11 minute read

Research Sample Collection Bolstered

The Penn Medicine Biobank (PMBB) collaborated with the IS team to increase its collection and storage of research samples by leveraging clinical workflows, systems, and barcodes. Integration with both our EHR and lab system was required to achieve this constructive collaboration.

The LIMS team and data analytics center (DAC) undertook development of new workflows within the lab information management system (LIMS) and new integrations between the LIMS and clinical systems. As a result, the PMBB team could scan existing EHR and lab labels on samples collected in clinical settings and link them to processed research samples within the lab system. These samples were then automatically linked back to the consented research participant.

Advertisement

Since the implementation, PMBB has added over 145,000 samples to the lab application as of June 30, 2022. These enhancements have allowed PMBB to easily receive and process more samples, enabling them to partner with Penn Medicine researchers to further their research goals.

Lancaster Community Supports Lead Abatement and Remediation Program

LGH took the initiative to provide community prevention, education, and remediation services to households of children with elevated blood lead levels and to aid secondary prevention resources in Lancaster County. Working with local government, the Community Health Services department coordinated lead hazard remediation and lead poisoning prevention education to child-occupied households in target communities. This increased lead poisoning awareness and decreased elevated lead levels across the pediatric community. Preventative services included blood lead screening, supporting the enforcement of local housing codes for lead abatement, and working with local government leaders to develop housing standards attracting private investment.

Data systems were integral in supporting lead case management, tracking the initiative’s impact. Through phone texting, Community Health Services provided communications methods to inform parents of lead screenings. Reports were created to track a child’s lead level and monitor until age six. Using the Efforts to Outcome Software (ETO), Community Health was able to measure the number of properties remediated, the number of children confirmed to live in a lead safe home, the number of children with lead levels screened, and the number of contracting jobs created. Resulting from the ETO software and the link of the eHealth medical record, between September 2021 and December 2022, there have been 1,606 program inquiries, with 200 home visits completed, and 153 lead remediated properties. This resulted in a community outreach of over 2,800 people.

CAR-T Program Available at the Ann B. Barshinger Cancer Institute

A team at Lancaster General Hospital developed a program to provide CAR-T services, at the Ann B. Barshinger Cancer Institute. This opportunity enabled Penn Medicine patients in the Lancaster region to receive this innovative treatment closer to their home. The team partnered with Novartis to gain site certification for use of their tisagenlecleucel (KYMRIAH) CAR-T product to treat patients with Diffuse Large B-Cell Lymphoma.

A CAR-T program leadership steering committee led the overall program approach, providing oversight to smaller working groups which included oncology, pharmacy, laboratory, blood bank, revenue cycle, quality, emergency services, critical care, project management, and information services. Groups worked hand in hand with the Penn Medicine Cellular Therapy team to develop future state workflows, create clinical documentation tools, and operational policies and procedures.

Chimeric Antigen Receptor

(CAR)-T cell therapy is an innovative cancer treatment that involves harvesting a patient’s own T-Cells and engineering them to find and kill cancer cells.

Use of EHR system foundation tools helped analysts create documentation tools for all staff involved in the patient’s CAR-T journey, to document directly into the EHR. This included CAR-T oncology treatment plans, a CAR-T checklist for coordinators to track their tasks, a CAR-T documentation template, order set to assist with CIBMTR reporting, flowsheets for infusion documentation, charge capture, as well as ED and critical care order sets to manage toxicity. The team also partnered with the New York Blood Bank who came and performed the leukapheresis cell harvesting procedure for our patients and subsequent cryopreservation of the cells as they made their way to Novartis for the engineering process.

Now, this life-saving CAR-T treatment has become available to patients in the south-central Pennsylvania region. The offering has been particularly helpful to these CAR-T patients who are also closely monitored for several weeks after their infusions, making the experience a game changer for them. The patients who signed up for the treatment would not have considered this therapy if they had had to do long-term travel to receive it. The team is hopeful to grow this program and offer more CAR-T treatments and extend to treat additional cancers in the future!

Live Streaming from the Surgical Theater at Pennsylvania Hospital

COVID-19 restrictions brought about a new opportunity for live streaming from the surgical theater at Pennsylvania Hospital (PAH) so that medical students could view procedures remotely in real-time. Because the number of people allowed in the operating rooms was limited by COVID-19 regulations, PAH wanted to provide on-demand live stream of OR procedures for rotating students. The benefits afforded medical students’ real-time exposure to operations that was required as part of their surgical rotation.

To make OR procedure streaming happen, the IT team:

• Configured and installed encoders

• Set up remote access

• Enabled port activation in ORs

• Created AD accounts and added students

• Developed button on F5 portal

• Updated Service Desk scripts

• Created instructional/tip sheets

Perelman School of Medicine Website Design and Enhancements

The Penn Medicine IS Web Design team developed and launched 85 websites over this report period. Requests for new websites and features, as well as large-scale redesigns of existing websites for Perelman School of Medicine (PSOM) programs, labs, offices, and other organizations resulted in the creation of 47 new sites and 38 redesigns. The teams’ efforts included a major redesign of the website for the Executive Vice Dean, to incorporate additional research content and a new searchable/ filterable PSOM portrait collection.

Notable highlights included refining the interactive map for the Center for Global Health website to incorporate scholar data and PSOM programs and partnerships around the world. A new interactive timeline was developed to showcase the many achievements and milestones at the Department of Neurology over their 150year history.

The team also analyzed and remediated several older sites to ensure compliance with the University’s standards. Improvements were made to the image slideshow used on hundreds of sites to ensure accessibility. By using our content management system, new and improved websites were maintained for several hundred PSOM responsive entities, met the University’s web accessibility standards, and were fully editable.

Progression Dashboard Helps Navigate Radiology Patient Movement

With the implementation of our PennChart EHR’s patient progression module, the radiology department at HUP and PCAM needed a new mechanism for reporting on room utilization and patient movement. Over 20 reports became obsolete after transitioning from the previous system. Relying on this data was crucial to managing capacity and resource availability, preventing bottlenecks, and understanding other issues related to patient flow.

Instead of replacing each individual report, a dashboard was developed to provide one integrated view to meet the department’s reporting needs. The data was sourced from PennChart’s analytics reporting database to produce metrics related to census trends, wait times, room occupancies, and resource utilization.

The dashboard did not just replace existing functionality, it expanded and provided improved information sought by our users. The previous reports were produced as static PDFs comprising many separate files. This old format allowed little opportunity for effective exploration and no means of drilling down and viewing the underlying data.

The dashboard data was designed to be broken down by modality, individual room, and resource and viewable by year, month, day-of-week, date, or even individual hour. The patient’s experience was reflected by metrics that tracked how much time was spent at each milestone of the visit from check-in to departure. In addition to summary data, exportable patient details were also available. Radiology administrators gained keen insight into where delays were happening, how to balance staffing and service availability, and when and what resources needed the most attention.

The dashboard became an insightful tool to help inform how to efficiently advance a patient through the stages of a radiology appointment, which improved the patient experience and quality of care.

Opioid Use Disorder Dashboard Helps Manage Population Health Outcomes

Deaths from opioid-related overdose continue to ravage many parts of our Nation. Philadelphia has one of the highest overdose death rates of any city in our country. The Penn Medicine Opioid Task Force launched a new strategic plan to significantly standardize and improve care for all and reduce opioid related harm.

The Opioid Use Disorder (OUD) analytics dashboard was created to enable Opioid task force members and clinical leaders across our hospital entities to track performance on key program measures as well as prioritize and target quality improvement initiatives.

Members from our data analytics center worked with our clinical partners to identify the metrics necessary and created a dashboard from the registry that was developed. The data was sourced from Caboodle and is our first dashboard using this source.

Migration to New Reporting Platform Enhances Data Analytics

Penn Medicine’s EHR vendor has been supporting a specific integration platform for data analytics and reporting tools. To maintain the optimal compatibility for EHR reporting, our technical team transitioned to this platform and migrated approximately 16,000 reports. A phased approach was developed to assess report retirement as a first step; followed by the report migration among operational, financial, and clinical business functions.

Dedicated resources assessed report audit logs to classify reports for transition or deactivation. A threshold was also set to ensure that critical annual reports were identified. 7,000 reports not viewed over a 14-month period were retired. The 40% decrease in reports within our environment reduced support and maintenance from a time and cost perspective and improved system reporting performance.

Several benefits occurred because of this change:

• Cost savings resulted from eliminating previous annual maintenance fees

• Reduction in the number of supported reporting platforms

• Decreased number of reports by consolidating and eliminating unused reports

Analytics Pipeline Revised for Better Source Data Ingestion

Integrating multiple data sources such as applications, external partners, user generated/maintained, machine, etc., requires users to forage and gather data both independently and locally. By using a new cloud platform, the data sources are integrated together into one location. The platform scales dynamically to accommodate all types of our workloads; thereby providing cost-effective performance. In addition, added data storage capacity allows us to cost effectively store vast amounts of data while providing proper access.

The organization is running more efficiently with significant improvements in the lag time to begin analytics processes, due in part to a revamping of underperforming IS processes and technologies laden with technical workarounds. Reports are delivered on the first of the month more consistently and without intervention, meaning that operations processes relying on this data can be conducted days sooner. Processes and iterations can now be measured on a watch instead of a calendar.

Slicer Dicer Data Models Empowers Users with Information at their Fingertips

The data analytics center (DAC) continues to receive an increasing number of requests for new reports and report modifications to access data in our PennChart EHR. To alleviate high volume and duplicate requests, the DAC team makes the Slicer Dicer self-service reporting tool available to users. The following data models allow PennChart users to create their own analytics reports.

