9 minute read

Glass Futures Planning a production and research facility

Planning a glass production facility, for the unimaginable

Detailed planning for the Glass Futures research and development (R&D) and training facility is underway, with input from a variety of professionals from various glass manufacturing sectors. Peter Firth* discusses the challenges of designing a facility that is both a research project and a glass melting facility.

Only a year ago, a Pilot Plant with the sole purpose of being a ‘playground’ for glass industry development work may have seemed unimaginable. Now that concept has come to reality in the form of the Glass Futures’ Global Centre of Excellence in St Helens, UK. Furthermore, this is a project jointly supported by UK national and local governments, for the benefit of the international glass industry.

Maybe even the concept of Glass Futures (GF) as a not-for-profit research and technology organisation seems unimaginable to some people. The clue is in the name of the company of course, ‘Glass Futures’. This is a company dedicated to securing the future of all types of glass products. Fundamentally, that is GF’s raison d’être. As such, it exists to serve the glass industry as a partner in addressing all the challenges and opportunities it faces.

In doing so, it aims to bring the various sectors of the glass industry together on common ground. That is as well as also supporting company-specific initiatives, all the while creating a pre-competitive collaborative environment.

If you then think about bringing such an R&D Glass Plant into reality, it won’t get any easier to imagine either. I am presently working on this as a Production Consultant, together with a large team of other global glass specialists. The other experts on GF’s Pilot Plant team consists of a mixture of GF employees and memberorganisation employees. Currently, the technical design group memberorganisations include O-I, Vidrala, Encirc, Guardian Glass, NSG Group and Siemens.

As a facility design group, we have to constantly remind ourselves to ‘take our production hat off’. By doing so, we can think more about the R&D and testing needs of the industry, rather than focusing on the glass production itself.

This means we need to plan on potentially rejecting a lot of production and internally recycling it. This is diametrically opposed to what most of us on the team are ‘programmed’ for, which is to achieve highly-efficient, high-quality glass production. In fact, at the very heart of the funding agreement as an R&D facility, is that the plant cannot produce any scale of commercial products. ‘Taking our product hat off’ is therefore a change in mindset that we have had to go through, carefully cultivating it together as team.

Having said all that, it is still necessary to end up with a Glass Plant that looks, feels and acts like a production facility, not just a series of fragmented glass testing facilities. This is what will make Glass Futures different to other glass testing facilities currently available to the industry. This is not to say that GF is looking to replace those services, but rather augment and compliment them, in fact welcoming them as potential partners with GF too.

Detailed planning for this facility is now well under way. However, this does not mean it cannot still be altered in response to the input and comments from the wider industry. Such input is now being welcomed in a series of Open Design Sessions held by regular webinars and open to all.

On a recent such webinar, I presented the current thinking behind the proposal for the production line(s), from the working-end to the packer. That thinking behind each of the three production areas of the hot end, the lehr, and the cold end was presented. Questions were invited in order to take on board any comments from those attending the webinar and some great challenges were raised, which allows us to develop our thinking even further.

Please look out for the webinars on Glass Futures’ social media channels and join future events to give us your input. This is your chance to help shape the development of this revolutionary new R&D Glass Plant.

In the area of the hot end, I discussed how we are planning to feed a single I.S. Machine for hollow-ware container production. The current layout drawings I presented showed the largest envisaged production equipment so that we can easily accommodate future plant development. In addition to the one forehearth feeding the I.S. Machine, there is proposed to be a second forehearth. This will have an outlet that can be used for drawing off a ribbon of flat glass.

The proposed extent of flat glass production equipment at the end of this second forehearth is currently quite vague and needs further consideration. However, as far as flat glass compositional development needs go, any testing in changes to glass compositions can be tested from samples of hollow glass taken at the I.S. Machine. This second forehearth will also enable good glassflow to be maintained through the furnace throat, specifically for when glass flow may need to be stopped or restricted at the I.S. Machine.

On both of these forehearths, there is intended to be a colourant section with a traditional frit introduction mechanism, followed by at least three rows of stirrers. The specification of this feature is still under consideration. However, in addition to introducing new colours, there will be the opportunity to make late-stage compositional changes to the glass and therefore support a further basis of experimentation.

There is a third forehearth and forming machine that have been considered, but this is just for future planning purposes. This is mostly for shopfloor design loadings calculations. Any future forming machine in that location may well not be another I.S. Machine, but, in any case, it would be lighter than the large forming machine shown on the layout drawing.

The single I.S. Machine currently proposed is a 10-Section bed with 6 installed sections. This will allow for development sections at either side of the operational 6 sections. Forming sections of different widths to the standard 21” section could be tested, with good access space being maintained for any such live development work or testing.

A further consideration for the I.S. Machine that has been built into the overall plant specification is the glass metal line height. This has been designed to be six metres to provide plenty of space between the shears and the gob distributor. There will therefore be ample space to facilitate future gob monitoring and control equipment, not always available in traditional glass plants.

Another area of deliberate space creation is on the machine conveyor extension. This will allow for easier access to possible future glass hot-end coatings development work, or hot end inspection development. In itself, the longer machine conveyor will present its own challenge because of the relatively low production tonnage combined with the length of the conveyor.

This naturally leads us to considering the specification for the lehr. The glass entering the lehr is likely to have cooled down much more than in a normal production situation with a more appropriately sized conveyor extension. As a result, it will need more heating in the first zone or two than would normally be required. This will be necessary to get the glass back up to the annealing temperature, before starting the slow cooling phase of annealing.

The challenge regarding the available space for the lehr was also raised during the presentation. The point I made was that a compromise on lehr width might be necessary to allow for the additional heating zone(s). This may mean longer lehr times for the product than would otherwise be more ideal in a production context. But this is a current area of focus and there might be other more satisfactory solutions available.

Attention then came on to the area of cold end inspection. The current layout proposal has two inspection legs. However, the output of the I.S. Machine will only need one inspection leg. Nevertheless, as a development facility, a second inspection leg is being proposed to be installed. Removable conveyor sections will allow for production to be recirculated at the cold end for inspection testing.

In fact, the inner inspection loop can be operating on recirculation mode, while the outer leg takes production to the packaging machine. It could also be configured so there are two inspection loops in recirculation mode and both with different products. This can be used to test either individual items of inspection equipment, or entire inspection legs.

The linking of the cold end data back to the hot end is of course also another area of focus. The involvement of Seimens as a key partner in the project will be a significant part of this, as well as for data management for the whole plant. In addition, there will be ample laboratory space available for off-line testing of glass production. This information will of course also be included in the ‘big data’ set being generated for the production and testing work being carried out.

On a wider point about the plant in general, a previous webinar had already covered the batch plant and furnace proposals. These proposals are focused on testing composition changes, validating the modelling of the melting process, refractory testing, furnace design and alternative fuels development for net-zero carbon production for the future.

If you feel the St Helens R&D plant project may be of interest to your company, please make contact and we will be happy to discuss this with you. There are many levels at which you can get involved, we can discuss what would be right for you. Or if you simply have any general points or suggestions to make, we would welcome your input.

*Peter Firth, Private Consultant (Glass Container Production), Working with Glass Futures Ltd on the GFL St Helens Project Contact: Via LinkedIn Profile (search ‘Peter J Firth’) or email peterjfirth@gmail.com

Glass Futures, https://www.glass-futures.org/ To find out more please contact Alanna Halsall, Media and Communications: alanna.halsall@glass-futures.org

This article is from: