Villa-Lobos - Ciranda das Sete Notas

Page 1

Heitor Villa-Lobos

Ciranda das Sete Notas for Bassoon and String Orchestra

Full Score



Heitor Villa-Lobos

Ciranda das Sete Notas for Bassoon and String Orchestra

Full Score



Ciranda Das Sete Notas 1            3

Allegro non troppo (q=120)

 

Bassoon

  

             Violin I      

Violin II

f

f

3 3

      3

f

Violoncello

6

 3            f  

sfz

           f 3

sfz

f

3

pp

pp

 





 3



pp

pp

pp

 

3









p

 

       

p

 

3

p

       

p

 



       

  

sfz



 

sfz

        

Viola

Double bass

sfz

H. Villa-Lobos (Rio, 1932)

3

© Copyright 1961 by SOUTHERN MUSIC PUBLISHING CO. INC. International Copyright Secured. All Rights Reserved.

    3

      

p

3


2

2

10

        

     

   

         

   

 

 

 

f

   

pizz.

  

pizz.

3

3

p

   

arco

   

  

    f    

  

 

  3

f

 

  

f

p

arco

f



3

 

p

p

   

   





 

 

3

mf

p

      3

      



3

        

 pizz.      

pizz.

3

3

3

 

     

   



pizz.

   

   

14

mf

    mf arco     mf

       mf   arco     arco

mf

3

3

           


3

3 18

 

         

 

  

         

3

  

        



3

22

  

 

  



3

   

3

   

       

           

      

 

           

3

       

3

 

                 3

3

   

   

  

  

 

 

 

  

  

 

  

  

 

 

 

         

 

   

         

  

  


4 26

  

     

4

              3 3 3

 

   

   

   

  

   

  

  

   

  

  

   

  

  

       

30

   

 3

3

3

 

   

   

   

   

   

 

 



  

        

3

3

3

3

     

     



      

    

     

      

    

     


5 34

 

 3

      



  

 

3



 

3

3

3

    

 

    3





  







  





  



 

  



 

pp



pp









pp

pp

pp

3



   





             

3

38

5

mf

3

3

 

   

3

3

          

                   mf                 

mf

       3


6 42

 



  

       

  

 

     

     

  

mf

    







f



  

 

      3

 

  

  

  

         

  

 





ff

   

mf

3

Div.

f



Div.      

3

3       

            

 mf

mf

 

    3    

3

f





       

                 

46

6

3

     3

    3

    3


7 50

 



          

    



      



     

    



    



 







3

3

     

  





3



                 

54

   



  



     



                 

       

      

7

                       







       

     





3

3

3

   

3

3




8

                     

58

        mf

       mf

      mf       mf

       mf

8

                             

   





      

       







   

 

 

 





62

      







            

                          mf        3                      3 3 mf  3              

mf


9 65

                             3 3

3













               p









3





p

p

9 69    



p

   

mf

3

 

 

mf

        mf pizz.

pizz.         

3 3                            3

  mf

3

            3

mf



p

 

3

f

  

3

3

3

3

3

   

3

3

3

  

  

 

3

     


10 74

10







                              

mf

   

Solo

   

 





                                 3      arco              3 3 mf

3          arco

mf

3

77

 

 

    

 



                

   

 

              

            3

3

             3             

3

3

3

3

3


11

                                 3 3       3

81

3

f

  

3



3



 



11   

  

 3   

85

 

    

pizz.

          

    

 

mf

 

 

pizz.

mf

  

3

  

3

  

  

  

 





      3  

       mf

     

pizz.

mf

 


12 90

      

  

         

93



     

pp

mf

pp

mf

pp

mf

pp

        mf

pp

               p arco   p   arco   p mf













           

mf

  

3

   

                    p           

   



12                       

arco

 

 

              

 

[p]



  



[p]                      [p] f

  

     

  

    

  

[p]



Div.

p



   

 

3


13 97

   





     



    

3

   



    

 

 

 

 

 





 



                               

             

  

          

                                       

13 Piu mosso (q=140) 104    



f

  

  

mf

  

   mf 

 

       

 

       

 

       



 



                       

             

                     









    mf     

 

     

mf      Tutti                                                       Solo

mf


14

14

110

 

 

 

            



    

 

 

    

          

 

       

      

                      

 

   3 3 Div.                3 mf   3            

mf

         3

   

               

      

mf



     

   

 

  

 

  

 

  

3

    



 

117

 

 





     

 



  

    

  

    

                           mf


15

    

 

123

 

                  

 

          

   

                                    

15 

     



  

         mf

         

       

     

allarg.



mf

         

      

                  mf                  mf mf                           mf                           

      

 

 

 

130



 

    mf

  

                                


16 136

     

  

mf





 

 





 





 

 

 

mf

mf

 



mf

  

Div.

p

         3

mf

   

 

Div.

p

pp



    3

        

    

   

           

 

               

 

 

 

Solo

  145           

3

 

    

   pp

 

   



  

quasi Andante (q=100 )

  mf

16

a tempo

 

   

   

   

pp

pp


17

         

   

151

   

   

157

  



 

    

 



 

 

  



 

 

     pp

Unis.

p

  



 

 





3

 

  

 

  

  









pp

         

 

3

3

3

3

18    

   

        

         

3

Solo

  

 

Div.

 

3

  

  

   

   

3

   

    

    

  

  

17

  





  

         

      

    


18 165

 

  



  

    



   

Div.

   

    

   

 

          

 

  

   



 

        

p

   

     p  

mf

   

mf

      p

     p

   

  

          mf

 

    mf     

  

f

 

 

Unis.

  

 

     

 

         

173

   

 

mf

      

  

A tempo I 19 (q=140)     

poco rall.

         

      

mf                                                  





            

       

     


19

20

180





   3 3                             3   3                           3                3                                     

187

      

     

 



 

  

 

 



    



  

    

    



                              

 



  

  

    

        

                                             


20 193

 

 

 

 

 

 

 

         

             

mf

   

  

          mf

 

      

             

   

                         

22 

          mf

mf

       







 



 

  f                          mf Div.    f                                  mf                                 

   

      

   mf



                                                         

Div.

 

      

 

200

 

21 

f

  

               




21







cresc.

    cresc.               cresc.          cresc.               

 

cresc.

cresc.

214



23 A tempo I do Andante (q=100)      

allarg.

206

                                              



          

 

24       





 

 

mf

pp

 

 


22 224

 







         





 

 





 

     

Meno (q=98)

          3

3

3

mf

3

 

25

rall. e dim.

    

234



 

       

 p



p









             pp 

3



pp

mf

 


23 242

 

   3

3

 



3

3

 3

3

    

              

 3

3





  

 

  









3

3

   



3

          



26  





mf



  

3

3

               





 

   3 3

 

 

247

3

3





   







                        



 















 









 




24



253

 

  

 

                3 3  3 3 3 3 3

27





3

        

                       



 



           

259

3

3

 





















3

3

 3

                       



 

 

 

  

  







 









  



3

         



     


25

28 264

 

   









mf

  

Div.

 

 









 

 



 

  

        

 



  





  

mf



29

270

   

          



3

   



 

  

    f

f

 

   

   



 















f

mf

Unis.

mf


26 276

30 

  f

                          3 pp                          3

  







 







 







pp

  pp

 









pp

pp

                               

282

                                        

  

 









 











 












27 288

 

31           

                           



    

                 







 











 











294

   







     

     

  



            

  









mf



  











 



mf

 

Div.

p


28

32 300   

  

  



               



  

  

  













 



 

 







33                                 

306

                                                                





  

 











 

   



 


29

           

      

                         

     

                        

     

        

311

 











 

  



    



   

  



     3                        3

316

rall.



 

 

3

    

     

           

   

     

           

    

 

 

  







 





 


30

34 A tempo 320    











                     

326































pp

pp

pp







 



dim.

        

ppp



dim.

             



dim.

 dim.

 





dim.





dim.



 

 

ppp

 

ppp

 

 

  

ppp



ppp

 

ppp

            



MUSIC FOR SOLO WOODWIND (with piano accompaniment unless otherwise noted)

Piccolo

Clarinet

Michael Daugherty The High and the Mighty

Miguel del Aguila Clarinet Concerto

Flute Ramiro Cortes Elegy

Derek Bermel SchiZm Theme and Absurdities (unac) Thracian Sketches (unac)

Donald Grantham Solitaire (unac)

Joseph Dorfman Bewitched Klezmer (unac)

Rodolfo Halffter Epinicio (unac) Huesped de las Nieblas

Alan Hovhaness Night of a White Cat

Mario Lavista Canto del Alba (unac) Danza de las Bailarinas de Degas Tania León Pet’s Suite

Jerome Kitzke She Left in the Crow Black Night Morten Lauridsen Canticle (unac) Arturo Márquez Zarabandeo

Theo Loevendie Music for Flute and Piano Strands (unac)

Robert Starer Recitation

Ned Rorem Mountain Song

Halsey Stevens Concerto for Clarinet and Str Orch

José Serebrier at dusk, in shadows... (unac)

Saxophone

Richard Wilson Flutations (unac) Music for Solo Flute (unac) Touchstones (unac)

Oboe Derek Bermel SchiZm Lukas Foss Concerto for Oboe

Roque Cordero Soliloquios No 2 (A sax, unac) Alan Hovhaness Suite for Alto Saxophone and Guitar Erland Von Koch Concerto for Alto Saxophone Juan Orrego-Salas Quattro Liriche Brevi (A sax) Albert Schmutz Sonata for Alto Saxophone

Rodolfo Halffter Egloga

Bassoon

Paul Pisk Suite

Miguel del Aguila Hexen

Ned Rorem Mountain Song

Theo Loevendie Gassir's Dream

Richard Wilson Character Studies

Richard Wilson Profound Utterances (unac)

HL00227184

U.S. $24.95


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.