2 minute read

Guofeng Wang, PhD

538B Benedum Hall | 3700 O’Hara Street | Pittsburgh, PA 15261 P: 412-624-3325

guw8@pitt.edu Professor

Computational Materials Science Laboratory

The Wang laboratory at Pitt focuses on studying the composition-structure-processingproperty relation of materials using computational materials science techniques. The primary objective of the research is to develop computer simulation/modeling into a powerful scientific technique that accelerates, achieves, and amplifies scientific discoveries in the field of materials science and engineering. Computer simulation, as important as theory and experiment, is an integral part of contemporary basic and applied material sciences. It provides great opportunities to design, characterize, and optimize materials before the expensive experimental process of synthesis, characterization, assembly, and testing.

Research Activities

The main research activities of the laboratory are to develop and apply multi-scale simulation methods to solve problems related to material design and processing. Particularly, we are interested in the development and application of such atomistic simulation methods as density functional theory (DFT), molecular dynamics (MD), Monte Carlo (MC) and kinetic Monte Carlo (kMC) methods, for revealing the microscopic processes underlying the macroscopic properties of materials.

Figure 1. An equilibrium atomic structure of CoCrFeNi high entropy alloy attained from the MC simulation. Figure 2. (a) Nanoparticles of FePt L10 alloy. The gray and orange balls represent Pt and Fe atoms respectively. (b) Charge distribution of charged Al vacancy diffusion in a-Al2O3. The gray and red balls represent Al and O atoms respectively.

Current Research Projects

• Computational Design of Electrocatalysts: We predict the active sites, reaction energetics, and reaction rate for oxygen reduction reaction on Pt-segregated Pt alloy nanoparticles and pyrolyzed non-precious metal catalysts. The acquired knowledge will advance polymer electrolyte membrane fuel cell technology. • Atomistic Simulation of Magnetic Alloy Nanostructures:

We study the influence of surface segregation on the magnetic properties of CoPt and FePt nanostructures. The project is aimed at enhancing the performance of magnetic alloy nanomaterials for their application in high-density magnetic recording media. • Mechanical Behavior of High Entropy Alloys: Using atomistic simulation techniques, we investigate the material physics mechanism underlying the superior mechanical properties of high entropy alloys. • Modeling Diffusion in Metal Oxides: Using the firstprinciples DFT computation method, we predict the diffusion coefficient of charged ions through the lattice and grain boundaries of Al2O3, Cr2O3 and NiO crystal. Furthermore, we study the formation and growth of these metal oxides on high temperature alloys.

This article is from: