3 minute read
Jung-Kun Lee, PhD
538H Benedum Hall | 3700 O’Hara Street | Pittsburgh, PA 15261 P: 412-648-3395
jul37@pitt.edu Professor William Kepler Whiteford Faculty Fellow
Dr. Jung-Kun Lee joined the Department of Mechanical Engineering and Materials Science (MEMS) at the University of Pittsburgh (Pitt) in September 1, 2007, after spending more than 5 years at Los Alamos National Laboratory as a Technical Staff Member as well as a Director’sfunded Postdoctoral Fellow. From this background and in concert with Pitt’s strategic emphasis on energy and nanoscience, he has established the “Advanced Functional Materials Laboratory.” His primary research interest is to explore the functional properties of nanostructured materials to address an ever-increasing energy demand. This is a very broad and inter-disciplinary field. Therefore, he established inter-disciplinary research projects covering materials science, electrochemistry, applied physics, and photovoltaic device fabrication. His passion and commitment to high quality science have led to more than 130 publications in peer-review journals and more than 20 invited presentations. These numbers clearly indicates that his research quantity is far better than his peers at a same stage of the academic career. Quantitative index of his research also proves that the scientific quality of his research is very high and academic communities appreciate his achievements. His papers on functional materials have been cited more than 1500 times and the h-index of his papers is 21, which shows that he has focused on important issues of communities rather than trivial problems.
Solar Energy Harvesting
Dr. Lee has worked on solar-electricity and solar-fuel conversion using surface plasmons and shape-controlled nanomaterials. One of his approaches is to explore new types of plasmonic particles to enhance the light absorption of the solar cells containing such particles. To address the issue of the inefficient light absorption in the hybrid solar cells, he has investigated surface plasmons of the nanoshell to control the passage of photons. While the role of surface plasmons has been extensively explored in several types of the solar cells, there has been limited research to implement the surface plasmons in hybrid solar cells such as dye sensitized solar cells (DSSCs). Therefore, the gain in the efficiency of DSSCs employing existing plasmonic structures has been marginal. To effectively apply surface plasmons to DSSCs, it is essential to explore the physical interactions among surface plasmons, solar light modulation, and carrier/exciton generation in the nanostructured films. In recent research, Dr. Lee has investigated the influence of dielectric core-metallic nanoshell particles on solar energy conversion in DSSCs. His results demonstrate that the optical resonances and the near electromagnetic field response can be tuned by changing the dimension of the core and shell components. The incorporation of plasmonic particles consisting of metallic nanoshells and dielectric core into TiO2 mesoporous photoelectrodes enlarges the optical cross-section of dye sensitizers coated onto the photoelectrode and increases the energy conversion efficiency of DSSCs. The enhanced photonelectron conversion is attributed to tunable surface plasmons of the nanoshell.
Advanced Material Manufacturing
Dr. Lee’s group has also focused on advanced material manufacturing. This includes powder synthesis, green body processing (printing, pressing, slip casting), sintering and microstructure characterization. His approach is to explore the development of disruptive manufacturing techniques that can solve fundamental problems of materials and change an inherent structure-property relation in materials. His research interest in the area of manufacturing lies in 1) high contrast hydrophobic-hydrophilic patterns by an ink-jet printing of metal and ceramic nanoparticles to change interactions between water and material surface, 2) low temperature processing of bimodal SiC ceramic composites with high mechanical strength and machinability for nuclear fuel cladding, 3) synthesis of anisotropic carbide/nitride nanoparticles showing both metallic and catalytic properties for the counter electrode of electrochemical devices.