Inpatient Medications data model contains information about medication dispenses and workflows. Pharmacy managers can analyze where dispenses come from, how long they take to prepare, how well pharmacy staff follow preparation and checking policies, and other pertinent details. Dispensed medication component information can be investigated related to the components themselves, their usage, and ordering and verification circumstances. Managers can drill down on data to keep an eye on key performance indicators, such as adherence to approved protocols or verification that dispenses have been fully reconciled.

Outpatient Prescriptions provides data about outpatient medication orders, including opioid prescriptions. Physicians can use the data model to help spot trends and search for patients and medications that meet specified prescribing criteria. Clinic managers can monitor e-prescribing rates, dispensing practices, and opioid management habits across different providers and locations.

Outpatient Opioid Prescriptions unlocks information about opioid outpatient prescriptions, including medication orders both from clinics and on discharge from the emergency department or hospital. The data model helps users analyze prescribing trends and identify orders that do not follow clinical guidelines.

DRGs model has information related to the DRGs coded on hospital accounts, including associated metadata such as DRG weights and expected lengths of stay. Coding managers can look for trends in coding practice, investigate changes in case mix index (CMI), and search for DRGs meeting specified criteria.

Professional Billing specific information aids with insurance follow-up where managers can spot denial trends, search for denials meeting specified criteria, monitor outstanding denied dollars, and investigate the highest priority denial for each outstanding charge.

Imaging Recommendations Managers and radiologists can gain insight into the follow-up recommendations radiologists place, and whether those recommendations are being resolved. Using data to understand and respond to trends can help patients receive prompt and necessary treatment.

ED Encounters data model contains information about ED visits, including visits to urgent care departments. Emergency clinicians can query for trends and search for encounters that meet specified criteria. Department managers can use the data model to monitor patient throughput, order turnaround times, and provider productivity.

“SlicerDicer is a perfect bridge between these two analytics tools. It is great for getting an answer to a question quickly, particularly at the level of a larger population, or for analyzing how users are interacting with a BPA through the BPA data model. Those are the ways I typically use it most commonly.”

J effrey Tokazewski, MD

“SlicerDicer is unique in that it allows for filtering on sequential events! We used it to compare rates of patients with iron-deficiency anemia diagnoses within Philadelphia. We looked at patients with metastatic cancers to trend referrals to palliative care over time. We have used it to create a baseline for immunization rates for older adults.”

Robert Goodacre Senior Improvement Advisor Cancer Program

PROJECTS COMPLETED IN FY 2021-2023

» Interfaces were created for Penn Medicine hospital entities to send COVID-19 lab tests to HUP as a centralized location for processing.

» Automated scheduling of mental health appointments into PennChart EHR.

» Integration of ultrasound application to the Penn Medicine visiting nurses’ network, with the ability to retrieve the studies in the EHR.

» Operating rooms enabled for school of medicine residents to connect remotely, through a protected network, to access live stream procedures.

» Created Electronic MyPennMedicine Co-Pay & Insurance Verification: New features were introduced to permit co-pay submission and insurance verification via myPennMedicine.

» Designed Touchless Clinical Workflows: New department processes and related workflows were created to administer pre-visit communications and standard pre-visit COVID-19 screening alternatives for patients and their companions.

» Implemented e-visit functionality for Post Op Dermatology patients to submit an image and/or clinical questionnaire answerable by a physician within 24-48 hours. Increased patient access and patient/ provider satisfaction.

» Implemented new workflows to accommodate remote work which included RightFax, Enable OneDrive, Teams features etc.

» Enhanced Mobile EHR app to include patient COVID-19 status on all patient lists and headers for caregivers to easily reference.

» Designed appointment reminders for patients through the telecommunications system - using a solution to issue text-based appointment reminders to patients prior to their visit was successfully implemented.

» Patient self-scheduling was launched for targeted services (Cardiology, Ob-Gyn, Dermatology, Rehab, Orthopedics, Oral-Max, and pain services).

» Implemented new functionality to enable primary care flu shot self-scheduling.

» MyPennMedicine clinical questionnaires were designed to meet the needs of specific departmentsenabling remote processes, related workflows, and electronic submission of responses by patients prior to visits.

» Introduced patient screening interface for Penn Medicine at Home: Integration to deliver pre-visit COVID-19 screening results.

» Provided senior leadership and Infection Control department with timely reporting on COVID-19 exposures and quarantines for Penn Medicine staff.

» Provided electronic records and administration billing for vaccine series – including all COVID-19 vaccines and boosters as well as pediatric vaccines.

» Enhanced web-based clinical portal to support tracking COVID-19 tests and results from the lab system for Penn faculty, staff, and students. Established an interface for University of Pennsylvania Interventional Support Center to retrieve results near real-time.

This article is from: