticas. El mezclado de material evaporado posterior al impacto entre la Tierra y la Luna pudo haber equiparado las composiciones, aunque esto es debatido. La importante cantidad de energía liberada en el gran impacto y la subsecuente fusión del material en la órbita de la Tierra pudo haber derretido la capa superficial de la Tierra, formando un océano de magma. La recién formada Luna pudo también haber tenido su propio océano de magma lunar; las estimaciones de su profundidad varían entre 500 km y el radio entero de la Luna.

Luna menguante en el signo 27


REVOLUCIONES DE LA LUNA La Luna tarda en dar una vuelta alrededor de la Tierra 27 d 7 h 43 min si se considera el giro respecto al fondo estelar (revolución sideral), pero 29 d 12 h 44 min si se la considera respecto al Sol (revolución sinódica) y esto es porque en este lapso la Tierra ha girado alrededor del Sol (ver mes). Esta última revolución rige las fases de la Luna, eclipses y mareas lunisolares. Como la Luna tarda el mismo tiempo en dar una vuelta sobre sí misma que en torno a la Tierra, presenta siempre la misma cara. Esto se debe a que la Tierra, por un efecto llamado gradiente gravitatorio, ha frenado completamente a la Luna.

Capítulo II Revolución draconítica: Es el tiempo que tarda la Luna en pasar dos veces consecutivas por el nodo ascendente. Su duración es de 27 d, 5 h 5 min 36 s. Revolución anomalística: Es el intervalo de tiempo que transcurre entre 2 pasos consecutivos de la Luna por el perigeo. Su duración es de 27 d 13 h 18 min 33 s.

La mayoría de los satélites regulares presentan este fenómeno respecto a sus planetas. Así pues, hasta la época de la investigación espacial no fue posible ver la cara lunar oculta, que presenta una disimetría respecto a la cara visible. El Sol ilumina siempre la mitad de la Luna (exceptuando en los eclipses de luna), que no tiene por qué coincidir con la cara visible, produciendo las fases de la Luna. La inmovilización aparente de la Luna respecto a la Tierra se ha producido porque la gravedad terrestre actúa sobre las irregularidades del globo lunar de forma que en el transcurso del tiempo la parte visible tiene 4 km más de radio que la parte no visible, estando el centro de gravedad lunar desplazado del centro lunar 1,8 km hacia la Tierra. Revolución sinódica: Es el intervalo de tiempo necesario para que la Luna vuelva a tener una posición análoga con respecto al Sol y a la Tierra. Su duración es de 29 d 12 h 44 min 2,78 s. También se le denomina lunación o mes lunar. Revolución sideral: Es el intervalo de tiempo que le toma a la Luna volver a tener una posición análoga con respecto a las estrellas. Su duración es de 27 d 7 h 43 min 11,5 s. Revolución trópica: Es el lapso necesario para que la Luna vuelva a tener igual longitud celeste. Su duración es de 27 d 7 h 43 min 4,7 s. Luna creciente 28


MOVIMIENTO DE TRASLACIÓN LUNAR

Capítulo II

90° Oeste El hecho de que la Luna salga aproximadamente una hora más tarde cada día se explica conociendo la órbita de la Luna alrededor de la Tierra. La Luna completa una vuelta alrededor de la Tierra aproximadamente en unos 28 días. Si la Tierra no rotase sobre su propio eje, sería muy fácil detectar el movimiento de la Luna en su órbita. Este movimiento hace que la Luna avance alrededor de 12° en el cielo cada día. Si la Tierra no rotara, lo que se vería sería la Luna cruzando la bóveda celeste de oeste a este durante dos semanas, y luego estaría dos semanas ausente (durante las cuales la Luna sería visible en el lado opuesto del Globo). Sin embargo, la Tierra completa un giro cada día (la dirección de giro es también hacia el este). Así, cada día le lleva a la Tierra alrededor de 50 minutos más para estar de frente con la Luna nuevamente (lo cual significa que se puede ver la Luna en el cielo). El giro de la Tierra y el movimiento orbital de la Luna se combinan, de tal forma que la salida de la Luna se retrasa del orden de 50 minutos cada día. Teniendo en cuenta que la Luna tarda aproximadamente 28 días en completar su órbita alrededor de la Tierra, y ésta tarda 24 horas en completar una revolución alrededor de su eje, es sencillo calcular el “retraso” diario de la Luna: Mientras que en 24 horas la Tierra habrá realizado una revolución completa, la Luna sólo habrá recorrido un 1/28 de su órbita alrededor de la Tierra, lo cual expresado en grados de arco da: Si ahora se calcula el tiempo que la Tierra en su rotación tarda en recorrer este arco, Da los aproximadamente 51 minutos que la Luna retrasa su salida cada día.

Cara Visible

Cara Oculta

90° Este

29


ÓRBITA DE LA LUNA La Luna describe alrededor de la Tierra una elipse, por lo que la distancia entre los dos astros varía y también la velocidad en la órbita. Dado que la rotación lunar es uniforme y su traslación no, pues sigue las leyes de Kepler, se produce una Libración en longitud que permite ver un poco de la superficie lunar al Este y al Oeste, que de no ser así no se vería. El plano de la órbita lunar está inclinado respecto a la Eclíptica unos 5° por lo que se produce una Libración en latitud que permite ver alternativamente un poco más allá del polo Norte o del Sur. Por ambos movimientos el total de superficie lunar vista desde la Tierra alcanza un 59% del total. Cada vez que la Luna cruza la eclíptica, si la Tierra y el Sol están sensiblemente alineados (Luna llena o Luna nueva) se producirá un eclipse lunar o un eclipse solar.

Capítulo II Es posible que al convertirse nuestra estrella en una gigante roja dentro de varios miles de millones de años, la proximidad de su superficie al sistema TierraLuna haga que la órbita lunar se vaya cerrando hasta que la Luna esté a alrededor de 18.000 kilómetros de la Tierra -el límite de Roche-, momento en el cual la gravedad terrestre destruirá la Luna convirtiéndola en unos anillos similares a los de Saturno. De todas formas, el fin del sistema Tierra-Luna es incierto y depende de la masa que pierda el Sol en esos estadios finales de su evolución

La órbita de la Luna es especialmente compleja. La razón es que la Luna esta suficientemente lejos de la Tierra (384.400 km en promedio) que la fuerza de gravedad ejercida por el Sol es significativa. Dada la complejidad del movimiento, los nodos de la Luna, no están fijos, sino que dan una vuelta en 18,6 años. El eje de la elipse lunar no está fijo y el apogeo y perigeo dan una vuelta completa en 8,85 años. La inclinación de la órbita varía entre 5° y 5° 18’. De hecho, para calcular la posición de la Luna con exactitud hace falta tener en cuenta por lo menos varios cientos de términos. Asimismo, la Luna se aleja unos cuatro centímetros al año de la Tierra, a la vez que va frenando la rotación terrestre -lo que hará que en un futuro lejano los eclipses totales de Sol dejen de producirse al no tener la Luna suficiente tamaño como para tapar el disco solar. En teoría, dicha separación debería prolongarse hasta que la Luna tardara 47 días en completar una órbita alrededor de nuestro planeta, momento en el cual nuestro planeta tardaría 47 días en completar una rotación alrededor de su eje, de modo similar a lo que ocurre en el sistema Plutón-Caronte. Sin embargo, la evolución futura de nuestro Sol puede trastocar esta evolución.

Vehículo de exploración tripulado en órbita lunar

30


TRASLACIÓN DE LA LUNA ALREDEDOR DEL SOL

Capítulo II

Al desplazarse en torno del Sol, la Tierra arrastra a su satélite y la forma de la trayectoria que ésta describe es una curva de tal naturaleza que dirige siempre su concavidad hacia el Sol. La velocidad con que la Luna se desplaza en su órbita alrededor de la Tierra es de 1 km/s. Libraciones: Debido a la excentricidad de la órbita lunar, la inclinación del eje de rotación de la Luna con respecto al plano de la eclíptica y al movimiento de rotación de la Tierra en el curso de una revolución sideral, se logra ver una extensión superficial mayor que la de un hemisferio del satélite, como si estuviese animado de ligeros balanceos de este a oeste y de norte a sur. Estos movimientos aparentes se conocen con el nombre de libraciones y son 3: libraciones en longitud, libraciones en latitud y libración diurna. Libración en longitud: Se debe a que el movimiento de rotación de la Luna es uniforme mientras que su velocidad angular no lo es. Es máxima en el perigeo y mínima en el apogeo. Debido a esa Libración el satélite tiene un balanceo de oriente a poniente, gracias al cual se logra ver la superficie convexa correspondiente a la de un huso de 7°. Libración en latitud: Es debido a la inclinación del eje de rotación de la Luna con respecto al plano de su órbita y a la eclíptica. Dicho eje forma un ángulo de 88° 30’ con el plano de la eclíptica y como el de la órbita lunar es de 5° con respecto a la eclíptica, entonces el ángulo formado con el eje de rotación de la Luna con el plano de su órbita es de 6° 30’. Por lo tanto, no solo pueden verse el polo norte y el polo sur de la Luna sino que se logra ver 6° 30’ más allá del polo sur. Esta libración es una especie de cabeceo de norte a sur en un tiempo que no es igual a una revolución sideral pues es de 27,2 días.

Traslación lunar

Libración Diurna: Se debe al hecho de que el radio terrestre no tiene una cantidad despreciable con respecto a la distancia a la Luna. El valor de esta libración es de casi un grado, valor aproximado a su grado de paralaje. Debido a las libraciones se conoce un 9% más de la mitad de la Luna.

31


LAS MAREAS

Capítulo II

En realidad, la Luna no gira en torno a la Tierra, sino que la Tierra y la Luna giran en torno al centro de masas de ambos. Sin embargo, al ser la Tierra un cuerpo grande, la gravedad que sobre ella ejerce la Luna es distinta en cada punto. En el punto más próximo es mucho mayor que en el centro de masas de la Tierra, y mayor en éste que en el punto más alejado de la Luna. Así, mientras la Tierra gira en torno al centro de gravedad del sistema Tierra-Luna, aparece a la vez una fuerza que intenta deformarla, dándole el aspecto de un huevo. Este fenómeno se llama gradiente gravitatorio, el cual produce las mareas, al ser la Tierra sólida la deformación afecta más a las aguas y a la atmósfera y es lo que da el efecto de que suban y bajen dos veces al día (sube en los puntos más cercano y más alejado de la Luna). Un efecto asociado es que las mareas frenan a la Tierra en su rotación (pierde energía debido a la fricción de los océanos con el fondo del mar), y dado que el sistema Tierra-Luna tiene que conservar el momento angular, la Luna lo compensa alejándose, actualmente, 38 mm cada año, como han demostrado las mediciones láser de la distancia, posibles gracias a los retro-reflectores que los astronautas dejaron en la Luna.

Existe más agua en la Luna de lo que se pensaba 32


AGUA EN LA LUNA

Capítulo II

Hasta el año 2009 se debatió en la comunidad científica la posible existencia de agua en la Luna. El ambiente selenita hace casi imposible la presencia de agua: a no ser en forma cristalizada microscópica en las rocas, la existencia de agua líquida es prácticamente imposible, ya que en la mayor parte de la superficie lunar las temperaturas suelen superar holgadamente los 100° C. (211,9° F). Esto y la falta de una atmósfera implican que toda agua expuesta al ambiente lunar típico se sublime y que sus moléculas se fuguen al espacio. Sin embargo dos descubrimientos, uno en 1996 por parte de la sonda Clementine, y otro en 1998 debido al Lunar Prospector detectaron imprevistas presencias de hidrógeno en los polos lunares. Una hipótesis para explicar tal fenómeno es que ese hidrógeno esté en forma de agua y que algunos cometas, al impactar en las zonas polares, puedan haber creado cráteres donde no llega la luz solar. En tales cráteres quizás pudiera encontrarse agua congelada de origen cometario (es decir: agua exógena). En el interior de los cráteres polares nunca llega la luz solar, permanecen en una eterna oscuridad y jamás suben de los -240° C. En estas gélidas oquedades hay agua congelada o un compuesto con hidrógeno como el metano (CH4).

Avanza la expedición para buscar agua en la luna 33


ATMÓSFERA DE LA LUNA

Total eclipse lunar el 17 de Diciembre de 1989 34

Capítulo II


Capítulo II La Luna tiene una atmósfera insignificante debido a su baja gravedad, incapaz de retener moléculas de gas en su superficie. La totalidad de su composición aún se desconoce. El programa Apolo identificó átomos de helio y argón, y más tarde (en 1988), observaciones desde la Tierra añadieron iones de sodio y potasio. La mayor parte de los gases en su superficie provienen de su interior. La agitación térmica de las moléculas de gas viene inducida por la radiación solar y por las colisiones aleatorias entre las propias partículas atmosféricas. En la atmósfera terrestre las moléculas suelen tener velocidades de cientos de metros por segundo, pero excepcionalmente algunas logran alcanzar velocidades de 2.000 a 3.000 m/s. Dado que la velocidad de escape es de, aproximadamente, 11.200 m/s éstas nunca logran escapar al espacio. En la Luna, por el contrario, al ser la gravedad seis veces menor que en nuestro planeta, la velocidad de escape es asimismo menor, del orden de 2.400 m/s. Podemos deducir entonces que si la Luna tuvo antaño una atmósfera, las moléculas más rápidas pudieron escapar de ella para, según una ley de la teoría cinética de los gases, inducir a las restantes a aumentar su velocidad, acelerando así el proceso de pérdida atmosférica.

ber desaparecido en su mayoría, aún hay una preocupación de que queden restos que impidan investigar sobre la atmósfera real de la Luna. La atmósfera lunar recibe también aportaciones de partículas solares durante el día, que cesa al llegar la noche. Durante la noche lunar, la presión puede bajar hasta no ser más que de dos billonésimas partes de la atmósfera terrestre, subiendo durante el día hasta las ocho billonésimas partes, demostrando así que la atmósfera lunar no es una atmósfera permanente, sino una concentración de partículas dependiente del medio exolunar.

Se calcula que la desaparición completa de la hipotética atmósfera lunar debió realizarse a lo largo de varios centenares de millones de años. La prácticamente ausencia de atmósfera en nuestro satélite obliga a los astronautas a disponer de equipos autónomos de suministro de gases, conocidos como P.L.S.S. en sus paseos por la superficie. Asimismo, al no existir un manto protector, las radiaciones ultravioleta y los rayos gamma emitidos por el Sol bombardean la superficie lunar, siendo necesario contar con trajes protectores especiales que eviten sus efectos nocivos. Para la tenue atmósfera lunar cualquier pequeño cambio puede ser importante. La sola presencia de los astronautas altera localmente su presión y su composición al enriquecerla con los gases espirados por ellos y por los que se escapan del módulo lunar cada vez que se efectúa una EVA. Existe el temor de que los gases emitidos por las naves que en la década del setenta alunizaron en la Luna hayan creado una polución o contaminación de igual masa a la de su atmósfera nativa. Aunque estos gases ya deben ha35


LAS ESTRELLAS Capítulo III Generalidades Ciclo de vida Formación y evolución de las estrellas Agrupación y distribución estelar Estructura estelar Composición



LAS ESTRELLAS En un sentido general, puede afirmarse que una estrella es todo objeto astronómico que brilla con luz propia. Ahora bien, de un modo más técnico y preciso, podría decirse que se trata de una esfera de plasma, que mantiene su forma gracias a un equilibrio de fuerzas denominado equilibrio hidrostático. El equilibrio se produce esencialmente entre la fuerza de gravedad, que empuja la materia hacia el centro de la estrella, y la presión que hace el plasma hacia fuera, que tal como sucede en un gas, tiende a expandirlo. La presión hacia fuera depende de la temperatura, que en un caso típico como el Sol, se mantiene con el suministro de energía producida en el interior de la estrella. Por ello, el equilibrio se mantendrá esencialmente en las mismas condiciones, en la medida en que la estrella mantenga el ritmo de producción energética. Pero dicho ritmo, como se explica luego, cambia a lo largo del tiempo, generando variaciones en las propiedades físicas globales del astro, que se conocen como evolución de la estrella.

