Tenth-Order Iterative Methods withoutDerivatives forSolving Nonlinear Equations

Page 1

Quest Journals Journal of Research in Applied Mathematics Volume 3 ~ Issue 4 (2017) pp: 13-18 ISSN(Online) : 2394-0743 ISSN (Print): 2394-0735

www.questjournals.org Research Paper

Tenth-Order Iterative Methods withoutDerivatives forSolving Nonlinear Equations Y.Y. Al-Husayni1, I.A. Al-Subaihi2*, 1,2

(Department Of Mathematics, Faculty Of Science, Taibah University, Saudi Arabia,)

Received 14 Jan, 2017; Accepted 07 Feb, 2017 Š The author(s) 2014. Published with open access at www.questjournals.org ABSTRACT: In this paper, we construct new classes of derivative-free of tenth-order iterative methods for solving nonlinear equations. The new methods of tenth-order convergence derived by combining of theSteffensen's method, the Kung and Traub’s of optimal fourth-order and the Al-Subaihi's method. Several examples to compare of other existing methods and the results of new iterative methods are given the encouraging results and have deďŹ nite practical utility. Keywords: nonlinear equations, iterative methods, tenth-order, derivative-free, order of convergence.

I.

INTRODUCTION

The nonlinear equation is one of the most and oldest problems in scientific and engineering applications, so the researchers have beenlooking for optimization of solution for this problem. For solving the nonlinear equation đ?‘“(đ?›ž) = 0, where đ?‘“: đ??ź ⊆ â„? → â„?be a scalar function on an open intervalđ??ź, andđ?›žis a simple root of đ?‘“(đ?‘Ľ).The famous iterative method of optimal quadratic convergence to solve the nonlinear equation is Newton’s method (NM). đ?‘Ľđ?‘›+1 = đ?‘Ľđ?‘› −

� �� � ′ ��

.

(1)

The optimal conjectureis2đ?‘› , where đ?‘› + 1 is the number of function evaluation [1].We can define the 1 efficiency index as đ?›ż đ?›ź , such that đ?›ż be the order of the method and đ?›ź is the total number of functions evaluations per iteration [2,3]. The Newton's method have been modified by Steffensenby approximatingđ?‘“ ′ đ?‘Ľđ?‘› by forward difference, to get the famous Steffensen's method (SM) [4] đ?‘Ľđ?‘›+1 = đ?‘Ľđ?‘› −

đ?‘“(đ?‘Ľ đ?‘› )2

.

(2)

đ?‘“(đ?‘Ľ đ?‘› +đ?‘“(đ?‘Ľ đ?‘› ))−đ?‘“(đ?‘Ľ đ?‘› )

Which has same optimal order of convergence asNewton's method (NM), the efficiency index of both 1 method (1) and (2) are EI = 2 2 ≈ 1.4142. In this paper some iterative methods are constructedto develop new derivative-free iterative methods usingtheSteffensen's method, the Kung-Traub [1] and the Al-Subaihi's method [5]. A three- point of eighth-order convergence is constructed by Kung-Traub(KTM) [1]. đ?‘“(đ?‘Ľ đ?‘› )2

đ?‘Śđ?‘› = đ?‘Ľđ?‘› − đ?‘§đ?‘› = đ?‘Śđ?‘› − đ?‘Ľđ?‘›+1 = đ?‘§đ?‘› −

đ?‘“ đ?‘Śđ?‘› đ?‘“ đ?‘Ľ đ?‘› đ?‘“ đ?‘¤ đ?‘› đ?‘“ đ?‘§ đ?‘› −đ?‘“ đ?‘Ľ đ?‘›

1 đ?‘“ đ?‘§ đ?‘› −đ?‘“ đ?‘¤ đ?‘›

,

đ?‘“ đ?‘¤ đ?‘› −đ?‘“ đ?‘Ľ đ?‘› đ?‘“ đ?‘Ľđ?‘› đ?‘“ đ?‘¤đ?‘› 1 đ?‘“ đ?‘Śđ?‘› −đ?‘“ đ?‘Ľ đ?‘› đ?‘“ đ?‘¤ đ?‘› ,đ?‘Ľ đ?‘› 1 1 đ?‘“ đ?‘Śđ?‘› ,đ?‘§ đ?‘›

−

� � � ,��

−

−

1 � � � ,�� 1

,

đ?‘“ đ?‘Śđ?‘› −đ?‘“ đ?‘Ľ đ?‘›

(3) 1 � � � ,��

−

1 � � � ,� �

, (4)

where đ?‘¤đ?‘› = đ?‘Ľđ?‘› + đ?›˝đ?‘“(đ?‘Ľđ?‘› ), đ?‘› ∈ â„•đ?‘Žđ?‘›đ?‘‘đ?›˝ ∈ â„?. The conjecture of Kung and Traub’s for multipoint iterations, a without memory based which has optimal convergence, and the efficiency index of eighth-order convergence (KTM), (4), 1 is8 4 ≈ 1.6818.Recently, families of Iterative methods with higher convergence orders for solving nonlinear equations has been devolved by Al-Subaihi [5] as đ?‘Ľđ?‘›+1 = đ?‘§đ?‘› − *Corresponding Author:I.A. Al-Subaihi*

� �� � ′ ��

− đ?‘¤(đ?‘Ąđ?‘› )

đ?‘“ đ?‘§ đ?‘“ đ?‘§đ?‘› − ′ đ?‘› đ?‘“ đ?‘Śđ?‘›

� ′ ��

,

(5) 13 | Page


Tenth-Order Iterative Methods without Derivatives for Solving Nonlinear Equations wheređ?‘Śđ?‘› is iterative method of order đ?‘?, đ?‘§đ?‘› is iterative method of order đ?‘ž, (đ?‘ž > đ?‘? ), and đ?‘Ąđ?‘› =

đ?‘“ đ?‘§ đ?‘“ đ?‘§đ?‘› − ′ đ?‘› đ?‘“ đ?‘Ś

đ?‘›

� �� ′′

, where � �� is a weight function satisfying the conditions of � 0 = 1, � ′ 0 =

1đ?‘Žđ?‘›đ?‘‘ đ?‘¤ (0) < ∞. The families, (5),of order 2đ?‘ž + đ?‘?.

II.

DESCREPTION OF THE METHODS

In this section a new iterative families of higher-order with derivative-free are described. The construction depend on the Steffensen's, (2), theKung and Traub’s, (4), and the Al-Subaihi's methods, (5). Approximation of đ?‘“ ′ (đ?‘Ľđ?‘› ) by đ?‘“ ′ đ?‘Ľđ?‘› ≈

đ?‘“(đ?‘Ľ đ?‘› +đ?‘“ đ?‘Ľ đ?‘› )−đ?‘“ đ?‘Ľ đ?‘› đ?‘“ đ?‘Ľđ?‘›

,

(6)

and substituting in Newton's method (NM), (1), gives Steffensen's method (SM), (2), which is convergence quadratically and derivative-free. Let đ??şđ?‘› = đ?‘Ľđ?‘› + đ?‘“(đ?‘Ľđ?‘› )3 [6]. UsingtheSteffensen's method of order two and the second step of the Kung and Traub’s method of order fourth, (3), and substituting them in Al-Subaihi's method, (5), we have: đ?‘Śđ?‘› = đ?‘Ľđ?‘› − đ?‘§đ?‘› = đ?‘Śđ?‘› −

đ?‘“ đ?‘Ľ đ?‘› đ?‘“ đ??şđ?‘›

đ?‘“ đ?‘Ľđ?‘› đ?‘“ đ??şđ?‘› ,đ?‘Ľ đ?‘› 1

đ?‘“ đ?‘Śđ?‘› −đ?‘“ đ?‘Ľ đ?‘›

đ?‘Ľđ?‘›+1 = đ?‘§đ?‘› −

� �� � ′ ��

, −

đ?‘“ đ??şđ?‘› ,đ?‘Ľ đ?‘›

1

,

đ?‘“ đ??şđ?‘› ,đ?‘Śđ?‘›

đ?‘“ đ?‘§ đ?‘“ đ?‘§đ?‘› − ′ đ?‘› đ?‘“ đ?‘Śđ?‘› đ?‘“ ′ đ?‘Śđ?‘›

− đ?‘¤ đ?‘Ąđ?‘›

.

(7)

Using the approximation (see for example [7]) đ?‘“ ′ đ?‘Śđ?‘› = 2đ?‘“ đ?‘Śđ?‘› , đ?‘Ľđ?‘› − đ?‘“ đ??şđ?‘› , đ?‘Ľđ?‘› , where: đ?‘“ đ??şđ?‘› , đ?‘Ľđ?‘› = đ?‘“ đ??şđ?‘› , đ?‘Śđ?‘› = đ?‘“ đ?‘Śđ?‘› , đ?‘Ľđ?‘› =

đ?‘“ đ??şđ?‘› −đ?‘“ đ?‘Ľ đ?‘› đ??şđ?‘› −đ?‘Ľ đ?‘› đ?‘“ đ??şđ?‘› −đ?‘“ đ?‘Śđ?‘› đ??şđ?‘› −đ?‘Śđ?‘› đ?‘“ đ?‘Śđ?‘› −đ?‘“ đ?‘Ľ đ?‘› đ?‘Śđ?‘› −đ?‘Ľ đ?‘›

(8)

,

(9)

,

(10)

.

(11)

Substitute (8) into equation (7), to obtain a new class of methods (YSM) đ?‘Śđ?‘› = đ?‘Ľđ?‘› − đ?‘§đ?‘› = đ?‘Śđ?‘› − đ?‘Ľđ?‘›+1 = đ?‘§đ?‘› −

đ?‘“ đ?‘Ľ đ?‘› đ?‘“ đ??şđ?‘› đ?‘“ đ?‘Śđ?‘› −đ?‘“ đ?‘Ľ đ?‘› đ?‘“ đ?‘§đ?‘›

2đ?‘“ đ?‘Śđ?‘› ,đ?‘Ľ đ?‘› −đ?‘“ đ??şđ?‘› ,đ?‘Ľ đ?‘›

đ?‘“ đ?‘Ľđ?‘› đ?‘“ đ??şđ?‘› ,đ?‘Ľ đ?‘› 1

,

đ?‘“ đ??şđ?‘› ,đ?‘Ľ đ?‘›

− đ?‘¤ đ?‘Ąđ?‘›

(12) −

1 đ?‘“ đ??şđ?‘› ,đ?‘Śđ?‘›

,

đ?‘“ đ?‘§đ?‘› đ?‘“ đ?‘§ đ?‘› −2đ?‘“ đ?‘Ś ,đ?‘Ľ −đ?‘“ đ??ş đ?‘› ,đ?‘Ľ đ?‘› đ?‘› đ?‘›

2đ?‘“ đ?‘Śđ?‘› ,đ?‘Ľ đ?‘› −đ?‘“ đ??şđ?‘› ,đ?‘Ľ đ?‘›

(13) ,

(14)

the new iterative method (14) is of order tenth with derivative free, and five functions evaluations, so the 1 efficiency index (EI) = 10 5 ≈ 1.5849. Theorem1: suppose that đ?‘“: đ??ź ⊆ â„? → â„? in an open interval đ??ź with simple root đ?›žâˆˆđ??ź. If đ?‘Ľ0 be a suďŹƒciently close to đ?›žthen the methods (12‍ــ‏14) has tenth-order of convergence, if đ?‘Ąđ?‘› = ′

′′

đ?‘“ đ?‘§đ?‘› đ?‘“ đ?‘§ đ?‘› −2đ?‘“ đ?‘Ś ,đ?‘Ľ −đ?‘“ đ??ş đ?‘› ,đ?‘Ľ đ?‘› đ?‘› đ?‘› đ?‘“ đ?‘§đ?‘›

, and � ��

is a

function satisfying the conditions of đ?‘¤ 0 = 1, đ?‘¤ 0 = 1đ?‘Žđ?‘›đ?‘‘ đ?‘¤ (0) < ∞. 11 đ?‘’đ?‘›+1 = (24đ?‘˜28 − 44đ?‘˜26 k 3 + 30đ?‘˜24 đ?‘˜32 − 9đ?‘˜22 đ?‘˜33 + đ?‘˜34 )k 2 e10 n + O en Proof: let đ?‘’đ?‘› = đ?‘Ľđ?‘› − đ?›ž, and đ?‘˜đ?‘› =

� � (�) �!� ′ (�)

By Taylor expansion ofđ?‘“(đ?‘Ľđ?‘› ) đ?‘“(đ?‘Ľđ?‘› ) = đ?‘“ ′ đ?›ž đ?‘˜đ?‘› + đ?‘˜2 đ?‘’đ?‘›2 + đ?‘˜3 đ?‘’đ?‘›3 + đ?‘˜4 đ?‘’đ?‘›4 + đ?‘˜5 đ?‘’đ?‘›5 + â‹Ż + đ?‘˜8 đ?‘’đ?‘›8 + đ?‘˜9 đ?‘’đ?‘›9 + đ?‘˜10 đ?‘’đ?‘›10 + O e11 (15) n Dividing (9) by (15) đ?‘“ đ?‘Ľđ?‘› = đ?‘’đ?‘› − k 2 e2n + −2k 3 + 2k 22 e3n + −đ?‘“ ′ đ?›ž 3 k 2 − 3k 4 + 7k 2 k 3 − 4k 32 e4n + (−4đ?‘˜5 đ?‘“ đ??şđ?‘› , đ?‘Ľđ?‘› −3đ?‘“ ′ đ?›ž 3 k 3 + â‹Ż + 10đ?‘˜2 đ?‘˜4 + 6đ?‘˜32 )e5n + â‹Ż + (396đ?‘“ ′ đ?›ž 3 k 22 k 3 k 4 + 24đ?‘“ ′ đ?›ž 6 k 32 k 3 ′ 6 2 −13đ?‘“ đ?›ž đ?‘˜2 k 4 − 11đ?‘“ ′ đ?›ž 6 đ?‘˜2 đ?‘˜32 + â‹Ż − 28đ?‘“ ′ đ?›ž 3 k 8 − 166đ?‘“ ′ đ?›ž 3 k 2 k 3 k 5 − 9k10 )e10 n +O e11 (16) n Computing (12) by using (16), we have *Corresponding Author:I.A. Al-Subaihi*

14 | Page


Tenth-Order Iterative Methods without Derivatives for Solving Nonlinear Equations đ?‘Śđ?‘› = đ?›ž + k 2 e2n + 2k 3 − 2k 22 e3n + đ?‘“ ′ đ?›ž 3 k 2 + 3k 4 − 7k 2 k 3 + 4k 32 + (3đ?‘“ ′ đ?›ž 3 k 3 − 8đ?‘˜24 +20đ?‘˜22 k 3 − â‹Ż − 6đ?‘˜32 + 4đ?‘˜5 )e5n + â‹Ż + (−396đ?‘“ ′ đ?›ž 3 đ?‘˜22 k 3 k 4 − 24đ?‘“ ′ đ?›ž 6 k 32 k 3 + â‹Ż 11 +166đ?‘“ ′ đ?›ž 3 k 2 k 3 đ?‘˜5 + 9k10 )e10 n + O en (17) Use Taylor expansion of đ?‘Śđ?‘› about đ?›ž and simplifying, we obtain đ?‘“ đ?‘Śđ?‘› = đ?‘“ ′ đ?›ž [k 2 e2n + 2k 3 − 2k 22 e3n + đ?‘“ ′ đ?›ž 3 k 2 + 3k 4 − 7k 2 k 3 + 5k 32 e4n + (3đ?‘“ ′ đ?›ž 3 k 3 − 12đ?‘˜24 +24đ?‘˜22 k 3 − â‹Ż − 6đ?‘˜32 + 4đ?‘˜5 )e5n + â‹Ż + (−614đ?‘“ ′ đ?›ž 3 đ?‘˜22 k 3 k 4 + 230đ?‘“ ′ đ?›ž 3 k 2 k 3 k 5 + â‹Ż 11 −45k 4 k 7 − 49k 5 k 6 )e10 (18) n + O en ] And đ?‘“ đ?‘Ľđ?‘› đ?‘“ đ??şđ?‘› = đ?‘“ ′ đ?›ž [−đ?‘’đ?‘› − 2k 2 e2n + −đ?‘“ ′ đ?›ž 3 − 3k 3 +k 22 e3n + (−7đ?‘“ ′ đ?›ž 3 k 2 − 4k 4 + 3k 2 k 3 đ?‘“ đ?‘Śđ?‘› − đ?‘“ đ?‘Ľđ?‘› −k 32 )e4n + â‹Ż + (−155đ?‘˜22 k 3 k 4 − 86đ?‘“ ′ đ?›ž 3 k 2 k 3 k 5 + â‹Ż + 9k 4 k 7 + 9k 5 k 6 )e10 n +O e11 n ](19) Substituting (17), (19), (9) and (10) into (13), we obtain đ?‘§đ?‘› = đ?›ž + 2đ?‘˜23 − k 2 k 3 e4n + −10đ?‘˜24 + â‹Ż − 2k 2 k 4 − 2đ?‘˜32 e5n + â‹Ż + (−947đ?‘“ ′ đ?›ž 3 đ?‘˜22 k 3 k 4 −72đ?‘“ ′ đ?›ž 6 đ?‘˜23 k 3 + 46đ?‘“ ′ đ?›ž 6 đ?‘˜22 k 4 + â‹Ż + 178đ?‘“ ′ đ?›ž 3 k 2 đ?‘˜42 + 98đ?‘“ ′ đ?›ž 3 đ?‘˜22 k 6 11 +326đ?‘“ ′ đ?›ž 3 k 2 k 3 k 5 )e10 n + O en

(20)

Use Taylor expansion of (đ?‘§đ?‘› ), we get đ?‘“ đ?‘§đ?‘› = đ?‘“ ′ đ?›ž [ 2đ?‘˜23 − k 2 k 3 e4n + −10đ?‘˜24 + â‹Ż − 2k 2 k 4 − 2đ?‘˜32 e5n + â‹Ż + (−947đ?‘˜22 k 3 k 4 11 +3264đ?‘“ ′ đ?›ž 3 k 2 k 3 k 5 + 46đ?‘“ ′ đ?›ž 6 đ?‘˜22 k 4 − â‹Ż − 19k 3 k 8 − 27k 4 k 7 − 31k 5 k 6 )e10 n + O en ] (21) Expand 2đ?‘“ đ?‘Śđ?‘› , đ?‘Ľđ?‘› − đ?‘“ đ??şđ?‘› , đ?‘Ľđ?‘› to get 2đ?‘“ đ?‘Ľđ?‘› , đ?‘Śđ?‘› − đ?‘“ đ?‘Ľđ?‘› , đ??şđ?‘› = đ?‘“ ′ đ?›ž [1 + 2đ?‘˜22 − k 3 e2n + −đ?‘“ ′ đ?›ž 3 k 2 − 4đ?‘˜23 + â‹Ż − 2k 4 e3n + â‹Ż +(2đ?‘“ ′ đ?›ž 9 đ?‘˜24 + 472k 2 k 3 k 4 k 5 + 213đ?‘˜22 k 3 k 5 − â‹Ż − 176đ?‘˜24 k 5 11 +128đ?‘˜22 đ?‘˜33 )e10 n + O en ] đ?‘“ đ?‘§đ?‘› Then we computing đ?‘§đ?‘› − , we have

(22)

2đ?‘“ đ?‘Ľ đ?‘› ,đ?‘Śđ?‘› −đ?‘“ đ?‘Ľ đ?‘› ,đ??şđ?‘›

đ?‘“ đ?‘§đ?‘› đ?‘§đ?‘› − = đ?›ž + 4đ?‘˜25 − 4đ?‘˜23 k 3 + đ?‘˜32 k 2 e6n + (4k 2 k 3 k 4 − 28đ?‘˜26 + 54đ?‘˜24 k 3 2đ?‘“ đ?‘Ľđ?‘› , đ?‘Śđ?‘› − đ?‘“ đ?‘Ľđ?‘› , đ??şđ?‘› − â‹Ż + đ?‘“ ′ đ?›ž 3 đ?‘˜22 k 3 − 2đ?‘“ ′ đ?›ž 3 đ?‘˜24 )e7n + â‹Ż + (−399đ?‘“ ′ đ?›ž 3 đ?‘˜22 k 3 k 4 −44đ?‘“ ′ đ?›ž 6 đ?‘˜23 k 3 + 5đ?‘“ ′ đ?›ž 3 đ?‘˜22 k 4 + â‹Ż + 28đ?‘“ ′ đ?›ž 3 k 2 đ?‘˜42 11 +4đ?‘“ ′ đ?›ž 3 đ?‘˜22 k 6 + 44đ?‘“ ′ đ?›ž 3 k 2 k 3 k 5 )e10 (23) n + O en Then by Taylor expansion, we have đ?‘“ đ?‘§đ?‘› đ?‘“ đ?‘§đ?‘› − = đ?‘“ ′ đ?›ž [ 4đ?‘˜25 − 4đ?‘˜23 k 3 + đ?‘˜32 k 2 e6n + (4k 2 k 3 k 4 − 28đ?‘˜26 + 54đ?‘˜24 k 3 2đ?‘“ đ?‘Ľđ?‘› , đ?‘Śđ?‘› − đ?‘“ đ?‘Ľđ?‘› , đ??şđ?‘› −8đ?‘˜23 k 4 − 24đ?‘˜22 đ?‘˜32 + â‹Ż − 2đ?‘“ ′ đ?›ž 3 đ?‘˜24 )e7n + â‹Ż +(−399đ?‘“ ′ đ?›ž 3 đ?‘˜22 k 3 k 4 + 44đ?‘“ ′ đ?›ž 3 k 2 k 3 k 5 + â‹Ż − 159đ?‘˜33 k 4 11 +9k 2 đ?‘˜52 + 21đ?‘˜32 k 6 )e10 (24) n + O en ] Substituting (23), (24), (22) and đ?‘¤(đ?‘Ąđ?‘› ) is weight function into (14), we get 11 đ?‘Ľđ?‘›+1 = đ?›ž + (24đ?‘˜28 − 44đ?‘˜26 k 3 + 30đ?‘˜24 đ?‘˜32 − 9đ?‘˜22 đ?‘˜33 + đ?‘˜34 )k 2 e10 n + O en Finally, we have 11 đ?‘’đ?‘›+1 = (24đ?‘˜28 − 44đ?‘˜26 k 3 + 30đ?‘˜24 đ?‘˜32 − 9đ?‘˜22 đ?‘˜33 + đ?‘˜34 )k 2 e10 .∎ n + O en And we take some special method of (14), by multiple uses of weight function đ?‘¤ đ?‘Ąđ?‘› which satisfies the conditions at Theorem1 as Method1: choosing đ?‘¤ đ?‘Ąđ?‘› = (1 + đ?‘Ąđ?‘› + đ?œƒđ?‘Ąđ?‘› 2 ), đ?œƒ ∈ â„? A new families of methods can be written as đ?‘“ đ?‘§

đ?‘Ľđ?‘›+1 = đ?‘§đ?‘› −

đ?‘“ đ?‘§đ?‘› 2đ?‘“ đ?‘Śđ?‘› ,đ?‘Ľ đ?‘› −đ?‘“ đ??şđ?‘› ,đ?‘Ľ đ?‘›

− (1 + đ?‘Ąđ?‘› + đ?œƒđ?‘Ąđ?‘› 2 )

đ?‘› đ?‘“ đ?‘§ đ?‘› −2đ?‘“ đ?‘Ś ,đ?‘Ľ −đ?‘“ đ??ş đ?‘› ,đ?‘Ľ đ?‘› đ?‘› đ?‘› 2đ?‘“ đ?‘Śđ?‘› ,đ?‘Ľ đ?‘› −đ?‘“ đ??şđ?‘› ,đ?‘Ľ đ?‘›

.

(25)

Method2: the function � �� =

1

,đ?œƒâˆˆâ„?

(1−đ?‘Ą đ?‘› +đ?œƒ đ?‘Ą đ?‘› 2 )

Gives another group characterized by the iterative function *Corresponding Author:I.A. Al-Subaihi*

15 | Page


Tenth-Order Iterative Methods without Derivatives for Solving Nonlinear Equations � �

đ?‘Ľđ?‘› +1 = đ?‘§đ?‘› −

đ?‘› đ?‘“ đ?‘§đ?‘› − 2đ?‘“ đ?‘Ś đ?‘› ,đ?‘Ľ đ?‘› −đ?‘“ đ??ş đ?‘› ,đ?‘Ľ đ?‘› (1−đ?‘Ą đ?‘› +đ?œƒđ?‘Ą đ?‘› 2 ) 2đ?‘“ đ?‘Śđ?‘› ,đ?‘Ľ đ?‘› −đ?‘“ đ??şđ?‘› ,đ?‘Ľ đ?‘›

� ��

1

−(

2đ?‘“ đ?‘Śđ?‘› ,đ?‘Ľ đ?‘› −đ?‘“ đ??şđ?‘› ,đ?‘Ľ đ?‘›

)

.

(26)

Method3: the choice � �� = (1 +

đ?‘Ąđ?‘› 1+đ?œƒ đ?‘Ą đ?‘›

), đ?œƒ ∈ â„?

A new family of methods can be obtained as � �

đ?‘Ľđ?‘› +1 = đ?‘§đ?‘› −

đ?‘“ đ?‘§đ?‘› 2đ?‘“ đ?‘Śđ?‘› ,đ?‘Ľ đ?‘› −đ?‘“ đ??şđ?‘› ,đ?‘Ľ đ?‘›

− (1 +

đ?‘› đ?‘“ đ?‘§ đ?‘› −2đ?‘“ đ?‘Ś ,đ?‘Ľ −đ?‘“ đ??ş đ?‘› ,đ?‘Ľ đ?‘› đ?‘› đ?‘› 1+đ?œƒ đ?‘Ą đ?‘› 2đ?‘“ đ?‘Śđ?‘› ,đ?‘Ľ đ?‘› −đ?‘“ đ??şđ?‘› ,đ?‘Ľ đ?‘›

đ?‘Ąđ?‘›

)

.

(27)

Method4: let đ?‘¤ đ?‘Ąđ?‘› = (1 + đ?‘Ąđ?‘› ), then the new method will become đ?‘Ľđ?‘›+1 = đ?‘§đ?‘› −

đ?‘“ đ?‘§đ?‘› 2đ?‘“ đ?‘Śđ?‘› ,đ?‘Ľ đ?‘› −đ?‘“ đ??şđ?‘› ,đ?‘Ľ đ?‘›

− (1 + đ?‘Ąđ?‘› )

đ?‘“ đ?‘§đ?‘› 2đ?‘“ đ?‘Ś đ?‘› ,đ?‘Ľ đ?‘› −đ?‘“ đ??ş đ?‘› ,đ?‘Ľ đ?‘›

đ?‘“ đ?‘§đ?‘› −

2đ?‘“ đ?‘Śđ?‘› ,đ?‘Ľ đ?‘› −đ?‘“ đ??şđ?‘› ,đ?‘Ľ đ?‘›

.

(28)

The weighted functions (25-28) have been used to give the methods (YSM1 – YSM4), respectively.

III.

NUMERICAL RESULT

The present tenth-order method given by (YSM), (14), to compare different methods to solve the nonlinear-equation to verify the effectiveness of the tenth-order methods with derivative-free. We compare the new families (YSM1 – YSM4) with the Steffensen’s method (SM), (2),thefourth –order method with derivative-free of Kung and Traub (KTM), (3),andninth-order without derivative of Malik's, AlFahid's and Fayyaz'smethods(FM), [8] đ?œ…đ?‘“ (đ?‘Ľ đ?‘› )2

đ?‘Śđ?‘› = đ?‘Ľđ?‘› − đ?‘§đ?‘› = đ?‘Śđ?‘› −

,

đ?‘“ đ?‘Ľ đ?‘› −đ?‘“ đ?œ‚ đ?‘› đ?œ…đ?‘“ (đ?‘Śđ?‘› )2 đ??ť1 (đ?‘Ą1 ) đ?‘“ đ?‘Ś −đ?‘“ đ?œ? đ?‘›

,

đ?‘›

đ?‘Ľđ?‘›+1 = đ?‘§đ?‘› − đ??ť2 (đ?‘Ą1 , đ?‘Ą2 , đ?‘Ą3 , đ?‘Ą4 ) wheređ?œ… are real parameters,đ?œ‚đ?‘› = đ?‘Ľđ?‘› − đ?œ…đ?‘“ đ?‘Ľđ?‘› , đ?œ?đ?‘› = đ?‘Śđ?‘› − đ?œ…đ?‘“ đ?‘Śđ?‘› ,đ?‘Ą1 = đ?‘Ą2 =

đ?‘“ đ?‘Śđ?‘› đ?‘“ đ?‘Śđ?‘› đ?‘“ đ?‘Ľ đ?‘› −đ?‘“ đ?œ‚ đ?‘› đ?œ•đ??ť1

đ??ť1 0 = 1, đ?œ•đ??ť2 đ?œ•đ?‘Ą 4

đ?œ•đ?‘Ą 1

, đ?‘Ą3 =

đ?‘“ đ?‘§đ?‘› đ?‘“ đ?œ?đ?‘›

, đ?‘Ą4 =

� �� � ��

0,0,0,0 = 1, ( Let đ??ť1 =

1−đ?‘Ą 1

đ?‘“ đ?‘Śđ?‘› đ?‘“ đ?œ? đ?‘› đ?‘“ đ?‘Ľ đ?‘› −đ?‘“ đ?œ‚ đ?‘›

,

(29)

,

, andđ??ť1 , đ??ť2 satisfying the condition

0 = 1,đ??ť2 0,0,0,0 = 1, 1

đ?œ…đ?‘“ đ?‘Śđ?‘› đ?‘“ đ?‘§ đ?‘› đ?‘“ đ?‘Śđ?‘› −đ?‘“ đ?œ? đ?‘›

đ?œ•đ??ť2 đ?œ•đ?‘Ą 1

and đ??ť2 =

0,0,0,0 = 1, 1

1−đ?‘Ą 1 −đ?‘Ą 2 −đ?‘Ą 3 −đ?‘Ą 4

đ?œ•đ??ť2 đ?œ•đ?‘Ą 2

0,0,0,0 = 1,

đ?œ•đ??ť2 đ?œ•đ?‘Ą 3

0,0,0,0 = 1 and

).

1

The efficiency index of (FM), (30), is 9 5 ≈ 1.5518, and the eighth –order (KTM1), (4), and the tenth-order with derivative of Hafiz's method (HM), [9] đ?‘“(đ?‘Ľ ) đ?‘Śđ?‘› = đ?‘Ľđ?‘› − ′ đ?‘› , đ?‘§đ?‘› = đ?‘Śđ?‘› −

� (� � ) 2�(�� )� ′ (�� )

2[đ?‘“ ′ đ?‘Śđ?‘› ]2 −đ?‘“(đ?‘Śđ?‘› )đ?‘ƒ đ?‘“ đ?‘“ đ?‘§đ?‘›

đ?‘Ľđ?‘›+1 = đ?‘§đ?‘› − where đ?‘ƒđ?‘“ =

2 đ?‘Śđ?‘› −đ?‘Ľ đ?‘›

,

đ?‘“ đ?‘§ đ?‘› ,đ?‘Śđ?‘› + đ?‘§ đ?‘› −đ?‘Śđ?‘› đ?‘“ đ?‘§ đ?‘› ,đ?‘Śđ?‘› ,đ?‘Śđ?‘›

,

(30)

2đ?‘“ ′ đ?‘Śđ?‘› + đ?‘“ ′ đ?‘Ľđ?‘› − 3đ?‘“ đ?‘Śđ?‘› , đ?‘Ľđ?‘› .

The efficiency index of (HM), (29), is 10

1

5

≈ 1.5849, which the same as the new families (YSM), (14),

The MATLAB program is used for all the computations using 2000 digit, Table 2 present are the number of iterations to approximate the zero (IT) and containing the value of đ?‘“(đ?‘Ľđ?‘› ) đ?‘Žđ?‘›đ?‘‘ đ?‘Ľđ?‘› +1 − đ?‘Ľđ?‘› . The đ?‘’ convergence order đ?›ż of a new iterative methods is over by the equation limđ?‘›â†’∞ đ?‘› +1đ?›ż = đ?‘? ≠0, then values of the đ?‘’đ?‘›

computational order of convergence (COC) may be approximated as đ?‘?đ?‘œđ?‘? ≈

ln

(đ?‘Ľ đ?‘› +1 âˆ’Îł) (đ?‘Ľ đ?‘› âˆ’Îł)

đ?‘™đ?‘› (đ?‘Ľ đ?‘› âˆ’Îł) (đ?‘Ľ đ?‘› −1 âˆ’Îł)

, (see for

example [10]) The following criteria đ?‘Ľđ?‘› +1 − đ?‘Ľđ?‘› ≤ 10−100 , is used to stop the iteration process in all examples. The following test functions are used to complain methods, with a simple roots in: *Corresponding Author:I.A. Al-Subaihi*

16 | Page


Tenth-Order Iterative Methods without Derivatives for Solving Nonlinear Equations Table 1: Test functions and their simple root. Functions Roots đ?‘“1 đ?‘Ľ = đ?‘Ľ + 2 đ?‘’ đ?‘Ľ − 1, đ?›ž = −0.44285440100239 đ?‘“2 đ?‘Ľ = sinâ Ą (đ?‘Ľ)2 − đ?‘Ľ 2 + 1, đ?›ž = 1.40449164821534 đ?‘“3 đ?‘Ľ = đ?‘Ľ − 1 3 − 1, đ?›ž = 2.0 đ?‘“4 đ?‘Ľ = logâ Ą(đ?‘Ľ 4 + đ?‘Ľ + 1) + đ?‘Ľđ?‘’ đ?‘Ľ , đ?›ž = 0.0 đ?‘“5 đ?‘Ľ = log đ?‘Ľ + 1 + đ?‘Ľ 3 , đ?›ž = 0.0 đ?‘“6 đ?‘Ľ = sin đ?‘Ľ đ?‘’ đ?‘Ľ + log đ?‘Ľ 2 + 1 , đ?›ž = 0.0 đ?‘Ľ đ?‘“7 đ?‘Ľ = đ?‘ đ?‘–đ?‘›âˆ’1 đ?‘Ľ 2 − 1 − + 1, đ?›ž = 0.59481096839837 đ?‘“8 đ?‘Ľ = cos

đ?œ‹đ?‘Ľ 2

2

+ đ?‘Ľ 2 − đ?œ‹,

� = 2.03472489627913

Table 2: numerical effects for the results of different functions Method

SM 8 KTM KTM1 FM 3 HM 3 YSM1 3 YSM2 3 YSM3 3 YSM4 3 f2 x = sinâ Ą(x)2 − x 2 + 1, x0 = 1.4 SM 9 KTM 4 KTM1 3 FM 3 HM 3 YSM1 4 YSM2 4 YSM3 4 YSM4 3 SM KTM KTM1 FM HM YSM1 YSM2 YSM3 YSM4

| đ?‘Ľn+1 đ?‘“(đ?‘Ľđ?‘›âˆ’) đ?‘Ľn |

COC

1.08928e-249 fails fails -1.49378e-1136 -1.19252e-1393 9.61472e-1335 2.12619e-1283 2.83408e-1259 1.7715e-1283

1.89983e-125

2

-

-

1.10504e-126 6.71925e-140 4.7439e-134 5.927e-129 1.46361e-126 5.81981e-129

8.99 10 10.01 10.02 10.02

1.38957e-249 -4.28939e-605 -7.07842e-1192 1.28608e-1421 0

2 4 8 9 10 10 9.72 9.99

4.04623e-2008

2.19516e-125 6.6314e-152 1.09749e-149 5.45919e-159 6.49615e-253 8.43293e-528 0 2.00562e-482 0 5.42247e-421 0 1.98521e-232

2.63414e-357 2.56566e-492 1.26822e-967 1.48087e-1272 0 3.75463e-1916 5.35547e-1861 5.67031e-1836 5.28414e-1861

1.48159e-179 8.46364e-124 9.66425e-122 2.51087e-142 3.01795e-203 2.20389e-192 6.5466e-187 1.98341e-184 6.53783e-187

2 4 8 8.99 10 10 10.01 10.01

1.10381e-257 -9.74336e-947 -1.25382e-2009 div

2.7127e-129 5.08409e-237 4.72614e-416

2 4 8

-

-

8.41923e-2010 6.24525e-699 -3.13515e-1411 -6.25167e-2009 1.169e-1510

3.57641e-916 5.08988e-697 1.94891e-617 3.61742e-569 1.9523e-610

10 10 10 10

-1.40659e-272 6.53964e-524 -5.69222e-1923 div 6.06038e-6026 -3.39454e-6029 -3.23157e-6029 -1.99633e-6026 2.54739e-6025

1.186e-136 1.9904e-131 5.69817e-241

2 4 7.99

IT

8 4 3 3 3 3 3 3 3

SM 9 KTM 5 KTM1 4 FM HM 4 YSM1 4 YSM2 4 YSM3 4 YSM4 4 f5 x = log x + 1 + x 3 , x0 = 0.25 SM 9 KTM 5 KTM1 4 FM HM 4 YSM1 4 YSM2 4 YSM3 4 YSM4 4

*Corresponding Author:I.A. Al-Subaihi*

f1 x = x + 2 ex − 1, x0 = −0.5

10.03

9.99 f3 x = x − 1

− 1, x0 = 1.99

10.01 f4 x = logâ Ą (x4 + x + 1) + xex , x0 = 0.25

10

-

-

3.99489e-590 5.46001e-411

10 9.99 10 10

1.95424e-360 1.54772e-296 4.31825e-346

3

10

17 | Page


Tenth-Order Iterative Methods without Derivatives for Solving Nonlinear Equations | đ?‘Ľn+1 đ?‘“(đ?‘Ľđ?‘›âˆ’) đ?‘Ľn |

COC

1.45276e-144 1.85292e-117 3.70115e-219 6.32121e-649

2 4 7.99 10 10 10 9.99

Method

IT

SM KTM KTM1 HM FM YSM1 YSM2 YSM3 YSM4

10 5 4 4 4 4 4 4

8.44207e-288 1.80742e-466 3.90546e-1745 -1.02076e-3888 div -8.62745e-3728 1.40673e-3792 6.64559e-3943 1.50312e-3767

SM KTM KTM1 FM HM YSM1 YSM2 YSM3 YSM4

5 4 3 4 4 4 4 4

div

-

-

-2.40779e-900 -2.69748e-2008 -2.18467e-1042 -2.69748e-2008 8.02466e-684 -3.35584e-1597 0 1.06964e-1703

3.01354e-225 9.45464e-398 2.78079e-115 5.97482e-692 1.83776e-669 1.06178e-603 1.13456e-551 2.58104e-596

4 8 9.23 10 10 10 10

1.95409e-255 1.81305e-409 fails 9.59404e-930 8.13807e-1866 6.05924e-1552 6.85374e-1423 9.2786e-1392 5.51227e-1423

1.30323e-128 6.10311e-103

2 4

f8 x = cos SM KTM KTM1 FM HM YSM1 YSM2 YSM3 YSM4

-

Ď€x 2

+ x 2 − Ď€, x0 = 2 8 4

3 3 3 3 3 3

6.61204e-460 1.16503e-424 1.15041e-409 2.75612e-427

đ?‘“6 đ?‘Ľ = sin đ?‘Ľ đ?‘’ đ?‘Ľ + log đ?‘Ľ 2 + 1 , đ?‘Ľ0 = 0.5

10 x f7 x = sin−1 x2 − 1 − + 1, x0 = 1 2

10

-

-

3.37864e-104 6.36702e-187 9.27035e-156 6.67285e-143 8.22618e-140 6.52908e-143

8.98 10 10.05 10.11 10.13 10.11

IV. CONCLUSION In this paper, we have presented a new families of tenth-order derivative-free methods for solving nonlinear equations. New scheme of methods containing three steps and five functions, one of them is weighted function.Although the new families are not optimal methods, but it is efficiency index is better than the Steffensen’smethod,Malik's, Al-Fahid's and Fayyaz's methods and equal to the efficiency index of tenth-order of Hafiz's method and no derivative need. Finally, Table2 comparing the other methods using a lot of numerical examples to explain the convergence of the new methods.

REFERENCES [1]. [2]. [3]. [4]. [5]. [6]. [7]. [8]. [9]. [10].

H. Kung and J. Traub, Optimal order of one-point and multipoint iteration, Journal of the ACM (JACM), 21(4), 1974, 643-651. J. Traub, Iterative methods for the solution of equations, American Mathematical Soc, 1982. W.Gautschi, Numerical Analysis, An Introduction,Birkhauser, Barton, Mass, USA, 1997. J. F. Steffensen, Remark on iteration, Scandinavian Actuarial Journal. 16, 1933, 64-72. I. Al-Subaihi, Families of Iterative Methods with Higher Convergence Orders for Solving Nonlinear Equations, Journal of Progressive Research in Mathematics, 7(4), 2016, 1129-1141. M.Sharifi, S.Karimi, F.Khaksar, M.Arab and S.Shateyi, On a new iterative scheme without memory with optimal eighth order, The Scientific World Journal, 2014, 1-6. M. Hafiz, M. Bahgat, Solving nonlinear equations using Two-step optimal methods, Annual Review of Chaos Theory, Bifu. Dyn. Sys 3, 2013, 1-11. M.Ullah, A.AL-fahid and F.Ahmad, Ninth-order Three-point Derivative-Free Family of Iterative Methods for Nonlinear Equations, 2013, 1-6. M. Hafiz, An Efficient Three-Step Tenth–Order Method Without Second Order Derivative, Palestine Journal of Mathematics, 3(2), 2014, 198-203. D. Basu, From third to fourth order variant of Newton’s method for simple roots, Applied Mathematics and Computation, 202(2), 2008, 886-892.

*Corresponding Author:I.A. Al-Subaihi*

18 | Page


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.