38

Capítulo III


Capítulo II

Las Pléyades, un cúmulo abierto de la constelación Tauro 39


GENERALIDADES

Capítulo III

La energía que disipan en el espacio estas esferas de gas, son en forma de radiación electromagnética, neutrinos y viento estelar; y nos permiten observar la apariencia de las estrellas en el cielo nocturno como puntos luminosos y, en la gran mayoría de los casos, titilantes. Debido a la gran distancia que suelen recorrer las radiaciones estelares, estas llegan débiles a nuestro planeta, siendo susceptibles, en la gran mayoría de los casos, a las distorsiones ópticas producidas por la turbulencia y las diferencias de densidad de la atmósfera terrestre (seeing). El Sol, al estar tan cerca, se observa no como un punto sino como un disco luminoso cuya presencia o ausencia en el cielo terrestre provoca el día o la noche respectivamente.

Enormes estrellas de este cúmulo tienen una vida corta 40


CICLO DE VIDA

Capitulo III

Mientras las interacciones se producen en el núcleo, sostienen la hidrostásis del cuerpo y este mantiene su apariencia iridiscente predicho por Niels Bohr en la teoría de las órbitas cuantificadas. Cuando parte de esas interacciones (la parte de la fusión de materia) se dilatan en el tiempo, las partes más externas del objeto comienzan a fusionar sus átomos. Esta parte más externa, por no estar restringida al mismo nivel que el núcleo, produce un aumento del diámetro. Llegados a cierta distancia, dicho proceso se paraliza, para contraerse nuevamente hasta el estado en el que los procesos de fusión más externos vuelven a comenzar y nuevamente se produce un aumento del diámetro. Estas interacciones producen índices de iridiscencia mucho menores, por lo que la apariencia suele ser rojiza. En esta fase, el objeto entra en la fase de colapso, por lo que la fuerza de la gravedad (la otra parte en interacción) y las interacciones de fusión en las capas más externas del objeto, producen una constante variación del diámetro, en las que acaban venciendo las fuerzas gravitatorias en un momento en el que las capas más externas no tienen ya elementos que fusionar. Se puede decir que dicho proceso de colapso finaliza en el momento en que la estrella no produce fusiones de material, y dependiendo de la masa total de la estrella, la fusión de material entrará en su proceso degenerativo al colapsar por vencer a las fuerzas descritas en el Principio de exclusión de Pauli, produciéndose una supernova.

Estrella altamente masiva Eta Carinae 41


FORMACIÓN Y EVOLUCIÓN DE LAS ESTRELLAS Las estrellas se forman en las regiones más densas de las nubes moleculares como consecuencia de las inestabilidades gravitatorias causadas, principalmente, por supernovas o colisiones galácticas. El proceso se acelera una vez que estas nubes de hidrógeno molecular (H2) empiezan a caer sobre sí mismas, alimentado por la cada vez más intensa atracción gravitatoria. Su densidad aumenta progresivamente, siendo más rápido el proceso en el centro que en la periferia. No tarda mucho en formarse un núcleo en contracción muy caliente llamado protoestrella. El colapso en este núcleo es, finalmente, detenido cuando comienzan las reacciones nucleares que elevan la presión y temperatura de la protoestrella. Una vez estabilizada la fusión del hidrógeno, se considera que la estrella está en la llamada secuencia principal, fase que ocupa aproximadamente un 90% de su vida. Cuando se agota el hidrógeno del núcleo de la estrella, su evolución dependerá de la masa (detalles en evolución estelar) y puede convertirse en una enana blanca o explotar como supernova, dejando también un remanente estelar que puede ser una estrella de neutrones o un agujero negro. La vida de una estrella se caracteriza por largas fases de estabilidad regidas por la escala de tiempo nuclear separadas por breves etapas de transición dominadas por la escala de tiempo dinámico (véase Escalas de tiempo estelar), muchas estrellas, el Sol entre ellas, tienen aproximadamente simetría esférica por tener velocidades de rotación bajas. Otras estrellas, sin embargo, giran a gran velocidad y su radio ecuatorial es significativamente mayor que su radio polar. Una velocidad de rotación alta también genera diferencias de temperatura superficial entre el ecuador y los polos. Como ejemplo, la velocidad de rotación en el ecuador de Vega es de 275 km/s, lo que hace que los polos estén a una temperatura de 10 150 K y el ecuador a una temperatura de 7 900 K. La mayoría de las estrellas pierden masa a una velocidad muy baja. En el Sistema Solar unos 1020 gramos de materia estelar son expulsados por el viento solar cada año. Sin embargo, en las últimas fases de sus vidas, las estrellas pierden masa de forma mucho más intensa y pueden acabar con una masa final muy inferior a la original. Para las estrellas más masivas este efecto es importante desde el principio. Así, 42

Capítulo III una estrella con 120 masas solares iniciales y metalicidad igual a la del Sol acabará expulsando en forma de viento estelar más del 90% de su masa para acabar su vida con menos de 10 masas solares. Finalmente, al morir la estrella se produce en la mayoría de los casos una nebulosa planetaria, una supernova o una hipernova por la cual se expulsa aún más materia al espacio interestelar. La materia expulsada incluye elementos pesados producidos en la estrella que más tarde formarán nuevas estrellas y planetas, aumentando así la metalicidad del Universo.


AGRUPACIONES Y DISTRIBUCIÓN ESTELAR Estrellas Ligadas: Las estrellas pueden estar ligadas gravitacionalmente unas con otras formando sistemas estelares binarios, ternarios o agrupaciones aún mayores. Una fracción alta de las estrellas del disco de la Vía Láctea pertenecen a sistemas binarios; el porcentaje es cercano al 90% para estrellas masivas y desciende hasta el 50% para estrellas de masa baja. Otras veces, las estrellas se agrupan en grandes concentraciones que van desde las decenas hasta los centenares de miles o incluso millones de estrellas, formando los denominados cúmulos estelares. Estos cúmulos pueden deberse a variaciones en el campo gravitacional galáctico o bien pueden ser fruto de brotes de formación estelar (se sabe que la mayoría de las estrellas se forman en grupos).

Capítulo III La navegación espacial y el posicionamiento estelar A pesar de las enormes distancias que separan las estrellas, desde la perspectiva terrestre sus posiciones relativas parecen fijas en el firmamento. Gracias a la precisión de sus posiciones, “son de gran utilidad para la navegación, para la orientación de los astronautas en las naves espaciales y para identificar otros astros” (The American Encyclopedia). Fueron la única forma que tuvieron los marinos para situarse en altamar hasta el advenimiento de los sistemas electrónicos de posicionamiento hacia mediados del siglo XX. Véase Estrella (náutica).

Tradicionalmente, en la Vía Láctea se distinguían dos tipos: los cúmulos globulares, que son viejos, se encuentran en el halo y contienen de centenares de miles a millones de estrellas y los cúmulos abiertos, que son de formación reciente, se encuentran en el disco y contienen un número menor de estrellas. Estrellas Aisladas: No todas las estrellas mantienen lazos gravitatorios estables; algunas, igual que el Sol, viajan solitarias, separándose mucho de la agrupación estelar en la que se formaron. Estas estrellas aisladas obedecen, tan solo, al campo gravitatorio global constituido por la superposición de los campos del total de objetos de la galaxia: agujeros negros, estrellas, y objetos compactos. Distribución Estelar: Las estrellas no están distribuidas uniformemente en el Universo, a pesar de lo que pueda parecer a simple vista, sino agrupadas en galaxias. Una galaxia espiral típica (como la Vía Láctea) contiene cientos de miles de millones de estrellas agrupadas, la mayoría, en el estrecho plano galáctico. El cielo nocturno terrestre aparece homogéneo a simple vista porque sólo es posible observar una región muy localizada del plano galáctico. Extrapolando de lo observado en la vecindad del Sistema Solar, se puede decir que la mayor parte de estrellas se concentran en el disco galáctico y dentro de éste en una región central, el bulbo galáctico, que se sitúa en la constelación de Sagitario. Véanse también: Galaxia, cúmulo estelar y estrellas binarias 43


ESTRUCTURA ESTELAR

Capítulo III

Una estrella típica se divide en núcleo, manto y atmósfera. En el núcleo es donde se producen las reacciones nucleares que generan su energía. El manto transporta dicha energía hacia la superficie y según cómo la transporte, por convección o por radiación, se dividirá en dos zonas: radiante y convectiva. Finalmente, la atmósfera es la parte más superficial de las estrellas y la única que es visible. Se divide en cromósfera, fotósfera y corona solar. La atmósfera estelar es la zona más fría de las estrellas y en ellas se producen los fenómenos de eyección de materia. Pero en la corona, supone una excepción a lo dicho ya que la temperatura vuelve a aumentar hasta llegar al millón de grados por lo menos. Pero es una temperatura engañosa. En realidad esta capa es muy poco densa y está formada por partículas ionizadas altamente aceleradas por el campo magnético de la estrella. Sus grandes velocidades les confieren a esas partículas altas temperaturas. A lo largo de su ciclo las estrellas experimentan cambios en el tamaño de las capas e incluso en el orden en que se disponen. En algunas la zona radiante se situará antes que la convectiva y en otras al revés, dependiendo tanto de la masa como de la fase de fusión en que se encuentre. Así mismo, el núcleo también puede modificar sus características y su tamaño a lo largo de la evolución de la estrella. La edad de la mayoría de las estrellas oscila entre 1000 y 10 000 millones de años; aunque algunas estrellas pueden ser incluso más viejas. La estrella observada más antigua, HE 1523-0901, tiene una edad estimada de 13 200 millones de años, muy cercana a la edad estimada para el Universo, de unos 13 700 millones de años.

Estrellas muy joven que contienen una metalicidad alta

44


Capítulo III

COMPOSICIÓN

La composición química de una estrella varía según la generación a la que pertenezca. Cuanto más antigua sea más baja será su metalicidad. Al inicio de su vida una estrella similar al Sol contiene aproximadamente 75% de hidrógeno y 23% de helio. El 2% restante lo forman elementos más pesados, aportados por estrellas que finalizaron su ciclo antes que ella. Estos porcentajes son en masa; en número de núcleos, la relación es 90% de hidrógeno y 10% de helio. En la Vía Láctea las estrellas se clasifican según su riqueza en metales en dos grandes grupos. Las que tienen una cierta abundancia se denominan de la población I, mientras que las estrellas pobres en metales forman parte de la población II. Normalmente la metalicidad va directamente relacionada con la edad de la estrella. A más elementos pesados más joven es la estrella. La composición de una estrella evoluciona a lo largo de su ciclo, aumentando su contenido en elementos pesados en detrimento del hidrógeno, sobre todo. Sin embargo, las estrellas sólo queman un 10% de su masa inicial, por lo que globalmente su metalicidad no aumenta mucho. Además, las reacciones nucleares sólo se dan en las regiones centrales de la estrella. Este es el motivo por el que cuando se analiza el espectro de una estrella lo que se observa es, en la mayoría de los casos, la composición que tenía cuando se formó. En algunas estrellas poco masivas los movimientos de convección penetran mucho en el interior, llegando a mezclar material procesado con el original. Entonces se puede observar incluso en la superficie parte de ese material procesado. La estrella presenta, en esos casos, una composición superficial con más metales.

Compilado en el siglo XVIII por el turista Messier

45


EL UNIVERSO Capitulo IV Evoluci贸n Descripci贸n f铆sica Homogenidad e isotrop铆a Estructura agregadas del universo Las estrellas Los planetas Los satelites Asteroides y cometas



EL UNIVERSO El universo es la totalidad del espacio y del tiempo, de todas las formas de la materia, la energía y el impulso, las leyes y constantes físicas que las gobiernan. Sin embargo, el término universo puede ser utilizado en sentidos contextuales ligeramente diferentes, para referirse a conceptos como el cosmos, el mundo o la naturaleza. Observaciones astronómicas indican que el universo tiene una edad de 13,73 ± 0,12 millardo de años y por lo menos 93.000 millones de años luz de extensión. El evento que se cree que dio inicio al universo se denomina Big Bang. En aquel instante toda la materia y la energía del universo observable estaba concentrada en un punto de densidad infinita. Después del Big Bang, el universo comenzó a expandirse para llegar a su condición actual, y lo continúa haciendo. Debido a que, según teoría de la relatividad especial, la materia no puede moverse a una velocidad superior a la velocidad de la luz, puede parecer paradójico que dos objetos del universo puedan haberse separado 93 mil millones de años luz en un tiempo de únicamente 13 mil millones de años; sin embargo, esta separación no entra en conflicto con la teoría de la relatividad general, ya que ésta sólo afecta al movimiento en el espacio, pero no al espacio mismo, que puede extenderse a un ritmo superior, no limitado por la velocidad de la luz. Por lo tanto, dos galaxias pueden separarse una de la otra más rápidamente que la velocidad de la luz si es el espacio entre ellas el que se dilata. Mediciones sobre la distribución espacial y el desplazamiento hacia el rojo (redshift) de galaxias distantes, la radiación cósmica de fondo de microondas, y los porcentajes relativos de los elementos químicos más ligeros, apoyan la teoría de la expansión del espacio, y más en general, la teoría del Big Bang, que propone que el universo en sí se creó en un momento específico en el pasado. Observaciones recientes han demostrado que esta expansión se está acelerando, y que la mayor parte de la materia y la energía en el universo es fundamentalmente diferente de la observada en la Tierra, y no es directamente observable (véanse materia oscura y energía oscura). La imprecisión de las observaciones actuales ha limitado las predicciones sobre el destino final del universo. 48

Capítulo IV


CapĂ­tulo IV

El universo estĂĄ repleto de diminutos diamantes 49


EVOLUCIÓN

Capítulo IV

Teoría sobre el origen y la formación del Universo (Big Bang). El hecho de que el universo esté en expansión se deriva de las observaciones del corrimiento al rojo realizadas en la década de 1920 y que se cuantifican por la ley de Hubble. Dichas observaciones son la predicción experimental del modelo de Friedmann-RobertsonWalker, que es una solución de las ecuaciones de campo de Einstein de la relatividad general, que predicen el inicio del universo mediante un big bang. El “corrimiento al rojo” es un fenómeno observado por los astrónomos, que muestra una relación directa entre la distancia de un objeto remoto (como una galaxia) y la velocidad con la que éste se aleja. Si esta expansión ha sido continua a lo largo de la vida del universo, entonces en el pasado estos objetos distantes que siguen alejándose tuvieron que estar una vez juntos. Esta idea da pie a la teoría del Big Bang; el modelo dominante en la cosmología actual. Durante la era más temprana del Big Bang, se cree que el universo era un caliente y denso plasma. Según avanzó la expansión, la temperatura decreció hasta el punto en que se pudieron formar los átomos. En aquella época, la energía de fondo se desacopló de la materia y fue libre de viajar a través del espacio. La energía remanente continuó enfriándose al expandirse el universo y hoy forma el fondo cósmico de microondas. Esta radiación de fondo es remarcablemente uniforme en todas direcciones, circunstancia que los cosmólogos han intentado explicar como reflejo de un periodo temprano de inflación cósmica después del Big Bang. El examen de las pequeñas variaciones en el fondo de radiación de microondas proporciona información sobre la naturaleza del universo, incluyendo la edad y composición. La edad del universo desde el Big Bang, de acuerdo a la información actual proporcionada por el WMAP de la NASA, se estima en unos 13.700 millones de años, con un margen de error de un 1% (137 millones de años). Otros métodos de estimación ofrecen diferentes rangos de edad, desde 11.000 millones a 20.000 millones.

Crecimiento de las estrellas en forma grupal 50


DESCRIPCIÓN FÍSICA Muy poco se conoce con certeza sobre el tamaño del universo. Puede tener una longitud de billones de años luz o incluso tener un tamaño infinito. Un artículo de 2003 dice establecer una cota inferior de 24 gigaparsecs (78.000 millones de años luz) para el tamaño del universo, pero no hay ninguna razón para creer que esta cota está de alguna manera muy ajustada (Véase forma del Universo). pero hay distintas tesis del tamaño; una de ellas es que hay varios universos, otro es que el universo es infinito. El universo observable (o visible), que consiste en toda la materia y energía que podía habernos afectado desde el Big Bang dada la limitación de la velocidad de la luz, es ciertamente finito. La distancia comóvil al extremo del universo visible ronda los 46.500 millones de años luz en todas las direcciones desde la Tierra. Así, el universo visible se puede considerar como una esfera perfecta con la Tierra en el centro, y un diámetro de unos 93.000 millones de años luz. Hay que notar que muchas fuentes han publicado una amplia variedad de cifras incorrectas para el tamaño del universo visible: desde 13.700 hasta 180.000 millones de años luz. (Véase universo observable).

Capítulo IV distorsionan el espacio-tiempo, de la misma forma que la superficie de un lago es casi plana. Esta opinión fue reforzada por los últimos datos del WMAP, mirando hacia las “oscilaciones acústicas” de las variaciones de temperatura en la radiación de fondo de microondas. Color: Históricamente se ha creído que el Universo es de color negro, pues es lo que observamos al momento de mirar al cielo en las noches despejadas. En 2002, sin embargo, los astrónomos Karl Glazebrook e Ivan Baldry afirmaron en un artículo científico que el universo en realidad es de un color que decidieron llamar café cortado cósmico. Este estudio se basó en la medición del rango espectral de la luz proveniente de un gran volúmen del Universo, sintetizando la información aportada por un total de más de 200.000 galaxias.

En el Universo las distancias que separan los astros son tan grandes que, si las quisiéramos expresar en metros, tendríamos que utilizar cifras muy grandes. Debido a ello, se utiliza como unidad de longitud el año luz, que corresponde a la distancia que recorre la luz en un año. Actualmente, el modelo de universo más comúnmente aceptado es el propuesto por Albert Einstein en su Relatividad General, en la que propone un universo “finito pero ilimitado”, es decir, que a pesar de tener un volumen medible no tiene límites, de forma análoga a la superficie de una esfera, que es medible pero ilimitada. Forma: Una pregunta importante abierta en cosmología es la forma del universo. Matemáticamente, ¿qué 3-variedad representa mejor la parte espacial del universo?, si el universo es espacialmente plano, se desconoce si las reglas de la geometría Euclidiana serán válidas a mayor escala. Actualmente muchos cosmólogos creen que el Universo observable está muy cerca de ser espacialmente plano, con arrugas locales donde los objetos masivos 51


HOMOGENEIDAD E ISOTROPÍA Mientras que la estructura está considerablemente fractalizada a nivel local (ordenada en una jerarquía de racimo), en los órdenes más altos de distancia el universo es muy homogéneo. A estas escalas la densidad del universo es muy uniforme, y no hay una dirección preferida o significativamente asimétrica en el universo. Esta homogeneidad e isotropía es un requisito de la Métrica de Friedman-Lemaître-Robertson-Walker empleada en los modelos cosmológicos modernos. La cuestión de la anisotropía en el universo primigenio fue significativamente contestada por el WMAP, que buscó fluctuaciones en la intensidad del fondo de microondas. Las medidas de esta anisotropía han proporcionado información útil y restricciones sobre la evolución del Universo. Hasta el límite de la potencia de observación de los instrumentos astronómicos, los objetos radian y absorben la energía de acuerdo a las mismas leyes físicas a como lo hacen en nuestra propia galaxia. Basándose en esto, se cree que las mismas leyes y constantes físicas son universalmente aplicables a través de todo el universo observable. No se ha encontrado ninguna prueba confirmada que muestre que las constantes físicas hayan variado desde el Big Bang. Composición: El universo observable actual parece tener un espacio-tiempo geométricamente plano, conteniendo una densidad masa-energía equivalente a 9,9 × 10-30 gramos por centímetro cúbico. Los constituyentes primarios parecen consistir en un 73% de energía oscura, 23% de materia oscura fría y un 4% de átomos. Así, la densidad de los átomos equivaldría a un núcleo de hidrógeno sencillo por cada cuatro metros cúbicos de volumen. La naturaleza exacta de la energía oscura y la materia oscura fría sigue siendo un misterio. Actualmente se especula con que el neutrino, (una partícula muy abundante en el universo), tenga, aunque mínima, una masa. De comprobarse este hecho, podría significar que la energía y la materia oscura no existen. Durante las primeras fases del Big Bang, se cree que se formaron las mismas cantidades de materia y antimateria.

52

Capítulo IV


CapĂ­tulo IV

NASA capta anillo gigante de hoyos negros y azules formado por galaxias 53


ESTRUCTURAS AGREGADAS DEL UNIVERSO Las Galaxias:

Galaxia espiral barrada:

A gran escala, el universo está formado por galaxias y agrupaciones de galaxias. Las galaxias son agrupaciones masivas de estrellas, y son las estructuras más grandes en las que se organiza la materia en el universo. A través del telescopio se manifiestan como manchas luminosas de diferentes formas. A la hora de clasificarlas, los científicos distinguen entre las galaxias del Grupo Local, compuesto por las treinta galaxias más cercanas y a las que está unida gravitacionalmente nuestra galaxia (la Vía Láctea), y todas las demás galaxias, a las que llaman “galaxias exteriores”. Las galaxias están distribuidas por todo el universo y presentan características muy diversas, tanto en lo que respecta a su configuración como a su antigüedad. Las más pequeñas abarcan alrededor de 3.000 millones de estrellas, y las galaxias de mayor tamaño pueden llegar a abarcar más de un billón de astros.

Es un subtipo de galaxia espiral, caracterizados por la presencia de una barra central de la que típicamente parten dos brazos espirales. Este tipo de galaxias constituyen una fracción importante del total de galaxias espirales. La Vía Láctea es una galaxia espiral barrada.

Formas de galaxias: La creciente potencia de los telescopios, que permite observaciones cada vez más detalladas de los distintos elementos del universo, ha hecho posible una clasificación de las galaxias por su forma. Se han establecido así cuatro tipos distintos: galaxias elípticas, espirales, espirales barradas e irregulares. Galaxias elípticas: En forma de elipse o de esferoide, se caracterizan por carecer de una estructura interna definida y por presentar muy poca materia interestelar. Se consideran las más antiguas del universo, ya que sus estrellas son viejas y se encuentran en una fase muy avanzada de su evolución. Galaxias espirales: Están constituidas por un núcleo central y dos o más brazos en espiral, que parten del núcleo. Éste se halla formado por multitud de estrellas y apenas tiene materia interestelar, mientras que en los brazos abunda la materia interestelar y hay gran cantidad de estrellas jóvenes, que son muy brillantes. Alrededor del 75% de las galaxias del universo son de este tipo. 54

Capítulo IV

Galaxias irregulares: Incluyen una gran diversidad de galaxias, cuyas configuraciones no responden a las tres formas anteriores, aunque tienen en común algunas características, como la de ser casi todas pequeñas y contener un gran porcentaje de materia interestelar. Se calcula que son irregulares alrededor del 5% de las galaxias del universo.


Capítulo IV

Estas nubes cósmicas son en realidad unas galaxías enanas 55


LAS ESTRELLAS

Capítulo IV

Son los elementos constitutivos más destacados de las galaxias. Las estrellas son enormes esferas de gas que brillan debido a sus gigantescas reacciones nucleares. Cuando debido a la fuerza gravitatoria, la presión y la temperatura del interior de una estrella es suficientemente intensa, se inicia la fusión nuclear de sus átomos, y comienzan a emitir una luz roja oscura, que después se mueve hacia el estado superior, que es en el que está nuestro Sol, para posteriormente, al modificarse las reacciones nucleares interiores, dilatarse y finalmente enfriarse. Al acabarse el hidrógeno, se originan reacciones nucleares de elementos más pesados, más energéticas, que convierten la estrella en una gigante roja. Con el tiempo, ésta vuelve inestable, a la vez que lanza hacia el espacio exterior la mayor parte del material estelar. Este proceso puede durar 100 millones de años, hasta que se agota toda la energía nuclear, y la estrella se contrae por efecto de la gravedad hasta hacerse pequeña y densa, en la forma de enana blanca, azul o marrón. Si la estrella inicial es varias veces más masiva que el Sol, su ciclo puede ser diferente, y en lugar de una gigante, puede convertirse en una supergigante y acabar su vida con una explosión denominada supernova. Estas estrellas pueden acabar como estrellas de neutrones. Tamaños aún mayores de estrellas pueden consumir todo su combustible muy rápidamente, transformándose en una entidad supermasiva llamada agujero negro.

Los cúmulos de estrellas de color rojo 56


LOS PLANETAS

Capítulo IV

Los planetas son cuerpos que giran en torno a una estrella y que, según la definición de la Unión Astronómica Internacional, deben cumplir además la condición de haber limpiado su órbita de otros cuerpos rocosos importantes, y de tener suficiente masa como para que su fuerza de gravedad genere un cuerpo esférico. En el caso de cuerpos que orbitan alrededor de una estrella que no cumplan estas características, se habla de planetas enanos, planetesimales, o asteroides. En nuestro Sistema Solar hay 9 planetas: Mercurio, Venus, Tierra, Marte, Júpiter, Saturno, Urano y Neptuno, y considerándose desde 2006 a Plutón como un planeta. A finales de 2009, fuera de nuestro Sistema Solar se han detectado más de 400 planetas extrasolares, pero los avances tecnológicos están permitiendo que este número crezca a buen ritmo.

Nuestro sistema solar 57


LOS SATELITES

Capítulo IV

Los satélites naturales son astros que giran alrededor de los planetas. El único satélite natural de la Tierra es la Luna, que es también el satélite más cercano al sol. A continuación se enumeran los principales satélites de los planetas del sistema solar (se incluye en el listado a Plutón, considerado por la UAI como un planeta enano). Tierra: 1 satélite → Luna Marte: 2 satélites → Fobos, Deimos Júpiter: 63 satélites → Metis, Adrastea, Amaltea, Tebe, Ío, Europa, Ganimedes, Calisto, Leda, Himalia, Lisitea, Elara, Ananké, Carmé, Pasífae, Sinope... Saturno: 59 satélites → Pan, Atlas, Prometeo, Pandora, Epimeteo, Jano, Mimas, Encélado, Tetis, Telesto, Calipso, Dione, Helena, Rea, Titán, Hiperión, Jápeto, Febe... Urano: 15 satélites → Cordelia, Ofelia, Bianca, Crésida, Desdémona, Julieta, Porcia, Rosalinda, Belinda, Puck, Miranda, Ariel, Umbriel, Titania, Oberón. Neptuno: 8 satélites → Náyade, Talasa, Despina, Galatea, Larisa, Proteo, Tritón, Nereida Plutón: 3 satélites → Caronte, Nix, Hidra

La tierra y el satelite, la luna 58


ASTEROIDES Y COMETAS

Capítulo IV

En aquellas zonas de la órbita de una estrella en las que, por diversos motivos, no se ha producido la agrupación de la materia inicial en un único cuerpo dominante o planeta, aparecen los discos de asteroides: objetos rocosos de muy diversos tamaños que orbitan en grandes cantidades en torno a la estrella, chocando eventualmente entre sí. Cuando las rocas tienen diámetros inferiores a 50m se denominan meteoroides. A consecuencia de las colisiones, algunos asteroides pueden variar sus órbitas, adoptando trayectorias muy excéntricas que periódicamente les acercan la estrella. Cuando la composición de estas rocas es rica en agua u otros elementos volátiles, el acercamiento a la estrella y su consecuente aumento de temperatura origina que parte de su masa se evapore y sea arrastrada por el viento solar, creando una larga cola de material brillante a medida que la roca se acerca a la estrella. Estos objetos se denominan cometas. En nuestro sistema solar hay dos grandes discos de asteroides: uno situado entre las órbitas de Marte y Júpiter, denominado el Cinturón de asteroides, y otro mucho más tenue y disperso en los límites del sistema solar, a aproximadamente un año luz de distancia, denominado Nube de Oort.

Asteroides descubiertos cerca de la tierra 59


El SISTEMA SOLAR CapĂ­tulo V Mercurio Venus Tierra Marte Jupiter Saturno Urano Neptuno Pluton



MERCURIO Mercurio es el planeta del Sistema Solar más próximo al Sol y el más pequeño (a excepción de los planetas enanos). Forma parte de los denominados planetas interiores o rocosos y carece de satélites. Se conocía muy poco sobre su superficie hasta que fue enviada la sonda planetaria Mariner 10 y se hicieron observaciones con radares y radiotelescopios. Antiguamente se pensaba que Mercurio siempre presentaba la misma cara al Sol, situación similar al caso de la Luna con la Tierra; es decir, que su periodo de rotación era igual a su periodo de traslación, ambos de 88 días. Sin embargo, en 1965 se mandaron pulsos de radar hacia Mercurio, con lo cual quedó definitivamente demostrado que su periodo de rotación era de 58,7 días, lo cual es 2/3 de su periodo de traslación. Esto no es coincidencia, y es una situación denominada resonancia orbital. Al ser un planeta cuya órbita es interior a la de la Tierra, Mercurio periódicamente pasa delante del Sol, fenómeno que se denomina tránsito astronómico (ver tránsito de Mercurio). Observaciones de su órbita a través de muchos años demostraron que el perihelio gira 43” de arco más por siglo de lo predicho por la mecánica clásica de Newton. Esta discrepancia llevó a un astrónomo francés, Urbain Le Verrier, a pensar que existía un planeta aún más cerca del Sol, al cual llamaron Planeta Vulcano, que perturbaba la órbita de Mercurio. Ahora se sabe que Vulcano no existe; la explicación correcta del comportamiento del perihelio de Mercurio se encuentra en la Teoría General de la Relatividad.

62

Capítulo V


Capítulo V

Mercurio es de menor tamaño que la Tierra, pero más grande que la Luna

63


ESTRUCTURA INTERNA Mercurio es uno de los cuatro planetas sólidos o rocosos; es decir, tiene un cuerpo rocoso como la Tierra. Este planeta es el más pequeño de los cuatro, con un diámetro de 4879 km en el ecuador. Mercurio está formado aproximadamente por un 70% de elementos metálicos y un 30% de silicatos. La densidad de este planeta es la segunda más grande de todo el sistema solar, siendo su valor de 5.430 kg/m3, sólo un poco menor que la densidad de la Tierra. La densidad de Mercurio se puede usar para deducir los detalles de su estructura interna. Mientras la alta densidad de la Tierra se explica considerablemente por la compresión gravitacional, particularmente en el núcleo, Mercurio es mucho más pequeño y sus regiones interiores no están tan comprimidas. Por tanto, para explicar esta alta densidad, el núcleo debe ocupar gran parte del planeta y además ser rico en hierro, material con una alta densidad.Los geólogos estiman que el núcleo de Mercurio ocupa un 42% de su volumen total (el núcleo de la Tierra apenas ocupa un 17%). Este núcleo estaría parcialmente fundido, lo que explicaría el campo magnético del planeta. Rodeando el núcleo existe un manto de unos 600 km de grosor. La creencia generalizada entre los expertos es que en los principios de Mercurio un cuerpo de varios kilómetros de diámetro (un planetesimal) impactó contra él deshaciendo la mayor parte del manto original, dando como resultado un manto relativamente delgado comparado con el gran núcleo. (Otras teorías alternativas se discuten en la sección Formación de Mercurio).

64

Capítulo V


SUPERFICIE

Capítulo V

La superficie de Mercurio, como la de la Luna, presenta numerosos impactos de meteoritos que oscilan entre unos metros hasta miles de kilómetros. Algunos de los cráteres son relativamente recientes, de algunos millones de años de edad, y se caracterizan por la presencia de un pico central. Parece ser que los cráteres más antiguos han tenido una erosión muy fuerte, posiblemente debida a los grandes cambios de temperatura que en un día normal oscilan entre 623 K (350 °C) por el día y 103 K (–170 °C) por la noche. Al igual que la Luna, Mercurio parece haber sufrido un período de intenso bombardeo de meteoritos de grandes dimensiones, hace unos 4000 millones de años. Durante este periodo de formación de cráteres, Mercurio recibió impactos en toda su superficie, facilitado por la práctica ausencia de atmósfera, que pudiera desintegrar o frenar multitud de estas rocas. Durante este tiempo Mercurio fue volcánicamente activo, formándose cuencas o depresiones con lava del interior del planeta, produciendo planicies lisas similares a los mares o marías de la Luna; una prueba de ello es el descubrimiento por parte de la sonda MESSENGER de posibles volcanes. Las planicies o llanuras de Mercurio tienen dos distintas edades; las jóvenes llanuras están menos craterizadas y probablemente se formaron cuando los flujos de lava enterraron el terreno anterior. Un rasgo característico de la superficie de este planeta son los numerosos pliegues de compresión que entrecruzan las llanuras. Se piensa que como el interior del planeta se enfrió, se contrajo y la superficie comenzó a deformarse.

Superficie de Mercurio con montañas y fallas 65


MAGNETOSFERA El estudio de la interacción de Mercurio con el viento solar ha puesto en evidencia la existencia de una magnetosfera en torno al planeta. El origen de este campo magnético no es conocido, aunque algunos autores creen que puede ser debido a una corriente eléctrica inducida en las capas exteriores de la atmósfera del planeta por el movimiento de las líneas del campo magnético interplanetario que giran por la rotación del Sol. En 2007 observaciones muy precisas realizadas desde la Tierra mediante radar, demostraron un bamboleo del eje de rotación compatible sólo con un núcleo del planeta parcialmente fundido. Un núcleo parcialmente fundido con materiales ferromagnéticos podría se la causa de su campo magnético.

66

Capítulo V


ÓRBITA Y ROTACIÓN

Capítulo V

La órbita de Mercurio es la más excéntrica de los planetas menores, con la distancia del planeta al Sol en un rango entre 46 millones y 70 millones de kilómetros. Tarda 88 días terrestres en dar una traslación completa. Presenta además una inclinación orbital (con respecto al plano de la eclíptica) La elevada velocidad del planeta cuando está cerca del perihelio hace que cubra esta mayor distancia en un intervalo de sólo cinco días. El tamaño de las esferas, inversamente proporcional a la distancia al Sol, es usado para ilustrar la distancia variable heliocéntrica. Esta distancia variable al Sol, combinada con la rotación planetaria de Mercurio de 3:2 alrededor de su eje, resulta en complejas variaciones de la temperatura de su superficie, pasando de los -185°C durante las noches hasta los 430 °C durante el día. La oblicuidad de la eclíptica es de solo 0,01° (grados sexagesimales), unas 300 veces menos que la de Júpiter, que es el segundo planeta en esta estadística, con 3,1° (en la Tierra es de 23,5°). De esta forma un observador en el ecuador de Mercurio durante el mediodía local nunca vería el Sol más que 0.01° al norte o al sur del cenit. Análogamente, en los polos el sol nunca pasa 0.01° por encima del horizonte.

Mercurio es el 2do más denso cuerpo del sistema solar 67


VENUS Venus es el segundo planeta del Sistema Solar en orden de distancia desde el Sol, y el tercero en cuanto a tamaño, de menor a mayor. Recibe su nombre en honor a Venus, la diosa romana del amor. Se trata de un planeta de tipo rocoso y terrestre, llamado con frecuencia el planeta hermano de la Tierra, ya que ambos son similares en cuanto a tamaño, masa y composición, aunque totalmente diferentes en cuestiones térmicas y atmosféricas. La órbita de Venus es una elipse con una excentricidad de menos del 1%, formando la órbita más circular de todos los planetas; apenas supera la de Neptuno. Su presión atmosférica es 94 veces superior a la terrestre; es por tanto la mayor presión atmosférica de todos los planetas rocosos. A pesar de no estar más cerca del sol que Mercurio, Venus posee la atmósfera más caliente, pues esta atrapa mucho más calor del sol. Este planeta además posee el día más largo del sistema solar: 243 días terrestres, y su movimiento es retrógrado, por lo que en un día venusiano el sol sale por el oeste y se esconde por el este. Al encontrarse Venus más cercano al Sol que la Tierra, siempre se puede encontrar, aproximadamente, en la misma dirección del Sol (su mayor elongación es de 47,8°), por lo que desde la Tierra se puede ver sólo unas cuantas horas antes del orto, en unos meses del año, o después del ocaso, en el resto del año. A pesar de ello, cuando Venus es más brillante, puede ser visto durante el día, siendo uno de los tres únicos cuerpos celestes que pueden ser vistos de día a simple vista, además de la Luna y el Sol. Venus es normalmente conocido como la estrella de la mañana (Lucero del Alba) o la estrella de la tarde (Lucero Vespertino) y, cuando es visible en el cielo nocturno, es el segundo objeto más brillante del firmamento, tras la Luna. Por este motivo, Venus debió ser ya conocido desde los tiempos prehistóricos. Sus movimientos en el cielo eran conocidos por la mayoría de las antiguas civilizaciones, adquiriendo importancia en casi todas las interpretaciones astrológicas del movimiento planetario. En particular, la civilización maya elaboró un calendario religioso basado en los ciclos astronómicos, incluyendo los ciclos de Venus. El símbolo del planeta Venus es una representación estilizada del espejo de la 68

Capítulo V diosa Venus: un círculo con una pequeña cruz debajo, utilizado también hoy para denotar el sexo femenino. Los adjetivos venusiano-a, venusino-a y venéreo-a (poéticamente) son usados para denotar las características habitualmente atribuidas a Venus-Afrodita. El adjetivo venéreo suele asociarse a las enfermedades de transmisión sexual. Es junto a la Tierra (diosa Gea de la antigüedad) el único planeta del Sistema Solar con nombre femenino, aparte de dos de los planetas enanos, Ceres y Eris.


CapĂ­tulo V

venus, foto tomada en 1967, Peter B 69


ÓRBITA Y ROTACIÓN Aunque todas las órbitas planetarias son elípticas, la órbita de Venus es la más parecida a una circunferencia, con una excentricidad inferior a un 1%. El ciclo entre dos elongaciones máximas (período orbital sinódico) dura 584 días. Después de esos 584 días Venus aparece en una posición a 72° de la elongación anterior. Dado que hay 5 períodos de 72° en una circunferencia, Venus regresa al mismo punto del cielo cada 8 años (menos dos días correspondientes a los años bisiestos). Este periodo se conocía como el ciclo Sothis en el Antiguo Egipto. En la conjunción inferior, Venus puede aproximarse a la Tierra más que ningún otro planeta. El 16 de diciembre de 1850 alcanzó la distancia más cercana a la Tierra desde el año 1800, con un valor de 39.514.827 kilómetros (0,26413854 UA). Desde entonces nunca ha habido una aproximación tan cercana. Una aproximación casi tan cercana será en el año 2101, cuando Venus alcanzará una distancia de 39.541.578 kilómetros (0,26431736 UA). Rotación Venus gira sobre sí mismo lentamente en un movimiento retrógrado, en el mismo sentido de las manecillas del reloj, de Este a Oeste en lugar de Oeste a Este como el resto de los planetas (excepto Urano), tardando en hacer un giro completo sobre sí mismo 243,0187 días terrestres. No se sabe el porqué de la peculiar rotación de Venus. Si el Sol pudiese verse desde la superficie de Venus aparecería subiendo desde el Oeste y posándose por el Este, con un ciclo día-noche de 116,75 días terrestres y un año venusiano de 1,92 días venusianos. Además de la rotación retrógrada, los periodos orbital y de rotación de Venus están sincronizados de manera que siempre presenta la misma cara del planeta a la Tierra cuando ambos cuerpos están a menor distancia. Esto podría ser una simple coincidencia pero existen especulaciones sobre un posible origen de esta sincronización como resultado de efectos de marea afectando a la rotación de Venus cuando ambos cuerpos están lo suficientemente cerca.

70

Capítulo V


Cap铆tulo V

Venus en rotaci贸n lateral 71


CARACTERISTICAS FISICAS

Capítulo V

Atmósfera de Venus Venus posee una densa atmósfera, compuesta en su mayor parte por dióxido de carbono y una pequeña cantidad de nitrógeno. La presión al nivel de la superficie es 90 veces superior a la presión atmosférica en la superficie terrestre (una presión equivalente en la Tierra a la presión que hay sumergido en el agua a una profundidad de un kilómetro). La enorme cantidad de CO2 de la atmósfera provoca un fuerte efecto invernadero que eleva la temperatura de la superficie del planeta hasta cerca de 464 °C en las regiones menos elevadas cerca del ecuador. Esto hace que Venus sea más caliente que Mercurio, a pesar de hallarse a más del doble de la distancia del Sol que éste y de recibir sólo el 25% de su radiación solar (2.613,9 W/m2 en la atmósfera superior y 1.071,1 W/m2 en la superficie). Debido a la inercia térmica de su masiva atmósfera y al transporte de calor por los fuertes vientos de su atmósfera, la temperatura no varía de forma significativa entre el día y la noche. A pesar de la lenta rotación de Venus (menos de una rotación por año venusiano, equivalente a una velocidad de rotación en el Ecuador de sólo 6,5 km/h), los vientos de la atmósfera superior circunvalan el planeta en tan sólo 4 días, distribuyendo eficazmente el calor. Además del movimiento zonal de la atmósfera de Oeste a Este, hay un movimiento vertical en forma de célula de Hadley que transporta el calor del Ecuador hasta las zonas polares e incluso a latitudes medias del lado no iluminado del planeta. La radiación solar casi no alcanza la superficie del planeta. La densa capa de nubes refleja al espacio la mayoría de la luz del Sol y la mayor parte de la luz que atraviesa las nubes es absorbida por la atmósfera. Esto impide a la mayor parte de la luz del Sol que caliente la superficie. El albedo bolométrico de Venus es de aproximadamente el 60%, y su albedo visual es aún mayor, lo cual concluye que, a pesar de encontrarse más cercano al Sol que la Tierra, la superficie de Venus no se calienta ni se ilumina como era de esperar por la radiación solar que recibe. En ausencia del efecto invernadero, la temperatura en la superficie de Venus podría ser similar a la de la Tierra. El enorme efecto invernadero asociado a la inmensa cantidad de CO2 en la atmósfera atrapa el calor 72

provocando las elevadas temperaturas de este planeta. Los fuertes vientos en la parte superior de las nubes pueden alcanzar los 350 km/h, aunque a nivel del suelo los vientos son mucho más lentos. A pesar de ello, y debido a la altísima densidad de la atmósfera en la superficie de Venus, incluso estos flojos vientos ejercen una fuerza considerable contra los obstáculos. Las nubes están compuestas principalmente por gotas de dióxido de azufre y ácido sulfúrico, y cubren el planeta por completo, ocultando la mayor parte de los detalles de la superficie a la observación externa. La temperatura en la parte superior de las nubes (a 70 km sobre la superficie) es de -45 °C. La medida promedio de temperatura en la superficie de Venus es de 464 °C. La temperatura de la superficie nunca baja de los 400 °C, lo que lo hace el planeta más caliente del sistema solar. Geología de Venus Venus tiene una lenta rotación retrógrada, lo que significa que gira de Este a Oeste, en lugar de hacerlo de Oeste a Este como lo hacen la mayoría de los demás planetas mayores (Urano también tiene una rotación retrógrada, aunque el eje de rotación de Urano, inclinado 97,86°, prácticamente descansa sobre el plano orbital). Se desconoce por qué Venus es diferente en este aspecto, aunque podría ser el resultado de una colisión con un asteroide en algún momento del pasado remoto. Además de esta inusual rotación retrógrada, el período de rotación de Venus y su órbita están casi sincronizados, de manera que siempre presenta la misma cara a la Tierra cuando los dos planetas se encuentran en su máxima aproximación (5.001 días venusianos entre cada conjunción inferior). Esto podría ser el resultado de las fuerzas de marea que afectan a la rotación de Venus cada vez que los planetas se encuentran lo suficientemente cercanos, aunque no se conoce con claridad el mecanismo. Venus tiene dos mesetas principales a modo de continentes, elevándose sobre una vasta llanura. La meseta Norte se llama Ishtar Terra y contiene la mayor montaña de Venus (aproximadamente dos kilómetros más alta que el Monte Everest), llamada Maxwell Montes en honor de James Clerk Maxwell. Ishtar Terra tiene el tamaño aproximado de Australia. En el hemisferio Sur se encuentra Aphrodite


Capítulo V

Terra, mayor que la anterior y con un tamaño equivalente al de Sudamérica. Entre estas mesetas existen algunas depresiones del terreno, que incluyen Atalanta Planitia, Guinevere Planitia y Lavinia Planitia. Con la única excepción del Monte Maxwell, todas las características distinguibles del terreno adoptan nombres de mujeres mitológicas. La densa atmósfera de Venus provoca que los meteoritos se desintegren bruscamente en su descenso a la superficie, aunque los más grandes pueden llegar a la superficie, originando un cráter si tienen suficiente energía cinética. A causa de esto, no pueden formarse cráteres de impacto más pequeños de 3,2 kilómetros de diámetro. Aproximadamente el 90% de la superficie de Venus parece consistir en un basalto recientemente solidificado (en términos geológicos) con muy pocos cráteres de meteoritos. Las formaciones más antiguas presentes en Venus no parecen tener más de 800 millones de años, siendo la mayor parte del suelo considerablemente más joven (no más de algunos cientos de millones de años en su mayor parte), lo cual sugiere que Venus sufrió un cataclismo que afectó a su superficie no hace mucho tiempo en el pasado geológico. El interior de Venus es probablemente similar al de la Tierra: un núcleo de hierro de unos 3.000 km de radio, con un manto rocoso que forma la mayor parte del planeta. Según datos de los medidores gravitatorios de la sonda Magallanes, la corteza de Venus podría ser más dura y gruesa de lo que se había pensado. Se piensa que Venus no tiene placas tectónicas móviles como la Tierra, pero en su lugar se producen masivas erupciones volcánicas que inundan su superficie con lava «fresca». Otros descubrimientos recientes sugieren que Venus todavía está volcánicamente activo.

73


ESTRUCTURA INTERNA Sin información sísmica o detalles, momento de inercia, existen pocos datos directos sobre la geoquímica y la estructura interna de Venus. Sin embargo, la similitud en tamaño y densidad entre Venus y la Tierra sugiere que ambos comparten una estructura interna afín: un núcleo, un manto, y una corteza planetaria. Al igual que la Tierra, se especula que el núcleo de Venus es al menos parcialmente líquido. El menor tamaño y densidad de Venus indica que las presiones en su interior son considerablemente menores que en la Tierra. La diferencia principal entre los dos planetas es la carencia de placas tectónicas en Venus, probablemente debido a la sequedad del manto y la superficie. Como consecuencia, la pérdida de calor en el planeta es escasa, evitando su enfriamiento y proporcionando una explicación viable sobre la carencia de un campo magnético interno.

74

Capítulo V


TRÁNSITOS DE VENUS

Capítulo V

Los tránsitos de Venus acontecen cuando el planeta cruza directamente entre la tierra y el Sol y son eventos astronómicos relativamente raros. La primera vez que se observó este tránsito astronómico fue en 1639 por Jeremiah Horrocks y William Crabtree. El tránsito de 1761, observado por Mijaíl Lomonosov, proporcionó la primera evidencia de que Venus tenía una atmósfera, y las observaciones de paralaje del siglo XIX durante sus tránsitos permitieron obtener por primera vez un cálculo preciso de la distancia entre la Tierra y el Sol. Los tránsitos sólo pueden ocurrir en junio o diciembre, siendo éstos los momentos en los que Venus cruza la eclíptica (al plano en el que la Tierra orbita alrededor del Sol), y suceden en pares a intervalos de ocho años, separados dichos pares de tránsitos por más de un siglo. El anterior par de tránsitos sucedió en 1874 y 1882, y el presente par de tránsitos son los de 2004 y 2012.

Transito de venus 75


LA TIERRA La Tierra (Terra, nombre latino de Gea, deidad griega de la feminidad y fecundidad) es el tercer planeta desde el Sol, el quinto más grande de los planetas del Sistema Solar y también el más grande de los terrestres. Es el hogar de millones de especies, incluyendo los seres humanos, es actualmente el único cuerpo astronómico donde se conoce la existencia de vida. La Tierra se formó hace 4.567 millones de años y la vida surgió mil millones de años después. La atmósfera y las condiciones abióticas han sido alteradas significativamente por la biosfera del planeta, favoreciendo esta la proliferación de organismos aerobios, así como la formación de la capa de ozono que junto con el campo magnético terrestre bloqueo la dañina radiación solar, permitiendo así la vida en la Tierra como hasta ahora. Las propiedades físicas de la Tierra, la historia geológica y órbita han permitido que la vida exista hasta ahora. Se estima que el planeta seguirá sustentando la vida durante otros 500 millones de años, ya que se prevé que la luminosidad creciente del Sol causará la extinción de la biósfera para esa época. La superficie terrestre o corteza esta dividida en varias placas tectónicas que se mueven sobre el magma que se encuentra en su interior durante varios millones de años. Cerca del 71% de la superficie está cubierta por océanos de agua salada, el resto consiste en continentes e islas que en conjunto poseen varios lagos, ríos y otras fuentes de agua que construyen la hidrosfera, el agua liquida es indispensable para cualquier tipo de vida, se desconocen otros planetas con el mismo equilibrio. Los polos de la Tierra están cubiertos en su mayoría de hielo sólido (Indlandsis de la Antártida) o de banquisas (Casquete polar ártico). El interior del planeta es geológicamente activo con una gruesa capa de manto relativamente sólido, un núcleo externo líquido que genera un campo magnético, y un núcleo de hierro sólido interior. La Tierra interactúa con otros objetos en el espacio, especialmente el Sol y la Luna. En la actualidad, la Tierra completa una órbita alrededor del Sol cada vez que realiza 365,26 giros sobre su eje. Este lapso de tiempo se denomina un año sideral, el cual es igual a 365,26 días solares. El eje de rotación de la Tierra se encuentra inclinado 23,4° con respecto a la perpendicular a su plano 76

Capítulo V orbital lo que produce las variaciones estacionales en la superficie del planeta con un período de un año tropical (365,24 días solares). La Tierra solo posee un único satélite natural, la Luna que comenzó a orbitar la Tierra hace 4.530 millones de años, produce las mareas, estabiliza la inclinación del eje y reduce gradualmente la velocidad de rotación del planeta. Entre hace aproximadamente 3.800 a 4.100 millones de años numerosos asteroides impactaron durante el bombardeo intenso tardío causándole significativos cambios en la mayor parte de la superficie.


CapĂ­tulo V

Nuestra Madre Tierra, la gran ĂĄnima viviente 77


FORMA La forma de la Tierra es muy parecida a la de un esferoide oblato, una esfera achatada en el eje de un polo al otro de tal manera que hay un abultamiento alrededor del ecuador. El abultamiento es a causa de la rotación de la Tierra, hace que el diámetro en el ecuador sea a 43 km más largo que el diámetro de un polo a otro. El diámetro medio de referencia para el esferoide es de unos 12.742 km, con aproximadamente 40.000 km/π, ya que el metro se definió originalmente como 1/10, 000,000 de la distancia desde el ecuador hasta el Polo Norte a través de París, Francia. Composición química La masa de la Tierra es de aproximadamente de 5.98×1024 kg. Se compone principalmente de hierro (32,1%), oxígeno (30,1%), silicio (15,1%), magnesio (13,9%), azufre (2,9%), níquel (1,8%), calcio (1,5%) y aluminio (1,4%), con el 1,2% restante formado por pequeñas cantidades de otros elementos. Debido a la segregación de masa, se cree que la zona del núcleo esta compuesta principalmente de hierro (88,8%), con pequeñas cantidades de níquel (5,8%), azufre (4,5%), y menos del 1% oligoelementos. El geoquímico F.W. Clarke calcula que un poco más del 47% de la corteza terrestre se compone de oxígeno. Los componentes de la rocas más comunes de la corteza de la Tierra son casi todos los óxidos; cloro, azufre y flúor son las únicas excepciones importantes a esta y su presencia total en cualquier roca es generalmente mucho menos del 1%. Los principales óxidos son el sílice, alúmina, óxidos de hierro, cal, magnesia, potasa y sosa. Estructura interna El interior de la Tierra, como la de los otros planetas terrestres, se divide en capas por su composición química o sus propiedades físicas (Reología), pero a diferencia de los otros planetas terrestres, tiene un núcleo interno distinto al exterior. La corteza externa de la Tierra es un silicato sólido, químicamente distinto, que está sustentada por un manto sólido de alta viscosidad. La corteza se separa del manto por la discontinuidad de Mohorovičić y el espesor de la corteza varía: un promedio de 6 km en los océanos y de 30 a 50 km en los continentes. La corteza fría y rígida, de la parte superior del manto se conocen comúnmente como la litosfera, y es de la litosfera que las 78

Capítulo V placas tectónicas están formadas. Debajo de la litosfera esta la astenosfera, una capa relativamente de baja viscosidad en la que la litosfera viaja. Importantes cambios en la estructura cristalina dentro del manto se producen entre los 410 y 660 km por debajo de la superficie, que abarca una zona de transición que separa la parte superior del manto inferior. Bajo el manto, una líquido de viscosidad extremadamente baja se encuentra el núcleo externo que está por encima del núcleo interno sólido. El núcleo interno puede girar a una velocidad angular ligeramente superior que el resto del planeta, avanzando de 0,1 a 0,5 ° por año.


CapĂ­tulo V

La Tierra es el tercer planeta desde el Sol 79


SUPERFICIE

Capitulo V

El terreno de la Tierra varía enormemente de un lugar a otro. Cerca del 70,8% de la superficie está cubierta por agua, con gran parte de la plataforma continental por debajo del nivel del mar. La superficie sumergida tiene características montañosas, incluyendo un sistema de dorsales océaicas, así como volcanes submarinos, fosas oceánicas, cañones submarinos, mesetas y llanuras abisales. El restante 29,2% no está cubierto por el agua, sino se compone de montañas, desiertos, llanuras, mesetas y otras Geomorfologías. La superficie del planeta se moldea durante períodos de tiempo geológico, debido a la erosión tectónica. Las características de la superficie construida o deformada a través de las placas tectónicas están sujetas a constante erosión de las precipitaciones, los ciclos térmicos y los efectos químicos. La glaciación, la erosión costera, la acumulación de los arrecifes de coral, y los grandes impactos de meteoritos que también actúan para remodelar el paisaje.

Imagen esférica de la tierra centrada en África 80


HIDROSFERA Y ATMÓSFERA Hidrosfera La abundancia de agua en la superficie de la Tierra es una característica única que distingue al “Planeta Azul” de otros en el Sistema Solar. La hidrosfera de la Tierra se compone fundamentalmente de los océanos, pero técnicamente incluye todas las superficies de agua en el mundo, incluidos los mares interiores, lagos, ríos y aguas subterráneas de hasta una profundidad de 2.000 m. El lugar más profundo bajo el agua es el Abismo Challenger de la Fosa de las Marianas en el Océano Pacífico con una profundidad de −10,911.4 m.

Capítulo V temperatura. Este último fenómeno se conoce como el efecto invernadero: trazas de moléculas dentro de la atmósfera sirven para capturar la energía térmica emitida desde el suelo, aumentando así la temperatura media. El dióxido de carbono, el vapor de agua, el metano y el ozono son los principales gases de efecto invernadero en la atmósfera de la Tierra. Sin este efecto de retención de calor, la temperatura superficial media sería de −18 °C y la vida probablemente no existiría.

La masa de los océanos es de aproximadamente 1.35×1018 toneladas métricas, o aproximadamente 1 / 4400 de la masa total de la Tierra. Los océanos cubren un área de 3.618×108 km2 con una profundidad media de 3.682 m, lo que resulta en un volumen estimado de 1.332×109 km3.Si toda la tierra en la Tierra se distribuye de forma equilibrada, el agua se elevaría a una altura de más de 2,7 km. Aproximadamente el 97,5% del agua es salada, mientras que el restante 2,5% es agua dulce. La mayor parte de agua dulce, aproximadamente el 68,7%, esta actualmente en estado de hielo. Atmósfera La presión atmosférica en la superficie terrestre es cercano a los 101.325 kPa, con una altura a escala de aproximadamente 8.5 km. Esta compuesta principalmente con 78% de nitrógeno y 21% de oxígeno, con trazas de vapor de agua, dióxido de carbono y otras moléculas gaseosas. La altura de la troposfera varía con la latitud, es entre 8 km en los polos y 17 km en el ecuador, con algunas variaciones debido a la climatología y los factores estacionales. La biosfera de la Tierra ha alterado significativamente la atmósfera. La fotosíntesis oxigénica evolucionó hace 2.700 millones de años, principalmente formando la atmósfera actual de nitrógeno-oxígeno. Este cambio permitió la proliferación de los organismos aeróbicos, así como la formación de la capa de ozono que bloquea la radiación ultravioleta proveniente del Sol, permitiendo esto la vida fuera del agua. Otras importantes funciones de la atmósfera para la vida en la Tierra incluyen el transporte de vapor de agua, proporcionando gases de efecto útil, causando que los meteoritos pequeños se quemen antes de que toquen la superficie y también moderar la 81


CLIMA Y TIEMPO ATMÓSFERICO La atmósfera terrestre no tiene límites definidos, poco a poco se hace más delgada y se desvanece en el espacio ultraterrestre. Tres cuartas partes de la masa atmosférica está contenida dentro de los primeros 11 km de la superficie del planeta. Esta capa más delgada se llama troposfera. La energía del Sol calienta esta capa y la superficie debajo de esta, causando esto la expansión del aire. El aire sube debido a la menor densidad sustituyéndose por aire de mayor densidad, es decir, aire más frío. Esto da como resultado la circulación atmosférica que genera el tiempo y el clima a través de la redistribución de la energía térmica. Las líneas principales de circulación atmosférica se constituyen de los vientos alisios en la región ecuatorial por debajo de los 30° de latitud y de los vientos del oeste con latitudes medias entre 30° y 60°. Las corrientes oceánicas también son factores importantes para determinar el clima, especialmente la circulación termohalina que distribuye la energía térmica de los océanos ecuatoriales a las regiones polares. El vapor de agua generado a través de la evaporación superficial es transportada por los patrones de circulación en la atmósfera. Cuando las condiciones atmosféricas permiten una elevación del aire caliente y húmedo, el agua se condensa y se deposita en la superficie en forma de precipitación. La mayor parte del agua se transporta a elevaciones más bajas de los sistemas fluviales y por lo general regresa a los océanos o es depositada en los lagos. Este ciclo del agua es un mecanismo vital para sustentar la vida en la tierra y es un factor primario en la erosión de las características de la superficie en períodos geológicos. Los patrones de precipitación varían enormemente, desde varios metros de agua por año a menos de un milímetro en el mismo periodo de tiempo. La circulación atmosférica, las características topológicas y las diferencias de temperatura determinan cuanta precipitación cae en cada región. La cantidad de energía solar que llega a la Tierra disminuye al aumentar la latitud. En las más altas latitudes la luz solar llega a la superficie en un ángulo menor debido a que la luz debe pasar a través de gruesas columnas de la atmósfera. Como resultado, la temperatura media anual del aire a nivel del mar se reduce en aproximadamente 0,4 °C por cada grado de latitud lejano del 82

Capítulo V ecuador. La Tierra puede ser sub-dividida en franjas latitudinales específicas del clima más o menos homogéneas. Que van desde el ecuador hasta las regiones polares, como la zona intertropical (o ecuatorial), el clima subtropical, el clima templado y climas polares. El clima también puede ser clasificado en función de la temperatura y las precipitaciones, que son regiones con clima caracterizado por las masas de aire bastante uniformes. La metodología más usada es la clasificación climática de Köppen (modificada por el estudiante de Wladimir Peter Köppen, Rudolph Geiger) cuenta con cinco grandes grupos (zonas tropicales húmedas, zonas aridas, zonas húmedas con latitud media, clima continental y frío polar), que se dividen en subtipos más específicos.


ÓRBITA

Capítulo V

El período de rotación de la Tierra con respecto al Sol, es decir, un día solar es de alrededor de 86,400 segundos de tiempo solar(86,400.0025 segundos SIU). El día solar de la Tierra es ahora un poco más largo de lo que era durante el siglo XIX debido a la aceleración de marea, cada día aumenta entre 0 y 2 ms SIU más El período de rotación de la Tierra en relación a las estrellas fijas, llamado día estelar por el Servicio Internacional de Rotación de la Tierra y Sistemas de Referencia (IERS por sus siglas en inglés), es de 86164.098903691 segundos del tiempo solar medio (UT1), o de 23h 56m 4.098903691s. El período de rotación de la Tierra en relación con la precesión o el movimiento da lugar al equinoccio de primavera, mal llamado el día sideral, es de 86164.09053083288 segundos del tiempo solar medio (UT1) (23h 56m 4.09053083288s). Así, el día sidéreo es más corto que el día estelar alrededor de 8.4 ms. La longitud del día solar medio en segundos SIU está disponible en el IERS para los períodos 1623-2005 y 1962-2005. Aparte de los meteoros en la atmósfera y de los satélites en órbita baja, el movimiento aparente de los cuerpos celestes en el cielo de la Tierra hacia al oeste, se mueven a una velocidad de 15°/h = 15’/min. Para las masas cercanas al ecuador celeste, esto es equivalente a un diámetro aparente del Sol o de la Luna cada dos minutos; desde la superficie del planeta, los tamaños aparentes del Sol y de la Luna son aproximadamente iguales.

El planeta tierra 83


ÓRBITA La Tierra orbita al Sol a una distancia media de unos 150 millones de kilómetros cada 365,2564 días solares, o un año sideral. Desde la Tierra, esto le da un movimiento aparente al Sol hacia el este con respecto a las estrellas con un ritmo de alrededor de 1°/día, o a un diámetro del Sol o de la Luna, cada 12 horas. Debido a este movimiento, en promedio le toma 24 horas (un día solar) para que la Tierra complete una rotación completa sobre su eje y así el sol regrese al meridiano. La velocidad orbital de la Tierra es de aproximadamente 29.8 km/s (107,000 km/h), que es lo suficientemente rápido como para cubrir el diámetro del planeta (unos 12,600 km) en siete minutos, y la distancia entre la Tierra y la Luna (384,000 km) en cuatro horas. La Luna gira con la Tierra en torno a un baricentro común cada 27.32 días con respecto a las estrellas de fondo. Cuando se combina con la revolución común del sistema Tierra-Luna alrededor del Sol, el período del mes sinódico, desde una luna nueva a la siguiente, es de 29.53 días. Visto desde el polo norte celeste, el movimiento de la Tierra, la Luna y sus rotaciones axiales son todas contrarias a la dirección de las manecillas del reloj (anti-horario). Visto desde un punto de vista sobre los polos norte o sobre del Sol y la Tierra, la Tierra parece girar en sentido anti-horario alrededor del sol. Los planos orbitales y axiales no están precisamente alineados: El eje de la Tierra está inclinado unos 23.4 grados de la perpendicular al plano Tierra-Sol, y el plano entre la Tierra y la Luna está inclinado unos 5 grados con respecto al plano Tierra-Sol. Sin esta inclinación, no habría un eclipses cada dos semanas, alternando entre los eclipses lunares y eclipses solares.

84

Capítulo V


LUNA

Capítulo V

Relativamente, la Luna es un gran planeta terrestre, que actúa como satélite natural, tiene un diámetro de alrededor una cuarta parte del de la Tierra. Es la luna más grande del Sistema Solar en relación al tamaño de su planeta, a pesar de que Caronte es mayor en relación con el planeta enano Plutón. Los satélites naturales que orbitan los demás planetas son llamados “lunas” en referencia a la Luna de la Tierra. La atracción gravitatoria entre la Tierra y la Luna causa las mareas en la Tierra. El mismo efecto en la Luna ha dado lugar a su acoplamiento de marea: su período de rotación es el mismo que le toma en orbitar la Tierra. Como resultado, siempre presenta la misma cara al planeta. A medida que la Luna orbita a la Tierra, diferentes partes de su cara son iluminadas por el Sol, dando lugar a las fases lunares, la parte oscura de la cara está separada de la parte iluminada del terminador solar. Debido a la interacción de las mareas, la Luna se aleja de la Tierra a una velocidad de aproximadamente 38 mm al año. Durante millones de años, estas modificaciones pequeñas y el alargamiento del día telúrico en alrededor de 23 µs, hace que año con año los cambios se tornen significativos. Durante el período devónico, por ejemplo, (hace aproximadamente 410 millones de años) un año tenía 400 días, cada uno con una duración de 21.8 horas.

luna y tierra 85


MARTE

Marte, apodado a veces como el Planeta rojo, es el cuarto planeta del Sistema Solar. Forma parte de los llamados planetas telúricos (de naturaleza rocosa, como la Tierra) y es el planeta interior más alejado del Sol. Es, en muchos aspectos, el más parecido a la Tierra. Tycho Brahe midió con gran precisión el movimiento de Marte en el cielo. Los datos sobre el movimiento retrógrado aparente (“lazos”) permitieron a Kepler hallar la naturaleza elíptica de su órbita y determinar las leyes del movimiento planetario conocidas como leyes de Kepler. Forma parte de los planetas superiores a la Tierra, que son aquellos que nunca pasan entre el Sol y la Tierra. Sus fases (porción iluminada vista desde la Tierra) están poco marcadas, hecho que es fácil de demostrar geométricamente. Considerando el triángulo Sol-TierraMarte, el ángulo de fase es el que forman el Sol y la Tierra vistos desde Marte. Alcanza su valor máximo en las cuadraturas cuando el triángulo STM es rectángulo en la Tierra. Para Marte, este ángulo de fase no es nunca mayor de 42°, y su aspecto de disco giboso es análogo al que presenta la Luna 3,5 días antes o después de la Luna llena. Esta fase, visible con un telescopio de aficionado, no logró ser vista por Galileo, quien sólo supuso su existencia. Es llamado Marte al igual que el dios de la guerra de la mitología romana Marte.

86

Capítulo V


CapĂ­tulo V

Nuevos indicios de agua helada en Marte 87


CARACTERÍSTICAS FISICAS

Tiene forma ligeramente elipsoidal, con un diámetro ecuatorial de 6.794 km y polar de 6.750 km. Medidas micrométricas muy precisas han mostrado un achatamiento de 0,01; tres veces mayor que el de la Tierra. A causa de este achatamiento, el eje de rotación está afectado por una lenta precesión debida a la atracción del Sol sobre el abultamiento ecuatorial del planeta. La precesión lunar, que en la Tierra es dos veces mayor que la solar, no tiene su equivalente en Marte. Rotación Se conoce con exactitud lo que demora la rotación de Marte debido a que las manchas que se observan en su superficie, oscuras y bien delimitadas, son excelentes puntos de referencia. Fueron observadas por primera vez en 1659 por Christiaan Huygens que asignó a su rotación la duración de un día. En 1666, Giovanni Cassini la fijó en 24 h 40 min, valor muy aproximado al verdadero. Trescientos años de observaciones de Marte han dado por resultado establecer el valor de 24 h 37 min 22,7 s para el día sideral (el período de rotación de la Tierra es de 23 h 56 min 4,1 s). La rotación de Marte es en el mismo sentido antihorario que lo hace la Tierra. De la duración del día sideral se deduce fácilmente que el día solar tiene en Marte una duración de 24 h 39 min 35,3 s. El día solar medio o tiempo entre dos pasos consecutivos del Sol medio por el meridiano del lugar, dura 24 h 41 min 18,6 s. El día solar en Marte tiene, igual que el de la Tierra, una duración variable, lo cual se debe a que los planetas siguen órbitas elípticas alrededor del Sol que no se recorren con uniformidad. No obstante, en Marte la variación es mayor por su elevada excentricidad. Para mayor comodidad en sus trabajos, los responsables de las misiones norteamericanas de exploración de Marte por sondas automáticas han decidido unilateralmente dar al día marciano el nombre de sol, sin preocuparse por el hecho de que esa palabra significa “suelo” en francés y designa en castellano la luz solar o, escrito con mayúscula, el astro central de nuestro sistema planetario. Traslación El año marciano dura 687 días terrestres o 668.6 soles. Un calendario marciano podría constar de dos años de 668 días por cada tres años de 669 días. 88

Capítulo V


Cap铆tulo V

Se aprecia la tenue atm贸sfera de Marte 89


GEOGRAÍA

Capítulo V

La superficie de Marte conserva las huellas de grandes cataclismos que no tienen equivalente en la Tierra, Una característica que domina parte del hemisferio norte, es la existencia de un enorme abultamiento que contiene el complejo volcánico de Tharsis. En él se encuentra el Monte Olimpo, el mayor volcán del Sistema Solar. Tiene una altura de 25 km (más de dos veces y media la altura del Everest sobre un globo mucho más pequeño que el de la Tierra) y su base tiene una anchura de 600 km. Las coladas de lava han creado un zócalo cuyo borde forma un acantilado de 6 km de altura. Hay que añadir la gran estructura colapsada de Alba Patera. Las áreas volcánicas ocupan el 10% de la superficie del planeta. Algunos cráteres muestran señales de reciente actividad y tienen lava petrificada en sus laderas. A pesar de estas evidencias, no fue hasta mayo de 2007 cuando el Spirit, descubrió, con un grado alto de certeza, el primer depósito volcánico signo de una antigua actividad volcánica en la zona denominada Home Plate, (una zona con lecho rocoso de unos dos metros de altura y fundamentalmente basáltica, que debió formarse debido a flujos de lava en contacto con el agua líquida), situada en la base interior del cráter Gusev. Una de las mejores pruebas es la que los investigadores llaman “bomb sag” (la marca de la bomba). Cuando se encuentran la lava y el agua, la explosión lanza trozos de roca por el aire. Uno de esos trozos que explotan en el aire vuelve a caer y se encaja en depósitos más blandos.

Orbitando alrededor del planeta Marte 90


EL AGUA EN MARTE El punto de ebullición depende de la presión y si ésta es excesivamente baja, el agua no puede existir en estado líquido. Eso es lo que ocurre en Marte: si ese planeta tuvo abundantes cursos de agua fue porque contaba también con una atmósfera mucho más densa que proporcionaba también temperaturas más elevadas. Al disiparse la mayor parte de esa atmósfera en el espacio, y disminuir así la presión y bajar la temperatura, el agua desapareció de la superficie de Marte. Ahora bien, subsiste en la atmósfera, en estado de vapor, aunque en escasas proporciones, así como en los casquetes polares, constituidos por grandes masas de hielos perpetuos. Todo permite suponer que entre los granos del suelo existe agua congelada, fenómeno que, por lo demás, es común en las regiones muy frías de la Tierra. En torno de ciertos cráteres marcianos se observan unas formaciones en forma de lóbulos cuya formación solamente puede ser explicada admitiendo que el suelo de Marte está congelado. También se dispone de fotografías de otro tipo de accidente del relieve perfectamente explicado por la existencia de un gelisuelo. Se trata de un hundimiento del suelo de cuya depresión parte un cauce seco con la huella de sus brazos separados por bancos de aluviones.

Capítulo V ser las líneas de costa de dos antiguos oceános. También subsiste agua marciana en la atmósfera del planeta, aunque en proporción tan ínfima (0,01%) que, de condensarse totalmente sobre la superficie de Marte, formaría sobre ella una película líquida cuyo espesor sería aproximadamente de la centésima parte de un milímetro. A pesar de su escasez, ese vapor de agua participa de un ciclo anual. En Marte, la presión atmosférica es tan baja que el vapor de agua se solidifica en el suelo, en forma de hielo, a la temperatura de –80 °C. Cuando la temperatura se eleva de nuevo por encima de ese límite el hielo se sublima, convirtiéndose en vapor sin pasar por el estado líquido.

Se encuentra también en paredes de cráteres o en valles profundos donde no incide nunca la luz solar, accidentes que parecen barrancos formados por torrentes de agua y los depósitos de tierra y rocas transportados por ellos. Sólo aparecen en latitudes altas del hemisferio Sur. La comparación con la geología terrestre sugiere que se trata de los restos de un suministro superficial de agua similar a un acuífero. De hecho, la sonda Mars Reconnaissance Orbiter ha detectado grandes glaciares enterrados con extensiones de docenas de kilómetros y profundidades del orden de 1 kilómetro, los cuales se extienden desde los acantilados y las laderas de las montañas y que se hallan a latitudes más bajas de lo esperado. Esa misma sonda también ha descubierto que el hemisferio norte de Marte tiene un mayor volumen de agua helada. Otra prueba a favor de la existencia de grandes cantidades de agua en el pasado marciano, en la forma de océanos que cubrían una tercera parte del planeta ha sido dada por el espectrómetro de rayos gamma de la sonda Mars Odyssey, el cual ha delimitado lo que parece 91


JUPITER Júpiter es el quinto planeta del Sistema Solar. Forma parte de los denominados planetas exteriores o gaseosos. Recibe su nombre del dios romano Júpiter (Zeus en la mitología griega). Se trata del planeta que ofrece un mayor brillo a lo largo del año dependiendo de su fase. Es, además, después del Sol, el mayor cuerpo celeste del Sistema Solar, con una masa casi dos veces y media la de los demás planetas juntos (con una masa 318 veces mayor que la de la Tierra y 3 veces mayor que la de Saturno). Júpiter es un cuerpo masivo gaseoso, formado principalmente por hidrógeno y helio, carente de una superficie interior definida. Entre los detalles atmosféricos destacan la Gran mancha roja, un enorme anticiclón situado en las latitudes tropicales del hemisferio sur, la estructura de nubes en bandas brillantes y zonas oscuras, y la dinámica atmosférica global determinada por intensos vientos zonales alternantes en latitud y con velocidades de hasta 140 m/s (504 km/h).

92

Capítulo V


CapĂ­tulo V

JĂşpiter es el quinto planeta del sistema solar en distancia al Sol 93


CARACTERÍSTICA

Júpiter es el planeta con mayor masa del Sistema Solar: equivale a unas 2,48 veces la suma de las masas de todos los demás planetas juntos. A pesar de ello, no es el planeta más masivo que se conoce: más de un centenar de planetas extrasolares que han sido descubiertos con masas similares o superiores a la de Júpiter. Júpiter también posee la velocidad de rotación más rápida de los planetas del Sistema Solar: sobre su eje gira en poco menos de 10 horas. Esta velocidad de rotación se deduce a partir de las medidas del campo magnético del planeta. La atmósfera se encuentra dividida en regiones con fuertes vientos zonales con periodos de rotación que van desde las 9h 50m 30s, en la zona ecuatorial, a las 9h 55m 40s en el resto del planeta. El planeta es conocido por una enorme formación meteorológica, la Gran Mancha Roja, fácilmente visible por astrónomos aficionados dado su gran tamaño, superior al de la Tierra. Su atmósfera está permanentemente cubierta de nubes que permiten trazar la dinámica atmosférica y muestran un alto grado de turbulencia. Tomando como referencia la distancia al Sol, Júpiter es el quinto planeta del Sistema Solar. Su órbita se sitúa aproximadamente a 5 UA, unos 750 millones de km del Sol. Masa La masa de Júpiter es tal, que su baricentro con el Sol se sitúa en realidad por encima de su superficie (1,068 de radio solar, desde el centro del Sol). A pesar de ser mucho más grande que la Tierra (con un diámetro once veces mayor) es considerablemente menos denso. El volumen de Júpiter es equivalente al de 1.317 Tierras, pero su masa es sólo 318 veces mayor. La unidad de masa de Júpiter (Mj) se utiliza para medir masas de otros planetas gaseosos, sobre todo planetas extrasolares y enanas marrones. Si bien Júpiter necesitaría tener 75 veces su masa para provocar las reacciones de fusión de hidrógeno necesarias y convertirse en una estrella, la enana roja más pequeña que se conoce tiene sólo un 30 por ciento más de radio que Júpiter (aunque tiene mucha más masa).

94

Capítulo V


ATMÓSFERA Y MAGNETOSFERA

Capitulo V

La atmósfera de Júpiter no presenta una frontera clara con el interior líquido del planeta; la transición se va produciendo de una manera gradual. Se compone en su mayoría de Hidrógeno (87%) y Helio (13%), además de contener Metano, Vapor de agua, Amoníaco, y Sulfuro de hidrógeno, todas estas con < 0,1% de la composición de la atmósfera total Magnetosfera Júpiter tiene una magnetosfera extensa formada por un campo magnético de gran intensidad. El campo magnético de Júpiter podría verse desde la Tierra ocupando un espacio equivalente al de la Luna llena a pesar de estar mucho más lejos. El campo magnético de Júpiter es de hecho la estructura de mayor tamaño en el Sistema Solar. Las partículas cargadas son recogidas por el campo magnético joviano y conducidas hacia las regiones polares donde producen impresionantes auroras. Por otro lado las partículas expulsadas por los volcanes del satélite Ío forman un toroide de rotación en el que el campo magnético atrapa material adicional que es conducido a través de las líneas de campo sobre la atmósfera superior del planeta. Se piensa que el origen de la magnetosfera se debe a que en el interior profundo de Júpiter, el hidrógeno se comporta como un metal debido a la altísima presión. Los metales son, por supuesto, excelentes conductores de electrones, y la rotación del planeta produce corrientes, las cuales a su vez producen un extenso campo magnético.

Esta imagen es una composición de tres imágenes en color tomadas el 18 de noviembre por el telescopio Gemini Norte.

95


ASTEROIDES TROYANO Y ESTRUCTURA INTERNA Además de sus satélites, el campo gravitacional de Júpiter controla las órbitas de numerosos asteroides que se encuentran situados en los puntos de Lagrange precediendo y siguiendo a Júpiter en su órbita alrededor del Sol. Estos asteroides se denominan asteroides troyanos y se dividen en cuerpos griegos y troyanos para conmemorar la Ilíada. El primero de estos asteroides en ser descubierto fue 588 Aquiles, por Max Wolf en 1906. En la actualidad se conocen cientos de asteroides troyanos. El mayor de todos ellos es el asteroide 624 Héctor. Estructura interna En el interior del planeta el hidrógeno, el helio y el argón (gas noble que se acumula en la superficie de Júpiter), se comprimen progresivamente. El hidrógeno molecular se comprime de tal manera que se transforma en un líquido de carácter metálico a profundidades de unos 15.000km con respecto a la superficie. Más abajo se espera la existencia de un núcleo rocoso formado principalmente por materiales helados y más densos de unas siete masas terrestres (aunque un modelo reciente aumenta la masa del núcleo central de este planeta entre 14 y 18 masas terrestres, y otros autores piensan que puede no existir tal núcleo, además de existir la posibilidad de que el núcleo fuera mayor en un principio, pero que las corrientes convectivas de hidrógeno metálico caliente le hubieran hecho perder masa). La existencia de las diferentes capas viene determinada por el estudio del potencial gravitatorio del planeta medido por las diferentes sondas espaciales.

96

Capítulo V


EXPLORACIÓN ESPACIAL DE JUPITER

Capítulo V

Júpiter ha sido visitado por varias misiones espaciales de NASA desde 1973. Las misiones Pioneer 10 y Pioneer 11 realizaron una exploración preliminar con sobrevuelos del planeta. La sonda Pioneer 10 sobrevoló Júpiter por primera vez en la historia en diciembre de 1973. La sonda Pioneer 11 le siguió justo un año después. Se tomaron las primeras fotos cercanas de Júpiter y de los satélites galileanos, se estudió su atmósfera, se detectó su campo magnético y se estudiaron sus cinturones de radiación. En 1995 la misión Galileo, que constaba de una sonda y un orbitador, inició una misión de exploración del planeta de 7 años. Aunque la misión tuvo importantes problemas con la antena principal que retransmitía los datos a la Tierra, consiguió enviar informaciones con una calidad sin precedentes sobre los satélites de Júpiter, descubriendo los océanos subsuperficiales de Europa y varios ejemplos de vulcanismo activo en Ío. La misión concluyó lanzando al orbitador contra el propio planeta para evitar una colisión futura con Europa que pudiera contaminar sus hielos. En diciembre de 2000 la misión espacial Cassini/ Huygens realizó un sobrevuelo lejano en su viaje con destino a Saturno obteniendo un conjunto de datos comparable en cantidad a los sobrevuelos realizados por las Voyager pero con una calidad de las observaciones mejor. A finales de febrero de 2007 el planeta Júpiter fue visitado por la sonda New Horizons en su viaje a Plutón. Están en estudio misiones dedicadas a la observación de Júpiter y su satélite Europa por parte de las agencias espaciales NASA y ESA.

Nave espacial estadounidense

97


SATURNO

Saturno es el sexto planeta del Sistema Solar, es el segundo en tamaño y masa después de Júpiter y es el único con un sistema de anillos visible desde nuestro planeta. Su nombre proviene del dios romano Saturno. Forma parte de los denominados planetas exteriores o gaseosos, también llamados jovianos por su parecido a Júpiter. El aspecto más característico de Saturno son sus brillantes anillos. Antes de la invención del telescopio, Saturno era el más lejano de los planetas conocidos y, a simple vista, no parecía luminoso ni interesante. El primero en observar los anillos fue Galileo junto con su ayudante Alejandro Campelo en 1610 pero la baja inclinación de los anillos y la baja resolución de su telescopio le hicieron pensar en un principio que se trataba de grandes lunas. Christiaan Huygens con mejores medios de observación pudo en 1659 observar con claridad los anillos. James Clerk Maxwell en 1859 demostró matemáticamente que los anillos no podían ser un único objeto sólido sino que debían ser la agrupación de millones de partículas de menor tamaño. Campelo ayudó a Galileo a hacer las operaciones y gracias a él, el científico pudo dejar medio resuelto el enigma de los anillos. Las partículas que habitan en los anillos de Saturno giran a una velocidad de 48.000 km/h, 15 veces más rápido que una bala.

98

Capítulo V


CapĂ­tulo V

Saturno tiene un anillo corrugado 99


ORIGEN DEL NOMBRE DE SATURNO

Capítulo V

Debido a su posición orbital más lejana que Júpiter los antiguos romanos le otorgaron el nombre del padre de Júpiter al planeta Saturno. En la mitología romana, Saturno era el equivalente del antiguo titán griego Crono, hijo de Urano y Gea que gobernaba el mundo de los dioses y los hombres devorando a sus hijos en cuanto nacían para que no lo destronaran. Zeus, uno de ellos, consiguió esquivar este destino y finalmente derrocó a su padre para convertirse en el dios supremo. Los griegos y romanos, herederos de los sumerios en sus conocimientos del cielo, habían establecido en siete el número de astros que se movían en el firmamento: el Sol, la Luna, y los planetas Mercurio, Venus, Marte, Júpiter y Saturno, las estrellas errantes que a distintas velocidades orbitaban en torno a la Tierra, centro del Universo. De los cinco planetas, Saturno es el de movimiento más lento, emplea unos treinta años (29,457 años) en completar su órbita, casi el triple que Júpiter (11,862 años) y respecto a Mercurio, Venus y Marte la diferencia es mucho mayor. Saturno destacaba por su lentitud y si Júpiter era Zeus, Saturno tenía que ser Crono, el padre anciano, que paso a paso deambula entre las estrellas.

La luna ubicada en las afueras de los anillos de Saturno 100


CARACTERÍSTICAS

Capítulo V

Saturno es un planeta visiblemente achatado en los polos con un ecuador que sobresale formando un esferoide ovalado. Los diámetros ecuatorial y polar son respectivamente 120.536 y 108.728 km. Este efecto es producido por la rápida rotación del planeta, su naturaleza fluida y su relativamente baja gravedad. Los otros planetas gigantes son también ovalados pero no en tan gran medida. Saturno posee una densidad específica de 690 kg/m³ siendo el único planeta del Sistema Solar con una densidad inferior a la del agua (1000 kg/m³). El planeta está formado por un 90% de hidrógeno y un 5% de helio. El volumen del planeta es suficiente como para contener 740 veces la Tierra, pero su masa es sólo 95 veces la terrestre, debido a la ya mencionada densidad media. El periodo de rotación de Saturno es incierto dado que no posee superficie y su atmósfera gira con un periodo distinto en cada latitud. Desde la época de los Voyager se consideraba que el periodo de rotación de Saturno, basándose en la periodicidad de señales de radio emitidas por él, era de 10 h 39 min 22,4 s (810,8°/día). Las misiones espaciales Ulysses y Cassini han mostrado que este periodo de emisión en radio varía en el tiempo siendo en la actualidad: 10 h 45 m 45 s (± 36 s). La causa de este cambio en el periodo de rotación de radio podría estar relacionada con la actividad criovolcánica en forma de géisers del satélite Encélado, que libera material en órbita de Saturno capaz de interaccionar con el campo magnético externo del planeta, utilizado para medir la rotación del núcleo interno donde se genera. En general se considera que el periodo de rotación interno del planeta puede ser conocido tan sólo de forma aproximada.

Se Puede apreciar la superficie gaseosa 101


EXPLORACIÓN ESPACIAL DE SATURNO Visto desde la Tierra, Saturno aparece como un objeto amarillento, uno de los más brillantes en el cielo nocturno. Observado a través de un telescopio, los anillos A y B se ven fácilmente, mientras que los D y E sólo se ven en condiciones atmosféricas óptimas. Con telescopios de gran sensibilidad situados en la Tierra se distinguen, en la niebla de la envoltura gaseosa de Saturno, pálidos cinturones y estructuras de bandas paralelas al ecuador. Tres naves espaciales estadounidenses incrementaron enormemente el conocimiento del sistema de Saturno: la sonda Pioneer 11 y las Voyager 1 y 2, que sobrevolaron el planeta en septiembre de 1979, noviembre de 1980 y agosto de 1981, respectivamente. Estas naves espaciales llevaban cámaras e instrumentos para analizar las intensidades y polarizaciones de la radiación en las regiones visible, ultravioleta, infrarroja y de radio del espectro electromagnético. También estaban equipadas con instrumentos para el estudio de los campos magnéticos y para la detección de partículas cargadas y granos de polvo interplanetario. En octubre de 1997 fue lanzada la nave Cassini, con destino a Saturno, que incluía también la sonda Huygens para explorar Titán, la mayor y más interesante de las lunas del planeta. Se trata del último proyecto de gran presupuesto de la NASA, en colaboración con la Agencia Espacial Europea y la Agencia Espacial Italiana. Tras un viaje de casi siete años, está previsto que la Cassini recoja datos sobre Saturno y sus satélites durante otros cuatro años. En octubre de 2002 la nave obtuvo su primera fotografía del planeta, tomada a una distancia de 285 millones de kilómetros. Fechas importantes en la observación y exploración de Saturno. 1610: Galileo observa a través de su telescopio los anillos de Saturno. 1655: Titán fue descubierto por el astrónomo holandés Christiaan Huygens. 1659: Christiaan Huygens observa con mayor claridad los anillos de Saturno y describe su verdadera apariencia.

102

Capítulo V 1789: Las lunas Mimas y Encélado son descubiertas por William Herschel. 1971: Sobrevuelo por la Pioneer 11. El 11 de septiembre de 1979 la sonda norteamericana Pioneer 11 se aproximo a una distancia de 20,000 km de las nubes superiores. 1980: Acelerada por el campo gravitatorio de Júpiter, la sonda Voyager 1 alcanzó Saturno el 12 de noviembre a una distancia de 124 200 km. En esta ocasión descubrió estructuras complejas en el sistema de anillos del planeta y consiguió datos de la atmósfera de Saturno y de su mayor satélite, Titán de la que pasó a menos de 6500 km. 1982: Voyager 2 se acerca a Saturno. 2004: Cassini/Huygens alcanza Saturno. Se convirtió en el primer vehículo en orbitar el lejano mundo y acercarse a sus anillos. La misión espacial tiene programado su término durante el año 2017. 2009: Gracias al telescopio espacial Spitzer se descubre otro anillo, alrededor de Saturno, que era invisible desde nuestro planeta, que a su vez es el más grande de nuestro Sistema Solar.


CapĂ­tulo V

Nave estelar Enterprise 103


URANO Urano es el séptimo planeta del Sistema Solar, el tercero en tamaño, y el cuarto más masivo. Toma nombre del dios griego de los cielos Urano, padre de Crono (Saturno). Aunque es detectable a simple vista en el cielo nocturno, no fue catalogado como planeta por los astrónomos de la antigüedad debido a su escasa luminosidad. Sir William Herschel anunció su descubrimiento el 13 de marzo de 1781, ampliando las fronteras conocidas del Sistema Solar hasta entonces por primera vez en la historia moderna. Urano es también el primer planeta descubierto por medio de un telescopio. La principal característica de Urano es la inclinación de su eje de rotación de casi noventa grados con respecto a su órbita; la inclinación no se limita sólo al mismo planeta, sino también a sus anillos, satélites y campo magnético. Urano posee además la superficie más uniforme de todos los planetas del Sistema Solar, con su característico color verde-azulado, producido por la combinación de gases presentes en su atmósfera, y tiene un sistema de anillos que no se pueden observar a simple vista. Además posee un anillo azul, una auténtica rareza planetaria. Urano es uno de los dos planetas del Sistema Solar que tiene un movimiento retrógrado, el otro es Venus.

104

Capítulo V


CapĂ­tulo V

Urano, el planeta esmeralda 105


DESCUBRIMIENTO

Urano fue el primer planeta descubierto que no era conocido en la antigüedad, aunque sí había sido observado y confundido con una estrella en muchas ocasiones. El registro más antiguo que se encuentra de él se debe a John Flamsteed, quien lo catalogó como la estrella 34 Tauri en 1691. También el astrónomo francés Pierre Le Monnier lo observó al menos en doce ocasiones entre los años 1750 y 1769. Sir William Herschel, un músico y astrónomo alemán en la corte del rey Jorge III de Inglaterra, descubrió el planeta el 13 de marzo de 1781, utilizando un telescopio construido por él mismo, aunque en un principio reportó que se trataba de un cometa. Inicialmente le dio el nombre de Georgium Sidus (la estrella de Jorge) en honor al rey que acababa de perder las colonias británicas en América, pero había ganado una estrella. Sin embargo, el nombre no perduró más allá de Gran Bretaña. Lalande, un astrónomo francés, propuso llamarlo Herschel en honor a su descubridor; el astrónomo sueco Erik Prosperin, por su parte, propuso el nombre de Neptuno para el nuevo planeta descubierto, algo que secundaron muchos de sus colegas. Finalmente fue el astrónomo alemán Johann Elert Bode quien acuñó el nombre de Urano, padre de Cronos (cuyo equivalente romano daba nombre a Saturno), aduciendo que ya que Saturno era el padre de Júpiter, lo más lógico era que el nuevo planeta tomara nombre a su vez del padre de Saturno. Es, de hecho, el único planeta cuyo nombre se deriva de una figura de la mitología griega (su homólogo romano es Caelus). Hacia 1827, Urano era el nombre más utilizado para el planeta incluso en Gran Bretaña. El símbolo astronómico de Urano se representa como . Es un híbrido entre los símbolos del planeta Marte y el Sol, puesto que Urano era dios y personificación misma del cielo en la mitología griega, el cual creían dominado por los poderes combinados del Sol y de Marte. El símbolo astrológico, sin embargo es , sugerido por Lalande en 1784. En una carta a Herschel, Lalande lo describía como «un globe surmonté par la première lettre de votre nom» («un globo coronado por la primera letra de su apellido»). En las lenguas de China, Vietnam, Japón y Corea la traducción literal del nombre del planeta es la estrella reina del cielo en japonés y chino. 106

Capitulo V


CARACTERÍSTICAS FÍSICAS

Capitulo V

Órbita e inclinación axial del eje de rotación La órbita de Urano es de 84 años terrestres. Su distancia media con respecto al Sol es de 3.000 millones de kilómetros aproximadamente (unas 20 UA). Las características de la órbita de Urano fueron en inicio calculadas por Pierre Simon Laplace en 1783. No tardaron en hacerse evidentes las discrepancias entre previsiones y observaciones, hasta que en 1841 John Couch Adams sugiere que estas diferencias sean acaso debidas a la influencia gravitacional de un planeta aún no descubierto. En 1845, Urbain Le Verrier comienza un estudio independiente sobre la órbita de Urano. El 23 de Septiembre de 1846, Johann Gottfried Galle, localizó el nuevo planeta, que posteriormente recibiría el nombre de Neptuno, muy cerca de la posición calculada para él por Le Verrier. El período rotacional del interior de Urano es de 17 horas y 14 minutos, sin embargo, al igual que en los demás planetas gigantes, la atmósfera superior experimenta fuertes vientos en el sentido de su rotación, por lo que en algunas latitudes, grandes extensiones de esta atmósfera pueden llegar a rotar en tan sólo 14 horas. La rotación de Urano, igual que la de Venus, es retrógrada y su eje está inclinado casi 90º grados sobre el plano de su órbita. Durante la mitad de cada órbita, es decir, durante 42 años, el polo norte apunta directamente hacia el Sol, y durante la otra mitad de la órbita es el hemisferio meridional el que recibe la luz solar, mientras que el hemisferio septentrional permanece en una larga noche helada.

Su eje de rotación es de 29’6º 107


ACTIVIDAD ATMOSFÉRICA Y CARACTERISTICAS Como los demás planetas jovianos del Sistema Solar, Urano posee bandas de nubes, pero son apenas visibles debido en parte a la existencia de metano en las capas superiores de la atmósfera, que le confieren su característico color verde-azulado. En la época del paso del Voyager 2, en 1986, el polo sur de Urano estaba prácticamente apuntando hacia el Sol. Entonces las nubes del planeta estaban débilmente distribuidas en bandas y zonas apenas perceptibles. Las observaciones del Telescopio espacial Hubble más recientes muestran una estructura más dinámica a medida que los rayos solares han ido alcanzando las latitudes ecuatoriales. En el año 2007 el Sol iluminó directamente el ecuador del planeta. El 23 de agosto de 2006, astrónomos de la Universidad de Wisconsin-Madison usando la Cámara Avanzada para Estudios ACS del Telescopio Espacial Hubble, tomaron la imagen de una mancha oscura en Urano de forma alargada y que mide 1.700 por 3.000 kilómetros. Esta actividad reciente podría estar relacionada con un cambio de estación; las estaciones en Urano parecen tener temporadas extremas en las que las corrientes atmosféricas trasladan el calor del hemisferio bañado por el Sol al hemisferio que se encuentra en la sombra. La interacción de éstas con las fuerzas de Coriolis, que circulan transversalmente a ellas, impiden la formación de patrones meteorológicos a gran escala. Conforme Urano se desplaza y el día y la noche se equilibran brevemente en ambos hemisferios, las fuerzas de Coriolis se hacen dominantes, permitiendo que se formen grandes tormentas y bandas de nubes. El campo magnético de Urano es también anómalo en posición y características, ya que su eje no está centrado en el planeta sino desplazado e inclinado casi 60º grados con respecto al eje de rotación. Es posible que el campo magnético se origine en zonas no demasiado profundas del planeta, parece ser que Urano genera de algún modo magnetismo en el interior de su manto helado. Muchas de las características de Urano, tales como la composición atmosférica y su campo magnético, las determinan las propiedades físicas y químicas de su manto de hielo. En particular, se considera que esta extensa capa de hielos que rodea al núcleo rocoso es la fuente del campo magnético detectado por la sonda Voyager 2 alrededor de Urano. La conductividad eléctrica de este manto helado es imprescindible para soste108

Capítulo V ner el mecanismo planetario de generación del campo magnético. Neptuno también tiene un campo magnético desplazado, por lo que es posible que el curioso eje magnético de Urano no esté ligado a las peculiaridades de su eje de rotación. Por lo demás, el campo magnético de Urano es bastante similar al de otros planetas gaseosos. Sin embargo está comprobado que tiene sus características especiales. El campo magnético de Urano es poco menos intenso que el terrestre, pero a diferencia de la Tierra, Urano no posee elementos metálicos en su interior, por esta razón, debe ser generado por otro tipo de material conductor. El campo magnético de Urano atrapa partículas de carga eléctrica elevada electrones y protones, principalmente- en cinturones de radiación que rodean el planeta.


CapĂ­tulo V

Es la primera y hasta el momento la Ăşnica nave que ha visitado a Urano. 109


NEPTUNO Neptuno es el octavo, forma parte de los denominados planetas exteriores o gigantes gaseosos, y es el primero que fue descubierto gracias a predicciones matemáticas. Su nombre proviene del dios romano Neptuno, divinidad de los mares. Tras el descubrimiento de Urano, se observó que las órbitas de Urano, Saturno y Júpiter no se comportaban tal como predecían las leyes de Kepler y de Newton. Adams y Le Verrier, de forma independiente, calcularon la posición de un hipotético planeta, Neptuno, que finalmente fue encontrado por Galle, el 23 de septiembre de 1846, a menos de un grado de la posición calculada por Adams y Le Verrier. Más tarde se advirtió que Galileo ya había observado Neptuno en 1611, pero lo había confundido con una estrella. Neptuno es un planeta dinámico, con manchas que recuerdan las tempestades de Júpiter. La más grande, la Gran Mancha Oscura, tenía un tamaño similar al de la Tierra, pero en 1994 desapareció y se ha formado otra. Los vientos más fuertes de cualquier planeta del Sistema Solar se encuentran en Neptuno. Es un planeta azulado muy similar a Urano; es ligeramente más pequeño pero más denso.

110

Capítulo V


CapĂ­tulo V

Neptuno es el cuarto de mayor tamaĂąo entre todos los planetas 111


DESCUBRIMIENTO Los dibujos de Galileo muestran que Neptuno fue observado por primera vez el 28 de diciembre de 1612, y nuevamente el 27 de enero de 1613; en ambas ocasiones, Galileo confundió Neptuno con una estrella cercana a Júpiter en el cielo nocturno. En 1821, Alexis Bouvard publicó en sus tablas astronómicas la órbita de Urano. Las observaciones revelaron perturbaciones sustanciales, que llevaron a Bouvard a lanzar la hipótesis de que la órbita de Urano debía estar siendo perturbada por algún otro cuerpo. En 1843, John Couch Adams calculó la órbita de un octavo planeta en función de las anomalías observadas en la órbita de Urano. Envió sus cálculos a Sir George Airy, el Astrónomo Real, quien pidió más información. Adams comenzó a redactar una respuesta, pero nunca llegó a enviarla. Urbain Le Verrier, el matemático codescubridor de Neptuno, en 1846, independientemente de Adams, produce sus propios cálculos. En el mismo año, John Herschel comenzó a abogar por el enfoque matemático y persuadió a James Challis para buscar el planeta propuesto por Le Verrier. Después de muchas dilaciones, Challis empezó su búsqueda, reacio, en julio de 1846. Sin embargo, en el ínterin, Le Verrier había convencido a Johann Gottfried Galle para buscar el planeta. Neptuno fue descubierto esa misma noche, el 23 de septiembre de 1846, donde Le Verrier había predicho que se encontraría. Challis más tarde se dio cuenta de que había observado previamente el planeta dos veces en agosto, sin advertirlo.

112

Capítulo V


COMPOSICIÓN Y ESTRUCTURA INTERNA

Capítulo V

La estructura interna de Neptuno se parece a la de Urano: un núcleo rocoso cubierto por una costra helada, oculto bajo una atmósfera gruesa y espesa. Los dos tercios interiores de Neptuno se componen de una mezcla de roca fundida, agua, amoníaco líquido y metano. El tercio exterior es una mezcla de gas caliente compuesto de hidrógeno, helio, agua y metano. Al igual que Urano y a diferencia de Júpiter y de Saturno, la composición de la estructura interna de Neptuno se cree que está formada por capas distintas. La capa superior está formada por nubes de hidrógeno, helio y metano, que se transforman de gas en hielo a medida que aumenta la profundidad. El manto rodea un núcleo compacto de roca y hielo. Este manto que rodea al núcleo rocoso de Neptuno, es una región extremadamente densa y caliente, se cree que en su interior pueden llegar a alcanzarse temperaturas de 1.700 a 4.700ºC. Se trata de un fluido de gran conductividad eléctrica es una especie de océano de agua y amoníaco. A 7.000 km de profundidad, las condiciones generan la descomposición del metano en cristales de diamante que se precipitan en dirección al núcleo.

Neptuno, hidrógeno, helio, vapor de agua y metano 113


SATÉLITES DE NEPTUNO Y CARACTERÍSTICAS En la actualidad, se conocen trece lunas de Neptuno. La mayor de ellas es Tritón, que posee más del 99,5% de la masa en órbita alrededor de Neptuno en sus 2.700 km de diámetro. Se destaca, no sólo por su gran tamaño, sino también por poseer una órbita retrógrada, algo excepcional dentro de los grandes satélites. En su superficie se han encontrado géiseres de nitrógeno. Posee forma esférica, mientras los demás satélites de Neptuno tienen una forma irregular. Tritón es considerado un objeto del Cinturón de Kuiper capturado por la gravedad de Neptuno. Por su tamaño y aspecto debe ser muy parecido a Plutón, hoy reclasificado como un planeta enano, el cual también es un objeto del Cinturón de Kuiper. Nereida, con 340 km de diámetro, tiene la órbita más excéntrica de todos los satélites del sistema solar, su distancia a Neptuno varía entre 1 353 600 y 9 623 700 kilómetros. Antes de la llegada de la sonda espacial Voyager 2 en 1989, sólo se conocían estos dos satélites gracias a las observaciones desde la Tierra: Tritón y Nereida. El Voyager 2 descubrió otros seis más: Náyade, Talasa, Despina, Galatea, Larisa y Proteo. Estos seis satélites son los más próximos al planeta y poseen una órbita más interior que la de Tritón. La mayoría de los satélites descubiertos miden menos de 200 km de diámetro y podrían ser restos de la luna anterior que fue destruida o desintegrada durante la captura de Tritón. Proteo es el de mayor tamaño con 400 km de diámetro. Después de eso, se han descubierto cinco pequeñas lunas más (mediante sondeos telescópicos) entre 2002 y 2003, situadas en órbitas lejanas al planeta, las cuales han recibido los nombres de Halímedes, Sao, Laomedeia, Psámate y Neso. Todas ellas poseen órbitas con elevada inclinación y tres tienen una órbita retrógada. Ambas características, iguales a las de Tritón, hacen suponer que su origen también fue el de objetos del Cinturón de Kuiper capturados por la gravedad de Neptuno. Es el satélite mas grande de Neptuno, y el mas frío del sistema solar que haya sido observado por una Sonda (-235º). La capa Polar de Tritón tiene géiseres que arrojan nieve de nitrógeno. Fue descubierto por William Lassell el 10 de octubre de 1846, y debe su nombre al dios Tritón de la mitología griega. Tiene un diámetro de 2707 km, lo cual lo convierte en el satélite más grande de 114

Capítulo V Neptuno y el séptimo del Sistema Solar, además de ser la única luna de gran tamaño que posee una órbita retrógrada, es decir, una órbita cuya dirección es contraria a la rotación del planeta. A causa de esta órbita retrógrada y a su composición, similar a la de Plutón, se considera que Tritón fue capturado del Cinturón de Kuiper por la fuerza gravitacional de Neptuno. Tritón se compone de una corteza de nitrógeno congelado sobre un manto de hielo el cual se cree cubre un núcleo sólido de roca y metal. Es de los pocos satélites del Sistema Solar del que se conoce que es geológicamente activo. Debido a esta actividad, su superficie es relativamente joven, y revela una compleja historia geológica a partir de misteriosos e intrincados terrenos criovolcánicos y tectónicos.


CapĂ­tulo V

Nave laska PD, diseĂąada en 1979 115


PLUTÓN En astronomía, Plutón es un planeta enano del sistema solar, que forma parte de un sistema planetario doble con su satélite Caronte. En la Asamblea General de la Unión Astronómica Internacional (UAI) celebrada en Praga el 24 de agosto de 2006 se creó una nueva categoría llamada plutoide, en la que se incluye a Plutón. Es también el prototipo de una categoría de objetos transneptunianos denominada plutinos. Posee una órbita excéntrica y altamente inclinada con respecto a la eclíptica, que recorre acercándose en su perihelio hasta el interior de la órbita de Neptuno. El sistema Plutón-Caronte posee dos satélites: Nix e Hidra. Estos son cuerpos celestes que comparten la misma categoría. Hasta el momento no ha sido visitado por ninguna sonda espacial, aunque se espera que la misión New Horizons de la NASA lo sobrevuele en 2015. Fue descubierto el 18 de febrero de 1930 por el astrónomo estadounidense Clyde William Tombaugh (1906-1997) desde el Observatorio Lowell en Flagstaff, Arizona, y considerado el noveno y más pequeño planeta del Sistema Solar por la Unión Astronómica Internacional y por la opinión pública desde entonces hasta 2006, aunque su pertenencia al grupo de planetas del Sistema Solar fue siempre objeto de controversia entre los astrónomos. Tras un intenso debate, la UAI decidió el 24 de agosto de 2006, por unanimidad, reclasificar Plutón como planeta enano, requiriendo que un planeta debe “despejar el entorno de su órbita”. Se propuso su clasificación como planeta en el borrador de resolución, pero desapareció de la resolución final, aprobada por la Asamblea General de la UAI. Desde el 7 de septiembre de 2006 tiene el número 134340, otorgado por el Minor Planet Center. Su gran distancia al Sol y a la Tierra, unida a su reducido tamaño, impide que brille por debajo de la magnitud 13,8 en sus mejores momentos (perihelio orbital y oposición), por lo cual sólo puede ser apreciado con telescopios a partir de los 200 mm de abertura, fotográficamente o con cámara CCD. Incluso en sus mejores momentos aparece como astro puntual de aspecto estelar, amarillento, sin rasgos distintivos (diámetro aparente inferior a 0,1 segundos de arco).

116

Capítulo V


Cap铆tulo V

Plut贸n fue descubierto en 1930 por Clyde Tombaugh 117


ÓRBITA, SATÉLITES, CARONTE La órbita de Plutón es muy excéntrica y, durante 20 de los 249 años que tarda en recorrerla, se encuentra más cerca del Sol que Neptuno. Es también la más inclinada con respecto al plano en el que orbitan los demás planetas del Sistema Solar, siendo su inclinación de 17º. Por eso no hay peligro alguno de que se encuentre con Neptuno. Cuando las órbitas se cruzan lo hacen cerca de los extremos de manera que, en sentido perpendicular a la eclíptica, les separa una enorme distancia. Plutón llegó por última vez a su perihelio en septiembre de 1989, y continuó desplazándose por el interior de la órbita de Neptuno hasta marzo de 1999. Actualmente se aleja del Sol, y no volverá a estar a menor distancia que Neptuno hasta septiembre de 2226 Satélites Existen tres lunas conocidas de Plutón. El satélite más grande de Plutón es Caronte; Caronte, de todas las lunas del sistema solar, es la más grande en comparación con su planeta huésped, es decir, ninguna otra luna es de un tamaño tan aproximado al del planeta que orbita. El tamaño tan parecido que tienen Plutón y Caronte hace que éstos provoquen el efecto de planeta doble, el otro sistema de “satélite-planeta” que tiene un efecto tan similar al de Plutón y Caronte es el caso de la Tierra y la Luna. La Tierra y la Luna ocupan el segundo lugar en similitud de tamaño. Plutón y Caronte.Hidra y Nix son los otros dos satélites de Plutón, pero no son tan grandes como Caronte. El nombre provisional que se les había dado es S/2005 P 1 y S/2005 P 2, respectivamente Caronte Es el primer satélite descubierto de Plutón. Tiene 1192 kilómetros de diámetro y está a 19.640 kilómetros del planeta. Desde que se descubrió en 1978 se les ha considerado como un planeta doble, pues sus masas son similares y el baricentro queda fuera de Plutón que es el cuerpo de mayor masa. De esta manera ambos orbitan en torno a dicho punto. Tras la Asamblea General de la UAI de 2006, la categoría de Caronte es aún incierto. Se le considera posible candidato a planeta enano, pero la definición no deja clara cómo realizar la distinción entre satélite o sistema binario aún no definido. Por ello sigue siendo un satélite del planeta enano Plutón. 118

Capítulo V


ATMÓSFERA

Capítulo V

Plutón posee una atmósfera extremadamente tenue, formada por nitrógeno, metano y monóxido de carbono, que se congela y colapsa sobre su superficie a medida que el planeta se aleja del Sol. Es esta evaporación y posterior congelamiento lo que causó las variaciones en el albedo del planeta, detectadas por medio de fotómetros fotoeléctricos en la década de 1950 (Kuiper y otros). A medida que el planeta se aproximó, los cambios se fueron haciendo menores, disminuyendo cuando se encontró en el perihelio orbital (1989). Se espera que estos cambios de albedo se repitan, pero a la inversa, a medida que el planeta se aleje del Sol rumbo a su afelio. Generalmente, se podría decir que la función de su atmósfera sería proteger la superficie, pero en este caso la atmósfera de Plutón sólo le sirve para evitar impactos de pequeños meteoros.

Investigación de Plutón 119




El Universo es todo, sin excepciones. Materia, energía, espacio y tiempo, todo lo que existe forma parte del Universo. Es muy grande, pero no infinito. Si lo fuera, habría infinita materia en infinitas estrellas, y no es así. Nuestro mundo, la Tierra, es minúsculo comparado con el Universo. Formamos parte del Sistema Solar, perdido en un brazo de una galaxia que tiene 100.000 millones de estrellas, pero sólo es una entre los centenares de miles de millones de galaxias que forman el Universo.


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.