Machine Elements in Mechanical Design, 6th edition Robert L Mott Test Bank

Page 1

Instructor’s Manual and Test Bank

For

MACHINE ELEMENTS IN MECHANICAL DESIGN Sixth Edition

Robert L. Mott, University of Dayton Edward M. Vavrek, Purdue University Jyhwen Wang, Texas A&M University


Table of Contents Chapter 1 The Nature of Mechanical Design

1

Chapter 2 Materials in Mechanical Design

3

Chapter 3 Stress and Deformation Analysis

11

Chapter 4 Combined Stresses and Stress Transformations

50

Chapter 5 Design for Different Types of Loading

121

Chapter 6 Columns

158

Chapter 7 Belt Drives, Chain Drives and Wire Rope

178

Chapter 8 Kinematics of Gears

193

Chapter 9 Spur Gear Design

225

Chapter 10 Helical Gears, Bevel Gears and Wormgearing

275

Chapter 11 Keys, Couplings, and Seals

311

Chapter 12 Shaft Design

316

Chapter 13 Tolerances and Fits

354

Chapter 14 Rolling Contact Bearings

360

Chapter 16 Plain Surface Bearings

365

Chapter 17 Linear Motion Elements

372

Chapter 18 Springs

377

Chapter 19 Fasteners

396

Chapter 20 Machine Frames, Bolted Connections and Welded Joints

398

Chapter 21 Electric Motors and Controls

407

Chapter 22 Motion Control: Clutches and Brakes

411

iii


CHAPTER 1 THE NATURE OF MECHANICAL DESIGN Problems 1‐14 require the specification of functions and design requirements for design projects and have no unique solutions. 15.

D

1.75 in  25.4 mm/in

44.5 mm

16.

L

46.0 m  0.3048 m/ft

14.0 m

17.

T

12 500 lbin  0.1130 Nm/lbin

18.

A

4.12 in2  645.2 mm2/in2

19.

Section modulus

20.

Moment of inertia

21.

Given: Amin

S I

1418 Nm

2658 mm2

14.8 in3  1.639104 mm3/in3

2.43105 mm3

88.0 in4  4.162105 mm4/in4

3.66107 mm4

750 mm2: In U.S. units; Amin

1.162 in2

U.S. Angle – From Appendix 15‐1: L223/8; A

1.36 in2 890 mm2

SI Angle – From Appendix 15‐3: Angle 75755; A

P

7.5 hp  745.7 W/hp

22.

Power

23.

Ultimate tensile strength su

24.

Given: Steel shaft; D

35 mm

Volume

0.035 m; L

V

area  length

 0.035 m 2/4  0.675 m

Mass Weight

876 MPa 0.675 m

9.81 m/s2

7680 kg/m3 From Appendix 3

D2/4  L 6.4910‐4 m3

7680 kg/m3  6.4910‐4 m3

mg

675 mm

mass  g ; g

density  volume; Density of steel

V

5.59 kW

127 ksi  6.895 MPa/ksi

Find: Weight of the shaft: Weight Mass

5.59103 W

864 mm2

4.98 kg

4.98 kg  9.81 m/s2

48.9 kgm/s2

1

48.9 N


25.

Given: For a torsional spring, Torque Find the scale of the spring

180 lbin for 35 of rotation.

Torque per unit of rotation. Express the result in both

U.S. and SI units.

T

180 lbin  0.1130 Nm/lbin

Angle

26.

20.3 Nm

35   rad/180

0.611 radians 5.14 lbin/degree

Scale

T/

180 lbin/35

Scale

T/

20.3 Nm/0.611 rad

33.3 Nm/rad

Given: 12.5 hp motor operating 16 h/day, 5 days/week Compute the energy, E, used by the motor for one year in both U.S. and SI units.

27.

E

12.5 hp  16h/day  5 days/wk  52 wks/year  550 ftlb/s/hp  3600 s/h

E

1.031011 ftlb/year

E

1.031011 ftlb/year  1.356 J/ftlb  1.0 Nm/J  1.0 W/Nm/s  1h/3600 s

E

38.8106 Wh/year

Given: Viscosity 

28.

38.8 MWh/year

3.75 reyn  1.0 lbs/in2 /reyn  144 in2/ft2

3.5 lbs/in2  4.448 N/lb  1.0 in2/645.2 mm2  106 mm2/m2

Given: n

540 lbs/ft2 25.9103 Ns/m2

1750 rpm; 24h/day; 5.0 years. Find life in number of revolutions.

Life

1750 rev/min  24 h/day  60 min/h 365 days/year  5 years

Life

4.60109 revolutions

2


From Eq. 2-5:

3


17) 17)

2

(Table 2-8) SAE

SAE from SAE 1040, 4140, 4340, 4640 (Table 2-9) from SAE 1040, 4140, 4340, 4640 steels (Table (Table 2-9) 2-9)

SAE 1080 steel is a reasonable choice. SAE 5160 OQT 1000

4


SAE1040 1040and and SAE SAE1040 1040WQT WQT SAE

SAE 1015, 1020, [See Appedix A-5.]

ASTM A992 Structural steel is used for most wide-flange beam shapes.

5


Problem 38 (Continued) ASTM A536, Grade 100-70-03 is a ductile iron with a tensile strength of 100 ksi (689 MPa); a yield strength of 70 ksi (483 MPa); 3% elongation (brittle); modulus of elasticity (stiffness) of 24x106 psi (165 GPa). ASTM A47, Grade 32510 is a malleable iron with a tensile strength of 50 ksi (345 MPa); a yield strength of 32.5 ksi (224 MPa); 10% elongation (ductile); modulus of elasticity (stiffnes) of 26x106 (179 GPa.

(Table 2-11)

Aluminum 7178-T6 has the highest strength; tensile strength = 88 ksi (607 MPa); yield strength = 78 ksi (538 MPa).

6


PET, polyurethane

PET PET.

Resins used for composites include polyesters, epoxies, polyimides, phenolics, (all thermosets), and thermoplastics: PE, PA, PEEK, PPS, PVC.

7


Questions 70-73 refer to Figure 2-23 and Table 2-17 in the text. General conclusions from Questions 70-73: The specific strengths of the metals listed range from 0.194x106 to 1.00x106, approximately a factor of 5.0. The specific stiffnesses are very nearly equal for all metals listed, approximately 1.0x108 in. The specific strengths of the composites listed range from 1.87 to 4.88x106 in, much higher than any of the metals. Glass/epoxy has a specific stiffness about 2/3 that of the metals. The other composites listed range from 2.2 to 8.3 times as stiff as the metals. See Section 2-17, Table 2-16, Figures 2-23 and 2-24 for answers to Questions 74 to 100.

8


9


10


CHAPTER 3 STRESS AND DEFORMATION ANALYSIS

Direct Tension and Compression 1.

/ ;

18

12 /4

4500 N/141.4 mm

.

31.8 N/mm

/

. .

.

2.

/

3500 N/

10 /4 mm

3.

/

20

4.

/

860 lb/ 0.40

5.

/

1900 lb/

6.

/ ;

12

.

10 N/ 10 ∙ 30 mm

0.375

.

/4

144 mm ;

5000 N/144 mm

.

mm

/

a)

SAE 1020;

207 GPa

b)

SAE 8650;

207 GPa;

c)

Ductile iron A536(60-40-18);

d)

Aluminum 6061-T6;

e)

Titanium Ti-6AL-4V;

f)

PVC; Tensile Modulus

g)

Phenolic;

10 N/mm ;

207 .

165 GPa;

69 GPa;

7580 MPa;

.

.

.

114 GPa; 2410 MPa

. 2410 N/mm ;

.

Note: The stress is close to the ultimate for f and g.

11

.


7.

/

;

2.25

2.01

in /

.

2.01 in

2.25 in

. .

.

/ 8.

2556 lb/1.02 in

2500 lb; Σ

0

2500 75

2500 75/60

3125 lb

60

Tensile force in

50 A

.

9.

2

1500 lb 1500/ 2

10.

B

45°

/ ; Required

.

/4

. 1500 lb

2898 lb

15°; 2898/18 000

75

/

0.0589 in

/

11.

C

60

.

.

0.161 in ;

12

.


12.

Joint B 10.5 kN 30°

30°

10.5 kN 10.5 kN

5.25 kN

5.25

Joint A

AD sin 30 = 5.25 kN ↓ AD = 10.5 kN = CD AB = AD cos 30 = 9.09 kN = BC →

30°

5.25 kN Stresses: .

AB, BC:

. .

BD: AD, CD:

30

. 20

500 mm

.

13.

.

Figure P3‐13 Σ

0

6000 6

12 000

6000 12 000 12

18

6000 12

18

10 000 lb Σ

0

12 000 6

8000 lb Note: sin

= 8/10 = 0.80; cos

10 6

8

8 6

= 6/10 = 0.60 18

13

6


0.8 /0.8

8000/0.8

8000 lb

10 000 lb Compression

10 000 0.6

6000 lb Tension

0 6000 lb

6000

6000 lb

0 . .

2500 lb Tension 10 000 0.6

1000

0

2500 0.6

7500 lb Compression

12 000 lb /

7500/0.6

12 500 lb Compression

12 000 12 000

12 500 0.8

12 500 0.6

12 000 lb

10 000 lb

14

2000 lb Compression

7500 lb Tension


Areas of Members: Appendix A5, A6 ,

,

2 0.484

,

,

0.484 in

,

,

2 1.21

Stresses:

0.968 in

6000/0.968 7500/0.968

2.42 in 2500/0.484

Note: Compression members must be

2000/0.484

checked for column buckling

10 000/2.42 7500/2.42 12 500/2.42 14.

2.65 1.40 /

15.

52 000

2 1.40 0.5 /2

/4.41

80 40

40 /4

/

10 N/4457 mm

640

4.41 in

4457 mm .

Direct Shear Stress 16.

Pin diameter

75

0.50 in; Double shear 50

2

/4

2

0.50 /4

0.3927 in

/

2500 lb

Member BC: Σ

0

60

2500 75

2500 75/60 And

60

Figure P3 B

3125 lb

3125 lb

15

8


2500 lb Resultant at :

√3125

Pins A and C:

/

Pin B: 17.

/

3125 lb/0.3927 in

4002 lb/0.3927 in

40°:

1167 lb

Assume double shear: /

/

2

/4

2

0.75 /4

15°

1500 lb/ 2

15°

12 45

Torque/Radius

1600 N ∙ m/30 mm

/

98.8 N/mm

0.060

2.50

53 333 N

2.00

1.50

√0.5

2.5

0.060

0.513 in

52 000 lb/0.513 in

Punch – Figure P3‐21. Perimeter 205.7 2.0 /

540 mm

.

Punch – Fig. P3‐20:

/

2898 lb

2898 lb/0.8836 in

See Figure 3‐7: Key is in shear;

8.55

0.8836 in

1500 lb/0.8836 in

Analysis from Problems 9 and 17. Let

/

21.

shear forces on upper pins

1500 lb

1500 lb/ 2

20.

1500 lb/2

1167 lb/0.8836 in

Lower pin:

19.

4002 lb

From Problem 3‐9: Force in each rod For

18.

2500

.

60

2 30

411.4 mm

547 N/mm

16

2 7.5

3

205.7 mm


Torsion ∙

22. 23.

/

:

800 N ∙ m

800

10 N ∙ m:

mm

6.14

10 mm

∙ /

25.

.

/

63 000

/

.

80 GPa

80

0.0138 rad

. .

24.

32.6

/

10 N/mm

.

∙ /

63 000 110 hp /560 rpm

12 375 lb ∙ in

∙ .

26.

/ ∙ /

/

/

622 N ∙ m 8590 mm

27.

72.4 N/mm

:

mm ∙ /

. 1.718

10 mm

0.018 rad

.

17

°

.

°


Noncircular Members in Torsion 28.

Square:

25 mm;

0.208

0.141 /

3250 mm

5.51

230 N ∙ m/3250 mm

70.8 N/mm

∙ /

29.

/

0.60/1.50 0.78;

Figure 3‐10

10 mm

°

0.0339 rad

.

0.40 0.70 3.95 in

0.70 1.50

2.36 in

1.50

Figure P3‐29 ∙

. /

.

.

3.891 in; .

. .

.

.

6.5 ft

/

2.041 in

.

1.604

∙ /

°

78 in

2 0.109 1.891 3.891 6000

.

0.109 in

1.89 in;

2

°

0.0103 rad

4.0 in;

.

°

2.10

0.78 1.50

2.0 in;

.

0.60

.

30.

.

.

1.604 in ∙

0.032 rad

18

°

.

°


Beams 31.

/ : Required

3 ft

/

lb

6.25 in a

Square 3600 lb∙ft

2.43 in

√6

2.50 in; A

Use

0

6.25 in2

Rectangle 1.5 /1.5 3 Use

c

1200 lb

0

/6

b

1200 lb 3 ft

1200 lb

2.40 in

/

1200 lb 4 ft

36

1.17 in

3.50 in 1.25 in;

3.50 in;

4.375 in

Rectangle

3 √2 Use d

1.69 in; 1.75 in;

5.06 in 5.00 in;

8.75 in

Circle

2.90 in Use

3.00 in;

7.07 in 19


e

4

7.7 3.04 in ;

f

15

2.26 in

40 3.37 in ;

g

11.8 in

4 in ‐ Schedule 40 pipe 3.215 in ;

32.

3.17 in

a Volume

2.5

b

1.25 3.50 120

c

1.75 5.00 120

e

g

W

.

40 lb/ft 10 ft

400 lb

3.147

0.283 38.09 33.

a

0.283 1050 0.283 848

38.09 in for 1.0 ft

10.78 lb/ft;

10.78 lb/ft 10

36 in;

120 in; .

4

3

.

3

4

/12

2.50 in /12 . .

750 in

0.283 525

848 in ;

12.0

From Case c ; Appendix 14‐1:

0.283 lb/in

525 in ;

120 in

7.7 lb/ft 10

∙ 12

750 in ;

1050 in ;

.

d

f

120 in

3.26 in :

.

1200 lb;

10 psi

30

in in .

.

.

.

b

/12

1.25 3.50 /12

c

/12

5.00 1.75 /12

4.47 in : 2.23 in :

20

0.511 in;

.

.

.

;


d

3.98 in :

e

6.08 in ;

f

9.23 in ;

g

7.23 in ;

.

. ;

.

.

400 N

600 N

0.3

0.3

. ;

.

;

;

. .

34. 800 N 0.8 m

0.4

0.1

811 N

200 N 0.4

0.5 m

1189 N

811 N

200

11

0 389

0.5 m 0.9 m

989

333

324

217 0.2 m N∙m 0

35.

324

11 0.5

333

389 0.1

80

200 0.2

80

∙ ∙ ∙

For strength: Required Metric shape with smallest

.

/

and

3330 mm : Appendix 15

21

19


Reference g: Mechanical tubing – round:

45 mm;

40 mm;

333.8 mm

3361 mm 36.

a

Simple cantilever – Case b – Appendix 14‐2: 3 4 ft

.

48 in;

6 ft

b

3 72

48

8 ft

96 in

3 96

72

72 in;

3

7.23 in Appendix 15

.

17

.

.

Supported cantilever – Case b – Appendix 14‐3 3 4 ft

48 in;

6 ft

10 ft

120 in;

72 in;

2 ft

4 ft

24 in

72 120 168

1.452

192 168 .

3

48 in

10 in 72 120

4.090 10 48

3 1.452

10

4.09

3 120

48

24

10 in 0.047 in

3

.

22

3 120

72

0.042 in


400

37.

/ ;

20

/ ∙

0.667 in

/

1.637;

30

40

400

Smallest aluminum I‐shape for the beam. 3

500 lb

1.49 in ;

N 100

0

2.24 in

400 4000

N∙m 0.140 in up

.

0 8000

① 0.214 in down

.

Table A14‐

0.140

0.214

.

0.153 in down

0.06415 Note: /

40/70

.

0.112

300 lb 3 ft

.

.

500 lb 3 ft

995

47.6 in

275 0

13.1 in

25

385 885

1245

3810

3480 psi

.

40

1245 lb

995 lb

lb

3195 lb∙in

.

70

in Case g.

6 ft 120 lb/ft

45 720 lb ∙ in

.

30

30

.

3810 lb ∙ ft 12/ft

.

70

Case g

Table A14‐

40

0.112 in up

0.571. Then point C is close to 0.153

38.

0.06415

30 20 40

② .

500

Case b

0

.

23


Beams with Concentrated Bending Moments 4 in

39. 12 in

60 lb 12 in

60

FBD

240 40

20 20 0

lb

0 40 480 240

lb∙in 0 40. 240 lb ∙ in 12 in

12 in

10 lb

FBD

240 lb ∙ in

lb

0

0

10

10 120

lb∙in

10 lb

0 120

24


41. 240 lb ∙ in 12 in

12 in 240 lb ∙ in

10 lb

FBD 10 lb 10 lb

10

0 120

lb∙in

0 120

42.

500 mm

200 175

R 225 N

FBD

225 N

M

39 375 225 N

78.75 78.75

N

0 39 375

N∙mm

0

0 25


300 N

43.

500 N 312.5

187.5

FBD

200 N

500 N 93 750

Shear

93 750

0

0

N

93 750

93 750

N∙mm

0

44.

450 N 25 mm 60 mm

11 250 N ∙ mm 11 250 N ∙ mm

FBD

F F F

N

300 N

11 250 60 187.5 N

187.5 N 450 N

0 187.5

N∙mm

0

11 250

26

450 N


45.

180 6.75 FBD

R

1215 lb ∙ in

460 lb

180 lb

120 lb

180 lb R

264

R 12"

11"

316

5.5"

264 lb

120

0 196 2904 1689

lb∙in 0 660

27


46.

At right end: Net vertical force

2.64

2.64 260

1.80

0.84 kN ↓

1.80 0.260

R

1.154 kN ∙ m

1.24

0.84 kN

FBD 1.20 m

0.40 R

2.08

0.84 N

0 1.24

N∙mm

0 1.154 1.49 693 14

47.

400 22

899 lb ∙ in

22 400

14 693 FBD

M

400 R 496

lb

0

496

0

400 R

693

197

60" 22"

10 912

lb∙in

800

197 11 811

28


48.

Torque

200 4

600 4

3200 lb ∙ in

200 8

600 8

6400 lb ∙ in Not shown

CW – viewed from C

400 lb 12 in

16 in

114.3 lb M

3200 lb ∙ in

FBD R

R

285.7 lb

114.3 lb

0

285.7 4572

1372

lb∙in 0

600 6

49. Net Torque

600 4

200 6 200 10

4800 lb ∙ in 400 lb ∙ in Not shown

800 lb 18

12

FBD R

M

320 lb

4800 lb ∙ in R

480 lb

320 lb

0 480 8640 3840

lb∙in 0

29


1.25 kN 0.22 m

50.

T

1.25 kN 0.30 m

1.25 kN

M

kN

0.275 kN ∙ m

0.375 kN ∙ m Not Shown R

0.30 m

0.275 kN ∙ m

1.18 kN

0.55 m R

2.43 kN

1.18 0 1.25

kN∙m

0

0.275

0.650

Combined Normal Stresses 51.

20 80

1600 mm

/6

20 80 /6

M

21 333 mm

F 400 mm A

400 2.70

F 80 mm

1.69

60.38

F

.

30

3.22

40°

4.2 kN

20


52.

6/12 Σ

0

0.5:

1800 8

1200

12

1200 lb: 2

For W 8 10 Beam: Appendix 15‐9

26.6°

1800

A

600 lb

2.96 in ;

7.81 in

2683 lb

A

8 ft 4 ft

2400

2400

1800

600

1200 0

lb

2400 lb

4800 lb ∙ ft

At B on top of beam

600 57 600 lb ∙ in

lb∙ft .

.

.

.

At B on bottom of beam

53.

At A Top 400 mm /

0.301 At B;

50

20.64

20.94 MPa Tension

430 200

86 000 N ∙ mm

Assume axial stress is small: ∙

Required

.

200 438 N

/ 4107 mm

/

35.1 mm; Let

36 mm;

/6; Note: t

20 mm 720 mm

4320 mm ∙

At C;

430 50

.

301 N

20.33 MPa Ok 21 500 N ∙ mm

1027 mm ;

17.6 mm

31

35°

525 N


Let

18 mm;

20 mm;

20 18 /6

54.

6

2

1

1080 mm ;

18 20

360 mm

.

4 hollow rectangular tube;

Appendix 15‐14

2000 lb

For cross section of beam

4000 lb

30°

6928 lb

6928 lb

3.59 in 4.60 in

lb

At A:

Tension on top surface

2000 lb 2000

0

2000

4 ft

4 ft

2 ft 2 ft

0 ∙ .

.

1930 psi

20 870 psi

lb∙ft

8000 8000

12 000

At B: 55.

From Figure 3‐19;

875 N ∙ mm;

35.0 N 5.0 mm

5.0 2.4

12.0 mm

2.4 5.0 /6

2.4

10.0 mm .

.

56.

60

√50 2.5 in/ Σ

0

on bottom of section

78.1 in 117.15

39.05 in 78.1

117.15/78.1

Σ

.

.

/

1439

0

1152 39.05

25 in

50 in

F

1152

117.15 39.0 F

1728 lb 60 in 78.1

32

7

tan tan

1800 lb

60/50: 50.2° 50/60: 39.8° sin 1152 lb cos 1383 lb


576 lb 1439 For 6

4

1

1383

2822 lb 1728 lb

4 tube: Appendix 15‐14

4.59 in ;

39.05

78.1

7.36 in

576

Just above C:

1152 1152

.

lb

.

Tension

0 576 0

lb∙in

Just below C:

44 986 .

.

Compression 57.

;

/6

4 in

60 lb

/

but assume / is small 240 lb ∙ in

Try

:

1440/

/

0.500 in

1/2 in: ∙

.

58.

240

.

0.25 in ;

60 lb

0.493 in /6

11 520

0.0208 in Ok

FBD from Problem 3‐42: Part from

39 375 N ∙ mm

sees 39 375 N∙mm moment

225 N

500 mm

0.09

1.89

F

50 50 /6

.

On bottom surface between B and C.

33

200

78.75 N 2500 mm 20 833 mm

225 N 50 50


59.

From Problem 3‐43: 500

from

Constant

93 750 N ∙ mm

to

300 N 200 N

500 N

75 75 /6

5625 mm 70 313 mm

75 75

0.089

1.333

.

On top of surface between A and C. 60.

From Problem 3‐47: Point B is where bracket attaches; allowable To right of B;

11 811 lb ∙ in;

/32; /4

32 / 2.41 in ;

Check to left of B: .

/32

166

/

1.69 in: Use

0.526 in

10 912 lb ∙ in; .

/ ; Required

32 0.472 /

20 739

34

25 000 psi

400 lb Ok

1.75 in

0.472 in


Stress Concentrations Stress concentrations:

factors can be obtained from the charts in Appendix 18 or from

the website: www.efatigue.com/constantamplitude/stress‐concentration. While all problems listed here can be solved with the tables in the book, the eFatigue site includes a wider variety of cases and users of this book, both instructors and students, may find it useful. 61.

/

9 mm/6 mm

1.50

/

0.5 mm/6 mm

0.083

.

62.

.

/

Three cases, at each support pad, must be evaluated.

Bottom: / /

2.03 [From Appendix A18-1]

2.0/0.5

4.0

0.08/0.5

0.16

1.86 [From Appendix A18-1]

. .

imum for the entire fixture

/

Middle: /

2.0/0.75

2.67

/

0.08/0.75

0.11

2.08

. /

.

Top: /

2.0/1.0 /

0.08/1.0

2.0

2.22

0.08

. .

/

35


63.

Figure P‐63 Left hole: /

0.72/1.40

0.51

2.15 From Appendix 18‐4 . .

.

.

Middle hole: /

0.40/1.40

0.29 →

2.38

0.50/1.40

0.36 →

2.29

. .

.

.

Right hole: / . .

64.

.

.

/

1.50/0.80

1.875

/

0.12/0.80

0.15

2.10 [From Appendix A182]

. .

65.

.

/

42/30

1.40

/

1.50/30

0.05

.

.

/

66.

/

2.00/1.25

1.60

/

0.10/1.25

0.08

.

68.

/

1.43 [From Appendix A18-

∙ .

67.

2.30 [From Appendix A18-1]

/

2.00/1.25

.

1.60

/

0.06/1.25

0.048

/

1.38/2.00

0.69 →

2.23 From Appendix A18‐6 1.38 .

. .

.

36

.

∙ .

/


Problems of a General Nature 69.

Σ

0

12.5 kN 4.0

12.5 4.0 /2.5

20.0 kN ↑

20 kN

7.5 kN ↓

12.5 kN

18.75 kN ∙ m 18.75

Cross section of

2.5 m

7.5 kN 2.5 m

20 20 mm

&

RB = 20.0 kN D 12.5 kN

lb

12.5

10 N ∙ mm /6

Section Modulus

7.5 0

20.0 /6 lb∙in

1333 mm Area of

20

0 18.75

400 mm

Shear area of pin – double shear .

Tension in

100.5 mm

:

Shear in pin: Bending in

.

: at :

.

/

to make

Suggest change in cross section Required 20 Let

/

.

/6; Required

400 MPa

20

∙ /

6 /20

120 mm: Then

Ok Proposed cross section of

37


70.

/2 40 40 40 40 40 40

/2

/2

20

/2 0 /4

200

/ /6 5.0 kN 20 mm

/2

/2

0.1 for

/2 120

0

100

m

kN ∙ m

mm

mm

MPa

A

0

0

20

1333

0

B

0.040

0.020

0.10

24

1920

52.1

C

0.080

0.040

0.20

28

2613

76.5

D

0.120

0.060

0.30

32

3413

87.9

E

0.160

0.080

0.40

36

4320

92.6

F

0.200

0.100

0.50

40

5333

93.8

G

0.240

0.120

0.60

40

5333

112.5

80 60

MPa 40 20 0 0

71.

From Problem 70,

240

4031 mm

25/40 .

160

mm

0.60 kN ∙ m under load

: /

80

.

0.625;

1.25

40

25 mm diameter

38


72.

Assume lateral bracing a

At C at load;

5143 lb ∙ ft

1.0;

.

/6

.

.

3.20 in

/

.

b

At D at 1.50 in diameter hole 3857 lb ∙ ft;

.

/

0.375

.

1.00 .

.

.

3.03 in

.

1500 2

4 ft

2

2

2

2

. .

c

857

At E at 2.50 in diameter hole .

2572 lb ∙ ft; /

0.625

.

0 V (lb)

1.25 .

.

.

lb∙ft .

/

1.43;

4.00, /

2.80,

0.054;

0.15 2.21

.

1714 lb ∙ ft;

.

. .

39

643

3857 2572

.

At B at step:

5143

2.419 in

.

d

643

1.57 in

1714

1286


73. 3

2

140

12 24 2

2 280

140

2

100

36

100

140

48 8 mm

2

2 N 0

/6 8 12 /6

192 mm

768

380 P

280 P

2

N∙mm 0

1728 3072

180 mm;

80 mm;

40 mm;

200 N

/

/

192

0.25

2.00

1.46

121.7 Maximum

32 000

768

0.125

1.50

1.72

71.67

D

64 000

1728

0.083

1.33

1.88

69.63

E

76 000

3072

1.00

24.70

Point

B

16 000

C

For

: Fillet radius Larger height Smaller height

40

MPa


74.

52

25/2

2500

64.5

161 250 N ∙ mm Along upper part

; At

: /

15/25

.

75.

1.20

0.6 →

NOTE: For Kt at hole in flat plate in bending: If d/W 0.50, use Kt 1.0

.

See also Problem 74. : /

Pivot at

12/25

0.48 →

1.0

.

0

.

200 0

200

1200

76.

.

At fulcrum: /

.

0.50 in

4000 lb ∙ in/0.50 in

At hole: App. 18‐5: / .

8000 psi

1.25/2.0

0.625;

.

0.378 in

. .

20

4000

400 fulcrum

1.25

20 200

. .

77.

Figure P376

Pivot at A .

At Fulcrum:

.

0.50 in

0

260

0 260

1560

.

200

B

3120

At B: 1.25;

0.378 in

6 6

20

Problem 76 460

5200

. .

At C:

26 . .

200 0

41

0 200


140 0 140

Pivot at C At Fulcrum:

20

0.50 in ∙

340

.

2800 14 200 200

78.

0 at , 0.15

0.15 m

0.15

18 kN kN

For fillet

kN∙m

0.044

13 kN

0

1.22

0 0.45 1.575

.

.

42

5

10.5

2.05

0.15

7.5

8946 mm

.

8.5 kN

12.5 kN

10.5 kN

Point B is critical

1.2

0


Lug Joints 79.

One possible design Lug Joint: See Figure P3‐69;

8.0 mm,

20.0 mm

Find: Thickness, , materials for lug and pin. From Problem 3‐69, Let

0.5

Let

20.0 kN

0.5 8.0

/0.40

4.0 mm

8.0 mm/0.40

Hole diameter

20.0 mm

1.002

8.016 mm

: In Figure 3‐34:

416.7 MPa

.

/

8/20

0.40;

3.00

3.00 416.7 Let

5

1250 MPa

; Required

5 1250

6250 MPa

Too high for typical steels in Appendix 3. Redesign for use of SAE 4340 OQT 800,

1450 MPa

290 MPa 3.0

Let

0.40

96.67 MPa

.

Required For

; For /

.

.

.

2.5 ;

0.5 : 2.5

206.9

/0.75

206.9 mm

/

0.5

0.75

16.6 mm

43

206.9 mm


Specify preferred size: Then:

.

18 mm Appendix 2

45.0 mm;

.

0.5

9.0 mm 82.3 MPa

Given design parameters were not feasible. Check shear stress in pin:

/

/

39.3 MPa

/

.

Check

.

217.5 MPa

Hole diameter

1.002

39.3 MPa Ok for pin shear

18.0 mm 1.002

18.036 mm

Curved Beams 81.

ASTM A36 Steel:

36 ksi

/

10

Given:

;

248 MPa – Find F for yield of steel

150 mm;

10

/2

150 10

/

10

100 mm

5

160 mm 155 mm

160/150

0.64539

/

100/0.64539

154.946 mm

325

320

/2

10 mm Cross Section of Hanger

Negative

.

. .

.

. .

Let

.

325 mm At inside surface

Maximum

248 N/mm ;

.

44

126.4 N


82.

Curved beam: Coping saw Find N for 120 N tension in blade SAE 1020 CD Steel; ∙

352 MPa

120

145

22 mm given;

22

22

5

17 400 N ∙ mm Negative 10

32 mm

27 mm

6

/

/

4

32/22

40/1.4987 mm

1.4987 mm 26.688 mm Blade

See Problem 81 for equations. 26.688

22

27.0

26.688

26.688

32.0

.

Cross Section 4 10 40 mm

0.3155 mm 5.3115 mm

231.8 MPa Tension on outside surface

.

1.18 Minimum

120 N

Both low

83.

Curved beam Given:

1.52 Hacksaw

① 10

Figure P3‐83 ②

480 ; Find

SAE 1020 CD;

20;

352 MPa

78.54 mm ;

6

15

F

Consider tube to be a composite section: ① ‐ ② 10 /4

145

140

.

.

4 mm

297.6 MPa Compression on inside surface

.

.

10

4.688 mm

6 /4

50.265 mm

45

28.27 mm


2

/4

/

3.9903 mm

2

/4

/

1.4218 mm

3.9903

1.4218

.

2.5685 mm

19.569 mm

.

See Problem 81 for equations 19.569

25

0.4307 mm

19.569

15

4.569 mm

480

80

38 400 N ∙ mm

. .

540.3 MPa

Compression on inside surface

385.3 MPa

Tension on outside surface

. . .

.

.

.

.

Both indicate failure .

Addition to problem: Find

to achieve

2.0

Stresses are proportional to moment and to F. Stress reduction required:

176 MPa

0.326

.

0.326

0.326 ∙

38 400

12 500 N ∙ mm

.

46


84.

Garden tool Find F for yielding.

Curved beam

207 MPa

Cast aluminum: 356.0‐T6,

12 mm; 16 mm 8 mm

50.265 mm

2 12

12

/

8 /4

.

4.312 mm Figure P3‐84

11.6568 mm

.

12

Let

/

/4

2

11.6568

11.6568

16

11.6568

8

∙ ;

F

0.3431 mm

4

4.343 mm 3.6568 mm

207 MPa positive

Let

207 MPa Compression /

.

.

.

.

Similarly: .

.

.

.

47

Governs

8 4

50.265 mm


81.

Curved beam

Hoop support

Steel: ASTM A53‐Grade B;

35 ksi

230 lb 48 in

= ro

Figure P3‐85

48 in

11 040 lb ∙ in Negative

2.875 in 2.469 in

D1 D2

Figure A15

17

Analysis as in Problem 3‐83

1.704 in

Stress equations in Problem 3‐81 0.61748 .

0.45484

0.1626 in D

10.4769 in

.

1.5231 in; ∙ .

1.35185 in;

.

. ∙ .

.

.

0.08564 in

11 208 psi Compression

.

9.125 in /2 10.563 in

9602.4 psi tension

.

. Satisfactory N 3.645

.

86.

Curved beam

C‐Clamp

Figure P3‐86

Cast zinc ZA‐12 404 MPa; Find:

for

269 MPa 2

3 /2

8 /

8.3 1.5

3 ∙ 11 3

/

/

8/5

3

57/6.355

19/8

1

/2

F

5.5

5.553 mm

;

5

6.355

8.969 mm

48

D

3

8


26

26 .

5.553 .

31.553

0.2776

.

pos.

Part 2:

Tension

134.67 MPa

Let .

/

.

.

0.1846

.

Compression

89.67 N/mm . .

Because

/

14

5

14 19 mm 5 5.553 10.553 mm

8.969 5 3.969 mm 8.969 19 10.0307 mm 10.553 8.969 1.583 mm

.

.

Part 1: 3 ∙ 8 24 mm 3 ∙ 11 33 mm 57 mm

. , the design of the inverted T‐section

uses the material very efficiently.

49


CHAPTER 4 COMBINED STRESSES AND STRESS TRANSFORMATIONS NOTES CONCERNING THE SOLUTIONS PRESENTED FOR MOHR’S CIRCLE PROBLEMS IN CHAPTER 4: 1. The objectives for all problems are to transform the given data for normal and shear stresses, taken from measurements in certain directions on an object, possibly by using strain gaging methods, and then use the equations in this chapter and the drawing of Mohr’s circle to determine the principal stresses and the maximum shear stress. 2.

In general, the procedures follow:

a. The General Procedure for Computing Principal Stresses and Maximum Shear Stresses, given on page 147 of the text. b. The Procedure for Constructing Mohr’s Circle for a 2D Stress System, given on pages 151- 153 of the text. 3. It would be helpful to review Example Problems 4-1 and 4-2 that demonstrate these procedures. 4. Also, Example Problems 4-3 to 4-6 show completed Mohr’s circles for sets of given data that result in the x-axis lying in quadrants 1, 2, 3, and 4. Thus example illustrations resolving the diverse kinds of data that are encountered in practical problems are demonstrated in the chapter. 5.

Problem 4-1 is shown in three forms;

a. The given data are processed using the equations in Section 4-3, particularly equations 4-5 to 4-11 to compute the maximum principal stresses and the maximum shear stresses, along with the angles of orientation on the stress element for those stress values. These calculations are demonstrated in Example Problem 4-1. b. Then the 2D Mohr’s circle is generated manually using the same input data. The three stress elements are then shown; the Original Stress Element, the Principal Stress Element, and the Maximum Shear Stress Element. c.

Then the 3D Mohr’s circle is presented showing the three principal stresses.

6. The remaining problems are shown using software to perform the calculations and to generate the Mohr’s circles for both 2D and 3D analysis. Note for these problems: a.

The software operates only with U.S. units. SI values are converted to U.S. units.

b. Each solution has tabulated results for principal stresses, maximum shear stress, and the angles to orient the stress elements. Those terms are sometimes shown without subscripts: e.g. 1 may be shown as 1;  may be shown as . c.

1.

The 2D and 3D Mohr’s circle solutions are shown on separate pages.

:

20 ksi;

0;

10 ksi; x‐axis in the 1st quadrant 50


/2

20

0 /2

20

10

10 ksi;

√10

Angle

/ 2

2

/2

10

10 ksi

14.14 ksi 10/10

45.0°/2

45°

2

CW from x

axis to

.

22.5°

90°

90

45

/2

45/2

22.5°

10

14.14

2

10.0 ksi

45° CCW from x

axis to

24.14 ksi 2

2

10

14.14

4.14 ksi

14.14 2

0

R=14.14 2

20

‐4.14 ksi

10

Original Stress Element

(20,10)

10 ksi

10

20

(0,‐10)

Principal Stress Element

Maximum Shear Stress Element

51

Mohr’s Circle

24.14


1.

X-Axis

psi

psi

psi

psi

psi psi psi

52

psi


1.

3D Mohr’s Circle Solution

3D Principal Stresses:

 1  24142 psi  2  0 psi  3  4142 psi

X-Axis

psi

53


2.

X-Axis

psi

54

psi


2.

3D Mohr’s Circle Solution 3D Principal Stresses:

 1  46827 psi  2  0 psi  3  91827 psi

X-Axis

psi

3

2

55

1


3.

psi

X-Axis

56


3.

3D Mohr’s Circle Solution

3D Principal Stresses:

 1  50000 psi  2  0 psi  3  50000 psi

psi

3

2

1

X-Axis

57


4.

psi

psi

X-Axis

psi

psi psi

58


4.

3D Mohr’s Circle Solution

3D Principal Stresses:

 1  47082 psi  2  0 psi  3  87082 psi

psi

3

psi

2

X-Axis

59

1


5.

psi

X-Axis

psi

psi psi

60


5.

3D Mohr’s Circle Solution

3D Principal Stresses:

 1  42462 psi  2  0 psi  3  122462 psi

3

psi

2

X-Axis

61

1


6.

X-Axis psi

psi

psi

psi psi

62


6,

3D Mohr’s Circle Solution

3D Principal Stresses:

 1  42462 psi  2  0 psi  3  122462 psi

X-Axis psi

psi

2

3

63

1


7.

psi

psi

X-Axis

psi

psi psi

64


7.

3D Mohr’s Circle Solution 3D Principal Stresses:

 1  71033 psi  2  0 psi  3  51033 psi

psi

3

psi

1

2

X-Axis

65


8.

X-Axis

psi

psi

psi

psi

psi

66


8.

3D Mohr’s Circle Solution

3D Principal Stresses:  1  168062 psi

 2  0 psi  3  88062 psi

X-Axis

psi

psi

3

1

2

67


9.

X

‐50.0 MPa

Axis

144.34 MPa

94.34 MPa

44.34 MPa

psi

psi

50.0 MPa

-50.0 MPa = avg psi 144.34 MPa psi

100 MPa psi 80 MPa 80.0 MPa psi

psi

42.3 MPa

68

psi 94.34 MPa


9.

3D Mohr’s Circle Solution

3D Principal Stresses:

 1  44.34 MPa  2  0 MPa  3  144.34 MPa

σavg X‐Axis

‐50.0 MPa

‐144.34 MPa σ3 psi

94.34 MPa τmax

42.34 MPa σ1 psi

3

2

1

psi

69


10.

85.0 MPa

198.31 MPa psi

283.31 MPa

113.31 MPa

psi

psi

X-Axis

70


10.

3D Mohr’s Circle Solution 3D Principal Stresses:

 1  113.305 MPa  2  0 MPa  3  283.305 MPa

σavg ‐85.0 MPa

198.31 MPa τmax psi

‐283.31 MPa σ2

113.31 MPa σ1 psi

psi

3

2

X-Axis

71

1


11. 11.

15 MPa

76.32 MPa psi

X-Axis 91.32 MPa

61.32 MPa

psi

psi

72


11.

3D Mohr’s Circle Solution 3D Principal Stresses:

 1  61.322 MPa  2  0 MPa  3  91.322 MPa

‐15 MPa σavg

76.32 MPa τmax psi

X-Axis ‐91.32 MPa σ2

61.32 MPa σ1 psi

psi

3

2

73

1


12.

35.0 MPa

121.76 MPa

psi

86.76 MPa

156.76 MPa

psi

psi

X-Axis

74


12.

3D Mohr’s Circle Solution 3D Principal Stresses:

 1  156.758 MPa  2  0 MPa  3  86.758 MPa

σavg 35.0 MPa

121.76 MPa τmax psi

156.76 MPa σ1 psi

σ2 ‐86.76 MPa psi

3

2

1 X-Axis

75


13.

35.0 MPa

121.76 MPa psi

156.76 MPa psi

86.76 MPa psi

X-Axis

76


13.

3D Mohr’s Circle Solution 3D Principal Stresses:

 1  86.758 MPa  2  0 MPa  3  156.758 MPa

σavg ‐35.0 MPa

121.76 MPa τmax psi

‐156.76 MPa σ2

86.76 MPa σ1

psi

3

2

X-Axis

77

1

psi


14.

σx 0, σy 0, τxy 40 MPa

σavg τxy τmax

X-Axis

0, 40 MPa

2ϕσ 90° σ2 ‐40 MPa σ1 40 MPa

τxy

40 MPa

45° σ2 ‐40 MPa

τmax

40 MPa

σ1 40 MPa

78


14.

3D Mohr’s Circle Solution 3D Principal Stresses:

 1  40 MPa  2  0 MPa  3  40 MPa

σx 0, σy 0, τxy 40 MPa σavg τxy τmax

X-Axis

0, 40 MPa

2ϕσ 90° σ2 ‐40 MPa

3

2

1 σ1 40 MPa

79


15.

85.0 MPa

; 165.0 MPa psi

80.0 MPa

250 MPa

psi

psi X-Axis

85.0 MPa

psi 80.0 MPa

psi

250 MPa

psi

τ

psi

80

165.0 MPa


15.

3D Mohr’s Circle Solution 3D Principal Stresses:

 1  250 MPa  2  0 MPa  3  80 MPa

85.0 MPa σavg; 165.0 MPa τmax psi

‐80.0 MPa σ2

250 MPa σ1

psi

3

psi

1

2

81

X-Axis


16.

15.0 MPa

71.59 MPa psi psi

86.59 MPa

56.59 MPa

psi

psi

X-Axis

psi 80 MPa

psi 15.0 MPa

30 MPa psi

psi 50 MPa

psi 56.59 MPa 86.59 MPa psi

82

psi 71.59 MPa


16.

3D Mohr’s Circle Solution 3D Principal Stresses:

 1  56.589 MPa  2  0 MPa  3  86.589 MPa τmax 71.59 MPa

σavg ‐15.0 MPa

psi

σ1 56.59 MPa

σ2 ‐86.59 MPa psi

psi

3

2

1 X‐Axis

83


17.

403.1 MPa

50.0 MPa

psi

X-Axis

353.1 MPa

453.1 MPa

psi

psi

psi

psi

psi

psi psi

psi

84

psi


17.

3D Mohr’s Circle Solution 3D Principal Stresses:

 1  453.113 MPa  2  0 MPa  3  353.113 MPa

403.1 MPa τmax

σavg 50.0 MPa

psi

X‐Axis

σ2 353.1 MPa

453.1 MPa σ1 psi

3

psi

2

1

85


18.

30 MPa 170 MPa psi

‐140 MPa

200 MPa

psi

psi

X-Axis

psi

psi psi psi psi 170 MPa

psi

86

30 MPa


18.

3D Mohr’s Circle Solution 3D Principal Stresses:

 1  200 MPa  2  0 MPa  3  140 MPa

σavg 30 MPa τmax 170 MPa psi

‐140 MPa psi 3

2

1

200 MPa psi

σ1

σ2

X-Axis

87


19.

5.0 MPa

X-Axis

47.17 MPa psi

-52.17 MPa

42.17 MPa

psi

psi

-5 MPa

psi

psi psi psi psi

τ psi

88

psi 47.17 MPa

σ


19.

3D Mohr’s Circle Solution 3D Principal Stresses:

 1  42.170 MPa  2  0 MPa  3  52.170 MPa

σavg ‐5.0 MPa

X‐Axis

τmax 47.17 MPa psi

‐52.17 MPa

42.17 MPa

psi

psi

σ2

3

2

89

1

σ1


20.

50.0 MPa

σ

170 MPa

τ

psi

-120 MPa

220 MPa psi

psi

psi

X-Axis

7252 psi

psi psi

τ 17 405 psi

90


20.

3D Mohr’s Circle Solution 3D Principal Stresses:

 1  220 MPa  2  0 MPa  3  120 MPa 50.0 MPa σavg 170 MPa τmax

‐120 MPa

220 MPa psi

σ2

3

psi

2

1

91

σ1

X‐Axis


21.

σ

20.0 ksi τ

20.0 ksi

psi

psi

X-Axis

psi

psi

psi

92


21.

3D Mohr’s Circle Solution 3D Principal Stresses:

 1  40 Ksi  2  0 Ksi  3  0 Ksi

Two circles overlap. The third circle is a point at the origin. σavg 20.0 ksi τmax 20.0 ksi psi

1

2 σ2

3

psi

σ1

93

X‐Axis


22.

X-Axis

40.0 ksi psi

psi

psi

40 000 psi

psi

45°

40 000psi 40 000psi

94


22.

3D Mohr’s Circle Solution 3D Principal Stresses:

 1  40 Ksi  2  0 Ksi  3  40 Ksi

X‐Axis

τmax 40.0 ksi psi

psi

σ2

psi

3

2

95

1

σ1


23.

psi

psi

X-Axis

psi

psi psi

96


23.

3D Mohr’s Circle Solution 3D Principal Stresses:

 1  42.780 Ksi  2  0 Ksi  3  29.780 Ksi

psi

3

psi

1

2

X‐Axis

97


24.

avg,

psi

psi

2

1

98


24.

3D Mohr’s Circle Solution 3D Principal Stresses:

 1  55 Ksi  2  0 Ksi  3  0 Ksi

Two circles overlap. The third circle is a point at the origin

psi  2

1

3

99

psi


25.

avg, max

X-Axis

psi

psi

2

1

psi psi

100


25.

3D Mohr’s Circle Solution 3D Principal Stresses:

 1  23.932 Ksi  2  0 Ksi  3  1.932 Ksi

X‐Axis

psi

3

psi

2

1

101


26.

X-Axis

psi

psi

2

1

psi

psi

psi

102


26.

3D Mohr’s Circle Solution 3D Principal Stresses:

 1  4180.011 psi  2  0 psi  3  5180.011 psi

X‐Axis

psi

3

2

103

psi

1


27.

Both principal stresses are tensile – same sign

164.03 MPa

128.06 MPa

psi psi

71.94 MPa

328.06 MPa psi

psi

104


27.

3D Mohr’s Circle Solution 3D Principal Stresses: Expressed in 3D already

 1  328.062 MPa  2  71.938 MPa  3  0 MPa 164.03 MPa τmax psi

3 σ3

128.06 MPa psi

71.94 MPa σ2

328.06 MPa σ1 psi

psi

1

2

105


28.

Both principal stresses are tensile – same sign – 3D Solution

132.02 MPa psi

64.03 MPa psi

135.97 MPa psi

106

264.03 MPa psi


29.

Both principal stresses are compressive – same sign – 3D Solution.

433.53 kPa 279.56 kPa

psi

psi

867.06 kPa =

307.9 kPa psi

psi

107


30.

Both principal stresses are compressive – same sign – 3D Solution

150.02 kPa psi

168.76 kPa 24.48 psi

37.48 kPa 337.5 kPa psi

psi

X‐Axis

108


31.

Use

0.500 in for shaft ABC. Stress element on bottom. 252 lb ∙ in;

From Figure 3-20: /32

0.50

300 lb ∙ in

12 225 psi

20 538 psi

2

0.02454 in

12 225 psi = xy

.

√10 269

12 225

10 269

15 966

26 235 psi

10 269

15 966

5699 psi

2

20 538 psi

0.01277 in

∙ .

/16

/32

0

15 966 psi

15 966 psi 1 = 26 235 psi

2

20 538

10 269

0 2

49.97°

12 225 psi

24.98° CCW 2

2

90°

139.97° -Axis

69.98° 69.98° 24.98° 10 267 psi 15 966 psi

109


31.

3D Mohr’s Circle Solution 3D Principal Stresses:

 1  26235 psi  2  0 psi  3  5699 psi τ

τmax 15 966 psi

σ2

2ϕτ

10 269

3

0

2

σAx

σ1

20 538

1

2ϕσ

σ

τ 12 225 psi

x

110


32.

1.500 in for shaft ABC. Stress element on bottom.

Use

4572 lb ∙ in;

From solution for Problem P3-48, /32

0.3313 in ;

/16

2

/

4572 lb ∙ in/0.3313 in

13 800 psi

/

9658 psi

0.6627 in ;

√6900

9658

6900

11 870

18 770 psi

6900

11 870

4970 psi

6400 lb ∙ in

6400/0.6627

11 870 psi

13 800 psi

2

54.46°;

27.2° 11 870 psi

2

2

90°

144.46°;

72.2°

72.2°

0 27.2° 6900 psi .

111

13 800

6900 .

9658 psi


32.

3D Mohr’s Circle Solution

3D Principal Stresses:

 1  18770 psi  2  0 psi  3  4970 psi 

-4970 psi

0 psi





18770 psi



112


33.

Use

2.25 in for shaft ABC. : Stress element on bottom.

From solution for Problem 3‐49, /32

1.118 in ;

/16

2

/

3863

3863

3867

7730 psi

3863

3867

4 psi

179/3863

400 lb ∙ in

8640 lb ∙ in /1.118 in

2.237 in ;

√179

2

8640 lb ∙ in;

/

7726 psi tension

400 lb ∙ in /2.237 in

3867 psi

3867 psi

2.65° 2

1.33° CW 2

90°

2

179 psi

X-axis

3867

87.35° 3863

3863

2

43.67° CCW 0

1.33°

. 43.67°

7726 psi

3867 psi

179 psi .

113


33.

3D Mohr’s Circle Solution

3D Principal Stresses:

 1  7730 psi  2  0 psi  3  4 psi 

-4 psi

0 psi





7730 psi



114


34.

50.0 mm for shaft A-B: Stress element on bottom.

Use

0.650 kN ∙ m;

From solution for Problem 3-50, /32

0.375 kN ∙ m

12 272 mm ∙

/ /16

2

52.97 MPa Compression ∙

24 544 mm ;

√15.28

26.48

15.28 MPa

30.57 MPa

26.48

30.57

4.09 MPa

26.48

30.57

57.05 MPa

15.28/26.48

30.0°

2 52.97

26.48 26.48

2

180°

150°

15.28

2

75° CCW 2

90° 60° CW

X-Axis

120° 0

75°

.

52.97 MPa 15.28 MPa CCW

60°

115


34.

3D Mohr’s Circle Solution

3D Principal Stresses:

 1  4.09 MPa  2  0 MPa  3  57.05 MPa 

-57.05 MPa

0 MPa





116

4.09 MPa




35.

4.00 in;

/4

12.57 in ;

/16

12.57 in 20 000 lb ∙ in

5968 psi

. ∙

75 000 lb

1592 psi

.

2

‐5968

2984

1592 psi

2

y = -5968 psi 2984

0 1592 psi 2

1592 2984

tan

Surface Element 2 √1592 2984

3382

2984

3382

2984

28.08°

3382 psi

398 psi

14.04° CW 2

6366 psi

28.08°

90°

2

61.92°

30.96° CCW

117


35.

3D Mohr’s Circle Solution

3D Principal Stresses:

 1  398 psi  2  0 psi  3  6366 psi 

-6366 psi

0 psi





118

398 psi




20 mm;

36.

314 mm

450 N ∙ m

114.6 MPa tension 36.0 kN 1571 mm ∙

/

286.48 MPa 0

.

X‐Axis

57.3 MPa √57.3

292.2 MPa 2

286.5

2

‐234.9

57.3

286.5

292.2 MPa 57.3

292.2

57.3

292.2

234.9 MPa

286.5/57.3

2 2

349.5 MPa

90

2

11.3°;

78.7°;

39.35°

5.65°

119

349.5 MPa


36.

3D Mohr’s Circle Solution

3D Principal Stresses:

 1  349.5 MPa  2  0 MPa  3  234.9 MPa 

- 234.9 MPa



0 MPa

349.5 MPa





120


CHAPTER 5 DESIGN FOR DIFFERENT TYPES OF LOADING

1.

/ :

78.54 mm

3500 N/98.54 mm 500 N/ 3500

.

Stress

500 /2

2000 N/

2000 N Time

. 44.6

/ 2.

25.5

6.37/44.6

/ : 20 8.0

10

30

10

/300 mm

20

8 /2

6

10 N /

/ / :

. . 300 mm

10 N /

. .

6 kN

St

. 66.7

3.

.

Time

20.0

.

26.7/66.7

.

0.40

0.16 in

860 lb/0.16 in

Stress

120 lb/0.16 in 860

120 /2

Time

370 lb

370 lb/

121


5375 / 4.

2313

750/5375

.

.

0.1104 in

/ :

1800 lb/0.1140 in 150 lb/0.1104 in 1800

150 /2

St

975 lb

Time

975 lb/ 16 297 / 5.

8828

1358/16 297 .

/ :

780 N/7.069 mm 360 N/

. 7.069 mm .

. Stress

180

360 /2

570 N/ 110.3

570 N

Time

. 80.6

50.9/110.3

. .

122


6.

/ ;

1.48 in for 4

At B:

2

1

4 Tube:

14 400 lb ∙ in /1.48 in

[Appendix 15‐14] Loading Case I

.

9730

V (lb)

7135 /2 9730

7135 M (lbin)

/

Loading Case II

.

A

B

C

At C V 1320 (lb)

.

.

9730

2595 /2

M (lbin)

9730 /

6162 A D

.

Stress vs. Time diagrams – Same as for Problem 5.

V (lb)

V (lb)

M (lbin) M (lbin)

123

B

C


7.

[Figure above] Beam:

:

3.04 in for S4

500

60

30 000 lb ∙ in

500

10

5000 lb ∙ in

30 000

5000 /2

30 000

17 500

17 500 lb ∙ in

7.7

Stress

12 500 lb ∙ in

Time

∙ .

5000/3.04 17 500/3.04 12 500/3.04 . 8.

Loading case I

Loading case II Beam cross section

V (N)

V (N) M M (Nm) (Nm)

M (Nm)

1440 mm Bending ∙

.

. ∙

. Time

124


107.7

10.4 /2 107.7

/ 9.

. 59.1

10.4/107.7

. .

The spring is a supported cantilever – Case (6) Appendix A14‐3. Deflection is proportional to force. Bending moment is proportional to force. Deflection at load B: 3 .

0.90 mm

V

.

0.30 mm

M

207

10 N/mm General load, shear, and moment diagrams

Solve for P: .

46.78 For

0.25 mm;

46.78 0.25

11.7 : For

0.40 mm,

Moments:

2

25

40

7.617

25

2 40

4.614

Summary: 18.7 N;

7.617 18.7

.

125

Maximum

18.7


.

.

11.7 N;

89.1 N ∙ mm;

475

297 /2

475

386

/ 10.

Find For

Stres s

. 297/475

Time

.

; SAE 1040 CD;

80 ksi;

0.75 in diameter;

31 ksi for cold drawn CD curve

0.90 Figure 5

1.0 Wrought Steel;

12

1.0 Repeated Bending;

0.81 99% Reliability

31 ksi 0.90 1.0 1.0 0.81 11.

Find

′: SAE 5160 OQT 1300;

For 20.0 mm diameter:

795;

0.90

300 MPa Figure 5 5

1.0 Repeated Bending;

.

12 ;

11

1.0 Wrought Steel

0.81 99% Reliability [Table 5‐9]

300 MPa 0.90 1.0 1.0 0.81 12.

Find

: SAE 4130 WQT 1300;

Equation 5‐25: 0.87 Figure 5

676 MPa;

260 MPa Figure 5

0.808√

0.808

12 ;

1.0 Wrought Steel

1.0 Repeated Bending;

60 20

11

28.0 mm

0.81 99% Reliability

260 MPa 0.87 1.0 1.0 0.81 13.

Find

: SAE 301 Stainless Steel, ½ Hard;

150 ksi;

52 ksi: Figure 5

1.0 For axial tensile stress;

1.0 Wrought Steel

0.80 For axial tensile stress.

0.75 for

52 ksi 1.0 1.0 0.80 0.75

126

0.999 .

11


14.

Find

′: ASTM A242 steel;

[Equation (5‐25)];

70 ksi;

0.808√

1.0 Wrought Steel; 27.0

0.808

27.0 ksi, Figure 5 3.5 0.375

1.0 Revolving Bending; 0.883 1.0 1.0 0.81

11

0.926;

0.883

=0.81 (99% Reliability) .

Design and Analysis Problems 15 – 18 are open‐ended design problems for which there is no unique answer. The General Design Procedure from Section 5‐11 should be used. The loading and support conditions should be compared with the cases described in Section 5‐10 to determine the appropriate design stress. A design factor should be specified using the guidelines in Section 5‐9. When needed, the endurance strength should be computed from Equation 5‐21 in Section 5‐6. 15.

The link is subjected to a fluctuating normal stress. See Section 5‐10. See also the solutions to Problem 5‐1.

16.

The rod is subjected to a fluctuating normal stress. See Section 5‐10. See also the solution for Problem 4.

17.

The strut is subjected to a fluctuating normal stress. See Section 5‐10. See also the solution for Problem 2.

18.

The latch part is subjected to a fluctuating normal stress. See Section 5‐10. See also the solution for Problem 5.

127


19.

Figure P5‐8. See also the Problem 8 solution. Fluctuating load – Goodman Criterion: Equation 5 Find . SAE 1020 HR;

28 ;

59.1 MPa;

48.6 MPa

207 MPa;

379 MPa;

140 MPa [Figure 5‐11

Hot Rolled steel] : Rectangle: D

0.808 12 60

1.0 Let

21.7 mm;

,

1.0

0.81

0.99; Then

0.89 1.0 1.0 0.81 140

101 MPa

.

.

.

0.89

.

0.637;

Low

Yield: From [Equation (5‐29)]: 20.

.

.

.

Design Problem – No unique solution Suggestions: Keep 60 mm width for seat application. Consider higher strength material; thinner stock formed into channel shape; e.g. Consider tapering cross section depth – deeper at load – less deep near supports

where moment is smaller. Consider using aluminum. Consider shapes from Appendix 15‐7 or Appendix 15‐8, and the references to suppliers listed there. 21. was

Data is same as in Problem 7 where a S4

7.7

2.26 in

steel beam

proposed. Fluctuating stress. Use Equations 5‐28 and 5‐29 – Goodman Criterion. : Specify ASTM A36 Steel;

;

20 ksi

5

95

0.05 2.26

0.05

0.113/0.0766

36 ksi;

11

1.215 →

0.113 in 0.86 128

0.0776

58 ksi


1.0;

1.0; Let

0.86 0.81 20 .

0.99 →

0.81

13.9 ksi;

5757 psi;

0.395;

4112 psi

Problem 7

2.53

Check Yield: . . 22.

is satisfactory if no unusual conditions or uncertainty of data exists. Data same as Problem 9. Fluctuating normal stress – Goodman Criterion.

386 MPa;

89 MPa. From Appendix 3: SAE 4140 OQT 400 has the highest

with >10% elongation for good ductility. 2000 MPa; Let

99% →

1730 MPa;

5

11

0.81

0.81 450 For rectangle:

450 MPa

364 MPa 0.808√ .

0.808 0.6 5 0.438;

1.40 mm; .

1.0

[Equation 5‐29]

Suggest trying to find an even stronger material from other references. May adjust width or thickness of spring stock. Use analysis from Problem 9 to compute force vs. deflection for spring. Consider moving latch pin farther from fixed end of spring. This is a good spreadsheet problem.

129


23.

Data same as Problem 6. Fluctuating normal stress – Goodman Criterion At B:

8432 psi;

2595 psi

At C:

6162 psi;

3568 psi

For ASTM A500 Grade B: 20 ksi;

0.99 →

3.59 in ;

95

58 ksi; 0.81;

0.05 3.59

1.53 in →

0.369:

Check Yield:

.

2.97

1

4

2.71 Ok; 4

4 tube:

0.0766

0.84 0.81 20

.

At B:

for 4 0.180 in

0.84;

At C:

46 ksi

13.6 ksi

2.71 [Equation 5‐29] Ok

1

4

4 tubing weighs 8.78 lb/ft; Appendix 15

14

A lighter beam can be designed by placing 4 in side vertical and using a thinner wall. In Appendix 15‐15, the source Jorgensen offers 4 with 4.0 in side vertical, reduced by 24.

1.58 in ; original

Fluctuating load.

1.48; so beam is safe. Weight is

0.60 in; A

1500 lb Tensile;

400 /2

550 lb;

1500

/

550 lb/0.283 i

1943 psi

/

950 lb/0.283 in

3357 psi

SAE 4130 WQT 1300: 0.93;

0.134; 5.223 lb/ft

40%.

Piston Rod. Figure P5‐24. Rod Diameter

1500

2

1.0;

0.283 in

400 lb Compression; 550

98 ksi;

89 ksi;

0.80

;

0.93 1.0 0.80 0.81 37 ksi

πD /4

950 lb

99% →

37 ksi Figure 5

11

0.81

22.3 ksi; Use the Goodman Criterion.

130


.

0.170;

Safe but high. Should also check for 0.50 in:

0.196 in ;

. 25.

in final design. If rod diameter is reduced to

2801 psi;

.

.

4838 psi; [Buckling should also be checked.] /

Brittle material – static load: .

/

11 877 psi Compression

/

.

0.25 in/4.00 in

5.87

0.0625;

/

5.00 in/4.00 in

1.25; Then

1.99

. 26.

Brittle material – static load: .

1900 psi;

/

.

/ ame as Problem 25

. 27.

Brittle material – biaxial stress – Section 5‐4 Use modified Mohr method. [See Figures 5‐8 and 5‐9] and

are found from Mohr circle stress element in the fillet area. 11 877 psi

Axial compressive stress from Problem 25: =

Then

+

Torsion:

;

=0

)/2 = (‐11 877 psi + 0)/2 = ‐5939 psi

: For / .

0.0625;

/

1.25;

11 877 psi

12.57 in

1.48 20 000

From Mohr circle: 5939

/12.57 in √2355 6389

1.48 [See Problem 25]

2355 psi

5939

6389 psi

450 psi Tension 131

0 2355 psi


5939

6389

12 328 psi Compression

Graphical solution 4th quadrant Point

450 psi;

at

Line

12 336 psi

Point

is failure point

Line

120 300 psi scaled /

28.

12 328 psi

.

Very Safe

= ‐5939

Ductile Material – Static Load: [See Figure P5‐28] SAE 1137 CD steel; /

565 MPa

565 MPa/3

In middle of shaft,

188 MPa

.

Required

1795 mm

/

/32:

32 /

Use preferred value

M (kNmm) 0

26.3 mm

20 /32 188 /

M = 2.7x

28 mm [Table A2‐1]

Find x which would be safe for /32

V (kN)

337.5 kN ∙ mm

20 mm

785.4 mm 785.4

147 650 N ∙ mm

132

147.7 kN ∙ mm


But

.

2.7 :

.

54.7 mm max

.

Use 125

125 mm

54

54

R d = 20

29.

D = 28

R optional ‐ static stress; Use R = 2.0 mm

Figure P5‐28. See also Problem 28. Repeated and reversed normal stress; SAE 1137 CD;

676 MPa;

0.90;

1.0;

/

182/3 .

∙ .

32 /

/

∶ .

. .

/2.7

20 mm

0.81

337.5 5563 m

38.4 mm: Use

Allowable distance “a” – let ∶

11 ; for

182 MPa

0.83; Recompute:

New

99% →

60.7 MPa:

Required Required

250 MPa Figure 5

1.0;

0.90 0.81 250

′/

: But

785.4 mm

/32

40.0 mm

39.4 mm; 2.0 mm;

10 N ∙ mm at load Problem 28

/

40.0 mm Ok 2.0/20

0.100;

Problem 28 : /

26 485 N ∙ mm 26.5 kN ∙ mm /2.7 kN

133

1.80

40/20

2.00

2.7

Problem 28

26.5 kN ∙ mm 9.81 mm: Use a

.


30.

See Figure P5‐28 and Problems 28 and 29.

2.0 for keyseat

Use Goodman method for shearing stresses:

:

/

; Alternating stress:

; Then

/

SAE 1137 CD:

676 MPa;

0.577

250 MPa [Figure 5‐11]

0.81;

50 mm;

0.81

0.50 0.81 0.81 250

0.75

0.75 676

Required

3 16

.

82.0 MPa

337.5 10 N ∙ mm [Problem 3‐28]

507 MPa .

25 579 mm

/16

50.69 mm: Specify

52.0 mm

.

/

Mohr circle for alternating stress

I

∶ Required

Assume

/2

16 25 579 /

Location of step from 20 mm to 50 mm: /16

20 /16

1571 m

: Solve Equation I for

For

20 mm;

0.90; ′

0.90 0.81 250 0.577

105 MPa

For

: Bending

52 mm

20 mm

1.82

/

∙ /

.

From Problem 3‐28, /2700

2.0 mm 13 143 N ∙ mm

2700 ∙

.

134

very small


x is from middle of bearing to step. Redesign is required, consider larger d or material with higher strength. 31.

30 ksi;

0.5

/

0.5 30 /3

5 ksi

5000 psi

Combined stress – static load, maximum shear stress method. Assume axial compression is small. Then max occurs at front and rear – combined bending and torsion. Use equivalent torque method – Chapter 4, Equation 4‐22 and 4‐23. 200

18

3600 lb ∙ in

400

18

7200 lb ∙ in

Note: Bending due to 200 lb load is only 4000 lb∙in and acts at a different point. √

√7200 / /2

But

1.064 in ;

3600

8050 lb ∙ in ∙

: Then

/

0.805 in → From Appendix A 2.128 in ;

15, Use 2 in schedule 40 pipe

1.704 in 7028/2

Check

1.61 in

.

1693

.

.

135

3903 psi

7002 psi

τ

Ok


32.

Fluctuating shear stress: Use Goodman method for shearing stresses. Ta = 17.5

;

65.0 Tm = 42.5

T (Nm)

30.0

.

2 0.75 0.577

For

1160 MPa;

. SAE 4140 OQT 1000; 400 MPa

708 mm 16

Specify

/

870 MPa 1160 MPa, 5

0.50 0.9 0.81 400 Required

.

/

0.75 1160 MPa

Use

0.0.

Time

11 : Let

1050 MPa 0.90;

146 MPa /16

16 708

/

16.0 mm; Actual

15.3 mm

0.92 Ok;

16 /16

804 mm

Check Yielding ∙

21.77 MPa;

/

/ .

0.81

.

59.06 MPa

.

2.0 Ok

136


33.

Fluctuating normal stress: Goodman Criterion; Equation 5‐28

58 ksi;

Figure 5

11

3;

28 ksi

75 ksi;

Assume machined surface and 0.9 0.81 28

0.9;

20.4 ksi

0.81

20 400 psi

F = 0 to 800 lb

Fx

9600 lb ∙ in V (lb)

4800 lb ∙ in b

/6;

M (lbin)

b

Mmax Ma

/

Mm Mmin = 0

/

I .

Term involving

.

1.75 in → Use

for

1.80 in square.

0.808 1.80

.

.

is small:

1.796 Recheck

.

1.80 in

0.808√

0.808√ .

.

1.454 in. Then

0.84 0.81 28

Preferred size

.

19.05 ksi

I 137

19 050 psi

0.84

0.808 b


Equation

becomes: .

34.

.

.

.

.

.

0.331;

.

.

.

.

.

Fluctuating combined stress: Goodman Criterion

Mohr’s circle – Mean stress Genera l

(m)max = R

τ due to torque: (Figure 3‐10) .

= 5769/b3

.

14 400 b3

From Problem 33, mean stress small

Final

m = 28 800/b3

(m)max = R = 2876

989

Alternating stress:

/2 for bending only

.

Then: 0.75 0.577 For

2700

3;

0.75 75

56.25 ksi

0.577 0.83 0.81 28 1.69 in → use

1.80

138

10 860 psi

5401


Check: .

5401 psi

.

From Mohr circle:

2876 psi

989 psi

.

14 400/ 1.80

2469 psi 0.279 →

.

.

Problems 35, 36 and 37 all ductile materials – steady load 35. 36.

37.

31.8 MPa:

/

/

5000

/ 12

a)

1020 HR:

207/34.7

b)

8650‐OQT 1000;

c)

Ductile Iron, 60‐40‐18:

d)

Aluminum 6061‐T6:

e)

Ti‐6A2‐4V:

f)

PVC:

g)

Phenolic:

/

34.7 MPa:

1070/34.7

/

.

276/34.7

All high ‐ reduce

.

276/34.7

827/34.7

.

. 41/34.7

based on tensile stength; .

.

.

based on tensile strength;

.

290/31.8

11 859 psi:

139

45/34.7 /

.

– Low‐increase .

– Low‐increase

40 000/11 859

.


38.

Ductile material – Steady load: [Problem 38, 39, 40] SAE 1144 CD

90 ksi

90 000 psi

Σ

60 :

75 2500 /60

0

75

/ /

.

3125 lb A +

595 psi

.

90 000/595

151 Very high

Consider a small rod of SAE 1020 HR steel /

30 000/3

10 000 psi;

0.3125 in

A square bar ¾ in on a side would do.

0.44 in

Or from Appendix 15‐15: Rectangular tube – 1.00 39.

Σ

0

1500 lb

1500/2 /

45°

45°

1061 lb

40.

1500/2 .

14 000 psi

15°

2898

.

F = 1500 lb

/

0.0758 in

/

0.0625;

2 FR sin

2

42 000/3

2.00

/4:

:

.

Use

0.207

:

140


41.

Repeated reversed axial load:

1.00;

0.8 Axial load;

0.81

A = d2/4 = (10 mm)2/4 = 78.54 mm2 / /

:

1.5/10

/

.

/

152.8 MPa

.

0.15

12/10

1.60

1.20

1160 MPa →

400 MPa

5

1.00 0.8 400 0.81

259 MPa

259/152.8

42.

.

/

Repeated reversed shear stress: ∙

11

0.81,

. 0.81

32.6 MPa

/

SAE 1040 WQT 1000:

780 MPa Figure A4

1 ;

280 MPa Figure 5

11

0.5 0.5 0.81 0.81 280 / 43.

91.9/32.6

91.9 MPa .

Ok

Repeated – One direction shear stress: Fluctuating shear stress T (Nm)

Goodman Criterion:

800 400

400

/16

24 544 mm

400 0.75 .

10 N ∙ mm / 24 544 mm

0.75 780 .

. .

0.205;

Time

0

16.30 MPa

585 MPa .

141

From Problem 42


44.

Ductile Material – Static load:

0.5

/

; Let

3.0 [Design

decision] .

.

7003 psi

/

Required

/0.5

3 7003 /0.5

Aluminum 2024‐T4 has 45. 0.81;

0.82;

Fluctuating shear stress: Goodman Criterion; Assume 3 12 375 lb ∙ in /2 0.75;

6188 lb ∙ in:

0.75 208

156 ksi;

208 ksi →

21.25 ksi

21 250 psi

0.50 0.82 0.81 64

64 ksi Figure 5

: 3 46.

0.993 in ; Steady load: ∙

0.5

mm / 0.5

622 /

/

622

10 N ∙ mm

8590 mm

10 N ∙ mm /8590 mm

:

1.75 in;

/

622 N ∙ m

/

16

/0.5

3 72.4 /0.5

SAE 1040 cold drawn has

142

72.4 MPa

.

11


47.

Fluctuating shear stress – Goodman Criterion (See also data from Problem 46)

Pa = 6.5 kW

/

21 500/45

478 N ∙ m

28 Pm =

/

6500/45

21.5

144 N ∙ m

15 P (kW)

/

478 000 /8590

/

144 000/8590 .

.

55.6 MPa Time

0

16.8 MPa .

After trials: 0.83;

0.81

SAE 1144 CD;

621 MPa;

690 MPa →

0.75

0.75 690

0.50

0.50 0.83 0.81 253

.

.

0.305;

.

253 MPa Figure 5

11

518 MPa

1/0.305

85.0 MPa .

Ok

For Problems 48, 49, 50, and 51: Fluctuating normal stress: Goodman Criterion [Analysis at the section through the hole]

48.

1.50 .

.

/

0.50 0.50

0.50 in

20 000 psi

Pm = 10 000 7500

5000 psi

0.5/1.50

0.333 →

Pa = 2500 12 500

Force, P (lb)

2.31 Time

For SAE 6150 OQT 1300: [Figure 5‐11 for su]

143

Axial


107 ksi,

118 ksi → .

6 /4

49.

0.583 →

.

/

0.5/6

0.083

/

9/6

1.50

.

.

. .

For yield: 50.

0.8 0.81 43

27.9 ksi

.

28.27 mm .

σ

43 ksi;

225 N

36.25 MPa

1250

7.96 MPa

800

1025

P (N) Time 0 2.03

0.126;

779 MPa;

841 MPa

300 MPa

.

0.8 0.81 300

8.68 Ok

Axial From Problem 3‐62, Chapter 3: Maximum stress occurs at bottom. 1.86;

86 000 psi;

0.8 0.81 43 000

121 000 psi;

43 000 psi

27 864 psi:

.

/

Goodman Criterion: .

For yield:

.

0.224;

Ok

144

.

Ok

3056 psi; σ

194.4 MPa


51.

From Problem 3‐63, Chapter 3: Maximum stress occurs at left hole (0.72 diameter) 2.15:

1.40

0.72 0.50

0.34 in 6200

15 000 psi

.

Fm = 5100 4000 F (lb)

3235 psi

.

Goodman Criterion:

For yield:

sy = 125 ksi su = 135 ksi

0.314; N = 3.19 ;

.

3 18 281

51 ksi 0.8 0.81 51 33.05 ksi

.

16 650 psi, including

From Problem 3‐64, Required

Time

0 .

52.

Fa = 1100 lb

:

/ ,

53.

Goodman Criterion:

: Note that direct solution is not possible because

both

and are unknown. Also data for endurance for titanium are not directly available

here. As an estimate we will use Figure 5‐11 and the discussion for steel to obtain note from previous problems,

/4. This permits solution for

. Also

. After material

selection, the final “N” can be computed. From Problem 3‐65: Axial tensile force; stepped round bar; 30 /4

707

.

Fa = 5.15 kN 30.3

35.57 MPa

.

Fm = 25.15 20.0 F (kN)

7.28 MPa .

.

Time

.

. /

Then

102.5

Try Titanium Ti 50A;

2.30 for fillet

3 102.5

308 MPa

276 MPa;

145

345 MPa


From Figure 5‐11:

120 MPa Estimate

0.8 0.81 130 .

.

84.2 MPa; Now compute actual value for N:

.

0.302 →

.

54.

.

Ok Specify Titanium Ti 50A

From Problem 3‐66, stepped round bar in torsion: Use Goodman Criterion: For round bar:

Assume .

0.75

;

:

0.75

19 273

/16

0.383 in

57 819 psi /0.75

60 ksi,

87 ksi;

0.75 87 000

65 250 psi

0.405;

2.47 Low

Try SAE 1040 WQT 1000;

113 ksi,

84.75 ksi;

.

0.3175;

53

3 19 273 ≅ 57 819 psi

0.50 0.81 0.85 33 000

.

0.75 113

See Problem 5

/0.75

Try SAE 1137 OQT 1300; 0.50

/4 :

/

55.

1.25

1100 lb ∙ in

1100 lbin /0.383 in = 2868 psi; Also, a = m = 2868 psi

/

But

1.43:

77 092 psi 33 ksi

11 360 psi

88 ksi,

42 ksi

0.50 0.81 0.85 42 .

14.458 ksi

Ok – Specify: SAE 1040 WQT 1000

Figure P3‐67: Stepped round bar in torsion. Specify grade of ASTM A536 ductile iron. Use Maximum Normal Stress method. Higher strength ductile irons are fairly brittle. From Problem 3‐67: Required

32 564 psi, including 3 32 564

;

/ →

146

Grade 100‐70‐03.


56.

From Problem 3‐68: Required

49 323 psi including

3 49 323

:

/

. Specify a grade of stainless steel.

Referring to Figure 5‐11, the required su >> 220 ksi ‐ Excessively high. No practical stainless steel material available. Redesign the member. 57.

Figure P5‐57; Industrial screw‐driver: Load is repeated – one direction – torsional shear stress. Compute the design factor. Fluctuating shear stress – Goodman Criterion:

100 lb ∙ in/2

At fillet: /

0.083:

0.50/0.30

/16

1.67; /

0.30

/16

0.025/0.30

50 lb ∙ in

1.43

0.00530 in

∙ .

SAE 8740 OQT 1000:

167 ksi;

0.50 0.81 1.0 60 ksi

24.3 ksi;

.

58.

175 ksi; Then 0.75

0.627;

.

60 ksi Figure 5 0.75 175 Low

From Figure P5‐58, Rectangular bean; ASTM A48, class 40A cast iron. Steady load – brittle material; Compute the design factor. At middle – between C and D: /6 /

0.75 in 2.25 in /6

0.633 in3

2250 lb ∙ in / 0.633 in

= 3556 psi

At step – point B: /6

0.75 1.25 /6

/

0.20/1.25

0.16

/

2.25/1.25

1.80

0.1953 in Kt = 1.63

V (lb)

M (lbin)

147

11

131.3 ksi


.

12 519 psi

.

/ 59.

40 000/12 519

.

Repeated one direction: Goodman Criterion: Seek 2.5 < N < 3.0 [Design decision] Round tensile member. Specify a material. 0.50 in;

/4 /

0.196 in ; Assume

1500 lb/0.196 in

1st Trial: SAE 1040 CD:

1.0

7639 psi

71 ksi;

Fm = Fa = 1500 lb

3000 F (lb) 1500

80 ksi

Time

30 ksi

5

11 ;

0 0.81 0.8 30

.

0.489;

2nd Trial: SAE 1040 WQT 1000: 42 ksi;

19.4 ksi

2.04 Low

112 ksi;

87 ksi; 23% elongation

27.2 ksi 0.349;

.

Ok

Check Yield: Equation 5‐29, solved for N: . 60.

Ok Specify SAE 1040 WQT 1000 steel.

Repeated – One direction: Use Goodman Criterion:800 Force (lb) 400

Specify a suitable steel. 800 lb;

0;

0.010 in;

25.0 0 in

Consider deflection first: Required √

S .

/ √0.0667

Stress analysis: Assume

Fm = Fa = 400 lb

0.0667 in

.

0.258 in: Try 1.0

148

0.300 in

Cross Section


4444 psi

.

Try SAE 1040 CD:

71 ksi;

From Figure 5‐11:

30 ksi: Let

s

80 ksi; 12% Elongation

1.0 0.80 0.81 30 ksi

1.0;

0.80

;

0.81

19 400 psi .

Equation 5‐28:

0.285;

.

Ok

Check yield; Equation 5‐29, solved for N. N= 61.

.

Ok

Repeated – one direction: a)

1200 lb;

600 lb

[Goodman Criterion]

a=8 in

For illustration use same material As in Problem 60: SAE 1040 CD 80 ksi;

300 V (lb)

30 ksi

0

0.90 1.0 0.81 30 Size Bending At C:

3000 lb ∙ in; /32

2.0

21.9 ksi3000 2400 M (lbin)

1.0 /32

0

0.785 in

Non rotating circle 0.370

.

0.370 2.0

0.74/0.3

Equation 5‐29: /

Fm = Fa = 600 lb

10 in

3000 lb ∙ in/0.785 in 0.222;

.

149

3820 psi .

.

0.74 in 0.91


b)

At section B:

2400 lb ∙ in; /

1.74:

62.

0.10;

/

3.0/2.0

3056 psi

. .

0.20/2.0

0.281;

.

Redesign beam in Problem 61. Note that N is inversely proportional to moment M and distance a. Then a must be reduced by:

Then

Specify 63.

3.54/4.50

0.787

0.787 8.0

300

1875 lb ∙ in;

.

0.220;

6.30 in say 6.25 in /

.

If

.

3.0/2.0

1.50;

8.00 in as given;

0.305;

8.0 0.936

7.25 in 300 lb .

/

2400 lb ∙ in at ;

Dimension a must be reduced to get 4.21/4.50

0.40;

0.40/2.0

1.47

.

Then

2389 psi

Ok Higher than (a)

Refer to Problems 61 and 62: New /

1875/0.785

3.27

4.50 as at .

7.49 in; Let

2175 lb ∙ in;

0.2806;

3056 psi

.

150

7.25 in /

Ok

2771 psi

0.20

1.50


64.

Repeated – one direction: Fluctuating stress: Equation 5‐29‐Goodman Criterion SAE 1040 HR: 1.0

a)

42 ksi;

72 ksi;

direct tension,

0.81; 14.9 ksi

At pin hole:

0.25 in diameter, / .

At fillets: /

5000

1.00 in F 2500

0.25; .

0.02/1.00

(lb)

4.40

Fm = Fa = 2500 lb

4.12; 0.02;

. /

2.0/1.0

From Appendix 18‐2: Point of interest is above chart. . .

.

0

13 333 psi

.

.

b)

0.80 axial load

0.8 0.81 23

Appendix A18‐4:

23 ksi [Figure 5‐11 Hot rolled]

2.0 ≅ 3.7

10 000 psi 2.62;

.

65.

Improvements: 1.) Increase thickness, 2.) Increase fillet radius, 3.) Use

stronger

material, 4.) Increase pin hole size – or – change manner of applying force to

the

part to eliminate hole – or – make part thicker at the holes than in middle of the part. Material may be removed in 2.00 in. section near middle of part to offset added material elsewhere. Could try titanium with lower density than steel. This problem may be too restrictive to permit a practical solution with data in this book. May have to accept lower N < 3.0 or some increase in weight of the component.

151


66.

Fluctuating normal stress – Goodman Criterion – Equation 5‐29. SAE 1040 CD:

71 ksi;

1.0;

0.80 axial;

24.8

3.0 /2

24.8

13.9

0.375 in;

80 ksi;

13.9 kN 1.0 lb/4.448 N

10.9 kN 1.0

.

0.81

19 400 psi

/4.448

2450 lb

0.625 in; /

0.417

Fa = 10.9 kN

24.8

.

.

11 ;

3125 lb

2.84 .

5

0.8 0.81 30 ksi

1.50 in;

At pin holes:

30 ksi

9524 psi

.

Fm = 13.9 F (kN)

7467 psi

.

3.0 .

At middle hole:

1.217;

.

Indicates failure

0.0

Tim e

2.22; same nominal stresses.

.

0.854;

.

Very Low

Part must be redesigned. 67.

Repeated reversed load – bending – SAE 1340 OQT 1300:

517 MPa;

690 MPa;

1.0;

1.0;

0.98 0.81 260

400 N 250/400

250 N

400 N 150/400

150 N

0.98;

At B: /

/

:

260 MPa; 206 MPa 0.808 √ 0.808 12

/6

12 /6

288 mm

2.0/12.0

0.167;

/

0.98

20/12

152

0.81

1.67 [Appendix A18‐7]

=0.808b 9.70 mm


1.60

Load = 400 NReversed .

125 MPa

206/125 At C:

At D:

/

V (N)

1.648

/6

12 20 /6

800 mm

.

46.9 MPa

at B.

14/20

M (Nmm)

1.40 Appendix A18

0.70

5

47.6 MPa; 1.40 47.6 Minimum 68.

.

66.6 MPa

at B.

(Low)

See Problem 67: Specify tempering temperature to achieve 2.5 125 Then

required

312.5 MPa

2.5.

0.98 0.81

1150 MPa (Figure 5‐11)

From Appendix A4‐3: SAE 1340 OQT 900 has 69.

Fluctuating normal stress: 300

700 /2

At fillet: /

300 lb;

500 lb;

0.06/1.25

700

0.048;

/

700 lb; Use Goodman Criterion 500

200 lb

2.0/1.25

1.60 4.0 in

2.35 /32

1.25 /32 ∙ . ∙ .

SAE 1050 HR: Non

49 ksi;

0.192 in F V

10 430 psi

0

4172 psi

0

90 ksi

rotating circular shaft;

0.37 153

4F

M

0.463 in;

0.95

F


Non

rotating circular shaft;

26 ksi

5

0.37

11

;

.

70.

0.463 in;

0.95

0.95 0.81 26

20.0 ksi

0.606;

.

Low

See Problem 69: Increase N to 3.0 or higher by using larger r. Best possible improvement would be .

1.0 with large r.

0.324;

.

Ok

[From Appendix A18‐6] To achieve Kt approaching 1.0, r/d must be > 0.30. Then, r > 0.30d = 0.30(1.25 in) = 0.375 in 71.

See Problem 69: increase material strength to get

3.0.

Try SAE 1340 OQT 900: 158 ksi;

169 ksi

4

Use machined surface:

58 ksi; .

72.

3 17% Elongation 0.95 0.81 58

0.2814;

Repeated reversed stress: Design for Specify material: at : /32 At fillet: /

V (lb)

600 lb ∙ in

0.06/1.0

0.0982 in

0.06;

/

1.38/1.0

1.99 [From Appendix A18‐6] Let Required

.

12 159 psi

3.0 12 159

36 477 psi

.

Ok

3.0.

/ .

1.00 /32

.

44.63 ksi

154

Load = 100 lb

M (lbin)

1.38

600 lbin


0.81;

0.88;

/ 0.88 0.81

51 174 psi

From Figure 5‐11, Required

(Machined surface) ,

One possible solution: SAE 3140 OQT 1000, 73.

%

Fluctuating normal stress – Goodman Criterion; Equation 5‐29 SAE 1340 OQT 700:

197 ksi;

221 ksi

Fa = 3750 lb 16

0.80 0.81 65

Figure 5‐11

Axial 8500

16 000 /2

16 000

12 250

Fm = 12

250 12 250 lb F (lb) 8500

3750 lb

Time

At fillet: /

0.05/0.63

0.079;

/4

0.63 /4

0.312 in

/

/

1.00/0.63

1.59;

2.10

39 300 psi; a = Fa/A = 3250 lb/0.312 in2 = 12 030 psi

. .

=

74.

42.1 ksi 000

0.778;

.

See Problem 73: Try to redesign to achieve Increase fillet radius to

Low

3.0.

0.185 in. Fillet would then just blend with outside of

1.00 in diameter of rod. /

.

0.29;

.

. .

1.59:

r = 0.185 in

1.36

Use stronger material: Try SAE 8650 OQT 700 240 ksi;

222 ksi; 12% elongation

Grind all critical surfaces gently. Then

0.81 0.8 88 .

88 ksi; Use

0.81

57.0 ksi 0.451;

2.22 Still too low

155


Even if

1.0,

.

Diameters may have have to be increased. 75.

Repeated reversed load – Bending moment at fillets = .

.

4.00

800 lb 4.0 in

3200 lb ∙ in

0.5208 in :

6144 psi

.

; Then required for rectangle: 1.25 in SAE 1144 OQT 1000:

2.00 in;

0.808√

112 ksi,

42 ksi; Use

0.85 0.81 42 Then

76.

28.9 ksi

0.808

1.28 in

0.81

28 900 psi

1.57

From Appendix A18‐7: /

2.00/1.25

Then

0.220 in gives

.

Design section at “B” for

3.0.

Σ

2.25

0

800 4.75

800 4.75 25

1.6; For

1689 lb ↓

Let width

2.00 in; same as other sections

Design for

1.50; Specify thickness, h

/

1.57

R1 = 1689 lb 2.25 in in

Multiple solutions possible:

But

1.25 2.00

V (lb)

4.75

Rpin = 2489 lb

Load = 800 lb 800

0 1689

/ /

MB = -1689(1.50) = -2533 lbin

156


Then: .

/

.

0.444 in minimun

.

Let

0.85 in;

Then

0.30

1.50, /

2.00 in: For 0.30 0.85

First estimate by trial → for

0.3

estimated

0.255 in 0.19,

.

Problems 77‐83 are design problems for which multiple solutions are possible.

157


CHAPTER 6 COLUMNS 1.

Radius of gyration:

/4

0.75/4

0.188 in:

42 00 psi: /4

/

1.0 32 0.188

119 → Long column

Euler

0.442 i .

/

2.

[Some data from Problem 1] /

1.0 15 /0.188

79.8

/

3.

L = 15 in → Short

0.442 42 000

Johnson Formula 1

.

[Some data from Problem 1] Use aluminum 6061‐T4. 0.188 in;

/

171;

21 000 psi;

10

10 psi

97 → Long column . /

4.

[Some data from Problem 1] Both ends fixed. /

0.65 32 /0.188

0.442 42 000 5.

111

→ Short

Johnson Formula

1

[Some data from Problem 1] Square: Side dimension = H = 0.65 in

158

171


Square:

6. Let

/√12

0.65/√12

0.188 in Same as round

Problem 1

[Some data from Problem 1] Acrylic plastic: Tensile Strength

5400 psi;

220 000 psi

28.4: .

Long

0.144 in

0.5 in/√12 /

171

.

/

7.

/

1.0 8.5 /0.144

1.00 in

0.50 in

58.9

181 000 psi →

57 Figure 6

5 Long Column

. .

/

8.

/4 /4

1.60

0.529 in:

0.5106 in: /

75/0.529

140 Figure 6

5

30 000 psi; a)

1.382 /4

Pinned Ends:

/

1.0 /

142

6.25 ft

142

Long

Euler

.

b)

Fixed – Fixed:

/

0.5106 30 000 c)

Fixed – Pinned:

/

0.5106 30 000

0.65 /

92.3

1

.

0.8 142

114

1

159

Short

Johnson

Short

Johnson

75 in


d)

Fixed/Free:

/

2.10 142

298

Long

.

152 ksi:

9.

≅ 60

6

5 : Assume column is long:

/

[Equation 6‐11]

/

4.39

1.0

/

1.45 in

Use 1.50 in /4 10.

1.50/4

30 ksi:

0.375:

149

/

1.0 50 /0.375

6

5 : Assume column is long

145 in Same as Problem 9 ; Use

1.50:

/

/

[Equation 6‐12]

133

Long Ok

133

Johnson

.

.

No advantage to 4140 steel over 1020 steel. Only modulus of elasticity involved. 11.

Aluminum 2014‐T4:

42 000 psi; /

/

1.90 in

≅ 69: Assume long column

use

. Ok

1.0 50 /0.50

160

;

/4

0.50 in


12.

Square with side length, S: /12

/12;

: From Equation 6

10

Euler

/ /

For the Johnson Formula:

/12

Equation 6‐9:

1

1

/

: Solve for Divide by

and take √

/

13.

/

Euler: [Equation (6‐10)];

; Express R =d/D; d= RD

D= OD

/

d=

R = ID/OD = d/D d = RD

1

/4

For the Johnson equation: Equation (6‐9) 1

/

161


/

/

14.

/

Assume column is long: From Problem 12: Side length = 0.65 64

41.6 in Fixed ends /

.

Check:

/√12

For 6061‐T6, 15.

/

1.423 in →

1.50/√12

.

0.433:

/

40 ksi: From Figure 6

6

0.8: 1

41.6/0.433

96.1 Ok

0.5904

Assume long; From Problem 13 /

. .

Use

.

;

0.8

/

1.31 in

1.20 in:

0.48 in:

Weight Comparison: Weight proportional to area Square:

Tube:

1.50

2.25 in

1.50

1.20

162

0.636 in

Ok


/ 16.

2.25/0.636

.

Assume column is long: [Equation (6‐11)] [See sketch on following page.] /

/

.

Check:

/4

/

60/0.375

1.46 in Use

.

0.375 in 160

Long Ok

60 [Figure (6‐5)]; Note: Care would have to be used at connections to ensure axial load.

17.

Multiple designs possible. Consider hollow tube – round or square. Cheaper material may also be used.

18.

Multiple designs possible. Cable

/

°

Fv = 9000 lb

Fs 9000 lb 9000 lb

163

Spreader


19.

Multiple designs possible.

°

20.

10.75 ft

129 in:

2.1 129

271 in:

68 ksi;

93

Assume column is long – Euler – [Equation (6‐11)] /

21. 23.

/

.

1.063 in:

Check:

/4

22.

Multiple Solutions Possible Crooked Column: /4

0.188 in;

/

0.08 in;

0.5

8951

Crooked Column:

42 675 lb Problem 6

/2

0.442 in ;

4473 lb

.

1

0.375 in

.

4473

.

10

4 9.226

0.04 in;

10

0.5/2

0.25 in;

7

0.144 in;

0.0208 in ;

181 000 0.50 .

0.5

9.226 8951

Ok

0.75 in,

42 000 0.442 .

.

271/1.063

0.0352 in ;

In Equation 6‐13:

24.

4.21 in

51 220

0.50 in ; 1

.

4.291

10

. .

51 220

181 000 psi 42 675

4 4.291

164

10

51 220

8951


25.

Crooked Column:

7498 lb Problem 6

0.15 in;

0.280 in ;

0.5106 in ; 1

.

.

1.276

10

8677

8677

30 000 0.5106

26.

0.80 in;

8

0.529 in;

0.5

/2

Eccentric Column:

30 000 psi

.

7498

4 1.276

10

.

42 in;

8677

1.25 in;

/2

0.625 in S

/√12

0.361 in;

0.130 in ;

1.563 in ;

0.60 in

/12

0.2035 in ;

13 000 psi for aluminum 6063‐T4

S

From Equation (6‐14):

/

Equation (6‐16): 27.

.

1

.

0.60

Eccentric Column:

3.2 m

3.50 in;

1.16 in 25.4

29.46 mm;

3.02 in 25.4

1.257 207 GPa

.

.

3‐in Schedule 40;

SAE 1020 HR;

. .

.

1

.

3200 mm; /2

30.5 kN

1.75 in 25.4

868 mm;

150 mm

207

207 000 MPa

165

30 500 N

/

2.23 in 25.4

10 mm ; 10 Pa

.

44.5 mm 1439 m

207 000 N/mm


Equation (6‐14): 212 MPa: but

.

207 MPa, then stress is too high

150 28.

1

/

1

.

Eccentric Column:

14.75 in;

.

0.30 in;

if matl. does not yield

0.250 in S

0.0625 in ; 45 lb;

28

/√12

0.25/√

10 psi:

/2

0.0722 in;

0.00521 in S

0.125 in

Equation (6‐14):

Equation (6‐16): 29.

.

1

.

.

50 000 psi; /3

1

.

0.50 in;

3.37 in ;

3; then

.

.

40 in;

From Appendix 15‐14:

Let

.

0.30

Eccentric Column:

ASTM A242:

.

. .

75 000 lb

1.52 in;

30

.

2.31 in;

10 psi

4/2

¼

4

i

16 667 psi

4 [Right side of Eq. (6‐15)]=

Let

30.

Central Load:

:

/

16.0 ft 12

/

From Appendix 15‐9: . .

1

.

:

.

. .

.

/

.

:

192 in;

5.54 in ;

9.13 in ;

119.7

166

/

2.00 in

1.28 in


From Figure 6‐5,

125; short column

.

31.

7.7:

0.65 66

0.65;

2.26 in ;

ASTM A36:

0.581 in;

36 000 psi;

30

32.

0.50

1.60 0.80

1.28 in ;

0.80/2

/

0.90

.

/

9

0.80/2

0.90 in;

0.40 in;

72 in; Rectangle

0.80/√12

0.2309 in

10 psi; [Use Equation 6‐14] 1

0.7955

.

. .

.

1

Using Equation (6‐15):

8315 psi

.

0.386 in [Equation 6‐16]

Specify a material to provide

28 280 psi

3;

.

1

1000 lb;

30

73.8;

10 psi;

Eccentric Load:

Use steel:

42.9 in

/

130 → short column Johnson Equation 6 2.26 36 000 /3

3

.

1

Central Load: Fixed‐End; S4

Johnson formula. Let

3.

.

1

.

. .

.

/ : Then

Specify SAE 1040 WQT 1000,

(Other solutions possible.)

167


33.

Central Load on a steel tube: Specify standare tube size. sy = 36 000 psi; N=3

Assume that the column support ½ of the total load: Pa = 55 000 lb/2 = 27 500 lb ; Cc  130 [Figure 6‐5]

Assume column is long: [Equation 6‐10] Required I = Assume Fixed base; Pinned top: K = 0.80 KL = (0.80)(18.5 ft)(12 in/ft) =178 in > 130 – Long column. .

Required I =

8.79 in

Possible tubes: Square: 4x4x1/2, I = 11.9 34.

Central Load: C5 Pinned ends:

; Rectangular: 6x4x1/4, 11.1

9 Steel Channel: /

112 in;

1.0 112 /0.489

229

2.64 in :

0.489 in;

3

Long column; E = 30x106 psi

.

35.

Central Load on a channel: Data from Problem 34, except ends are fixed rather than

pinned. K = 0.65. KL/r = (0.65)(112)/0.489 = 148.9 30 10 2.64 3 148.9 36.

Same as Problem 34 except load is along back face of channel. Eccentric load. [From Appendix 15‐4] Use Equation (6‐15):

.

1

.

0.478 in and /

36 000/3

. .

.

.

168

. 12 000 psi


By iteration: For

;

The spreadsheet here is for the same data as used in Example Problem 6‐3 in the text. Data from: Example Problem 6-3

CIRCULAR COLUMN ANALYSIS

Cross-section shape: Solid circular section

Refer to Figure 6-7 for analysis logic Enter data for variables in italics in shaded boxes

Use consistent U.S. Customary units.

Data To Be Entered:

Computed Values:

Length and End Fixity: Column length, L = End fixity, K =

25 in 1

------>

Eq. Length, Le = KL =

25.0 in

------>

Column constant, Cc =

140.5

------>

Slender. ratio, KL/r =

81.3

Material Properties: Yield strength, s y =

30000 psi

Modulus of Elasticity, E = 3.00E+07 psi Cross Section Properties: [Note: A and r computed from] [dimensions for circular cross section] [in following section of this spreadsheet] Area, A =

1.188 in2

Radius of Gyration, r = 0.3075 in Properties for round column: Diameter for round column: 1.23 in Area, A = Radius of gyration, r = Design Factor Design factor on load, N =

Column is: short

2

1.188 in 0.3075 in 3

------>

169

Critical Buckling Load =

29,679 lb

Allowable Load =

9,893 lb


The spreadsheet solution below is for Example Problem 6‐4. The user can see the detailed solution in the book and compare it with the spreadsheet shown here. Data from: Example Problem 6-4

CROOKED COLUMN ANALYSIS

Cross-section shape: Solid circular section

Solves Equation 6-13 for Allowable Load Enter data for variables in italics in shaded boxes

Use consistent

Data To Be Entered: Length and End Fixity: Column length, L = End fixity, K = 1

U.S. Customary units.

Computed Values:

32 in ------>

Eq. Length, Le = KL =

32.0 in

------>

Column constant, Cc =

118.7

Material Properties: Yield strength, s y = 42000 psi Modulus of Elasticity, E = 3.00E+07 psi

Euler buckling load =

Cross Section Properties: [ Note: Enter r or compute r = sqrt(I/A ) ] [Always enter Area] [Enter zero for I or r if not used ] Area, A = Moment of Inertia, I =

-9678

C 2 in Eqn. 6-13 = 9.259E+06

0.442 in 2 4 0 in

Radius of Gyration, r = 0.188 in Values for Eqn. 6-11: Initial crook edness = a = 0.125 in Neutral axis to outside = c = 0.375 in Design Factor Design factor on load, N = 3

C 1 in Eqn. 6-13 =

4491 lb

------>

Slenderness ratio, KL/r =

170.7

Column is: long Straight Column 4,491 lb Critical Buckling Load = Crooked Column 1,076 lb ------> Allowable Load =

170


The spreadsheet below is for the analysis of an eccentric column using data as in Example Problem 6‐6. Those that follow are from the Problems section of Chapter 6.

ECCENTRIC COLUMN ANALYSIS

Data from: Example Problem 6-6 Cross section shape: Solid circular section

Solves Equation 6-14 for design stress and Equation 6-16 for maximum deflection Enter data for variables in italics in shaded boxes Use consistent U.S. Customary units. Data To Be Entered:

Computed Values:

Length and End Fixity: Column length, L = 32 in End fixity, K = 1

------>

Eq. Length, Le = KL =

32.0 in

------>

Column constant, Cc =

118.7

Argument for secant = Value of secant =

0.749 for strength 1.3654

Argument for secant = Value of secant =

0.432 for deflection 1.1014

Material Properties: Yield strength, s y =

42000 psi

Modulus of Elasticity, E = 3.00E+07 psi Cross Section Properties: [Note: Enter r or compute r = sqrt(I/A ) ] [Always enter Area] [Enter zero for I or r if not used ] Area, A = 0.785 in 2 4 Moment of Inertia, I = 0 in Radius of Gyration, r = 0.250 in Values for Eqns. 6-14 and 6-16: Eccentricity = e = 0.75 in Neutral axis to outside = c = 0.5 in Allowable load = P a = 1075 lb Design Factor Design factor on load, N =

3

------>

Slenderness ratio, KL/r =

128.0

Column is: long Req'd yield strength = ------>

171

37,764 psi

Must be less than actual yield strength: sy = 42,000 psi Max. deflection, y max = 0.076 in


Data from: Problem 6-37 Cross section shape: Hollow structural section

ECCENTRIC COLUMN ANALYSIS

Solves Equation 6-14 for design stress and Equation 6-16 for maximum deflection Enter data for variables in italics in shaded boxes Use consistent U.S. Customary units. Data To Be Entered:

Computed Values:

Length and End Fixity: Column length, L = 126 in End fixity, K = 1

------>

Eq. Length, Le = KL =

126.0 in

------>

Column constant, Cc =

111.6

Argument for secant = Value of secant =

0.777 for strength 1.4025

Argument for secant = Value of secant =

0.449 for deflection 1.1098

Material Properties: Yield strength, s y =

46000 psi

Modulus of Elasticity, E = 2.90E+07 psi Cross Section Properties: [Note: Enter r or compute r = sqrt(I/A ) ] [Always enter Area] [Enter zero for I or r if not used ] Area, A = 6.020 in 2 4 Moment of Inertia, I = 0 in Radius of Gyration, r = 1.410 in Values for Eqns. 6-14 and 6-16: Eccentricity = e = 3.00 in Neutral axis to outside = c = 2.00 in Allowable load = P a = 17600 lb Design Factor Design factor on load, N =

3

Slenderness ratio, KL/r =

------>

89.4

Column is: short Req'd yield strength = ------>

45,896 psi

Must be less than actual yield strength: sy = 46,000 psi Max. deflection, y max = 0.329 in

172


Data from: Problem 6-38 Cross section shape: Solid Rectangle

ECCENTRIC COLUMN ANALYSIS

Solves Equation 6-14 for design stress and Equation 6-16 for maximum deflection Enter data for variables in italics in shaded boxes Use consistent U.S. Customary units. Data To Be Entered:

Computed Values:

Length and End Fixity: Column length, L = 40 in End fixity, K = 1

------>

Eq. Length, Le = KL =

40.0 in

------>

Column constant, Cc =

70.2

Material Properties: Yield strength, s y =

40000 psi

Modulus of Elasticity, E = 1.00E+07 psi Cross Section Properties: [Note: Enter r or compute r = sqrt(I/A ) ] [Always enter Area] [Enter zero for I or r if not used ] Area, A = 0.600 in 2 4 Moment of Inertia, I = 0 in Radius of Gyration, r = 0.433 in Values for Eqns. 6-14 and 6-16: Eccentricity = e = 1.75 in Neutral axis to outside = c = 0.75 in Allowable load = P a = 685 lb Design Factor Design factor on load, N =

3

Argument for secant = Value of secant =

0.855 for strength 1.5236

Argument for secant = Value of secant =

0.494 for deflection 1.1355

Slenderness ratio, KL/r =

------>

92.4

Column is: long Req'd yield strength = ------>

39,954 psi

Must be less than actual yield strength: sy = 40,000 psi Max. deflection, y max = 0.237 in

NOTE: This calculation was found by iteration to ensure that the required strength was satisfied. It assumes that the shape in Figure P‐38 would buckle in the plane of the page. However, the tendency to buckle about the thinner section (0.40 in thick) must also be checked. See the following page for Problem 6‐38B. The limiting load from that analysis is only 163 lb.

38A.

Note 1:

1.50 .

0.40 0.433 in;

0.600 in 685 lb [Computed separately]

173


This spreadsheet analyses the shape in Figure P3‐38 for the tendency to buckle about the axis for the thickness of the bar, 0.40 in. The loading is considered to be central without eccentricity. Data from: Problem 6-38B Cross-section shape: Rectangular

RECTANGULAR COLUMN ANALYSIS Refer to Figure 6-7 for analysis logic Enter data for variables in italics in shaded boxes

Analysis of buckling about the thin dimension Use consistent U.S. Customary units.

Data To Be Entered:

Computed Values:

Length and End Fixity: Column length, L = End fixity, K =

40 in 1

------>

Eq. Length, Le = KL =

40.0 in

------>

Column constant, Cc =

70.2

------>

Slender. ratio, KL/r =

347.8

Material Properties: Yield strength, s y =

40000 psi

Modulus of Elasticity, E = 1.00E+07 psi Cross Section Properties: [Note: A and r computed from] [dimensions for circular cross section] [in following section of this spreadsheet] 2 Area, A = 0.600 in NOTE: Buckling about the 0.40 in dimension Radius of Gyration, r = 0.115 in Properties for round column:

Column is: long Critical Buckling Load = Design Factor Design factor on load, N =

38B.

3

------>

489 lb

163 lb Allowable Load = This value governs the design; not solution 38A

Analysis as a straight centrally loaded column that tends to bucke about thin axis, 0.40 in . √

0.115 in

From Euler formula with

163 lb

3;

174


Data from: Problem 6-39 Cross section shape: Hollow circular section

ECCENTRIC COLUMN ANALYSIS

Solves Equation 6-14 for design stress and Equation 6-16 for maximum deflection Enter data for variables in italics in shaded boxes Use consistent SI Metric Data To Be Entered:

Computed Values:

Length and End Fixity: Column length, L = 750 mm End fixity, K = 1

------>

Eq. Length, Le = KL =

750.0 mm

200 Gpa ------>

Column constant, Cc =

63.93

Argument for secant = Value of secant =

0.811 for strength 1.4516

Argument for secant = Value of secant =

0.468 for deflection 1.1206

Material Properties: Yield strength, s y =

966 Mpa

Modulus of Elasticity, E =

Cross Section Properties: [Note: Enter r or compute r = sqrt(I/A ) ] [Always enter Area] [Enter zero for I or r if not used ] Area, A = 314 mm 2 4 Moment of Inertia, I = 0 mm Radius of Gyration, r = 7.289 mm Values for Eqns. 6-14 and 6-16: Eccentricity = e = 20 mm Neutral axis to outside = c = 12.5 mm Allowable load = P a = 5200 N Design Factor Design factor on load, N =

3

------>

Slenderness ratio, KL/r =

102.9

Column is: long Req'd yield strength = ------>

389 Mpa

Must be less than actual yield strength: sy = 966 MPa Max. deflection, y max = 2.411 mm Piston rod is safe for applied load of 5200 N.

175


Data from: Problem 6-40A-Straight

HOLLOW CIRCULAR COLUMN

Cross-section shape: Hollow circular section

Refer to Figure 6-7 for analysis logic Enter data for variables in italics in shaded boxes

Use consistent U.S. Customary units.

Data To Be Entered: Length and End Fixity: Column length, L = End fixity, K =

Computed Values:

156 in 1

------>

Eq. Length, Le = KL =

156.0 in

------>

Column constant, Cc =

128.3

------>

Slender. ratio, KL/r =

198.2

Material Properties: Yield strength, s y =

36000 psi

Modulus of Elasticity, E = 3.00E+07 psi Cross Section Properties: [Note: A and r computed from] [dimensions for circular cross section] [in following section of this spreadsheet] Area, A =

1.075 in2

Radius of Gyration, r =

0.787 in

Column is: long Critical Buckling Load = Design Factor Design factor on load, N =

3

------>

176

8,101 lb

2,700 lb Allowable Load = See also Solution 40B for crooked pipe.


Data from: Problem 6-40B-Crooked

CROOKED COLUMN ANALYSIS

Cross-section shape: Hollow circular section

Solves Equation 6-13 for Allowable Load Enter data for variables in italics in shaded boxes

Use consistent

Data To Be Entered: Length and End Fixity: Column length, L = End fixity, K = 1

U.S. Customary units.

Computed Values:

156 in ------>

Eq. Length, Le = KL =

156.0 in

------>

Column constant, Cc =

128.3

Material Properties: Yield strength, s y =

36000 psi

Modulus of Elasticity, E = 3.00E+07 psi

Euler buckling load =

Cross Section Properties: [ Note: Enter r or compute r = sqrt(I/A ) ] [Always enter Area] [Enter zero for I or r if not used ] Area, A = Moment of Inertia, I =

-22074

C 2 in Eqn. 6-13 = 3.483E+07

1.075 in 2 0 in 4

Radius of Gyration, r = 0.787 in Values for Eqn. 6-11: Initial crook edness = a = 1.25 in Neutral axis to outside = c = 1.188 in Design Factor Design factor on load, N = 3

C 1 in Eqn. 6-13 =

8101 lb

------>

Slenderness ratio, KL/r =

198.2

Column is: long Straight Column Critical Buckling Load = 8,101 lb Crooked Column ------> Allowable Load = 1,711 lb Comparisons: Straight (40A) vs. Crooked (40B) Problem # 40A 40B Straight Crooked Allowable Load = 2700 lb 1711 lb Allowable Load for crooked column is limit load

177


CHAPTER 7 BELT DRIVES, CHAIN DRIVES AND WIRE ROPE V-Belt Drives 1.

24.0 in; 2 24

13.95 in; 1.57 13.95

Use 2.

Actual CD from Equation 7‐13: 6.28 13.95

.

4.

.

.

180°

2

.

180°

2

. .

60.0 in;

27.7 in;

[Equation 7‐13]

.

. °

[Equation 7‐14]

.

. °

[Equation 7‐15]

.

8.4 in; 5V Belt [Equation 7‐12]

178.2 in

Actual

[From Table 7‐2]

.

[Equation 7‐13] . °

7.

144 in;

94.8 in;

10.

78.73 in

75 in

.

160.1°;

9.

.

179.4

6.

8.

.

5.25

.

Computed 5.

5.25

[Use Equation 7‐12]

– Standard Length [From Table 7‐2]

4 75

3.

5.25 in; 3V Belt

[Equations 7‐14, 7‐15] 13.8 in; 8V Belt

[Equation 7‐12]

Computed

469.9 in

[From Table 7‐2]

Actual

.

Equation 7‐13

. °;

. °

[Equations 7‐14, 7‐15]

.

/

178


.

11.

.

12. 13.

/

Ratio

/

13.95/5.25

2.66;

Corrected Power 14.

Ratio

27.7/8.4

Ratio

;

0.94;

0.94 1.03 6.25 3.30;

15.5

Corrected Power 15.

≅ 6.25

1.26

1.03

.

16.76 hp;

0.95 1.05 16.76

94.8/13.8

6.87;

Corrected Power

48 hp;

0.95; .

0.904;

0.904 1.09 48

1.05

1.09 .

16.

A 15N belt is a metric size having a top width of 15 mm similar to a 5V belt.

17.

A 17A belt is a metric automotive belt having a top width of 17 mm. Similar to a “3/4 in” automotive belt.

18.

Design: Service Factor

1.5; Design Power

1.5 25

37.5 hp

From Figure 7‐13 – Use 5V Belt Ratio

870/310

For

4000 ft/min;

For

13.1 in;

Rated Power

2.81

22.5

17.56 in 37.4 in;

870

0.94

23.44 hp

13.1

151.5

13.1/37.4

Center Distance: 3 37.4

3 37.4

Try

48 in → Nominal

178 in

Use

180 in → Actual

48.85 in [Equation 7‐13]

179

[Equation 7‐12]

305 rpm Ok


151.2°;

208.8°

0.92;

19.

[Equations 7‐14, 7‐15]

1.06

Corrected Power

0.92 1.06 23.44

Number of Belts

37.5 hp/22.86 hp/belt

1.64 belts → 2 belts

Design: Service Factor

1.2; Design Power

Ratio

1750/72.5 hp

2.41;

For

7.95;

18.95;

103 in → Use 157.6°;

1750

Ratio

1500/550

For

10.2 in;

30 in

10.55 hp/belt

One Belt Required

1.4 40

56 hp → 5V Belt

12 4000 /

1500

1500

10.2/27.7

Rated Power ≅ 25.7 hp by interpolation on Figure 7

10.2 in 552 rpm Ok

15 at 1500 rpm

27.7

114; Use

36 in;

133.6 in → Use

Actual

35.16 in;

151.2°;

208.8°;

Corrected Power Number of Belts 21.

734 rpm Ok

1.09

1.4; Design Power

27.7 in;

8.7 in

28.35 in

0.94;

2.73;

1750

80.7; Try

0.94 1.09 10.3

Design: Service Factor

6.0 hp → 3V Belt

7.95/18.95

100 in; Actual 202.4°;

Corrected Power

1.2 5

12 4000 /

Rated Power ≅ 10.3 hp; 18.95

20.

22.86 hp/belt

0.92 1.01 25.7 56/23.9

Design: Service Factor Ratio

1250/695

For

10.55 in;

Rated Power

0.92;

1.01

23.9 hp/belt

2.35 → Use 3 Belts

1.4; Design Power

1.80;

132 in

12 4000 /

18.95 in;

1250

1.4 20 1250

12.2 in

10.55/18.95

10.4 hp by interpolation on Figure 7

180

28 hp → 3V Belt

695.9 rpm Ok

14 at 1250 RPM


18.95

88.5; Use

Actual

21.43 in;

Corrected Power Number of Belts 22.

20 in; 157.4°;

28/10.46

870/625

For

10.8 in;

Rated Power

136 in → Use 174.9°;

10.46 hp/belt

12 4000 /

14.9 in; 0.77

870

870

17.6 in

10.8/14.9

18.37 hp; 14.9

132 in; Actual

17.6 in

77.1; Use

0.988;

1.01

0.988 1.01 18.37

18.33 hp/belt

200/18.33

Try 8V belt: For

17.8 in;

24.8 in;

624.4 rpm Ok

66 hp; 24.8

12.78;

48 in

163 in → 171.4°; Corrected Power Number of Belts

10.9 → Use 11 Belts Not Acceptable

160 in; Actual 188.6°;

46.43 in

0.98;

0.98 0.94 66 200/60.8

48 in

45.78 in

Number of Belts

Rated Power

1.07

200 hp → 5V Belt

185.1°;

Corrected Power

0.94;

2.68 Belts → Use 3 Belts

1.39;

17.6

90 in

2.0 The crusher may experience choking.

2.0 100

Ratio

202.6°;

0.94 1.07 10.4

Design: Service Factor Design Power

87.2 in → Use

0.94 60.8 hp/belt

3.3 → Use 4 Belts

181


Roller Chain Drives 23.

Chain No. 140: Pitch

24.

Chain No. 60: Pitch

25.

Static Load

14 6

3

8

4 in

1250 lb; Average tensile strength

Use a No. 80 Chain 26.

1 3 4 in

8

.

Load on each chain =

; 2500 lb;

Use No. 120 chain 27.

10

12 500 lb

. .

[Table 7‐12]

. . ;

10

25 000 lb

. .

[Table 7‐12]

Fatigue of link plates; Impact of rollers on sprocket teeth; galling between pins and bushings.

28.

[From Table 7‐15] Given: No. 60 chain, 20 teeth, 750 rpm Rated Power

21.69 hp Using interpolation ; Type B lubrication bath

Service Factor

1.2 for hydraulic drive

Design power rating 29.

30.

21.69/1.2

3 Strands: Factor

2.5

Power Rating

2.5 18.08

.

.

[From Table 7‐14] Given: No. 40 chain, 12 teeth, 860 rpm Rated Power

4.44 hp By interpolation , Type B lubrication bath

Service Factor

1.2: Design Power Rating

31.

4 Strands: Factor

3.3; Power Rating

32.

[From Table 7‐16] Given: No. 80 chain, 32 teeth, 1160 rpm

4.44 hp/1.2

3.3 3.70

. .

Rated Power

78.69 hp By interpolation , Type C lubrication oil stream

Service Factor

1.2; Design Power

78.69 hp/1.2

182

65.57 hp


33.

2 Strands: Factor

1.7; Power Rating

34.

No. 60 chain;

15;

3

4 in

50;

36 in

128 0.75

128 Pitches;

From Equation 7

128

128

47.42 pitches

2 in

0.50 in:

19 47.42 Pitches

0.75 in/pitch 11;

No. 40 chain: 1

19

129.1 Pitches

Use 128 Pitches (Even Number);

36.

Use Equation 7

48 Pitches

2 48

For

111.5 hp

0.75 in

36 in/0.75 in/Pitch

35.

1.7 65.57 hp

.

45;

24 in

24/0.5

48 Pitches

2 48

124.6 Pitches → Use 124 Pitches 124 0.5

37.

124

124

47.69 Pitches 38.

47.69 Pitches

0.5 in/Pitch

23.85 in

Design: 25 hp,

310 rpm;

160 rpm; Nominal Ratio

Service Factor

1.5; Design Power

Use 3 strands: Rating

37.5/2.5

1.5 25

310/160

1.94

37.5 hp

15.0 hp per strand

No. 80 chain; p = 1.00 in; 15 teeth rated > 15.8 hp at 310 rpm; Type B lubrication Ratio

15 1.94

/

310

29.1 → 29 teeth

15/29

160.3 rpm Ok 183


1.00 / Use

180/15

4.810 in;

40 Pitches with

180/29

9.249

[Eq. 7‐20]

1.00 in for No. 80 chain

2 40 102

1.00/

102.1 Pitches → Use 102 Pitches 102

39.94 Pitches

Problems 38‐42 are design problems for chain drives for which there are no unique solutions. The general procedure is illustrated in Example Problem 7‐5 and the solution for Problem 38 above. The example solutions to these and the other design problems are shown on the following pages using spreadsheets. Data for design power per strand from Tables 7‐14, 7‐15 or 7‐16 must be used to ensure that the selected chain design has sufficient capacity. You should also consider using data from commercial chain drive manufacturers such as those listed in the Internet Sites 4, 6, 8, 12, 14, and 15 at the end of Chapter 7.

184


CHAIN DRIVE DESIGN

Application Heavy conveyor driven by a gasoline engine Example Problem 7-5 Initial Input Data: Power input: 15 hp Service factor: 1.4 Table 7-17 Input speed: 900 rpm Desired output speed: 235 rpm Range = 230 to 240 Computed Data: Design power: 21 hp Design speed ratio: 3.83 Design Decisions-Chain Type and Teeth Numbers: Number of strands: 1 1 2 3 4 Strand factor: 1.0 1.0 1.7 2.5 3.3 Required power per strand: 21.00 hp Chain number: 60 Tables 7-7, 7-8, or 7-9 Chain pitch: 0.75 in Nunber of teeth-Driver sprocket: 17 Computed no. of teeth-Driven sprocket: 65.11 Enter: Chosen number of teeth: 65 Check availability from vendor Computed Data: Actual output speed: 235.4 rpm Pitch diameter-Driver sprocket: 4.082 in Pitch diameter-Driven sprocket: 15.524 in Center Distance, Chain Length and Angle of Wrap: Enter: Nominal center distance: 40 pitches 30 to 50 pitches recommended Computed nominal chain length: 122.5 pitches Enter: Specified no. of pitches: 122 pitches Even number recommended Actual chain length: 91.50 in Computed actual center distance: 39.766 pitches Actual center distance: 29.825 in Angle of wrap-Driver sprocket: 157.9 degrees Should be greater than 120 degrees Angle of wrap-Driven sprocket: 202.1 degrees

185


CHAIN DRIVE DESIGN

Application: Hammer mill driven by an electric motor Problem 7-38 Initial Input Data: Power input: 25 hp Service factor: 1.5 Table 7-17 Input speed: 310 rpm Desired output speed: 160 rpm Computed Data: Design power: 37.5 hp Design speed ratio: 1.94 Design Decisions-Chain Type and Teeth Numbers: Number of strands: 3 1 2 3 4 Strand factor: 2.5 1.0 1.7 2.5 3.3 Required power per strand: 15.00 hp Chain number: 80 Tables 7-7, 7-8, or 7-9 Chain pitch: 1.00 in Nunber of teeth-Driver sprocket: 15 Computed no. of teeth-Driven sprocket: 29.06 Enter: Chosen number of teeth: 29 Check availability from vendor Computed Data: Actual output speed: 160.3 rpm Pitch diameter-Driver sprocket: 4.810 in Pitch diameter-Driven sprocket: 9.249 in Center Distance, Chain Length and Angle of Wrap: Enter: Nominal center distance: 40 pitches 30 to 50 pitches recommended Computed nominal chain length: 102.1 pitches Enter: Specified no. of pitches: 102 pitches Even number recommended Actual chain length: 102.00 in Computed actual center distance: 39.938 pitches Actual center distance: 39.938 in Angle of wrap-Driver sprocket: 173.6 degrees Should be greater than 120 degrees Angle of wrap-Driven sprocket: 186.4 degrees

186


CHAIN DRIVE DESIGN

Application Agitator driven by a gasoline engine Problem 7-39 Initial Input Data: Power input: 5 hp Service factor: 1.0 Table 7-17 Input speed: 750 rpm Desired output speed: 325 rpm Computed Data: Design power: 5 hp Design speed ratio: 2.31 Design Decisions-Chain Type and Teeth Numbers: Number of strands: 1 1 2 3 4 Strand factor: 1.0 1.0 1.7 2.5 3.3 Required power per strand: 5.00 hp Chain number: 40 Tables 7-7, 7-8, or 7-9 Chain pitch: 0.5 in Nunber of teeth-Driver sprocket: 16 Computed no. of teeth-Driven sprocket: 36.92 Enter: Chosen number of teeth: 37 Check availability from vendor Computed Data: Actual output speed: 324.3 rpm Pitch diameter-Driver sprocket: 2.563 in Pitch diameter-Driven sprocket: 5.896 in Center Distance, Chain Length and Angle of Wrap: Enter: Nominal center distance: 32 pitches 30 to 50 pitches recommended Computed nominal chain length: 90.8 pitches Enter: Specified no. of pitches: 90 pitches Even number recommended Actual chain length: 45.00 in Computed actual center distance: 31.573 pitches Actual center distance: 15.787 in Angle of wrap-Driver sprocket: 167.9 degrees Should be greater than 120 degrees Angle of wrap-Driven sprocket: 192.1 degrees

187


CHAIN DRIVE DESIGN

Application: Heavy conveyor driven by a 6-cylinder Engine Problem 7-40 Initial Input Data: Power input: 40 hp Service factor: 1.4 Table 7-17 Input speed: 500 rpm Desired output speed: 250 rpm Computed Data: Design power: 56 hp Design speed ratio: 2.00 Design Decisions-Chain Type and Teeth Numbers: Number of strands: 3 1 2 3 4 Strand factor: 2.5 1.0 1.7 2.5 3.3 Required power per strand: 22.40 hp Chain number: 80 Tables 7-7, 7-8, or 7-9 Chain pitch: 1.00 in Nunber of teeth-Driver sprocket: 14 Computed no. of teeth-Driven sprocket: 28.00 Enter: Chosen number of teeth: 28 Check availability from vendor Computed Data: Actual output speed: 250.0 rpm Pitch diameter-Driver sprocket: 4.494 in Pitch diameter-Driven sprocket: 8.931 in Center Distance, Chain Length and Angle of Wrap: Enter: Nominal center distance: 36 pitches 30 to 50 pitches recommended Computed nominal chain length: 93.1 pitches Enter: Specified no. of pitches: 94 pitches Even number recommended Actual chain length: 94.00 in Computed actual center distance: 36.432 pitches Actual center distance: 36.432 in Angle of wrap-Driver sprocket: 173.0 degrees Should be greater than 120 degrees Angle of wrap-Driven sprocket: 187.0 degrees

188


CHAIN DRIVE DESIGN

Application: Centrifugal pump driven by a steam turbine Problem 7-41 Initial Input Data: Power input: 20 hp Service factor: 1.0 Table 7-17 Input speed: 2200 rpm Desired output speed: 775 rpm Computed Data: Design power: 20 hp Design speed ratio: 2.84 Design Decisions-Chain Type and Teeth Numbers: Number of strands: 2 1 2 3 4 Strand factor: 1.7 1.0 1.7 2.5 3.3 Required power per strand: 11.76 hp Chain number: 40 Tables 7-7, 7-8, or 7-9 Chain pitch: 0.50 in Nunber of teeth-Driver sprocket: 25 Computed no. of teeth-Driven sprocket: 70.97 Enter: Chosen number of teeth: 71 Check availability from vendor Computed Data: Actual output speed: 774.6 rpm Pitch diameter-Driver sprocket: 3.989 in Pitch diameter-Driven sprocket: 11.304 in Center Distance, Chain Length and Angle of Wrap: Enter: Nominal center distance: 30 pitches 30 to 50 pitches recommended Computed nominal chain length: 109.8 pitches Enter: Specified no. of pitches: 110 pitches Even number recommended Actual chain length: 55.00 in Computed actual center distance: 30.110 pitches Actual center distance: 15.055 in Angle of wrap-Driver sprocket: 151.9 degrees Should be greater than 120 degrees Angle of wrap-Driven sprocket: 208.1 degrees

189


CHAIN DRIVE DESIGN

Application: Rock crusher driven by a hydraulic drive Problem 7-42 Initial Input Data: Power input: 100 hp Service factor: 1.4 Table 7-17 Input speed: 625 rpm Desired output speed: 225 rpm Computed Data: Design power: 140 hp Design speed ratio: 2.78 Design Decisions-Chain Type and Teeth Numbers: Number of strands: 4 1 2 3 4 Strand factor: 3.3 1.0 1.7 2.5 3.3 Required power per strand: 42.42 hp Chain number: 80 Tables 7-7, 7-8, or 7-9 Chain pitch: 1.00 in Nunber of teeth-Driver sprocket: 21 Computed no. of teeth-Driven sprocket: 58.33 Enter: Chosen number of teeth: 58 Check availability from vendor Computed Data: Actual output speed: 226.3 rpm Pitch diameter-Driver sprocket: 6.710 in Pitch diameter-Driven sprocket: 18.471 in Center Distance, Chain Length and Angle of Wrap: Enter: Nominal center distance: 40 pitches 30 to 50 pitches recommended Computed nominal chain length: 120.4 pitches Enter: Specified no. of pitches: 120 pitches Even number recommended Actual chain length: 120.00 in Computed actual center distance: 39.815 pitches Actual center distance: 39.815 in Angle of wrap-Driver sprocket: 163.0 degrees Should be greater than 120 degrees Angle of wrap-Driven sprocket: 197.0 degrees

Problems 38‐42 are design problems for which no unique solutions exist.

190


Synchronous Belt Drives Note that the data from the ten problems in Tables 7‐27 and 7‐28 can be used for practice problems for synchronous belt drives. However, no unique solutions exist. Problems 43 and 44 that follow illustrate parts of the procedures for those design problems. Example Problems 7‐3 and 7‐4 also demonstrate methods that can be applied to open‐ended design problems.

43

Given: Input speed = n1 = 800 rpm; Output speed = n2 = 600 rpm; Belt 1440‐8MGT (a) Possible synchronous drive sprocket combinations (b) Center distance and belt linear velocity, vb, for each combination Speed ratio = n1/n2: = 800/600 = 1.333; Combinations from Table 7‐7 Example: From Table 7‐7: Driver – 24 teeth; Driven – 32 teeth; CD = 23.93 in (a) Possible synchronous drive sprocket combinations (b) Center distance and belt linear velocity, vb, for each combination From Table 7‐4: Sprocket pitch diameters: D1 = 2.406 in; D2 = 3.208 in Belt speed, using input sprocket: vb = (D1/2)(n1) = (2.406 in/2)(800 rev/min)(2 rad/rev)(1ft/12 in) = 503.9 ft/min Sprocket sets CD (in)

D1 (in)

D2 (in) Belt speed, vb (ft/min)

24:32

2.406

3.208

23.93

503.9

30:40

22.83

3.008

4.010

630.0

36:48

21.72

3.609

4.812

755.9

48:64

19.51

4.812

6.416

1007.8

191


44

Given: Input speed = n1 = 1200 rpm; Output speed = n2 = 600 rpm; Belt 1800‐8MGT‐30

Speed ratio = 1200/600 = 2.000; List possible combinations from Table 7‐7 (a) Possible synchronous drive sprocket combinations (b) Center distance and belt linear velocity, vb, for each combination (c) Required taper‐lock bushing size with Dmin and Dmax Example: From Table 7‐7: Driver – 22 teeth; Driven – 44 teeth; CD = 30.22 in From Table 7‐4: Sprocket pitch diameters and From Table 7‐5: Bushings N1 = 22; D1 = 2.206 in; Bushing 1108; Dmin = 0.500 in; Dmax = 0.875 in N2 = 44; D2 = 4.111 in; Bushing 2012; Dmin = 0.500 in; Dmax = 1.875 in Belt speed, using input sprocket: vb = (D1/2)( n1) = (2.206 in/2)(1200 rev/min)(2 rad/rev)(1ft/12 in) = 693.0 ft/min Sprocket sets

CD (in)

D1 (in)

22: 44

30.22

2.206

24: 48 28: 56 32: 64 36: 72 40: 80 56: 112 72: 144

29.74

D2 (in)

Belt speed, vb (ft/min)

Bushing

Dmin (in)

Dmax (in)

693.0

1108 2012

0.500 0.500

0.875 1.875

755.9

1108 2012 1108 2012 1210 2517 1610 2517 2012 2517 2012 2517 2517 2517

0.500 0.500 0.500 .0500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500

0.875 1.875 0.875 1.875 1.250 2.250 1.500 2.250 1.875 2.250 1.875 2.250 2.250 2.250

4.111 2.406 4.802 28.79

2.807

27.83

3.208

26.87

3.609

881.8 5.614 6.416

1007.8 1133.8

7.218 25.91

4.010

1259.8 8.020

22.03

5.614

1763.7 11.229

18.66

7.598

2387.0 14.437

192


CHAPTER 8 KINEMATICS OF GEARS Gear Geometry 1.

;

a.

/

44/12

3.667 in

b.

/

/12

0.2618 in

c.

Equivalent

25.4/

d.

Nearest standard

25.4/12 2.00 mm

e.

1/

1/12

f.

1.25/

1.25/12

0.1042 in

g.

0.25/

0.25/12

0.0208 in

2.25/

0.1875 in

h. i.

2

2/

j.

/2

0.0833 in

2/12 /2 12

2 /

k. ;

a.

34/24

1.417 in

b.

/24

0.131 in

c.

Equivalent

d.

Nearest standard 1/24

0.1667 in 0.131 in

46/12

2.

e.

2.117 mm

25.4/24

3.833 in

1.058 mm

1.00 mm

0.0417 in

193


f.

.

0.002

0.0502 in

g.

.

0.002

0.0103 in

h.

0.0417

i.

2

j.

/2 24

0.0520

2/24

k.

0.0937 in

0.0833 in

0.0654 in

2 /

36/24

3.

;

a.

45/2

22.500 in

b.

/2

1.571 in

c.

Equivalent

25.4/2

d.

Nearest standard

12.7 mm 12 mm

e.

1/2

f.

1.25/2

0.625 in

g.

0.25/2

0.125 in

h.

2.25/2

1.125 in

i.

2/2

j.

/2 2

0.7854 in

k.

47/2

23.50 in

4.

;

a.

18/8

2.250 in

b.

/8

0.3927 in

c.

Equivalent

1.500 in

0.500 in

1.000 in

25.4/8

3.175 mm

194


d.

Nearest standard

3.0 mm

e.

1/8

0.125 in

f.

1.25/8

0.1563 in

g.

0.25/8

0.0313 in

h.

2.25/8

0.2813 in

i.

2/8

j.

/2 8

0.1963 in

k.

20/8

2.500 in

5.

;

.

a.

22/1.75

12.571 in

b.

/1.75

1.795 in

c.

Equivalent

d.

Nearest standard

e.

1/1.75

f.

1.25/1.75

0.7143 in

g.

0.25/1.75

0.1429 in

h.

2.25/1.75

1.2857 in

i.

2/1.75

j.

/2 1.75

0.8976 in

k.

24/1.75

13.714 in

0.250 in

25.4/1.75

14.514 mm

16 mm

0.5714 in

1.1429 in

195


6.

; a.

20/64

0.3125 in

b.

/64

0.0491 in

c.

Equivalent

d.

Nearest standard

25.4/64

0.397 mm

0.40 mm

e.

1/64

0.0156 in

f.

1.200/64

0.002

0.0208 in

g.

0.200/64

0.002

0.0051 in

h.

0.0364 in

i.

2/64

j.

/2 64

0.0245 in

k.

22/64

0.3438 in

a.

180/80

0.3125 in

b.

/80

c.

Equivalent

d.

Nearest standard

7.

0.0313 in

;

0.0393 in 25.4/80

0.318 mm

0.30 mm

e.

1/80

f.

1.200/80

0.002

0.0170 in

g.

0.200/80

0.002

0.0045 in

h. i.

0.0125 in

0.0295 in 2/80

0.025 in

196


j.

/2 80

0.0196 in

k.

182/80

2.275 in

8.

; a.

28/18

1.556 in

b.

/18

0.1745 in

c.

Equivalent

d.

Nearest standard

25.4/18

1.5 mm

e.

1/18

f.

1.25/18

0.0694 in

g.

0.25/18

0.0139 in

h.

2.25/18

0.125 in

i.

2/18

j.

/2 18

0.0873 in

k.

30/18

1.667 in

a.

28/20

1.400 in

b.

/20

0.1571 in

c.

Equivalent

d.

Nearest standard

9.

1.411 mm

0.0556 in

0.1111 in

;

25.4/20

1.27 mm

1.25 mm

e.

1/20

f.

1.200/20

0.002

0.0620 in

g.

0.200/20

0.002

0.012 in

h.

0.050 in

0.1120 in

197


i.

2/20

j.

/2 20

0.0785 in

k.

30/20

1.500 in

10.

0.1000 in

;

/

a.

3 34

b.

/

c.

Equivalent

102 mm 3

9.425 mm

25.4/

25.4/3

d.

8

e.

3.00 mm

f.

1.25

1.25 3

3.750 mm

g.

0.25

0.25 3

0.750 mm

2.25

6.750 mm

h. i.

2

j.

/2

2

k. 11.

8.47

;

6.00 mm /2

4.712 mm

2

3 36

108 mm

.

a.

1.25 45

56.25 mm

b.

1.25

3.927 mm

c.

25.4/

25.4/1.25 20

d. e.

1.25 mm

f.

1.25

1.25 1.25

1.563 mm

g.

0.25

0.25 1.25

0.313 mm

198

20.3


h.

2.25

i.

2

2 1.25

j.

/2

/2

1.963 mm

2

1.25 47

2.25 1.25

k. 12.

2.813 mm

2.500 mm

58.75 mm

; a.

18 18 12

b.

216 mm

37.70 mm

c.

25.4/12

d.

2

e.

12 mm

f.

1.25 12

15.00 mm

g.

0.25 12

3.00 mm

h.

2.25 12

27.00 mm

i.

2

j.

12 /2

24.00 mm

k. 13.

2.117

18.85 mm 2

12 20

240 mm

; a. b.

20 22 20

62.83 mm 25.4/20

c. d. e. f.

440 mm

1.27

1.25 20 mm 1.25 20

25.00 mm

199


g.

0.25 20

5.00 mm

h.

2.25 20

45.00 mm

i.

2

j.

20 /2

31.42 mm

k.

20 24

480 mm

14.

2 20

40.00 mm

; a.

20.00 mm

b.

20

3.14 mm

c.

25.4/1 24

d.

Nearest standard

e.

1.00 mm

f.

1.25 1

1.25 mm

g.

0.25 2

0.25 mm

h.

2.25 1

2.25 mm

i.

2 1

2.00 mm

j.

1 /2

1.571 mm

k.

1 22

15.

;

25.4

22.00 mm

.

a.

0.4 180

b.

0.4

72.00 mm 1.26 mm

c.

25.4/0.4

d.

Nearest standard

e.

0.40 mm

63.5

64

200


f.

1.25 0.4

0.50 mm

g.

0.25 0.4

0.10 mm

h.

2.25 0.4

0.900 mm

i.

2 0.4

0.80 mm

j.

0.4 /2

0.628 mm

k.

0.4 182

72.80 mm

16.

;

.

a.

1.5 28

b.

1.5

22.40 mm 4.71 mm

c.

25.4/1.5

d.

16

e.

1.50 mm

f.

1.25 1.50

1.875 mm

g.

0.25 1.5

0.375 mm

h.

2.25 1.5

3.375 mm

i.

2 1.5

3.00 mm

j.

1.5 /2

2.36 mm

k.

1.5 30

45.00 mm

17.

16.93

;

.

a.

0.8 28

22.40 mm

b.

0.8

2.51 mm

c.

25.4/0.8

d.

32

31.75

201


e.

0.80 mm

f.

1.25 0.8

1.00 mm

g.

0.25 0.8

0.20 mm

h.

2.25 0.8

1.80 mm

i.

2 0.8

1.60 mm

j.

0.8 /2

1.257 mm

k.

0.8 30

24.00 mm

18.

Backlash – See Section 8‐4 and Table 8‐5

19.

Gear from Problem 1:

12: Backlash 0.006 to 0.009 in

Gear from Problem 12:

12: Backlash 0.52 to 0.82 mm

The amount of backlash depends on center distance.

Velocity Ratio 20.

a.

.

b.

/

64/18 /

c.

. 2450 18/64

d. 21.

/

a.

20

b.

92/20

c.

225 20/92

d.

92 /2 4

.

. . .

/

202


22.

a.

30

68 /2 20

b.

68/30

c.

850 30/68

.

.

d. 23.

/

a.

40

250 /2 64

b.

250/40

c.

3450 40/250

.

d. 24.

/

a.

24

88 /2 12

b.

88/24

c.

1750 24/88

.

.

/

d. 25.

.

a.

/2

b.

/

68

68/22

22 2 /2 .

1750 22/68

c. d.

. 26.

a.

48

b.

48/18

c.

1150 18/48

d.

.

18 0.8 /2

.

.

.

/

203

/

.


27.

a.

45

36 4 /2

b.

45/36

c.

150 36/45

.

d. 28.

.

a.

63

b.

36/15

c.

480 15/36

/

15 12 /2 .

d.

.

/

Errors in statements for Problems 29‐32: 29.

Pinion and gear can’t have different pitches.

30. 31.

8.333 in; Given

is inaccurate by 0.033 in

Too few teeth in the pinion, assuming 20° . . teeth interference would occur.

32.

2.156 in;

cannot be used to find .

Housing Dimensions 33.

Housing must clear the addendum circle of all gears by 0.10 in/side 1/

1/8

8.25 in

0.125 in;

2 0.10 2

2 / .

66/8

8.25 in

in = Y

2 0.10

2 0.1

.

204

2.250

8.00

0.25

0.20


34.

2 / 2

35.

40.0 mm; 2

0.8 48

2 0.8

188 mm: 2

4.0

188

2 2

2 2 2

2 0.8

2 2

.

2 2 0.8 48

0.2

2 2

4.0

Gear Trains – Analysis 37.

15.75 /

1750 rpm/

15.75

38.

8.407 /

1750 rpm/ 8.0407

39.

.

.

.

.

.

.

/

20/16

1.250 in

/

38/16

2.375 in

/

18/12

1.500 in

.

0.0900

40. /

1750/0.0900

205

.

.

40.0

2 2

47 4

0.8 18

3.938 0.20

50 0.8

2

36.

3.938 in:

2 0.1

2

0.8 18

252/64

12.139

.


Helical Gearing 41.

Helical Gear

8;

Helix Angle

30°

Circular Pitch

14 °;

/

/8

45 teeth;

2.00 in

0.3927

30°

8/

30°

.

Normal Circular Pitch Normal Diametral Pitch

/

Axial Pitch

°

Pitch Diameter

/

45/8

.

=

.

=

. .

Normal Pressure Angle 14.5° / 42.

2.00 in/0.680 in

Helical Gear /

30°

12;

20°;

But

12 . .

;

°

43.

.

/ .

Helical Gear / /

8.485

/

/12

.

/

48/8.485

45°;

1.00 in

.

.

36; /6

45°

. °

°

/

1.50 in;

14.5°

; .

/

°=

.

48;

/8.485

.

6;

. 6/

14 °; ;

45°

45°

8.485;

206

°

. .


/ / 44.

36/6 .

.

;

/ .

Helical Gear

.

.

/16.97

.

/

0.1851 in/

Axial pitches in face width (Low)

24;

72;

14 °;

;

/

72/16.97

/ .

.

.

.

. °

°

.

45°

45°

.

. °

/

0.25 in;

0.1851 in 45°

°

Low

Bevel Gears Problems 45 to 51 deal with the geometry of bevel gears. Table 8‐8 in Section 8‐8 gives all of the pertinent equations. Example Problem 8‐3 demonstrated all of the necessary calculations. 

Problem 8‐49 has been selected to show the detailed calculations here in the

Solutions Manual. 

Problem 8‐46 calls for preparing technical drawings for the bevel gear pair

described in Problem 8‐45. 

Problem 8‐48 calls for preparing technical drawings for the bevel gear pair

described in Problem 8‐47. 

Solutions are shown in the form of spreadsheets for Problems 8‐45, 8‐47, 8‐49, 8‐50,

and 8‐51. 49.

Given:

;

;

;

°

Computed Values: /

Gear ratio: Pitch diameter – Pinion:

/

72/18 18/12

207

4.000 1.500 in


Pitch diameter – Gear:

/

72/12

Pitch cone angle – Pinion: Pitch cone angle – Gear:

Γ

Outer cone distance:

6.000 in

/

18/72

14.03°

/

72/18

75.96°

0.5 / sin 0.5 6.00

Face width must be specified: Nominal face width:

/ sin 75.96°

3.092 in

.

, based on the following guidelines:

0.30

0.30 3.092

0.928 in

Maximum face width:

/3

3.092

/3

or

10/

10/12

0.833 in

Mean cone distance: Ratio

/

0.5 2.692/3.092

3.092 in

1.031 in

0.5 0.80

2.692 in

0.871

(This ratio occurs in several following calculations) Mean circular pitch:

/

Mean working depth:

2.00/

/

Clearance:

0.125

0.125 0.145

/12 0.871

0.145 in

Mean whole depth: Mean addendum factor:

/

0.228 in

2.00/12 0.871 0.018 in

0.018 in

0.210

0.290/

0.210

0.290/ 4.00

0.145 in

0.163 in

0.228

Gear mean addendum:

0.228 0.145

Pinion mean addendum:

0.145 in

0.033 in

0.112 in

Gear mean dedendum:

0.163 in

0.033 in

0.130 in

Pinion mean dedendum:

0.163 in

0.112 in

0.051 in

Gear dedendum angle:

/

208

0.033 in

0.130/2.692

2.76°


Pinion dedendum angle:

/

Gear outer addendum:

0.051/2.692

1.09°

0.5 0.033

0.5 0.80

1.09°

0.5 0.80

2.76°

0.0406 Pinion outer addendum:

0.5 0.112

0.1313 Gear outside diameter:

2 6.000 in

Pinion outside diameter:

2 0.0406

75.96°

6.020

2 0.1313

14.04°

1.755

2 1.500 in

209


BEVEL GEAR GEOMETRY Computes values for features described in Table 8-8 in Section 8-8 of the text PROBLEM: 8-49 EXAMPLE PROBLEM: 8-3 GIVEN DATA GIVEN DATA No of teeth in pinion = 18 No of teeth in pinion = 16 No of teeth in gear = 72 No of teeth in gear = 48 Diametral pitch = 12 Diametral pitch = 8 Pressure angle = 20 degrees Pressure angle = 20 degrees COMPUTED VALUES Gear ratio 4.000 Pitch diameter: Pinion 1.500 in Pitch diameter: Gear 6.000 in Pitch cone angle: Pinion 14.036 degrees Pitch cone angle: Gear 75.964 degrees Outer cone distance 3.092 in FACE WIDTH Nominal face width 0.928 in Maximum face width (a) 1.031 in Maximum face width (b) 0.833 in Max face width = smallest of (a) or (b) INPUT Face width 0.800 in COMPUTED VALUES Mean cone distance 2.692 in 0.871 Ratio A m /A o Mean circular pitch 0.228 in mean working depth 0.145 in Clearance 0.018 in Mean whole depth 0.163 in mean addendum factor 0.228 Gear mean addendum 0.033 in Pinion mean addendum 0.112 in Gear mean dedendum 0.130 in Pinion mean dedendum 0.051 in Gear dedendum angle 2.767 degrees Pinion dedendum angle 1.090 degrees Gear outer addendum 0.041 in Pinion outer addendum 0.131 in Gear outside diameter 6.020 in Pinion outside diameter 1.755 in

COMPUTED VALUES Gear ratio 3.000 Pitch diameter: Pinion 2.000 in Pitch diameter: Gear 6.000 in Pitch cone angle: Pinion 18.435 degrees Pitch cone angle: Gear 71.565 degrees Outer cone distance 3.162 in FACE WIDTH Nominal face width 0.949 in Maximum face width (a) 1.054 in Maximum face width (b) 1.250 in Max face width = smallest of (a) or (b) INPUT Face width 1.000 in COMPUTED VALUES Mean cone distance 2.662 in Ratio A m /A o 0.842 Mean circular pitch 0.331 in mean working depth 0.210 in Clearance 0.026 in Mean whole depth 0.237 in mean addendum factor 0.242 Gear mean addendum 0.051 in Pinion mean addendum 0.159 in Gear mean dedendum 0.186 in Pinion mean dedendum 0.077 in Gear dedendum angle 3.992 degrees Pinion dedendum angle 1.663 degrees Gear outer addendum 0.065 in Pinion outer addendum 0.194 in Gear outside diameter 6.041 in Pinion outside diameter 2.369 in

210


BEVEL GEAR GEOMETRY Computes values for features described in Table 8-8 in Section 8-8 of the text PROBLEM: 8-45 PROBLEM: 8-47 GIVEN DATA GIVEN DATA No of teeth in pinion = 15 No of teeth in pinion = 25 No of teeth in gear = 45 No of teeth in gear = 50 Diametral pitch = 6 Diametral pitch = 10 Pressure angle = 20 degrees Pressure angle = 20 degrees COMPUTED VALUES Gear ratio 3.000 Pitch diameter: Pinion 2.500 in Pitch diameter: Gear 7.500 in Pitch cone angle: Pinion 18.435 degrees Pitch cone angle: Gear 71.565 degrees Outer cone distance 3.953 in FACE WIDTH Nominal face width 1.186 in Maximum face width (a) 1.318 in Maximum face width (b) 1.667 in Max face width = smallest of (a) or (b) INPUT Face width 1.250 in COMPUTED VALUES Mean cone distance 3.328 in 0.842 Ratio A m /A o Mean circular pitch 0.441 in mean working depth 0.281 in Clearance 0.035 in Mean whole depth 0.316 in mean addendum factor 0.242 Gear mean addendum 0.068 in Pinion mean addendum 0.213 in Gear mean dedendum 0.248 in Pinion mean dedendum 0.103 in Gear dedendum angle 4.257 degrees Pinion dedendum angle 1.774 degrees Gear outer addendum 0.087 in Pinion outer addendum 0.259 in Gear outside diameter 7.555 in Pinion outside diameter 2.992 in

COMPUTED VALUES Gear ratio 2.000 Pitch diameter: Pinion 2.500 in Pitch diameter: Gear 5.000 in Pitch cone angle: Pinion 26.565 degrees Pitch cone angle: Gear 63.435 degrees Outer cone distance 2.795 in FACE WIDTH Nominal face width 0.839 in Maximum face width (a) 0.932 in Maximum face width (b) 1.000 in Max face width = smallest of (a) or (b) INPUT Face width 0.900 in COMPUTED VALUES Mean cone distance 2.345 in Ratio A m /A o 0.839 Mean circular pitch 0.264 in mean working depth 0.168 in Clearance 0.021 in Mean whole depth 0.189 in mean addendum factor 0.283 Gear mean addendum 0.047 in Pinion mean addendum 0.120 in Gear mean dedendum 0.141 in Pinion mean dedendum 0.068 in Gear dedendum angle 3.450 degrees Pinion dedendum angle 1.670 degrees Gear outer addendum 0.061 in Pinion outer addendum 0.148 in Gear outside diameter 5.054 in Pinion outside diameter 2.764 in

211


BEVEL GEAR GEOMETRY Computes values for features described in Table 8-8 in Section 8-8 of the text PROBLEM: 8-50 PROBLEM: 8-51 GIVEN DATA GIVEN DATA No of teeth in pinion = 16 No of teeth in pinion = 12 No of teeth in gear = 64 No of teeth in gear = 36 Diametral pitch = 32 Diametral pitch = 48 Pressure angle = 20 degrees Pressure angle = 20 degrees COMPUTED VALUES Gear ratio 4.000 Pitch diameter: Pinion 0.500 in Pitch diameter: Gear 2.000 in Pitch cone angle: Pinion 14.036 degrees Pitch cone angle: Gear 75.964 degrees Outer cone distance 1.031 in FACE WIDTH Nominal face width 0.309 in Maximum face width (a) 0.344 in Maximum face width (b) 0.313 in Max face width = smallest of (a) or (b) INPUT Face width 0.300 in COMPUTED VALUES Mean cone distance 0.881 in 0.854 Ratio A m /A o Mean circular pitch 0.084 in mean working depth 0.053 in Clearance 0.007 in Mean whole depth 0.060 in mean addendum factor 0.228 Gear mean addendum 0.012 in Pinion mean addendum 0.041 in Gear mean dedendum 0.048 in Pinion mean dedendum 0.019 in Gear dedendum angle 3.113 degrees Pinion dedendum angle 1.227 degrees Gear outer addendum 0.015 in Pinion outer addendum 0.049 in Gear outside diameter 2.007 in Pinion outside diameter 0.596 in

COMPUTED VALUES Gear ratio 3.000 Pitch diameter: Pinion 0.250 in Pitch diameter: Gear 0.750 in Pitch cone angle: Pinion 18.435 degrees Pitch cone angle: Gear 71.565 degrees Outer cone distance 0.395 in FACE WIDTH Nominal face width 0.119 in Maximum face width (a) 0.132 in Maximum face width (b) 0.208 in Max face width = smallest of (a) or (b) INPUT Face width 0.125 in COMPUTED VALUES Mean cone distance 0.333 in Ratio A m /A o 0.842 Mean circular pitch 0.055 in mean working depth 0.035 in Clearance 0.004 in Mean whole depth 0.039 in mean addendum factor 0.242 Gear mean addendum 0.008 in Pinion mean addendum 0.027 in Gear mean dedendum 0.031 in Pinion mean dedendum 0.013 in Gear dedendum angle 5.316 degrees Pinion dedendum angle 2.217 degrees Gear outer addendum 0.011 in Pinion outer addendum 0.032 in Gear outside diameter 0.757 in Pinion outside diameter 0.311 in

212


Wormgearing 52.

Worm Gearing – Given data:

1.250 in;

1;

10;

14.5° 40;

0.625 in

Single Thread

Lead = Axial Pitch = Circular Pitch = /

/10 .

Lead Angle

.

.

.

Addendum

.

2

Worm Root Diameter

2

Gear Pitch Diameter

/

Center Distance

1.250 1.250

0.1157 in

2 0.100

2 0.1157

40/10

.

4.000

1.250 /2

/2 /

°

;

Worm Outside Diameter

Velocity Ratio

.

. .

.

40/1

NOTE: On the following two pages are the results of Problems 52‐57 giving pertinent geometric properties of worms and wormgears and their velocity ratios. The detailed calculations follow the pattern illustrated above for Problem 52. The equations come from Section 8‐10, Equations 8‐20 to 8‐25. See also Example Problems 8‐4 and 8‐5, and the General Guidelines for Worm and Wormgear Dimensions. Compare the results to discern how variations in geometry such as diametral pitch and the number of threads in the worm affect the overall results. This is especially pertinent to Problem 53 in which three different designs (A, B, and C) for worm/wormgear sets provide the same velocity ratio, but the number of worm threads is 1, 2, and 3 respectively. The single threaded worm produces the smallest center distance and overall size of the reducer. But note, also, that it has the smallest lead angle. The lead angle increases as the number of threads is increased. On the positive side, the small lead angle makes the reducer self‐locking. On the negative side, the small lead angle results in lower

213


mechanical efficiency as will be shown in Chapter 10, Sections 10‐10 and 10‐11. The designer must balance these advantages and disadvantages for each application. PROBLEM: 52 WORMGEARING INPUT DATA Worm pitch diameter = 1.250 in Diametral pitch = 10 No. of worm threads = 1 No. of gear teeth = 40 Face width of gear = 0.625 in COMPUTED RESULTS Circular pitch of gear = 0.3142 in Axial pitch of worm = 0.3142 in Lead of the worm = 0.3142 in Lead angle = 4.574 deg Addendum = 0.100 in Dedendum = 0.116 in Worm outside diameter = 1.450 in Worm root diameter = 1.019 in Gear pitch diameter = 4.000 in Center distance = 2.625 in Velocity ratio = 40.00

PROBLEM: 53A WORMGEARING INPUT DATA Worm pitch diameter = 1.000 in Diametral pitch = 12 No. of worm threads = 1 No. of gear teeth = 20 Face width of gear = 0.500 in COMPUTED RESULTS Circular pitch of gear = 0.2618 in Axial pitch of worm = 0.2618 in Lead of the worm = 0.2618 in Lead angle = 4.764 deg Addendum = 0.083 in Dedendum = 0.096 in Worm outside diameter = 1.167 in Worm root diameter = 0.807 in Gear pitch diameter = 1.667 in Center distance = 1.333 in Velocity ratio = 20.00

PROBLEM: 53B WORMGEARING INPUT DATA Worm pitch diameter = 1.000 in Diametral pitch = 12 No. of worm threads = 2 No. of gear teeth = 40 Face width of gear = 0.500 in COMPUTED RESULTS Circular pitch of gear = 0.2618 in Axial pitch of worm = 0.2618 in Lead of the worm = 0.5236 in Lead angle = 9.462 deg Addendum = 0.083 in Dedendum = 0.096 in Worm outside diameter = 1.167 in Worm root diameter = 0.807 in Gear pitch diameter = 3.333 in Center distance = 2.167 in Velocity ratio = 20.00

PROBLEM: 53C WORMGEARING INPUT DATA Worm pitch diameter = 1.000 in Diametral pitch = 12 No. of worm threads = 4 No. of gear teeth = 80 Face width of gear = 0.500 in COMPUTED RESULTS Circular pitch of gear = 0.2618 in Axial pitch of worm = 0.2618 in Lead of the worm = 1.0472 in Lead angle = 18.435 deg Addendum = 0.083 in Dedendum = 0.096 in Worm outside diameter = 1.167 in Worm root diameter = 0.807 in Gear pitch diameter = 6.667 in Center distance = 3.833 in Velocity ratio = 20.00

214


PROBLEM: 54 WORMGEARING INPUT DATA Worm pitch diameter = 0.625 in Diametral pitch = 16 No. of worm threads = 2 No. of gear teeth = 100 Face width of gear = 0.3125 in COMPUTED RESULTS Circular pitch of gear = 0.1963 in Axial pitch of worm = 0.1963 in Lead of the worm = 0.3927 in Lead angle = 11.310 deg Addendum = 0.063 in Dedendum = 0.072 in Worm outside diameter = 0.750 in Worm root diameter = 0.480 in Gear pitch diameter = 6.250 in Center distance = 3.438 in Velocity ratio = 50.00

PROBLEM: 55 WORMGEARING INPUT DATA Worm pitch diameter = 2.000 in Diametral pitch = 6 No. of worm threads = 4 No. of gear teeth = 72 Face width of gear = 1.000 in COMPUTED RESULTS Circular pitch of gear = 0.5236 in Axial pitch of worm = 0.5236 in Lead of the worm = 2.0944 in Lead angle = 18.435 deg Addendum = 0.167 in Dedendum = 0.193 in Worm outside diameter = 2.333 in Worm root diameter = 1.614 in Gear pitch diameter = 12.000 in Center distance = 7.000 in Velocity ratio = 18.00

PROBLEM: 56 WORMGEARING INPUT DATA Worm pitch diameter = 4.000 in Diametral pitch = 3 No. of worm threads = 1 No. of gear teeth = 54 Face width of gear = 2.000 in COMPUTED RESULTS Circular pitch of gear = 1.0472 in Axial pitch of worm = 1.0472 in Lead of the worm = 1.0472 in Lead angle = 4.764 deg Addendum = 0.333 in Dedendum = 0.386 in Worm outside diameter = 4.667 in Worm root diameter = 3.229 in Gear pitch diameter = 18.000 in Center distance = 11.000 in Velocity ratio = 54.00

PROBLEM: 57 WORMGEARING INPUT DATA Worm pitch diameter = 0.333 in Diametral pitch = 48 No. of worm threads = 4 No. of gear teeth = 80 Face width of gear = 0.156 in COMPUTED RESULTS Circular pitch of gear = 0.0654 in Axial pitch of worm = 0.0654 in Lead of the worm = 0.2618 in Lead angle = 14.050 deg Addendum = 0.021 in Dedendum = 0.024 in Worm outside diameter = 0.375 in Worm root diameter = 0.285 in Gear pitch diameter = 1.667 in Center distance = 1.000 in Velocity ratio = 20.00

215


Gear Trains – Analysis For all problems, assume that the input shaft rotates clockwise unless stated otherwise. 58.

Train Value

/

;

3450 rpm 119.1

.

.

Gear H is an idler. It does not affect the TV but changes the direction of the output shaft. 59.

12 200 rpm; Find

:

/ 30 000

. 60.

6840 rpm; Find

:

/ 40 Exactly

61.

2875 rpm; Find

:

/ 5666.7

.

.

216


Kinematic Design of Gear Trains: Solutions to Problems 62-65 at the end of Chapter 8. Enter data in blue-shaded cells. XX shows combination of NP and NG with minimum differential. PROBLEM 62 VELOCITY RATIO FOR GEARS VELOCITY RATIO FOR GEARS PROBLEM 63 DESIRED VR = 3.14159 () DESIRED VR = 1.7321 (3) NP 16 17 18 19 20 XX 21 22 23 24

NG Calc. 50.27 53.41 56.55 59.69 62.83 65.97 69.12 72.26 75.40

NG Actual 50 53 57 60 63 66 69 72 75

VR Differential = Actual Des. VR - VR Act. 3.1250 0.01659 3.1176 0.02395 3.1667 0.02507 3.1579 0.01630 3.1500 0.00841 3.1429 0.00126 XX 3.1364 0.00523 3.1304 0.01116 3.1250 0.01659

Minimum differential =

XX

XX

16 17 18 19 20 21 22 23 24

XX

16 17 18 19 20 21 22 23 24

NG NG VR Differential = Calc. Actual Actual Des. VR - VR Act. 27.71 28 1.7500 0.01795 29.44 29 1.7059 0.02617 31.18 31 1.7222 0.00983 32.91 33 1.7368 0.00479 34.64 35 1.7500 0.01795 36.37 36 1.7143 0.01777 38.11 38 1.7273 0.00478 XX 39.84 40 1.7391 0.00708 41.57 42 1.7500 0.01795 Minimum differential =

0.00126

PROBLEM 64 VELOCITY RATIO FOR GEARS DESIRED VR = 6.16441 (38) NP

NP

0.00478

VELOCITY RATIO FOR GEARS PROBLEM 65 DESIRED VR = 7.42

NG NG VR Differential = Calc. Actual Actual Des. VR - VR Act. 98.63 99 6.1875 0.02309 104.80 105 6.1765 0.01206 110.96 111 6.1667 0.00225 XX 117.12 117 6.1579 0.00652 123.29 123 6.1500 0.01441 129.45 129 6.1429 0.02156 135.62 136 6.1818 0.01740 141.78 142 6.1739 0.00950 147.95 148 6.1667 0.00225 XX [Two equal solutions] Minimum differential = 0.00225

217

NP

XX

16 17 18 19 20 21 22 23 24

NG NG Calc. Actual 118.72 119 126.14 126 133.56 134 140.98 141 148.40 148 155.82 156 163.24 163 170.66 171 178.08 178

VR Differential = Actual Des. VR - VR Act. 7.4375 0.01750 7.4118 0.00824 7.4444 0.02444 7.4211 0.00105 XX 7.4000 0.02000 7.4286 0.00857 7.4091 0.01091 7.4348 0.01478 7.4167 0.00333

Minimum differential =

0.00105


[Ensure that no interference occurs for any pair of gears.] 66.

Design:

1800 rpm;

1800/2

2 rpm; Exact ratio required.

900 Exact: Use factoring:

Factors are: 2

2

5

5

3

150

3

See Table 8‐7 for interference data. For 20° F.D. Teeth, use

16 or 17

‐ Per Pair

Nominal

8.82 Too small

Two Pairs

8.82

77.8

Three Pairs

8.82

687 Too small

Four Pairs

8.82

6061 Four pairs required

Recombine Factors: 16

150/17

Remaining Ratio 900 450 225 45 9 3

Factor 2 2 5 5 3 3

6;

6;

5;

96

80

16

16

5

n in = 1800 rpm

16

6

Too small

n out = 2.00 rpm 3

5

1

A

E

5

D

H 4

6

96

67.

5

2

C F

80

Table 8‐7 says no interference for

16 if

Design:

22;

1800 rpm; 21 1800/21.5

n

83.7;

150/17

101.

150; 20° Full depth teeth

1800/22

From Table 8‐7‐ No interference with er pair

G

B

81.8;

85.7

17 for 20° F. D. teeth.

8.82 Small: Two Pairs

The layout is to be as in Figure 8‐48 in text – Triple reduction. 218

1800/21

8.82

77.9 Low


Try equal reduction ratio:

17: Let

Let 17 4.19

≅ √83.7

5;

83.7/20

3360 rpm

4.19

71

83.53

Design:

.

.

Exact;

12.0 rpm

20° F.D. teeth. From Table 8‐7, let

2

4.37

4; Then

71.2 → Specify

Final 68.

Exact;

Ok 150

17 for no interference.

per pair

150/17

3360/12

280 Exact. Requires 3 pairs similar to Figure 8‐48 in text.

2

Factor 2 2 5 2 7

5

2

7

8.82: 2 Pairs

8.82

280: Recombine 8

Remaining Ratio 280 140 70 14 7

5

7

8:

17;

136

7:

17;

119

5:

17;

85

77.8: 3 Pairs

686

280

(Other designs possible) 69.

Design:

4200 rpm CW: 13.0 .

311.1;

13.5 rpm CW: Positive .

316.98;

.

323.08

From Problem 68, 3 pairs required. Layout in Figure 8‐48 produces a negative TV. Use idler in any pair. Try residual ratio method. Nominal Try

7;

6. Then

Final

√317

6.82 per pair

≅ 317/42 ≅ 7.55: Use 7 6 7.50

315 Ok

It is preferred to place higher ratios early in the train. Let

7.5;

7;

6

219

7.50


Let

18;

7.5 18

135; Let

Let

17,

17 6

Let

17. Place in first pair.

17,

7 17

119

102. Idler needed for positive train. n in = 4200 rpm

Final train value:

Shaft 1

A

5

I

3 E D

315

4 2

.

F

Ok

13.333 rpm

B

Note: Chapter 9 gives information on selection of speed/torque changes,

n out =

C

. Larger

– diametral pitch. Because of gives smaller gears. This is the

reason that larger ratios should be placed earlier in the train. 70.

Design:

5500 rpm Exactly

n in = 5500 rpm

221

225

3 1

A D

Design: Double reduction with all external gears. 5500/221

24.88:

5500/225

2

24.44

C B

5500/223

24.66

Nominal ratio for each par Then

≅ 24.66/5

√24.66

4.93: For

Final

Design:

16;

5 78.6

Use

79

24.6875 .

71.

4.97. Try

Ok

5500 rpm; 13.0 5500/13.5

14.0 rpm

407.4

Two pairs – max TV = 77.85 too low; Three pairs – max TV = 687 – Ok Nominal ratio per pair: √407.4

7.41

220

n out = 222.78 rpm


Try

≅ 8,

For

8:

8 But use hunting tooth approach. 17,

17 8

136: Use

135 n in = 5500 rpm

,

Same for

3 Shaft 1

7.94

A

E

63.06

Residual Ratio: 407.4/63.06

D 4

6.46

2

/

n out =

C F

13.48 rpm

B

Let

17;

6.46 17

408.05

Final Final output speed 72.

Design:

500/408.05

Let

/

Ok

1750 rpm

75,

850

20.24/4.50

n out = 148.2 rpm

C B

Ok 44: Use 2 Pairs

20.24, Let

.

2

51

850 rpm: 40

Residual Ratio

A D

51.06 → 51

.

850/42

1

2.837

18,

1750

3

4.167

18 2.837

18,

Design:

n in =

11.82/4.167

18:

150

11.82 75/18

Residual ratio Let

.

1750 rpm; 146 1750/148

73.

109.82 → Use 110 teeth

/

81/18

4.50

4.50:

18,

81

Ok

n in = 850 rpm 3 1

A D

2

C B

221

n out = 41.98 rpm


74.

Design: Use two pairs: 3000/550 Let

15;

3000 rpm: 548

552

5.4545: Let

15 2.335

2.335

√5.4545

35.03 → 35. Let

3000

15,

35

Ok

(These results used in Problem 9‐76) 75.

3600 rpm; 3.0

Design:

3600/4.0

Factor

Remaining Ratio

2 2 5 5 3

900 450 225 45 9

3

3

5.0

900: Use 4 pairs

n in = 3600 rpm

H 3

Shaft 1

A

E 4

2

C F B

Use:

Let

6

96/16

/

6

96/16

/

5

80/16

/

5

80/16

/

16. Let

95. Let

5.9375;

81/16

178.47. Residual ratio Let

5

D

Alternate solution using hunting tooth:

95/16

n out = 3.984 rpm

81;

81/16

Total

178.47 5.0625

Final

3600/903.5

5.0625

903.5 .

Ok

222

81

5.0625 900/178.47

5.043

G


76.

Design:

3600 rpm; 3.0 3600/4.0

5.0 rpm

900; Use two pairs of worm/wormgears

1 Single thread worms NB = ND = 30

Design: Let

C-worm

1800 rpm; 50

8.0 Exactly

225;

16,

72,

225/50

4.50

1,

50

1800 rpm 78.

Design:

A n in = 3600 rpm

Wormgear Drive.

1800/8 Let

Output shaft

B and D are wormgears

VR1 = VR2 = 30; TV = 302 = 900 77.

A-worm

Input shaft

Output shaft n out = D 8.00 rpm

B C = Worm

. 12.0 rpm Exactly; TV = 3360/12 = 280 = 20  14

3360 rpm;

Use two pairs of wormgear drives as in Problem 76 . Let 79.

20;

14:

2,

40,

4200 rpm; 13.0

Design:

2,

28.

13.5

Use combined helical gear pair with worm/wormgear set as in Problem 77. Let

50. Wormgear Drive, 4200/13.25

Let

316.98;

18.

18 6.34

Final output speed

4200

1,

50 316.98/50

6.34

114.1 → Use 114 .

223

Ok


80.

Design:

5500 RPM 13.0

14.0 RPM

Use two wormgear drives as in Problem 76. 5500/13.5 Let

20. Then

Try

3. 3,

407.4 407.4/20

3 20.37 60,

61

6500

.

62. Then

13.30 rpm

Or 81.

61.11 → Use 61

3,

Final Output Speed Can also use

20.37

60. Then

Ok

13.75 rpm

Given: np = 50 rpm; Pd = 12; NP = 30; Rack length = 7.00 ft = 84 in. a. DP = NP/Pd = 30/12 = 2.500 in b. Distance from pitch line to back of rack = B = 0.917 in. Table 8‐10 for Pd = 12 c. Let center distance = B + DP/2 = B‐C CD = 0.917 in + 2.50 in /2 = 2.167 in d. vrack = Pitch ling speed of pinion vrack = DP/2  nP

vrack = (1.25 in)(50 rev/min)(2 rad/rev)(1 ft/12 in) = 32.72 ft/min e. Time to move rack 7.00 ft: t = s/v = 7.00 ft/(32.72 ft/min)  60 s/min = 12.83 s f. Number of revolutions of pinion for rack to move 7.00 ft (84.0 in): srack = rP 

or

= srack/rP = (84 in)/1.25 in = (62.2 rad)(1 rev)/(2 rad)

.

224


CHAPTER 9 SPUR GEAR DESIGN Forces on Spur Gear Teeth 1.

Given:

20°,

7.5 hp,

a.

1750 rpm,

1750 rpm

486.1 rpm 3.600

b.

/

/

72/20

c.

/

20/12

1.667 in;

/

e.

/12

1.667 1750 /12 .

f. .

72/12

12

6.000 in

∙ .

/

764 ft/min

270 lb ∙ in

972 lb ∙ in

.

/

324 lb

Or

.

h.

324

20°

118 lb

324 lb/

20°

345 lb

i.

72,

3.833 in

d.

g.

20,

/

324 lb

A similar method is used for Problems 2‐6. Spreadsheet solution are shown on the following pages. The solution for Problem 1 is also shown for comparison to the solutions shown above.

225


Forces on Spur Gear Teeth Problem 1 Chapter 9 Given data

a. b. c. d. e. f. g. h. i.

Pressure angle = Power = pinion speed = teeth in pinion = teeth in gear = diametral pitch = RESULTS: Gear speed = VR = mG = pinion PD = gear PD = center distance = C = pitch line speed = torque on pinion shaft = torque on gear shaft = tangential force = radial force = normal force =

20 degrees 7.5 hp 1750 rpm 20 72 12 486.1 rpm 3.600 1.667 in 6.000 in 3.833 in 764 ft/min 270 lb in 972 lb in 324 lb 118 lb 345 lb

Forces on Spur Gear Teeth Problem 2 Chapter 9 Given data

a. b. c. d. e. f. g. h. i.

Pressure angle = 20 degrees Power = 50 hp pinion speed = 1150 rpm teeth in pinion = 18 teeth in gear = 68 diametral pitch = 5 RESULTS: Gear speed = 304.4 rpm VR = mG = 3.778 pinion PD = 3.600 in gear PD = 13.600 in center distance = C = 8.600 in pitch line speed = 1084 ft/min torque on pinion shaft = 2739 lb in torque on gear shaft = 10348 lb in tangential force = 1522 lb radial force = 554 lb normal force = 1620 lb

226


Forces on Spur Gear Teeth Problem 3 Chapter 9 Given data

a. b. c. d. e. f. g. h. i.

Pressure angle = Power = pinion speed = teeth in pinion = teeth in gear = diametral pitch = RESULTS: Gear speed = VR = mG = pinion PD = gear PD = center distance = C = pitch line speed = torque on pinion shaft = torque on gear shaft = tangential force = radial force = normal force =

20 degrees 0.75 hp 3450 rpm 24 110 24 752.7 rpm 4.583 1.000 in 4.583 in 2.792 in 903 ft/min 13.7 lb in 62.8 lb in 27.4 lb 10.0 lb 29.2 lb

Forces on Spur Gear Teeth Problem 4 Chapter 9 Given data

a. b. c. d. e. f. g. h. i.

Pressure angle = Power = pinion speed = teeth in pinion = teeth in gear = diametral pitch = RESULTS: Gear speed = VR = mG = pinion PD = gear PD = center distance = C = pitch line speed = torque on pinion shaft = torque on gear shaft = tangential force = radial force = normal force =

25 degrees 7.5 hp 1750 rpm 20 72 12 486.1 rpm 3.600 1.667 in 6.000 in 3.833 in 764 ft/min 270 lb in 972 lb in 324 lb 151 lb 358 lb

227


Forces on Spur Gear Teeth Problem 5 Chapter 9 Given data

a. b. c. d. e. f. g. h. i.

Pressure angle = 25 degrees Power = 50 hp pinion speed = 1150 rpm teeth in pinion = 18 teeth in gear = 68 diametral pitch = 5 RESULTS: Gear speed = 304.4 rpm VR = mG = 3.778 pinion PD = 3.600 in gear PD = 13.600 in center distance = C = 8.600 in pitch line speed = 1084 ft/min torque on pinion shaft = 2739 lb in torque on gear shaft = 10348 lb in tangential force = 1522 lb radial force = 710 lb normal force = 1680 lb Forces on Spur Gear Teeth

Problem 6 Chapter 9 Given data

a. b. c. d. e. f. g. h. i.

Pressure angle = Power = pinion speed = teeth in pinion = teeth in gear = diametral pitch = RESULTS: Gear speed = VR = mG = pinion PD = gear PD = center distance = C = pitch line speed = torque on pinion shaft = torque on gear shaft = tangential force = radial force = normal force =

25 degrees 0.75 hp 3450 rpm 24 110 24 752.7 rpm 4.583 1.000 in 4.583 in 2.792 in 903 ft/min 13.7 lb in 62.8 lb in 27.4 lb 12.8 lb 30.2 lb

228


7.

Given: Pd = 8 for all gears; nA = 1750 rpm NA = 24; NB = 48; NC = 96; ND = 24 Power out: PB = 8 hp; PC = 7 hp; PD = 5 hp Power in = Σ(Power out) = 20 hp a. Pitch diameter of each gear: D = N/Pd in DA = 24/8 = 3.000 in DB = 48/8 = 6.000 in DC = 96/8 = 12.000 in DD = 24/8 = 3.000 in b. Center distance for each mesh: For mesh A‐B: From Table 8‐1: CA‐B = (NA + NB)/2Pd = (24 + 48)/2(8) = 4.500 in For mesh B‐C: CB‐C = (NB + NC)/2Pd = (48 + 96)/2(8) = 9.000 in For mesh C‐D: CC‐D = (Nc + Nd)/2Pd = (96 + 24)/2(8) = 7.500 in c. Rotational speed of each shaft: First compute velocity ratios: VR1 = nA/nB = NB/NA = 48/24 = 2.000; VR2 = nB/nC = NC/NB = 96/48 = 2.000; VR3 = nC/nD = ND/NC = 24/96 = ¼ = 0.250 Given: nA = 1750 rpm nB = nA/VR1 = 1750 rpm/2.00 = 875 rpm nC = nB/VR2 = 875 rpm/2.00 = 437.5 rpm nD = nC/VR3 = 437.5 rpm/0.250 = 1750 rpm d. Torque in each shaft: Using Equation 9‐10: For T in lbin, P in hp, n in rpm:

T = P/n = (63 000)P/n TA = (63 000)PA/nA = (63 000)(20)/1750 = 720 lbin TB = (63 000)PB/nB = (63 000)(8)/875 = 576 lbin TC = (63 000)PC/nC = (63 000)(7)/437.5 = 1008 lbin TD = (63 000)PD/nD = (63 000)(5)/1750 = 180 lbin

229


e. Tangential force on the teeth of each gear: From Equation 9‐8, with P in hp, D in inches, n in rpm, and Wt in lb, Wt = P/[(n)(D/2)] = (126 000)P/(n  D) Gear A: WtA = (126 000)(20 hp)/[1750  3.000] = 480 lbin Gear B: WtB = (126 000)(8 hp)/[875  6.000] = 192 lbin Gear C: WtC = (126 000)(7 hp)/[437.5  12.000] = 168 lbin Gear D: WtD = (126 000)(5 hp)/[1750  3.000] = 120 lbin

Gear Quality 8.

Grain harvester:

10.

9.

Printing press:

7.

10.

Auto transmission:

11.

Gyroscope:

12.

Analytical quality measurements include index variation, tooth alignment, tooth

6.

2.

profile, root radius, and runout. 13.

AGMA Standard 2015 is currently used. See Table 9‐4 for the range of quality

numbers in this system and the comparisons with prior systems. For Problems 14‐16: For precision machinery, use the recommendations for machine tool drives in the lower part of Table 9‐5. The choice of quality number is based on the pitch line speed of the gears. 14.

(From Problem 1). Pitch line speed

794 ft/min Use

10.

15.

(From Problem 2). Pitch line speed

1084 ft/min Use

8.

16.

(From Problem 3). Pitch line speed

903ft/ min Use

230

8.


Gear Materials Answers for Problems 17‐25 are found in Sections 9‐7 and 9‐8. Only brief statements are given here. 17.

Bending stresses are created by the tangential force on the gear teeth acting in a manner similar to that on a cantilever. The maximum bending stress occurs in the root of the tooth where it blends with the involute tooth form. High levels of contact stress, called Hertz stress, occur in the face of the teeth near the pitch line as forces are exerted between the pinion and the gear teeth. The probable mode of failure is pitting on the tooth surface.

18.

AGMA standards give allowable bending stress numbers and allowable contact stress numbers related to the hardness of the material of the teeth. See Figures 9‐18 and 9‐19 and Table 9‐9.

19.

Gear steels are typically medium carbon plain or alloy steels that are heat treated by thoroughly hardening using a quenching and tempering process. For examples, see Table 9‐8, Section 9‐7.

20.

The AGMA recommends hardness values from HB 180 to HB 400. See Figures 9‐18 and 9‐19.

21.

Grade 1 steel is typical commercial quality and is recommended for use in this book. Grades 2 and 3 require progressively more stringent quality controls on the alloy content and cleanliness of the materials. Cost increases dramatically for the higher grades. See AGMA Standard 2004‐C08 (R2012) or the latest revision.

231


22.

Grades 2 and 3 may be specified for high‐speed aerospace applications, turbine engine driven systems, ship propulsion drives, and high‐capacity industrial drives such as those in steel rolling mills.

23.

Case hardening by flame hardening, induction hardening, and carburizing are three processes that produce harder surfaces than typical through‐hardening.

24.

See AGMA Standard 2001‐D04 (R2016) or the latest revision.

25.

AGMA Standard 2001‐D04 (R2016) provides data for gray cast iron, ductile iron, and bronze. Table 9‐10.

26.

From Figures 9‐18 and 9‐19: a.

b.

c.

Grade 1; 200 HB:

28.26 ksi;

194.9 MPa;

644.6 MPa

Grade 1; 300 HB:

866.6 MPa

Grade 1; 400 HB:

43.72 ksi;

301.5 MPa;

1088.6 MPa

U. S

125.7 ksi

U. S.

157.9 ksi

U. S.

SI

36.0 ksi;

248.1 MPa;

93.50 ksi

SI

SI

d.

Using HB > 400 HB is not recommended.

e.

Grade 2; 200 HB:

36.80 ksi;

253.7 MPa;

718.5 MPa

f.

g.

Grade 2; 300 HB:

959.5 MPa

Grade 2; 400 HB:

57.20 ksi;

394.3 MPa;

1200.5 MPa

232

U. S.

139.0 ksi

U. S.

173.9 ksi

U. S.

SI

47.0 ksi;

324.0 MPa;

104.1 ksi

SI

SI


27.

From Figure 9‐18: Grade 1: 300 HB. Grade 2: 192 HB

28.

From Table 9‐9: Case hardening by carburizing produces 55‐64 HRC

29.

From Appendix 5: SAE 1020, 4118, 8620, and others

30.

From Table 9‐9: Flame or induction hardening produces 50‐54 HRC with materials

having high hardenability. 31.

SAE 4140, 4340, 6150. All have good hardenability.

32.

ASTM A536, Grade 80‐55‐06 has a minimum hardness of 179 HB.

33.

a.

b.

c.

d. e.

f.

g.

h.

45.0 ksi;

170.0 ksi

U. S.

310 MPa;

1172 MPa

45.0 ksi;

175.0 ksi

310 MPa;

1207 MPa

55.0 ksi;

180.0 ksi

379 MPa;

1241 MPa

SI (Table 9‐9) U. S. SI (Table 9‐9) U. S. SI (Table 9‐9)

Not Listed 55.0 ksi;

180.0 ksi

U. S.

379 MPa;

1240 MPa

5.00 ksi;

50.0 ksi

35.0 MPa;

345 MPa

13.0 ksi;

75.0 ksi

90.0 MPa;

517 MPa

27.0 ksi;

92.0 ksi

186 MPa;

634 MPa

SI (Table 9-9)

U. S. SI (Table 9-10) U. S. SI (Table 9-10) U. S.

233

SI (Table 9-10)


i.

j.

k.

l.

5.70 ksi;

30.0 ksi

U. S.

39.0 MPa;

207 MPa

23.6 ksi;

65.0

163 MPa;

448 MPa

SI (Table 9-10)

U. S. SI (Table 9-10)

12.0 ksi;

Not listed

U. S.

83.0 MPa;

Not listed

SI (Table 9-14)

9.0 ksi; 62.0 MPa;

Not listed

U. S.

Not listed (Table 9-14)

34.

Depth

0.027 in. (Figure 9-20)

35.

Depth

0.90 mm. (Figure 9‐20)

On the following pages, the solutions to Problems 36 ‐83 are shown in spreadsheet form. Please study the example problems throughout the chapter for details of the solution procedure, reviewing figures, tables, and equations that present pertinent data. Many sources used are cited on the spreadsheets, and several employ equations for analytically acquiring data from tables and graphs. Uniform color schemes are used in the spreadsheets to guide in interpreting the data. 

Items that are to be inserted manually are shaded in BLUE.



Sections, such as ‘Initial Input Data’ and ‘Factors in Design Analysis’ are in RED.



Results, typically stresses, are in LIGHT VIOLET.



WHITE SPACES show calculated data and general information.

Most of the problems are true design problems and only examples of appropriate data and results are shown. These are not to be taken as the only solutions, or even the best solutions. Users are urged to critique the given solutions and, perhaps, seek to improve on them.

234


Note that for Problems 36 to 59, the problem statements call for parts of complete problem solutions, while the spreadsheets show the complete design. For example, Problems 36, 42, 48, and 54 all deal with parts of the same problem: 

Problem 36 calls for computing only the Bending Stresses in the Gear Teeth.



Problem 42 calls for determining the Required Allowable Bending Stress Number.



Problem 48 calls for calculating the Contact Stress Number.



Problem 54 calls for determining the Required Allowable Contact Stress Number.

All of these calculations use the same data set and are included in the same spreadsheet. Other sets of data are problems:

37, 43, 49, 55;

38, 44, 50, 56

39, 45, 51, 57;

41, 47, 53, 59

235


236

Pd = NP = nG = NG =

ber of Pinion Teeth: ired Output Speed: mber of gear teeth: No. of Gear Teeth:

C= vt = Wt =

Center Distance: Pitch Line Speed: Transmitted Load:

Prob 48: s c = 175207 psi

35253 psi 27514 psi

Prob 36: s t =

Pinion

Gear

Pinion

Fig. 9-10 Fig. 9-17

Gear: J G = 0.410 g Geometry Factor: I = 0.108 REF: m G = 4.72 Prob 36: s t =

Fig. 9-10

J P = 0.320

Geometry Factors: Pinion:

Table 9-4

A v = 11

Table 9-7

1.333

Max

r: Quality Number:

Recommended ratio F/D P < 2.00 Cp = 2300 Elastic Coefficient:

0.83

1.000 1.250 in

F=

Nom

0.667

th/pinion diameter: F/D P =

dth Guidelines (in): Enter: Face Width:

Min

480.19 lb

4.292 in 687 ft/min

7.083 in

1.00

1.00

1.35

Bending Stress Cycle Factor: Y NP =

0.083

0.051

Ex. Prec.

28,963 psi

Fig. 9-22

Fig. 9-22

Fig. 9-21

Fig. 9-21

See Fig. 9-19 or

Table 9-9

See Fig. 9-18 or

0.92

0.88

0.95

0.93

<107

stress levels. Could use Grade 2 carburized steel.

s ac too high for any form of Grade 1 steel. Recommend redesign to lower

Gear: Required s ac = 190,443 psi Table 9-9 Specify materials, alloy and heat treatment, for most severe requirement. One possible material specification:

Stress Analysis: Pitting Pinion: Required s ac = 199,099 psi

37,906 psi Gear: Required s at =

1.00

1.00

1.00

1.00

>107

See Table 9-12 Guidelines: Y N , Z N

Table 9-11 Use 1.00 for R = .99

Use 1.00 if no unusual conditions

[Computed: See Fig. 9-16]

Fig. 9-14: Use 1.00 if solid blank

Fig. 9-14: Use 1.00 if solid blank

Stress Analysis: Bending Pinion: Required s at =

0.88 0.92

Pitting Stress Cycle Factor: Z NP = Pitting Stress Cycle Factor: Z NG =

0.95

0.93

0.83

Table 9-2: Use 1.00 if P d >= 5

Table 9-1

[Computed]

Figure 9-13

0.147

Commer. Precision

Gear - Number of load cycles: N G = 4.4E+08 107 cycles Bending Stress Cycle Factor: Y NG =

F/D P =

[0.50 < F/DP < 2.00] Figure 9-12

0.061

If F >1.0

Enter: Design Life: 20000 hours Pinion - Number of load cycles: N P = 2.1E+09

Reliability Factor: K R =

Service Factor: SF =

Dynamic Factor: K v =

1.00

1.500 in

DP =

Gear Rim Thickness Factor: K BG =

1.00

1.50

1.208

0.147

0.268

Open

1.00

DG =

Secondary Input Data:

0.058 0.061

Pinion Rim Thickness Factor: K BP =

Size Factor: K s =

Overload Factor: K o =

Alignment Factor: K m =

Enter: C ma =

Mesh Alignment Factor, C ma =

Type of gearing:

Enter: C pf =

Pinion Proportion Factor, Cpf =

Industrial conveyor driven by an electric motor Problems 36, 42, 48, 54 Factors in Design Analysis: Alignment Factor, K m=1.0+C pf +C ma If F <1.0

4.72

370.6 rpm

Diameter - Pinion:

Gear Ratio:

85

85.1

370 rpm

18

h Diameter - Gear:

nG = mG =

ual Output Speed:

uted data:

1750 rpm

nP =

Input Speed: Diametral Pitch: 12

10 hp

P=

APPLICATION:

Input Power:

nput Data:

UR GEARS

O


237

Pd = NP = nG = NG =

Diametral Pitch: er of Pinion Teeth: ed Output Speed: ber of gear teeth: No. of Gear Teeth:

8.000 in

DP = DG = C= vt = Wt =

Diameter - Pinion: Diameter - Gear: Center Distance: Pitch Line Speed: Transmitted Load:

0.68

32743 psi 26940 psi 172128 psi

Prob 37: s t = Prob 49: s c =

Pinion

Gear

Pinion

Fig. 9-10 Fig. 9-17

Gear: J G = 0.395 Geometry Factor: I = 0.095 REF: m G = 2.40 Prob 37: s t =

Fig. 9-10

J P = 0.325

eometry Factors: Pinion:

Table 9-4

A v = 11

Table 9-7

in

2.667

Max

Quality Number:

Recommended ratio F/D P < 2.00 Cp = 2300 lastic Coefficient:

2.250

2.000

F=

1.333

Nom

1315 lb

h/pinion diameter: F/D P =

th Guidelines (in): ter: Face Width:

Min

Secondary Input Data:

3.333 in

mG =

Gear Ratio:

5.667 in 1004 ft/min

2.40

nG =

479.2 rpm

48

48.0

479 rpm

al Output Speed:

ed data:

6

nP =

Input Speed: 20

1150 rpm

P=

40 hp

APPLICATION:

Input Power:

put Data:

R GEARS

1.00

1.00

1.42

1.00

1.00

1.00

1.75

1.22

0.162

0.284

Open

0.058

0.043

0.061

Ex. Prec.

28,063 psi

Fig. 9-22

Fig. 9-22

Fig. 9-21

Fig. 9-21

See Fig. 9-19 or

Table 9-9

See Fig. 9-18 or

0.93

0.91

0.96

0.95

<107

Recommend redesign to lower stress levels.

Contact stress requires case hardened Grade 2 steel.

Gear: Required s ac = 185,084 psi Table 9-9 Specify materials, alloy and heat treatment, for most severe requirement. One possible material specification:

Stress Analysis: Pitting Pinion: Required s ac = 189,152 psi

34,466 psi

1.00

1.00

1.00

1.00

>107

See Table 9-12 Guidelines: Y N , Z N

Table 9-11 Use 1.00 for R = .99

Use 1.00 if no unusual conditions

[Computed: See Fig. 9-16]

Fig. 9-14: Use 1.00 if solid blank

Gear: Required s at =

0.93

Pitting Stress Cycle Factor: Z NG =

0.096

Fig. 9-14: Use 1.00 if solid blank

Stress Analysis: Bending Pinion: Required s at =

0.91

0.96 Pitting Stress Cycle Factor: Z NP =

Bending Stress Cycle Factor: Y NG =

0.95

0.68

Table 9-2: Use 1.00 if P d >= 5

Table 9-1

[Computed]

Figure 9-13

0.162

Commer. Precision

Gear - Number of load cycles: N G = 2.3E+08 107 cycles Bending Stress Cycle Factor: Y NP =

F/D P =

[0.50 < F/DP < 2.00] Figure 9-12

0.058

If F >1.0

Enter: Design Life: 8000 hours Pinion - Number of load cycles: N P = 5.5E+08

Reliability Factor: K R =

Service Factor: SF =

Dynamic Factor: K v =

Gear Rim Thickness Factor: K BG =

Pinion Rim Thickness Factor: K BP =

Size Factor: K s =

Overload Factor: K o =

Alignment Factor: K m =

Enter: C ma =

Mesh Alignment Factor, C ma =

Type of gearing:

Enter: C pf =

Pinion Proportion Factor, Cpf =

Cement k iln driven by an electric motor Problems 37, 43, 49, 55 Factors in Design Analysis: Alignment Factor, K m=1.0+C pf +C ma If F <1.0


238

Pd = NP = nG = NG =

of Pinion Teeth: Output Speed: er of gear teeth: of Gear Teeth:

C= vt = Wt =

enter Distance: ch Line Speed: ansmitted Load:

0.500 in 0.67

pinion diameter: F/D P =

0.500

Max

Prob 50: s c = 73669 psi

8071 psi 6603 psi

Prob 38: s t =

Pinion

Gear

Pinion

Fig. 9-10 Fig. 9-17

Gear: J G = 0.440 eometry Factor: I = 0.118 REF: m G = 5.00 Prob 38: s t =

Fig. 9-10

J P = 0.360

ometry Factors: Pinion:

Table 9-4

Av = 7

Quality Number:

Table 9-7

0.375

Guidelines (in): 0.250 r: Face Width: F = ommended ratio F/D P < 2.00 stic Coefficient: Cp = 2300

Nom

24.36 lb

Min

Secondary Input Data:

3.750 in

DG =

iameter - Gear: 2.250 in 677 ft/min

0.750 in

DP =

5.00

690.0 rpm

120

120.0

690 rpm

24

32

3450 rpm

0.5 hp

APPLICATION:

ameter - Pinion:

Gear Ratio: m G =

Output Speed:

nG =

nP =

Input Speed: Diametral Pitch:

d data:

P=

Input Power:

t Data:

GEARS

0.042

1.50

1.25

1.11

1.00

1.00

1.00

1.50

1.12

0.074

0.255

Open

0.042

0.043

Fig. 9-14: Use 1.00 if solid blank

13,033 psi

Fig. 9-22

Fig. 9-22

Fig. 9-21

Fig. 9-21

See Fig. 9-19 or

Table 9-9

See Fig. 9-18 or

0.91

0.88

0.95

0.92

<107

Gear: Carburized case hardened, 55-64 HRC, s ac = 180,000 psi

Pinion: Carburized case hardened, 55-64 HRC, s ac = 180,000 psi

Gear: Required s ac = 151,791 psi Table 9-9 Specify materials, alloy and heat treatment, for most severe requirement. One possible material specification:

Stress Analysis: Pitting Pinion: Required s ac = 156,966 psi

16,448 psi

1.00

1.00

1.00

1.00

>107

See Table 9-12 Guidelines: Y N , Z N

Table 9-11 Use 1.00 for R = .99

Use 1.00 if no unusual conditions

[Computed: See Fig. 9-16]

Gear: Required s at =

0.91

Pitting Stress Cycle Factor: Z NG =

0.074

Ex. Prec.

Fig. 9-14: Use 1.00 if solid blank

Stress Analysis: Bending Pinion: Required s at =

0.88

0.95

Bending Stress Cycle Factor: Y NG = Pitting Stress Cycle Factor: Z NP =

0.92

0.67

Table 9-2: Use 1.00 if P d >= 5

Table 9-1

[Computed]

Figure 9-13

0.135

Commer. Precision

Gear - Number of load cycles: N G = 5.0E+08 107 cycles Bending Stress Cycle Factor: Y NP =

F/D P =

[0.50 < F/DP < 2.00] Figure 9-12

0.035

If F >1.0

Enter: Design Life: 12000 hours Pinion - Number of load cycles: N P = 2.5E+09

Reliability Factor: K R =

Service Factor: SF =

Dynamic Factor: K v =

Gear Rim Thickness Factor: K BG =

Pinion Rim Thickness Factor: K BP =

Size Factor: K s =

Overload Factor: K o =

Alignment Factor: K m =

Enter: C ma =

Mesh Alignment Factor, C ma =

Type of gearing:

Enter: C pf =

Pinion Proportion Factor, Cpf =

Small machine tool driven by an electric motor Problems 38, 44, 50, 56 Factors in Design Analysis: Alignment Factor, K m=1.0+C pf +C ma If F <1.0

O

<


239

NG =

Output Speed: er of gear teeth: of Gear Teeth:

Wt =

ansmitted Load:

0.50

pinion diameter: F/D P =

1.600

Max

Prob 51: s c = 37758 psi

2285 psi 1983 psi

Prob 39: s t =

Pinion

Gear

Pinion

Fig. 9-10 Fig. 9-17

Gear: J G = 0.530 eometry Factor: I = 0.130 REF: m G = 2.93 Prob 39: s t =

Fig. 9-10

J P = 0.460

ometry Factors: Pinion:

Table 9-4

Av = 5

Quality Number:

Table 9-7

1.200 1.500 in

Guidelines (in): 0.800 r: Face Width: F = ommended ratio F/D P < 2.00 stic Coefficient: Cp = 2300

Nom

97.0 lb

Min

Secondary Input Data:

C= vt =

enter Distance: ch Line Speed:

5.900 in 5105 ft/min

3.000 in 8.800 in

DP = DG =

iameter - Gear:

2.93

2215.9 rpm

88

88.0

2216 rpm

30

10

6500 rpm

15 hp

APPLICATION:

ameter - Pinion:

Gear Ratio: m G =

Output Speed:

nG =

nG =

of Pinion Teeth:

d data:

Pd = NP =

Diametral Pitch:

P= nP =

Input Power: Input Speed:

t Data:

GEARS

1.50

1.00

1.00

1.00

1.00

1.00

1.50

1.08

0.053

0.272

Open

0.031

0.025

Fig. 9-22

Fig. 9-22

Fig. 9-21

Fig. 9-21

See Fig. 9-19 or

Table 9-9

See Fig. 9-18 or

0.91

0.89

0.95

0.93

<107

Stresses are quite low for steel gears. Recommend redesign

Gear: Required s ac = 62,239 psi Table 9-9 Specify materials, alloy and heat treatment, for most severe requirement. One possible material specification:

63,637 psi

3,131 psi

1.00

1.00

1.00

1.00

>107

See Table 9-12 Guidelines: Y N , Z N

Table 9-11 Use 1.00 for R = .99

Use 1.00 if no unusual conditions

3,685 psi Stress Analysis: Pitting Pinion: Required s ac =

0.053

Fig. 9-14: Use 1.00 if solid blank [Computed: See Fig. 9-16]

Gear: Required s at =

0.91

Pitting Stress Cycle Factor: Z NG =

0.086

Ex. Prec.

Fig. 9-14: Use 1.00 if solid blank

Stress Analysis: Bending Pinion: Required s at =

0.89

0.95 Pitting Stress Cycle Factor: Z NP =

0.93

Bending Stress Cycle Factor: Y NP =

0.50

Table 9-2: Use 1.00 if P d >= 5

Table 9-1

[Computed]

Figure 9-13

0.150

Commer. Precision

Gear - Number of load cycles: N G = 5.3E+08 107 cycles Bending Stress Cycle Factor: Y NG =

F/D P =

[0.50 < F/DP < 2.00]

Figure 9-12

0.031

Enter: Design Life: 4000 hours Pinion - Number of load cycles: N P = 1.6E+09

Reliability Factor: K R =

Service Factor: SF =

Dynamic Factor: K v =

Gear Rim Thickness Factor: K BG =

Pinion Rim Thickness Factor: K BP =

Size Factor: K s =

Overload Factor: K o =

Alignment Factor: K m =

Enter: C ma =

Mesh Alignment Factor, C ma =

Type of gearing:

Enter: C pf =

Pinion Proportion Factor, Cpf =

Aircraft actuator driven by a universal electric motor Problems 39, 45, 51, 57 Factors in Design Analysis: Alignment Factor, K m=1.0+C pf +C ma If F <1.0 If F >1.0

O

<


240

er of gear teeth: of Gear Teeth:

788 lb

Wt =

ansmitted Load:

3.000 1.500 in 0.50

Guidelines (in): 2.000 r: Face Width: F = pinion diameter: F/D P =

4.000

Pinion Gear Pinion

Prob 40: s t = 14,850 psi Prob 52: s c = 95,948 psi

Fig. 9-10 Fig. 9-17

Gear: J G = 0.520 eometry Factor: I = 0.124 REF: m G = 2.38 Prob 40: s t = 13,280 psi

Fig. 9-10

J P = 0.465

ometry Factors: Pinion:

Table 9-4

Av = 9

Quality Number:

mended ratio 0.5 < F/D P < 2.00 stic Coefficient: Cp = 2300 Table 9-7

Entered

Nom

Min

Max

13.500 in 5236 ft/min

C= vt =

enter Distance: ch Line Speed:

Secondary Input Data:

8.000 in 19.000 in

DP = DG =

iameter - Gear:

2.38

1052.6 rpm

76

76.2

1050 rpm

32

ameter - Pinion:

Gear Ratio: m G =

Output Speed:

nG =

NG =

Output Speed:

d data:

nG =

of Pinion Teeth:

4

Pd = NP =

Diametral Pitch:

2500 rpm

P= nP =

Input Power:

125 hp

APPLICATION:

Input Speed:

t Data:

GEARS

1.00

1.00

1.56

1.00

1.00

1.05

1.70

1.18

0.15

0.272

Open

0.031

0.025

0.053

Fig. 9-14: Use 1.00 if solid blank

13,979 psi

Fig. 9-22

Fig. 9-22

Fig. 9-21

Fig. 9-21

See Fig. 9-19 or

Table 9-9

See Fig. 9-18 or

0.91

0.90

0.95

0.93

<107

Gear: SAE 1040 WQT 1000, 269 HB, 22% elongation

Pinion: SAE 1040 WQT 1000, 269 HB, 22% elongation

Gear: Required s ac = 105,438 psi Table 9-9 Specify materials, alloy and heat treatment, for most severe requirement. One possible material specification:

Stress Analysis: Pitting Pinion: Required s ac = 106,609 psi

15,968 psi

1.00

1.00

1.00

1.00

>107

See Table 9-12 Guidelines: Y N , Z N

Table 9-11 Use 1.00 for R = .99

Use 1.00 if no unusual conditions

[Computed: See Fig. 9-16]

Gear: Required s at =

0.91

Pitting Stress Cycle Factor: Z NG =

0.086

Ex. Prec.

Fig. 9-14: Use 1.00 if solid blank

Stress Analysis: Bending Pinion: Required s at =

0.90

0.95 Pitting Stress Cycle Factor: Z NP =

0.93

Bending Stress Cycle Factor: Y NP =

0.50

Table 9-2: Use 1.00 if P d >= 5

Table 9-1

[Computed]

Figure 9-13

0.150

Commer. Precision

Gear - Number of load cycles: N G = 5.1E+08 107 cycles Bending Stress Cycle Factor: Y NG =

F/D P =

[0.50 < F/DP < 2.00]

Figure 9-12

0.031

Enter: Design Life: 8000 hours Pinion - Number of load cycles: N P = 1.2E+09

Reliability Factor: K R =

Service Factor: SF =

Dynamic Factor: K v =

Gear Rim Thickness Factor: K BG =

Pinion Rim Thickness Factor: K BP =

Size Factor: K s =

Overload Factor: K o =

Alignment Factor: K m =

Enter: C ma =

Mesh Alignment Factor, C ma =

Type of gearing:

Enter: C pf =

Pinion Proportion Factor, Cpf =

Portable indusrial water pump driven by a gasoline engine Problems 40, 46, 52, 58 Factors in Design Analysis: Alignment Factor, K m=1.0+C pf +C ma If F <1.0 If F >1.0

O

<


[For Problems 60 to 83, single sample solutions are shown for each set of data.]

241

Pd = NP = nG = NG =

of Pinion Teeth: Output Speed: er of gear teeth: of Gear Teeth:

C= vt = Wt =

iameter - Gear: enter Distance: ch Line Speed: nsmitted Load:

1.250 in 0.52

pinion diameter: F/D P =

1.600

Max

Prob 53: s c = 78263 psi

9458 psi 8134 psi

Prob 41: s t =

Pinion

Gear

Pinion

Fig. 9-10 Fig. 9-17

Gear: J G = 0.500 eometry Factor: I = 0.122 REF: m G = 2.58 Prob 41: s t =

Fig. 9-10

J P = 0.430

ometry Factors: Pinion:

Table 9-4

A v = 11

Quality Number:

Table 9-7

1.200

Guidelines (in): 0.800 r: Face Width: F = ommended ratio F/D P < 2.00 stic Coefficient: Cp = 2100

Nom

Min

Secondary Input Data:

193.09 lb

4.300 in 427 ft/min

6.200 in

DG =

ameter - Pinion: 2.400 in

2.58

263.2 rpm

62

62.1

263 rpm

24

10

680 rpm

2.5 hp

APPLICATION:

DP =

Gear Ratio: m G =

Output Speed:

nG =

nP =

Input Speed: Diametral Pitch:

d data:

P=

Input Power:

t Data:

GEARS

0.85

1.25

1.28

1.00

1.00

1.00

1.75

1.18

0.147

0.268

Open

0.03

0.027

Fig. 9-22

Fig. 9-22

Fig. 9-21

Fig. 9-21

See Fig. 9-19 or

Table 9-9

See Fig. 9-18 or

0.97

0.95

1.00

0.98

<107

Gear: Ductile iron 100-70-03 Q&T, s ac = 92 000 psi, s at = 27 000 psi

Pinion: Ductile iron 100-70-03 Q&T, s ac = 92 000 psi, s at = 27 000 psi

Gear: Required s ac = 85,727 psi Table 9-9 Specify materials, alloy and heat treatment, for most severe requirement. One possible material specification:

87,531 psi

8,642 psi

1.00

1.00

1.00

1.00

>107

See Table 9-12 Guidelines: Y N , Z N

Table 9-11 Use 1.00 for R = .99

Use 1.00 if no unusual conditions

[Computed: See Fig. 9-16]

10,254 psi Stress Analysis: Pitting Pinion: Required s ac =

0.051

Fig. 9-14: Use 1.00 if solid blank

Gear: Required s at =

0.97

Pitting Stress Cycle Factor: Z NG =

0.083

Ex. Prec.

Fig. 9-14: Use 1.00 if solid blank

Stress Analysis: Bending Pinion: Required s at =

0.95

1.00 Pitting Stress Cycle Factor: Z NP =

Bending Stress Cycle Factor: Y NG =

0.98

0.52

Table 9-2: Use 1.00 if P d >= 5

Table 9-1

[Computed]

Figure 9-13

0.147

Commer. Precision

Gear - Number of load cycles: N G = 3.2E+07 107 cycles Bending Stress Cycle Factor: Y NP =

F/D P =

[0.50 < F/DP < 2.00] Figure 9-12

0.030

If F >1.0

Enter: Design Life: 2000 hours Pinion - Number of load cycles: N P = 8.2E+07

Reliability Factor: K R =

Service Factor: SF =

Dynamic Factor: K v =

Gear Rim Thickness Factor: K BG =

Pinion Rim Thickness Factor: K BP =

Size Factor: K s =

Overload Factor: K o =

Alignment Factor: K m =

Enter: C ma =

Mesh Alignment Factor, C ma =

Type of gearing:

Enter: C pf =

Pinion Proportion Factor, Cpf =

Lawn and garden tractor with fluid power drive Problems 41, 47, 53, 59 Factors in Design Analysis: Alignment Factor, K m =1.0+C pf +C ma If F <1.0

O

<


242

18 387.5 rpm

3.11 1.800 in 5.600 in 3.700 in 565 ft/min 292 lb

Pd = NP = nG = NG = nG = mG = DP = DG = C= vt = Wt =

f Pinion Teeth: Output Speed: r of gear teeth: of Gear Teeth:

Output Speed: Gear Ratio: meter - Pinion: ameter - Gear: enter Distance: ch Line Speed: nsmitted Load:

F=

0.800 0.69

1.600

Max

127348 psi 127348 psi

sc = sc =

Gear

Pinion

Gear

Pinion

17245 psi 13796 psi

st =

Fig. 9-10 Fig. 9-17

Gear: J G = 0.400 ometry Factor: I = 0.100 REF: m G = 3.11 stresses: s t =

Fig. 9-10

J P = 0.320

metry Factors: Pinion:

Table 9-4

A v = 11

uality Number:

Table 9-7

1.250 in

1.200

Nom

385.7 rpm

56

55.7

ommended ratio F/D P < 2.00 Cp = 2300 tic Coefficient:

nion diameter: F/D P =

Guidelines (in): : Face Width:

Min

Secondary Input Data:

data:

10

nP =

Input Speed: ametral Pitch:

1200 rpm

P=

5 hp

APPLICATION:

Input Power:

Data:

GEARS

0.044

1.00

1.00

1.32

1.00

1.00

0.048

0.051

Ex. Prec.

Fig. 9-14: Use 1.00 if solid blank

14,522 psi

Fig. 9-22

Fig. 9-22

Fig. 9-21

Fig. 9-21

See Fig. 9-19 or

Table 9-9

See Fig. 9-18 or

0.92

0.89

0.95

0.93

<107

Gear: Requires HB 340: SAE 4140 OQT 1000; HB 340, 18% elongation

Pinion: Requires HB 354: SAE 4140 OQT 900; HB 388, 16% elongation

Gear: Required s ac = 138,422 psi Table 9-9 Specify materials, alloy and heat treatment, for most severe requirement. One possible material specification:

Stress Analysis: Pitting Pinion: Required s ac = 143,088 psi

18,543 psi

1.00

1.00

1.00

1.00

>107

See Table 9-12 Guidelines: Y N , Z N

Table 9-11 Use 1.00 for R = .99

Use 1.00 if no unusual conditions

[Computed: See Fig. 9-16]

Gear: Required s at =

0.92

Pitting Stress Cycle Factor: Z NG =

0.083

Fig. 9-14: Use 1.00 if solid blank

Stress Analysis: Bending Pinion: Required s at =

0.89

0.95

Bending Stress Cycle Factor: Y NG = Pitting Stress Cycle Factor: Z NP =

0.93

0.69

Table 9-2: Use 1.00 if P d >= 5

Table 9-1

[Computed]

Figure 9-13

0.147

Commer. Precision

Gear - Number of load cycles: N G = 4.6E+08 107 cycles Bending Stress Cycle Factor: Y NP =

F/D P =

[0.50 < F/DP < 2.00] Figure 9-12

Enter: Design Life: 20000 hours Pinion - Number of load cycles: N P = 1.4E+09

Reliability Factor: K R =

Service Factor: SF =

Dynamic Factor: K v =

Gear Rim Thickness Factor: K BG =

Pinion Rim Thickness Factor: K BP =

1.00

1.50

Overload Factor: K o = Size Factor: K s =

1.20

0.147

0.268

Open

0.048

Alignment Factor: K m =

Enter: C ma =

Mesh Alignment Factor, C ma =

Type of gearing:

Enter: C pf =

Pinion Proportion Factor, Cpf =

Reciprocating compressor driven by an electric motor Problem 60 Factors in Design Analysis: Alignment Factor, K m=1.0+C pf +C ma If F <1.0 If F >1.0


243

NG =

f gear teeth: Gear Teeth:

DP = DG = C= vt = Wt =

Gear Ratio: eter - Pinion: meter - Gear: er Distance: Line Speed: mitted Load:

Pinion Gear

20033 psi 16694 psi 119624 psi

esses: s t = st = sc =

Pinion

Fig. 9-10 Fig. 9-17

Gear: J G = 0.420 etry Factor: I = 0.108 REF: m G = 2.96

Table 9-4

Fig. 9-10

Av = 9

Table 9-7

2.667

Max

J P = 0.350

etry Factors: Pinion:

ity Number:

mended ratio F/D P < 2.00 Cp = 2300 Coefficient:

0.50

2.000 2.000 in

F=

Nom

1146 lb

1.333

on diameter: F/D P =

delines (in): Face Width:

Min

econdary Input Data:

11.833 in

mG =

7.917 in 576 ft/min

2.96 4.000 in

nG = 185.9 rpm

71

71.4

put Speed:

ata:

nG =

tput Speed: 185 rpm

6 24

Pd = NP =

inion Teeth:

550 rpm

20 hp

APPLICATION:

metral Pitch:

P= nP =

nput Power: nput Speed:

ata:

ARS

1.25

1.00

1.20

1.00

1.00

1.00

1.50

1.13

0.093

0.280

Open

0.038

0.025

0.093

0.058

Ex. Prec.

21,737 psi

Fig. 9-22

Fig. 9-22

Fig. 9-21

Fig. 9-21

See Fig. 9-19 or

Table 9-9

See Fig. 9-18 or

0.93

0.91

0.96

0.94

<107

Gear: SAE 4140 OQT 800; HB 352; 21% elong.-core; Case harden to HRC 50 min

Pinion: SAE 4140 OQT 800; HB 352; 21% elong.-core; Case harden to HRC 50 min

Gear: Required s ac = 160,785 psi Table 9-9 Specify materials, alloy and heat treatment, for most severe requirement. One possible material specification:

Stress Analysis: Pitting Pinion: Required s ac = 164,319 psi

26,640 psi Gear: Required s at =

1.00

1.00

1.00

1.00

>107

See Table 9-12 Guidelines: Y N , Z N

Table 9-11 Use 1.00 for R = .99

Use 1.00 if no unusual conditions

[Computed: See Fig. 9-16]

Fig. 9-14: Use 1.00 if solid blank

Fig. 9-14: Use 1.00 if solid blank

Stress Analysis: Bending Pinion: Required s at =

0.91 0.93

Pitting Stress Cycle Factor: Z NP =

0.96 Pitting Stress Cycle Factor: Z NG =

0.94

Bending Stress Cycle Factor: Y NP =

0.50

Table 9-2: Use 1.00 if P d >= 5

Table 9-1

[Computed]

Figure 9-13

0.158

Commer. Precision

Gear - Number of load cycles: N G = 2.2E+08 107 cycles Bending Stress Cycle Factor: Y NG =

F/D P =

[0.50 < F/DP < 2.00] Figure 9-12

0.038

If F >1.0

Enter: Design Life: 20000 hours Pinion - Number of load cycles: N P = 6.6E+08

Reliability Factor: K R =

Service Factor: SF =

Dynamic Factor: K v =

Gear Rim Thickness Factor: K BG =

Pinion Rim Thickness Factor: K BP =

Size Factor: K s =

Overload Factor: K o =

Alignment Factor: K m =

Enter: C ma =

Mesh Alignment Factor, C ma =

Type of gearing:

Enter: C pf =

Pinion Proportion Factor, Cpf =

Milling machine driven by an electric motor Problem 61 Factors in Design Analysis: Alignment Factor, K m=1.0+C pf +C ma If F <1.0


244

24 227.5 rpm

Pd = NP = nG = NG =

ametral Pitch: f Pinion Teeth: Output Speed: r of gear teeth: of Gear Teeth:

1167 lb

DG = C= vt = Wt =

ameter - Gear: nter Distance: ch Line Speed: nsmitted Load:

100597 psi

sc =

Pinion

Gear

Pinion

14539 psi 12462 psi

st =

Fig. 9-10 Fig. 9-17

Gear: J G = 0.420 ometry Factor: I = 0.114 REF: m G = 3.96 stresses: s t =

Fig. 9-10

J P = 0.360

metry Factors: Pinion:

Table 9-4

A v = 11

uality Number:

ommended ratio F/D P < 2.00 Cp = 2300 tic Coefficient:

4.000

Table 9-7

F= 0.50

3.000 3.000 in

2.000

nion diameter: F/D P =

Guidelines (in): Face Width:

Min

Max

23.750 in 14.875 in 1414 ft/min

DP =

meter - Pinion:

Nom

6.000 in

mG =

Gear Ratio:

Secondary Input Data:

3.96

nG =

227.4 rpm

95

94.9

Output Speed:

data:

900 rpm

nP =

Input Speed: 4

50 hp

P=

APPLICATION:

Input Power:

Data:

GEARS

1.25

1.00

1.50

1.00

1.00

1.05

1.75

1.22

0.173

0.296

Open

0.050

0.025

Bending Stress Cycle Factor: Y NP =

0.068

Ex. Prec.

16,226 psi

Fig. 9-22

Fig. 9-22

Fig. 9-21

Fig. 9-21

See Fig. 9-19 or

Table 9-9

See Fig. 9-18 or

0.93

0.90

0.96

0.94

<107

Gear: Requires HB 330: SAE 1040 WQT 800; HB 352; 21% elong.

Pinion: Requires HB 344; SAE 1040 WQT 800; HB 352; 21% elong.

Gear: Required s ac = 135,211 psi Table 9-9 Specify materials, alloy and heat treatment, for most severe requirement. One possible material specification:

Stress Analysis: Pitting Pinion: Required s ac = 139,718 psi

19,333 psi

1.00

1.00

1.00

1.00

>107

See Table 9-12 Guidelines: Y N , Z N

Table 9-11 Use 1.00 for R = .99

Use 1.00 if no unusual conditions

[Computed: See Fig. 9-16]

Fig. 9-14: Use 1.00 if solid blank

Gear: Required s at =

0.93

Pitting Stress Cycle Factor: Z NG =

0.105

Fig. 9-14: Use 1.00 if solid blank

Stress Analysis: Bending Pinion: Required s at =

0.90

Pitting Stress Cycle Factor: Z NP =

0.96

0.94

0.50

Table 9-2: Use 1.00 if P d >= 5

Table 9-1

[Computed]

Figure 9-13

0.173

Commer. Precision

Gear - Number of load cycles: N G = 2.7E+08 107 cycles Bending Stress Cycle Factor: Y NG =

F/D P =

[0.50 < F/DP < 2.00] Figure 9-12

0.050

If F >1.0

Enter: Design Life: 20000 hours Pinion - Number of load cycles: N P = 1.1E+09

Reliability Factor: K R =

Service Factor: SF =

Dynamic Factor: K v =

Gear Rim Thickness Factor: K BG =

Pinion Rim Thickness Factor: K BP =

Size Factor: K s =

Overload Factor: K o =

Alignment Factor: K m =

Enter: C ma =

Mesh Alignment Factor, C ma =

Type of gearing:

Enter: C pf =

Pinion Proportion Factor, Cpf =

Punch press driven by an electric motor Problem 62 Factors in Design Analysis: Alignment Factor, K m =1.0+C pf +C ma If F <1.0


245

NG =

r of gear teeth: of Gear Teeth:

nsmitted Load:

66573 psi

sc =

Pinion

Gear

Pinion

6457 psi 4880 psi

st =

Fig. 9-10 Fig. 9-17

Gear: J G = 0.430 ometry Factor: I = 0.116 REF: m G = 12.00 stresses: s t =

Fig. 9-10

J P = 0.325

metry Factors: Pinion:

Table 9-4

A v = 12

uality Number:

ommended ratio F/D P < 2.00 Cp = 2100 tic Coefficient:

2.000

Table 9-7

F= 1.00

1.500 2.250 in

1.000

nion diameter: F/D P =

Guidelines (in): Face Width:

Min

Max

156 lb

Wt =

nter Distance: ch Line Speed:

Nom

14.625 in 530 ft/min

C= vt =

ameter - Gear:

Secondary Input Data:

2.250 in 27.000 in

DP = DG =

meter - Pinion:

12.00

nG = mG =

Gear Ratio:

75.0 rpm

216

Output Speed:

data:

75 rpm

Output Speed: 216.0

nG =

8 18

Pd = NP =

900 rpm

ametral Pitch:

nP =

Input Speed:

2.5 hp

APPLICATION:

f Pinion Teeth:

P=

Input Power:

Data:

GEARS

1.00

1.00

1.38

1.00

1.00

1.00

2.00

1.38

0.284

0.284

Open

0.091

0.075

0.061

Fig. 9-14: Use 1.00 if solid blank

4,929 psi

Fig. 9-22

Fig. 9-22

Fig. 9-21

Fig. 9-21

See Fig. 9-19 or

Table 9-9

See Fig. 9-18 or

0.97

0.92

0.99

0.95

<107

NOTE: The large gear can be conveniently cast and affixed to the drum of the mixer.

Gear: Grey cast iron, ASTM A48,Class 40

Pinion: Requires approximately HB 134: SAE 1040 CD; HB 160; 12% elong.

Gear: Required s ac = 68,632 psi Table 9-9 Specify materials, alloy and heat treatment, for most severe requirement. One possible material specification: Steel pinion driving cast iron gear

72,362 psi

6,796 psi

1.00

1.00

1.00

1.00

>107

See Table 9-12 Guidelines: Y N , Z N

Table 9-11 Use 1.00 for R = .99

Use 1.00 if no unusual conditions

[Computed: See Fig. 9-16]

Gear: Required s at = Stress Analysis: Pitting Pinion: Required s ac =

0.096

Ex. Prec.

Fig. 9-14: Use 1.00 if solid blank

Stress Analysis: Bending Pinion: Required s at =

0.92 0.97

Pitting Stress Cycle Factor: Z NP =

0.99 Pitting Stress Cycle Factor: Z NG =

0.95

Bending Stress Cycle Factor: Y NP =

1.00

Table 9-2: Use 1.00 if P d >= 5

Table 9-1

[Computed]

Figure 9-13

0.162

Commer. Precision

Gear - Number of load cycles: N G = 3.6E+07 107 cycles Bending Stress Cycle Factor: Y NG =

F/D P =

[0.50 < F/DP < 2.00] Figure 9-12

0.091

If F >1.0

Enter: Design Life: 8000 hours Pinion - Number of load cycles: N P = 4.3E+08

Reliability Factor: K R =

Service Factor: SF =

Dynamic Factor: K v =

Gear Rim Thickness Factor: K BG =

Pinion Rim Thickness Factor: K BP =

Size Factor: K s =

Overload Factor: K o =

Alignment Factor: K m =

Enter: C ma =

Mesh Alignment Factor, C ma =

Type of gearing:

Enter: C pf =

Pinion Proportion Factor, Cpf =

Cement mixer driven by a gasoline engine Problem 63 Factors in Design Analysis: Alignment Factor, K m =1.0+C pf +C ma If F <1.0


246

NP = nG = NG =

f Pinion Teeth: Output Speed: r of gear teeth: of Gear Teeth:

5.083 in 3936 ft/min 629 lb

DG = C= vt = Wt =

meter - Pinion: ameter - Gear: nter Distance: h Line Speed: nsmitted Load:

22,166 psi 25,524 psi 152,339 psi

Prob 38: s t = Prob 50: s c =

Pinion

Gear

Pinion

Fig. 9-10 Fig. 9-17

Gear: J G = 0.330 ometry Factor: I = 0.096 REF: m G = 2.05 Prob 38: s t =

Fig. 9-10

J P = 0.380

metry Factors: Pinion:

Table 9-4

A v = 11

uality Number:

ommended ratio F/D P < 2.00 Cp = 2300 tic Coefficient:

2.667

Table 9-7

F= 0.44

2.000 3.000 in

1.333

nion diameter: F/D P =

Guidelines (in): Face Width:

Min

Max

6.833 in 3.333 in

DP =

Nom

2.05

mG =

Gear Ratio:

Secondary Input Data:

4510.0 rpm

nG =

20

19.8

4550 rpm

Output Speed:

data:

6

Pd =

ametral Pitch: 41

2200 rpm

P= nP =

Input Power:

75 hp

APPLICATION:

Input Speed:

Data:

GEARS

1.00

1.00

1.81

1.00

1.00

1.00

2.75

1.35

0.296

0.296

Open

0.05

0.025

26,868 psi

Gear: Required s at =

1.00

1.00

1.00

1.00

Fig. 9-22

Fig. 9-22

Fig. 9-21

Fig. 9-21

See Fig. 9-19 or

Table 9-9

See Fig. 9-18 or

0.91

0.90

0.95

0.94

<107

Note: Equation for contact stress adjusted to use D = 3.333 in; smaller gear

Gear: SAE 4140 OQT 800; HB 352, 21% elong-core; Case harden to HRC 54 min

Pinion: SAE 4140 OQT 800; HB 352, 21% elong-core; Case harden to HRC 54 min

Gear: Required s ac = 167,405 psi Table 9-9 Specify materials, alloy and heat treatment, for most severe requirement. One possible material specification: Requires case hardening

Stress Analysis: Pitting Pinion: Required s ac = 169,266 psi Note

23,581 psi

0.91

Pitting Stress Cycle Factor: Z NG = Stress Analysis: Bending Pinion: Required s at =

0.90

0.95 Pitting Stress Cycle Factor: Z NP =

0.94

Bending Stress Cycle Factor: Y NP =

>107

See Table 9-12 Guidelines: Y N , Z N

Table 9-11 Use 1.00 for R = .99

Use 1.00 if no unusual conditions

[Computed: See Fig. 9-16]

Fig. 9-14: Use 1.00 if solid blank

Fig. 9-14: Use 1.00 if solid blank

Gear - Number of load cycles: N G = 5.2E+08 107 cycles Bending Stress Cycle Factor: Y NG =

0.068

Ex. Prec.

Table 9-2: Use 1.00 if P d >= 5

Table 9-1

[Computed]

Figure 9-13

0.105

Commer. Precision 0.173

0.50 [0.50 < F/DP < 2.00]

Figure 9-12

0.050

Enter: Design Life: 8000 hours Pinion - Number of load cycles: N P = 1.1E+09

Reliability Factor: K R =

Service Factor: SF =

Dynamic Factor: K v =

Gear Rim Thickness Factor: K BG =

Pinion Rim Thickness Factor: K BP =

Size Factor: K s =

Overload Factor: K o =

Alignment Factor: K m =

Enter: C ma =

Mesh Alignment Factor, C ma =

Type of gearing:

Enter: C pf =

Pinion Proportion Factor, Cpf =

Wood chipper driven by a gasoline engine Speed increaser Problems 64 Factors in Design Analysis: Alignment Factor, K m=1.0+C pf +C ma If F <1.0 If F >1.0 F/D P =


247

NP = nG = NG =

ametral Pitch: f Pinion Teeth: Output Speed: r of gear teeth: of Gear Teeth:

1592 N

DG = C= vt = Wt =

ameter - Gear: nter Distance: ch Line Speed: nsmitted Load:

F=

48.0

901 psi

sc =

Pinion

Gear

Pinion

140 psi 112 psi

st =

Fig. 9-10 Fig. 9-17

Gear: J G = 0.415 ometry Factor: I = 0.104 REF: m G = 3.40 stresses: s t =

Fig. 9-10

J P = 0.330

metry Factors: Pinion:

Table 9-4

A v = 12

Table 9-7

mm

uality Number:

ommended ratio F/D P < 2.00 Cp = 191 tic Coefficient:

0.67

36.0 40.0

24.0

nion diameter: F/D P =

idelines (mm): Face Width:

Min

Max

204.0 mm 132.0 mm 1.88 m/s

DP =

meter - Pinion:

Nom

60.0 mm

mG =

Gear Ratio:

Secondary Input Data:

3.40

nG =

176.5 rpm

68

68.6

175 rpm

20

3.00 mm

600 rpm

3.0 kw

APPLICATION: SI-Metric data

Output Speed:

data:

P= nP = m =

Input Power: Input Speed:

Data:

GEARS

1.00

1.00

1.32

1.00

1.00

1.00

2.00

1.32

0.274

0.793

Bending Stress Cycle Factor: Y NP =

Fig. 9-22

Fig. 9-22

Fig. 9-21

Fig. 9-21

See Fig. 9-19 or

Table 9-9

See Fig. 9-18 or

0.96

0.94

0.99

0.97

<107

ear: Requires HB 332: SAE 4340 OQT 1000; HB 363

Pinion: Requires HB 341: SAE 4340 OQT 1000; HB 363

Gear: Required s ac = 939 MPa Table 9-9 Specify materials, alloy and heat treatment, for most severe requirement. One possible material specification:

959 Mpa

113 MPa

1.00

1.00

1.00

1.00

>107

See Table 9-12 Guidelines: Y N , Z N

Table 9-11 Use 1.00 for R = .99

Use 1.00 if no unusual conditions

Read from Fig. 9-16

Fig. 9-14: Use 1.00 if solid blank

145 Mpa Stress Analysis: Pitting Pinion: Required s ac =

0.314

Ex. Prec.

Fig. 9-14: Use 1.00 if solid blank

Gear: Required s at =

0.96

Pitting Stress Cycle Factor: Z NG =

0.67

Table 9-2: Use 1.00 if P d >= 5

Table 9-1

[Computed]

Stress Analysis: Bending Pinion: Required s at =

0.94

Pitting Stress Cycle Factor: Z NP =

0.99

0.97

0.431 Read from Figure 9-13

0.584

Commer. Precision

Gear - Number of load cycles: N G = 5.3E+07 107 cycles Bending Stress Cycle Factor: Y NG =

F/D P =

[0.50 < F/DP < 2.00] Read from Figure 9-12

0.529

Enter: Design Life: 5000 hours Pinion - Number of load cycles: N P = 1.8E+08

Reliability Factor: K R =

Service Factor: SF =

Dynamic Factor: K v =

Gear Rim Thickness Factor: K BG =

Pinion Rim Thickness Factor: K BP =

Size Factor: K s =

Overload Factor: K o =

Alignment Factor: K m =

Enter: C ma =

Mesh Alignment Factor, C ma =

Open

0.049

Enter: C pf = Type of gearing:

0.042

Pinion Proportion Factor, Cpf =

Reciprocating compressor driven by an electric motor Problem 65 Factors in Design Analysis: Alignment Factor, K m=1.0+C pf +C ma If F <1.0 If F >1.0


248

3600 rpm 1.25

nG = mG =

Output Speed: Gear Ratio:

nsmitted Load:

F=

32.0 0.52

50.0

48.0

Fig. 9-10 Fig. 9-17 Pinion

Gear: J G = 0.365 ometry Factor: I = 0.084 REF: m G = 1.25 86.5 psi 82.3 psi 737 psi

stresses: s t = st = sc =

Pinion

Gear

Fig. 9-10

J P = 0.347

metry Factors: Pinion:

Table 9-4

Av = 7

Table 9-7

mm

64.0

uality Number:

ommended ratio F/D P < 2.00 Cp = 191 tic Coefficient:

nion diameter: F/D P =

idelines (mm): Face Width:

Min

Max

3316 N

Wt =

nter Distance: ch Line Speed:

Nom

120.0 mm 108.0 mm 22.62 m/s

C= vt =

ameter - Gear:

Secondary Input Data:

96.0 mm

DP = DG =

30

30.0

meter - Pinion:

data:

NG =

r of gear teeth: of Gear Teeth:

24

nG = 3600 rpm

NP =

f Pinion Teeth:

4.00 mm

4500 rpm

75.0 kw

APPLICATION: SI-Metric data

Output Speed:

ametral Pitch:

P= nP = m =

Input Power: Input Speed:

Data:

GEARS

1.00

1.00

1.26

1.00

1.00

Fig. 9-22

Fig. 9-22

Fig. 9-21

Fig. 9-21

See Fig. 9-19 or

Table 9-9

See Fig. 9-18 or

0.84

0.83

0.89

0.88

<107

Gear: Requires HB 305: SAE 4340 OQT 1100; HB 321

Pinion: Requires HB 310: SAE 4340 OQT 1100; HB 321

Gear: Required s ac = 878 MPa Table 9-9 Specify materials, alloy and heat treatment, for most severe requirement. One possible material specification:

888 Mpa

92.4 MPa

1.00

1.00

1.00

1.00

>107

See Table 9-12 Guidelines: Y N , Z N

Table 9-11 Use 1.00 for R = .99

Use 1.00 if no unusual conditions

Read from Fig. 9-16

Fig. 9-14: Use 1.00 if solid blank

98.3 Mpa Stress Analysis: Pitting Pinion: Required s ac =

0.343

Ex. Prec.

Fig. 9-14: Use 1.00 if solid blank

Gear: Required s at =

0.84

Pitting Stress Cycle Factor: Z NG =

0.52

Table 9-2: Use 1.00 if P d >= 5

Table 9-1

[Computed]

Stress Analysis: Bending Pinion: Required s at =

0.83

0.89

Bending Stress Cycle Factor: Y NG = Pitting Stress Cycle Factor: Z NP =

0.88

0.476 Read from Figure 9-13

0.644

Commer. Precision

Gear - Number of load cycles: N G = 2.2E+10 107 cycles Bending Stress Cycle Factor: Y NP =

F/D P =

[0.50 < F/DP < 2.00] Read from Figure 9-12

0.640

Enter: Design Life: 100000 hours Pinion - Number of load cycles: N P = 2.7E+10

Reliability Factor: K R =

Service Factor: SF =

Dynamic Factor: K v =

Gear Rim Thickness Factor: K BG =

Pinion Rim Thickness Factor: K BP =

1.00

1.20

Overload Factor: K o = Size Factor: K s =

1.20

0.158

0.891

Alignment Factor: K m =

Enter: C ma =

Mesh Alignment Factor, C ma =

Open

0.040

Enter: C pf = Type of gearing:

0.027

Pinion Proportion Factor, Cpf =

Electric power generator driven by a water turbine Problem 66 Factors in Design Analysis: Alignment Factor, K m=1.0+C pf +C ma If F <1.0 If F >1.0


249

nG = NG =

tput Speed: f gear teeth: Gear Teeth:

244 lb

DG = C= vt = Wt =

meter - Gear: er Distance: Line Speed: mitted Load:

Pinion

14974 psi 11605 psi 113445 psi

esses: s t = st = sc =

Pinion

Gear

Fig. 9-10 Fig. 9-17

Gear: J G = 0.400 etry Factor: I = 0.106 REF: m G = 4.72

Table 9-4

Fig. 9-10

Av = 9

J P = 0.310

etry Factors: Pinion:

ity Number:

mended ratio F/D P < 2.00 Cp = 2300 Coefficient:

1.600

Table 9-7

F= 0.69

1.200 1.250 in

0.800

on diameter: F/D P =

delines (in): Face Width:

Min

Max

5.150 in 1626 ft/min

DP =

Gear Ratio: eter - Pinion:

Nom

8.500 in

mG =

econdary Input Data:

4.72 1.800 in

nG = 730.6 rpm

85

85.1

put Speed:

ata:

18 730 rpm

10

Pd = NP =

inion Teeth:

3450 rpm

12 hp

APPLICATION:

metral Pitch:

P= nP =

nput Power: nput Speed:

ata:

ARS

1.00

1.00

1.33

1.00

1.00

1.00

1.50

1.20

0.147

0.268

Open

0.048

0.044

0.083

0.051

Ex. Prec.

12,088 psi

Fig. 9-22

Fig. 9-22

Fig. 9-21

Fig. 9-21

See Fig. 9-19 or

Table 9-9

See Fig. 9-18 or

0.92

0.89

0.96

0.93

<107

Comment: It would be reasonable to specify the same heat treatment

Gear: Requires HB 293: SAE 4340 OQT 1200; HB 293, 20% elongation

Pinion: Requires HB 305: SAE 4340 OQT 1100; HB 321, 18% elongation

Gear: Required s ac = 123,310 psi Table 9-9 Specify materials, alloy and heat treatment, for most severe requirement. One possible material specification: SAE 4340 specified; Fig. A4-5

Stress Analysis: Pitting Pinion: Required s ac = 127,467 psi

16,101 psi Gear: Required s at =

1.00

1.00

1.00

1.00

>107

See Table 9-12 Guidelines: Y N , Z N

Table 9-11 Use 1.00 for R = .99

Use 1.00 if no unusual conditions

[Computed: See Fig. 9-16]

Fig. 9-14: Use 1.00 if solid blank

Fig. 9-14: Use 1.00 if solid blank

Stress Analysis: Bending Pinion: Required s at =

0.89 0.92

Pitting Stress Cycle Factor: Z NP =

0.96 Pitting Stress Cycle Factor: Z NG =

0.93

Bending Stress Cycle Factor: Y NP =

0.69

Table 9-2: Use 1.00 if P d >= 5

Table 9-1

[Computed]

Figure 9-13

0.147

Commer. Precision

Gear - Number of load cycles: N G = 3.5E+08 107 cycles Bending Stress Cycle Factor: Y NG =

F/D P =

[0.50 < F/DP < 2.00] Figure 9-12

0.048

Enter: Design Life: 8000 hours Pinion - Number of load cycles: N P = 1.7E+09

Reliability Factor: K R =

Service Factor: SF =

Dynamic Factor: K v =

Gear Rim Thickness Factor: K BG =

Pinion Rim Thickness Factor: K BP =

Size Factor: K s =

Overload Factor: K o =

Alignment Factor: K m =

Enter: C ma =

Mesh Alignment Factor, C ma =

Type of gearing:

Enter: C pf =

Pinion Proportion Factor, Cpf =

Commercial band saw driven by an electric motor Problem 67 Factors in Design Analysis: Alignment Factor, K m=1.0+C pf +C ma If F <1.0 If F >1.0


250

18

4.72 1.286 in 6.071 in 3.679 in 1161 ft/min 341 lb

NP = nG = NG = nG = mG = DP = DG = C= vt = Wt =

f Pinion Teeth: Output Speed: r of gear teeth: of Gear Teeth:

Output Speed: Gear Ratio: meter - Pinion: ameter - Gear: enter Distance: ch Line Speed: nsmitted Load:

156310 psi

sc =

Pinion

Gear

Pinion

28427 psi 22031 psi

st =

Fig. 9-10 Fig. 9-17

Gear: J G = 0.400 ometry Factor: I = 0.106 REF: m G = 4.72 stresses: s t =

Fig. 9-10

J P = 0.310

metry Factors: Pinion:

Table 9-4

Av = 7

Table 9-7

1.143

Max

uality Number:

ommended ratio F/D P < 2.00 Cp = 2300 tic Coefficient:

0.88

0.857 1.125 in

F=

Nom

730.6 rpm

85

85.1

730 rpm

0.571

nion diameter: F/D P =

Guidelines (in): : Face Width:

Min

Secondary Input Data:

data:

14

Pd =

ametral Pitch:

3450 rpm

P= nP =

Input Power:

12 hp

APPLICATION:

Input Speed:

Data:

GEARS

1.00

1.00

1.15

1.00

1.00

Bending Stress Cycle Factor: Y NP =

1.00

1.00

1.00

1.00

Fig. 9-22

Fig. 9-22

Fig. 9-21

Fig. 9-21

See Fig. 9-19 or

Table 9-9

See Fig. 9-18 or

0.92

0.89

0.96

0.93

<107

Gear: Use same material as for pinion.

Pinion: SAE 4620 DOQT 300; Case harden to HRC 62; Core has 22% elongation

Gear: Required s ac = 169,902 psi Table 9-9 Specify materials, alloy and heat treatment, for most severe requirement. One possible material specification: Specified-Case hardened; Appendix 5

Stress Analysis: Pitting Pinion: Required s ac = 175,629 psi

30,567 psi 22,949 psi

Gear: Required s at =

0.92

Pitting Stress Cycle Factor: Z NG = Stress Analysis: Bending Pinion: Required s at =

0.89

Pitting Stress Cycle Factor: Z NP =

0.96

0.93

>107

See Table 9-12 Guidelines: Y N , Z N

Table 9-11 Use 1.00 for R = .99

Use 1.00 if no unusual conditions

[Computed: See Fig. 9-16]

Fig. 9-14: Use 1.00 if solid blank

Fig. 9-14: Use 1.00 if solid blank

Gear - Number of load cycles: N G = 3.5E+08 107 cycles Bending Stress Cycle Factor: Y NG =

0.049

Ex. Prec.

Table 9-2: Use 1.00 if P d >= 5

Table 9-1

[Computed]

Figure 9-13

0.082

Commer. Precision 0.145

0.88 [0.50 < F/DP < 2.00]

Figure 9-12

0.064

Enter: Design Life: 8000 hours Pinion - Number of load cycles: N P = 1.7E+09

Reliability Factor: K R =

Service Factor: SF =

Dynamic Factor: K v =

Gear Rim Thickness Factor: K BG =

Pinion Rim Thickness Factor: K BP =

1.00

1.50

Overload Factor: K o = Size Factor: K s =

1.21

0.145

0.266

Open

0.064

0.063

Alignment Factor: K m =

Enter: C ma =

Mesh Alignment Factor, C ma =

Type of gearing:

Enter: C pf =

Pinion Proportion Factor, Cpf =

Commercial band saw driven by an electric motor Problem 68 - Same data as in Problem 67. Use case hardening Factors in Design Analysis: F/D P = Alignment Factor, K m =1.0+C pf +C ma If F <1.0 If F >1.0


251

22 112.5 rpm

NP = nG = NG =

f Pinion Teeth: Output Speed: r of gear teeth: of Gear Teeth:

DP = DG = C= vt = Wt =

meter - Pinion: ameter - Gear: enter Distance: ch Line Speed: nsmitted Load:

155711 psi

sc =

Pinion

Gear

Pinion

30981 psi 24292 psi

st =

Fig. 9-10 Fig. 9-17

Gear: J G = 0.440 ometry Factor: I = 0.106 REF: m G = 5.82 stresses: s t =

Fig. 9-10

J P = 0.345

metry Factors: Pinion:

Table 9-4

Av = 7

Table 9-7

2.000

Max

uality Number:

ommended ratio F/D P < 2.00 Cp = 2300 tic Coefficient:

0.73

1.500 2.000 in

F=

Nom

1410 lb

1.000

nion diameter: F/D P =

Guidelines (in): : Face Width:

Min

Secondary Input Data:

2.750 in 16.000 in

mG =

Gear Ratio:

9.375 in 468 ft/min

5.82

nG =

111.7 rpm

128

Output Speed:

data:

8

Pd =

ametral Pitch:

127.1

20 hp 650 rpm

P= nP =

Input Power:

APPLICATION:

Input Speed:

Data:

GEARS

1.00

1.00

1.10

1.00

1.00

1.00

Bending Stress Cycle Factor: Y NP =

0.058

Ex. Prec.

Fig. 9-14: Use 1.00 if solid blank

25,043 psi

Gear: Required s at =

Fig. 9-22

Fig. 9-22

Fig. 9-21

Fig. 9-21

See Fig. 9-19 or

Table 9-9

See Fig. 9-18 or

0.94

0.90

0.97

0.94

<107

Gear: Use same material as for pinion.

Pinion: SAE 4620 DOQT 300; Case harden to HRC 62; Core has 22% elongation

Gear: Required s ac = 165,650 psi Table 9-9 Specify materials, alloy and heat treatment, for most severe requirement. One possible material specification: Case hardening required; Appendix 5

Stress Analysis: Pitting Pinion: Required s ac = 173,012 psi

1.00

1.00

1.00

1.00

>107

See Table 9-12 Guidelines: Y N , Z N

Table 9-11 Use 1.00 for R = .99

Use 1.00 if no unusual conditions

[Computed: See Fig. 9-16]

32,958 psi

0.94

Pitting Stress Cycle Factor: Z NG =

0.093

Fig. 9-14: Use 1.00 if solid blank

Stress Analysis: Bending Pinion: Required s at =

0.90

Pitting Stress Cycle Factor: Z NP =

0.97

0.94

0.73

Table 9-2: Use 1.00 if P d >= 5

Table 9-1

[Computed]

Figure 9-13

0.158

Commer. Precision

Gear - Number of load cycles: N G = 1.7E+08 107 cycles Bending Stress Cycle Factor: Y NG =

F/D P =

[0.50 < F/DP < 2.00] Figure 9-12

0.060

Enter: Design Life: 25000 hours Pinion - Number of load cycles: N P = 9.8E+08

Reliability Factor: K R =

Service Factor: SF =

Dynamic Factor: K v =

Gear Rim Thickness Factor: K BG =

Pinion Rim Thickness Factor: K BP =

Size Factor: K s =

1.15 1.50

Overload Factor: K o =

0.093

0.280

Open

0.06

0.048

Alignment Factor: K m =

Enter: C ma =

Mesh Alignment Factor, C ma =

Type of gearing:

Enter: C pf =

Pinion Proportion Factor, Cpf =

Special purpose machine tool-Milling machine Problem 69 - Small size is expected; Use case hardening Factors in Design Analysis: Alignment Factor, K m =1.0+C pf +C ma If F <1.0 If F >1.0


[Note that Problems 71, 72, and 73 compute the Power Transmitting Capacity.]

252

17

NP = nG = NG =

f Pinion Teeth: Output Speed: r of gear teeth: of Gear Teeth:

DP = DG = C= vt = Wt =

meter - Pinion: ameter - Gear: enter Distance: ch Line Speed: nsmitted Load:

128839 psi

sc =

Pinion

Gear

Pinion

19710 psi 13844 psi

st =

Fig. 9-10 Fig. 9-17

Gear: J G = 0.420 ometry Factor: I = 0.109 REF: m G = 5.65 stresses: s t =

Fig. 9-10

J P = 0.295

metry Factors: Pinion:

Table 9-4

Av = 7

Table 9-7

2.667

Max

uality Number:

ommended ratio F/D P < 2.00 Cp = 2300 tic Coefficient:

0.92

2.000 2.600 in

F=

Nom

1202 lb

1.333

nion diameter: F/D P =

Guidelines (in): : Face Width:

Min

Secondary Input Data:

2.833 in 16.000 in

mG =

Gear Ratio:

9.417 in 686 ft/min

5.65

nG =

163.8 rpm

96

96.5

Output Speed:

data:

6

Pd =

ametral Pitch: 163 rpm

25 hp 925 rpm

P= nP =

Input Power:

APPLICATION:

Input Speed:

Data:

GEARS

1.00

1.00

1.11

1.00

1.00

1.00

Bending Stress Cycle Factor: Y NP =

14,421 psi

Gear: Required s at =

1.00

1.00

1.00

1.00

Fig. 9-22

Fig. 9-22

Fig. 9-21

Fig. 9-21

See Fig. 9-19 or

Table 9-9

See Fig. 9-18 or

0.92

0.89

0.96

0.93

<107

Comment: It is reasonable to specify the same heat treatment

Gear: Requires HB 345: SAE 8650 OQT 1000; HB 363, 14% elongation

Pinion: Requires HB 359: SAE 8650 OQT 1000; HB 363, 14% elongation

Gear: Required s ac = 140,043 psi Table 9-9 Specify materials, alloy and heat treatment, for most severe requirement. One possible material specification: SAE 4340 specified; Fig. A4-5

Stress Analysis: Pitting Pinion: Required s ac = 144,763 psi

21,194 psi

0.92

Pitting Stress Cycle Factor: Z NG = Stress Analysis: Bending Pinion: Required s at =

0.89

Pitting Stress Cycle Factor: Z NP =

0.96

0.93

>107

See Table 9-12 Guidelines: Y N , Z N

Table 9-11 Use 1.00 for R = .99

Use 1.00 if no unusual conditions

[Computed: See Fig. 9-16]

Fig. 9-14: Use 1.00 if solid blank

Fig. 9-14: Use 1.00 if solid blank

Gear - Number of load cycles: N G = 3.1E+08 107 cycles Bending Stress Cycle Factor: Y NG =

0.064

Ex. Prec.

Table 9-2: Use 1.00 if P d >= 5

Table 9-1

[Computed]

Figure 9-13

0.100

Commer. Precision 0.167

0.92 [0.50 < F/DP < 2.00]

Figure 9-12

0.087

Enter: Design Life: 31200 hours Pinion - Number of load cycles: N P = 1.7E+09

Reliability Factor: K R =

Service Factor: SF =

Dynamic Factor: K v =

Gear Rim Thickness Factor: K BG =

Pinion Rim Thickness Factor: K BP =

Size Factor: K s =

1.25 1.50

Overload Factor: K o =

0.167

0.290

Open

0.087

0.067

Alignment Factor: K m =

Enter: C ma =

Mesh Alignment Factor, C ma =

Type of gearing:

Enter: C pf =

Pinion Proportion Factor, Cpf =

Crane drum drive driven by an electric motor Problem 70 - Fit gear pair within 24-in inside diameterof drum Factors in Design Analysis: Alignment Factor, K m=1.0+C pf +C ma If F <1.0 If F >1.0 F/D P =


253 6.000 in

DP = DG = C= vt = Wt =

Gear Ratio: h Diameter - Pinion: ch Diameter - Gear: Center Distance: Pitch Line Speed: ad at Pmin Capacity:

1.00

1.00

1.28

1.00

1.00

1.00

Table 9-12 Use 1.00 for R

Use 1.00 if no unusual con

[Computed: See Fig. 9-16]

Fig. 9-14: Use 1.00 if solid

Fig. 9-14: Use 1.00 if solid

Table 9-2: Use 1.00 if P d >

Table 9-1

smission Capacity: 13.07 hp Elastic Coefficient: Cp = 2300 er: Quality Number: A v = 9

Gear: g Geometry Factor:

Fig. 9-10 J G = 0.415 I = 0.104 Fig. 9-17 REF: mG = 2.40

Geometry Factors: Press. angle = 20 deg Pinion: J P = 0.363 Fig. 9-10

25

Pitting Stress Cycle Factor: Z NG =

REF: NP, NG =

Pitting Stress Cycle Factor: Z NP =

on Contact Stress: 13.07 hp

Table 9-4

Bending Stress Cycle Factor: Y NG =

on Contact Stress: 14.50 hp

0.89

0.94

0.93

1.00

1.00

0.89

0.94

0.93

>107

Fig

Fig

Fig

<

37,000 psi

Gear: s at =

Table 9-9

See Fig. 9-18 o

Table 9-9

Pinion material: AISI 4140 OQT 1000, HB 340 Gear material: AISI 4140 OQT 1100, HB 311

Material specification: Steel pinion; Steel gear: through hard

Gear: s ac = 130,000 psi

Allowable Contact Stress Numbers: (Input --Use known hardness) Pinion: s ac = 140,000 psi See Fig. 9-19 o

39,000 psi

Pinion: s at =

0.91 1.00 0.91 Fig Allowable Bending Stress Numbers: (Input - Use known hardness)

Bending Stress Cycle Factor: Y NP =

27.42 hp

60

1.00

on Bending Stress:

Gear - Number of load cycles: NG = 6.5E+08 10 cycles

7

Table 9-7

0.

Enter: Design Life: 15000 hours See Table 9-12 Guidelines: YN , ZN Pinion - Number of load cycles: NP = 1.6E+09

Reliability Factor: K R =

Service Factor: SF =

Dynamic Factor: Kv =

Gear Rim Thickness Factor: K BG =

Pinion Rim Thickness Factor: K BP =

Size Factor: K s =

1.50

Figure 9-13 1.18

[Computed]

0.147

Enter: C ma =

0.083

Commer. Precision Ex.

Alignment Factor: Km = Overload Factor: K o =

F/DP = 0.50 [0.50 < F/DP <

0.147

Open

0.028

Figure 9-12

on Bending Stress: 25.01 hp

nsmission Capacity: (Using Eq. 9-35, 9-37)

382 lb

4.250 in 1129 ft/min

2.40 2.500 in

mG =

718.8 rpm

nG =

tual Output Speed:

uted data:

0.025 0.028

If F>1.0

0.268

Mesh Alignment Factor, Cma =

Type of gearing:

25 60

NP = NG =

Enter: C pf =

Pinion Proportion Factor, Cpf =

Centrifugal pump driven by an electric motor Problem 71 Factors in Design Analysis: If F<1.0 Alignment Factor, Km =1.0+Cpf +Cma

10

1725 rpm

ber of Pinion Teeth:

Pd =

1.250 in

APPLICATION:

mber of Gear Teeth:

nP =

Input Speed: Diametral Pitch:

SMISSION CAPACITY nput Data: Enter: Face Width: F =


254 5.833 in 16.667 in 11.250 in

mG = DP = DG = C= vt = Wt =

Gear Ratio: Diameter - Pinion: Diameter - Gear: Center Distance: Pitch Line Speed: at Pmin Capacity:

35

100

Gear: Geometry Factor:

Fig. 9-10 J G = 0.450 I = 0.114 Fig. 9-17 REF: mG = 2.86

Geometry Factors: Press. angle = 20 deg Pinion: J P = 0.410 Fig. 9-10

REF: NP, NG =

1.00 1.00

0.89

1.00 0.95

0.93

0.89

0.95

0.93

>107

Fig. 9

Fig. 9

Fig. 9

<10

8,500 psi

40,000 psi

Table 9-10

See Fig. 9-18 or

65,000 psi

Table 9-10

Pinion material: SAE 1040 WQT 800, HB 352 Gear material: Gray cast iron, ASTM A48-83, Class 30

Material specification: Steel pinion; Gear: Gray cast iron gear

Gear: s ac =

Allowable Contact Stress Numbers: (Input --Use known hardness) Pinion: s ac = 144,000 psi See Fig. 9-19 or

Gear: s at =

Pinion: s at =

0.92 1.00 0.92 Fig. 9 Allowable Bending Stress Numbers: (Input - Use known hardness)

Pitting Stress Cycle Factor: Z NP = Pitting Stress Cycle Factor: Z NG =

n Contact Stress: 19.26 hp mission Capacity: 19.26 hp Elastic Coefficient: Cp = 2100 Quality Number: A v = 11

Bending Stress Cycle Factor: Y NP =

Table 9-4

7

Gear - Number of load cycles: NG = 4.7E+08 10 cycles Bending Stress Cycle Factor: Y NG =

Table 9-7

Table 9-12 Use 1.00 for R = .

Use 1.00 if no unusual condit

[Computed: See Fig. 9-16]

Fig. 9-14: Use 1.00 if solid bla

Fig. 9-14: Use 1.00 if solid bla

Table 9-2: Use 1.00 if P d >=

Table 9-1

0.05

Enter: Design Life: 15000 hours See Table 9-12 Pinion - Number of load cycles: NP = 1.4E+09 Guidelines: YN , ZN

1.00

1.00

Service Factor: SF = Reliability Factor: K R =

1.63

1.00

1.00

1.00

2.00

Dynamic Factor: Kv =

Gear Rim Thickness Factor: K BG =

Pinion Rim Thickness Factor: K BP =

Size Factor: K s =

Overload Factor: K o =

Figure 9-13 1.20

[Computed]

0.158

Enter: C ma =

0.093

Commer. Precision Ex. P

Alignment Factor: Km =

21.63 hp

Bending Stress:

[0.50 < F/DP < 2.0 Figure 9-12

0.038

0.158

Open

0.038

0.025

0.280

Mesh Alignment Factor, Cma =

Type of gearing:

Enter: C pf =

Pinion Proportion Factor, Cpf =

Heavy duty conveyor for crushed rock driven by a gasoline engine Problem 72 Factors in Design Analysis: If F<1.0 If F>1.0 Alignment Factor, Km =1.0+Cpf +Cma F/DP = 0.50

n Contact Stress: 88.46 hp

n Bending Stress: 90.79 hp

smission Capacity: (Using Eq. 9-35, 9-37)

277 lb

2291 ft/min

2.86

nG =

al Output Speed:

525.0 rpm

100

NG =

ber of Gear Teeth:

ted data:

6 35

Pd = NP =

Diametral Pitch:

1500 rpm

nP =

2.000 in

APPLICATION:

er of Pinion Teeth:

Input Speed:

MISSION CAPACITY put Data: nter: Face Width: F =


Note that Problems 74 to 79 call for the design of Double‐Reduction Drives.

255 5.833 in 16.667 in 11.250 in

mG = DP = DG = C= vt = Wt =

Gear Ratio: Diameter - Pinion: Diameter - Gear: Center Distance: Pitch Line Speed: at Pmin Capacity:

35

100

face widty from 2.00 to 2.42 in. y number from 11 to 10.

Gear: Geometry Factor:

Fig. 9-10 J G = 0.450 I = 0.114 Fig. 9-17 REF: mG = 2.86

Geometry Factors: Press. angle = 20 deg Pinion: J P = 0.410 Fig. 9-10

REF: NP, NG =

1.00 1.00

0.89

1.00 0.95

0.93

0.89

0.95

0.93

>107

Fig. 9

Fig. 9

Fig. 9

<10

8,500 psi

40,000 psi

Table 9-10

See Fig. 9-18 or

65,000 psi

Table 9-10

Pinion material: SAE 1040 WQT 800, HB 352 Gear material: Gray cast iron, ASTM A48-83, Class 30

Material specification: Steel pinion; Gear: Gray cast iron gear

Gear: s ac =

Allowable Contact Stress Numbers: (Input --Use known hardness) Pinion: s ac = 144,000 psi See Fig. 9-19 or

Gear: s at =

Pinion: s at =

0.92 1.00 0.92 Fig. 9 Allowable Bending Stress Numbers: (Input - Use known hardness)

Pitting Stress Cycle Factor: Z NP = Pitting Stress Cycle Factor: Z NG =

n Contact Stress: 25.08 hp mission Capacity: 25.08 hp Elastic Coefficient: Cp = 2100 Quality Number: A v = 10

Bending Stress Cycle Factor: Y NP =

Table 9-4

7

Gear - Number of load cycles: NG = 4.7E+08 10 cycles Bending Stress Cycle Factor: Y NG =

Table 9-7

Table 9-12 Use 1.00 for R = .

Use 1.00 if no unusual condit

[Computed: See Fig. 9-16]

Fig. 9-14: Use 1.00 if solid bla

Fig. 9-14: Use 1.00 if solid bla

Table 9-2: Use 1.00 if P d >=

Table 9-1

0.06

Enter: Design Life: 15000 hours See Table 9-12 Pinion - Number of load cycles: NP = 1.4E+09 Guidelines: YN , ZN

1.00

1.00

Service Factor: SF = Reliability Factor: K R =

1.50

1.00

1.00

1.00

2.00

Dynamic Factor: Kv =

Gear Rim Thickness Factor: K BG =

Pinion Rim Thickness Factor: K BP =

Size Factor: K s =

Overload Factor: K o =

Figure 9-13 1.21

[Computed]

0.164

Enter: C ma =

0.098

Commer. Precision Ex. P

Alignment Factor: Km =

28.17 hp

Bending Stress:

[0.50 < F/DP < 2.0 Figure 9-12

0.043

0.165

Open

0.043

0.025

0.287

Mesh Alignment Factor, Cma =

Type of gearing:

Enter: C pf =

Pinion Proportion Factor, Cpf =

Heavy duty conveyor for crushed rock driven by a gasoline engine Problem 73 - Redesign of system in Problem 72 to get capacity > 25 hp Factors in Design Analysis: If F<1.0 If F>1.0 Alignment Factor, Km =1.0+Cpf +Cma F/DP = 0.50

n Contact Stress: 115.19 hp

n Bending Stress: 118.23 hp

smission Capacity: (Using Eq. 9-35, 9-37)

361 lb

2291 ft/min

2.86

nG =

al Output Speed:

525.0 rpm

100

NG =

ber of Gear Teeth:

ted data:

6 35

Pd = NP =

Diametral Pitch:

1500 rpm

nP =

2.420 in

APPLICATION:

er of Pinion Teeth:

Input Speed:

MISSION CAPACITY put Data: nter: Face Width: F =


Two separate, successive spreadsheets comprise the full solution to each problem. The division of the total reduction ratio into that for the first pair and for the second pair are described in each problem solution. Often, the larger part of the reduction is taken in Pair 1 because the speeds of rotation are higher, resulting in lower forces on the gear teeth on the teeth of that pair, resulting in generally lower stress levels. Thus, a higher value for diametral pitch, Pd, can be used, producing smaller teeth, diameters, and center distance. For Pair 2, the diametral pitch is typically smaller resulting in generally larger gears. An attempt was made to seek a design for the full double‐reduction train for which the sizes of the resulting pairs are approximately the same; being well balanced. As stated before, the given solutions are only examples and other designs are certainly possible. The designer’s judgment should be used to determine what would be appropriate results for any given problem. Note: Having spreadsheets such as those shown here facilitates iteration, helping the designer to hone in on the most desirable design for a given application.

 Problems 74, 75, and 76 are typical double‐reduction drives, designed to be made from steel gears. The design for each pair is done in the same manner at those in Problems 36 to 70. o Note, however, that the input speed for Pair 2 is taken to be the output speed from Pair 1. Then the final output speed for Pair 2 is within the desired range called for in the problem statement.  Problem 77 calls for using plastic gears. See Section 9‐14 for data and the procedures used for such gear drives.  Problem 78 involves a different type of data in that the double‐reduction gear drive in turn drives a rack‐and‐pinion drive that is to have a given linear velocity. Therefore, the analysis of the relationship between the rack speed and the rotational speed of the output of the gear drive must be completed before the gear drive is designed.  Problem 79 calls for the design of a double‐reduction gear drive for an industrial lift truck that will travel at a stated design speed and that will travel on wheels of a given size. Therefore, the relationship between the truck speed and the rotational speed of the output of the gear drive must be calculated first.

256


257

NP = nG = NG =

f Pinion Teeth: Output Speed: r of gear teeth: of Gear Teeth:

320 lb

Wt =

nsmitted Load:

Fig. 9-10 Fig. 9-17 Pinion

Gear: J G = 0.410 ometry Factor: I = 0.106 REF: m G = 4.17 13894 psi 10675 psi 110157 psi

stresses: s t = st = sc =

Pinion

Gear

Fig. 9-10

J P = 0.315

metry Factors: Pinion:

Table 9-4

A v = 11

uality Number:

ommended ratio F/D P < 2.00 Cp = 2300 tic Coefficient:

2.000

Table 9-7

F= 0.67

1.500 1.500 in

1.000

nion diameter: F/D P =

Guidelines (in): : Face Width:

Min

Max

5.813 in 1031 ft/min

C= vt =

enter Distance: ch Line Speed:

Nom

9.375 in

Secondary Input Data:

2.250 in

DP = DG =

ameter - Gear:

mG =

Gear Ratio: meter - Pinion:

4.17

nG =

420.0 rpm

75

74.1

425 rpm

Output Speed:

data:

8

Pd =

ametral Pitch: 18

10 hp 1750 rpm

P= nP =

Input Power:

APPLICATION:

Input Speed:

Data:

GEARS

1.00

1.00

1.43

1.00

1.00

0.086

0.053

Ex. Prec.

11,237 psi

Fig. 9-22

Fig. 9-22

Fig. 9-21

Fig. 9-21

See Fig. 9-19 or

Table 9-9

See Fig. 9-18 or

0.92

0.89

0.95

0.93

<107

Comments: A larger part of the total reduction (4.17) is taken on this first pair.

Gear: Requires HB 281: SAE 4340 OQT 1200; HB 293, 20% elongation

Pinion: Requires HB 294: SAE 4340 OQT 1100; HB 321, 19% elongation

Gear: Required s ac = 119,736 psi Table 9-9 Specify materials, alloy and heat treatment, for most severe requirement. One possible material specification:

Stress Analysis: Pitting Pinion: Required s ac = 123,772 psi

14,940 psi Gear: Required s at =

1.00

1.00

1.00

1.00

>107

See Table 9-12 Guidelines: Y N , Z N

Table 9-11 Use 1.00 for R = .99

Use 1.00 if no unusual conditions

[Computed: See Fig. 9-16]

Fig. 9-14: Use 1.00 if solid blank

Fig. 9-14: Use 1.00 if solid blank

Stress Analysis: Bending Pinion: Required s at =

0.89 0.92

Pitting Stress Cycle Factor: Z NP =

0.95 Pitting Stress Cycle Factor: Z NG =

0.93

Bending Stress Cycle Factor: Y NP =

0.67

Table 9-2: Use 1.00 if P d >= 5

Table 9-1

[Computed]

Figure 9-13

0.150

Commer. Precision

Gear - Number of load cycles: N G = 3.8E+08 107 cycles Bending Stress Cycle Factor: Y NG =

F/D P =

[0.50 < F/DP < 2.00] Figure 9-12

0.048

Enter: Design Life: 15000 hours Pinion - Number of load cycles: N P = 1.6E+09

Reliability Factor: K R =

Service Factor: SF =

Dynamic Factor: K v =

Gear Rim Thickness Factor: K BG =

Pinion Rim Thickness Factor: K BP =

1.00

1.50

Overload Factor: K o = Size Factor: K s =

1.20

0.15

0.272

Open

0.048

0.042

Alignment Factor: K m =

Enter: C ma =

Mesh Alignment Factor, C ma =

Type of gearing:

Enter: C pf =

Pinion Proportion Factor, Cpf =

Assembly conveyor driven my an electric motor Problem 74 - First pair of a double reduction drive Factors in Design Analysis: Alignment Factor, K m=1.0+C pf +C ma If F <1.0 If F >1.0


258

nG = NG =

Output Speed: er of gear teeth: of Gear Teeth:

DP = DG = C= vt = Wt =

ameter - Pinion: iameter - Gear: enter Distance: ch Line Speed: nsmitted Load:

21567 psi 17199 psi 135967 psi 135967 psi

st = sc = sc =

Gear

Pinion

Gear

Pinion

Fig. 9-10 Fig. 9-17

Gear: J G = 0.395 eometry Factor: I = 0.108 REF: m G = 2.83 stresses: s t =

Fig. 9-10

J P = 0.315

ometry Factors: Pinion:

Table 9-4

A v = 11

Table 9-7

2.667

Max

Quality Number:

ommended ratio F/D P < 2.00 Cp = 2300 stic Coefficient:

0.67

2.000 2.000 in

F=

Nom

1000 lb

1.333

pinion diameter: F/D P =

Guidelines (in): r: Face Width:

Min

Secondary Input Data:

3.000 in 8.500 in

mG =

Gear Ratio:

5.750 in 330 ft/min

2.83

nG =

148.2 rpm

51

51.1

148 rpm

18

6

420 rpm

10 hp

APPLICATION:

Output Speed:

d data:

Pd = NP =

of Pinion Teeth:

nP =

Input Speed: Diametral Pitch:

P=

Input Power:

t Data:

GEARS

1.00

1.00

1.25

1.00

1.00

1.00

1.50

1.21

0.158

0.280

Open

0.054

0.042

Bending Stress Cycle Factor: Y NP =

0.093

0.058

Ex. Prec.

17,731 psi

Fig. 9-22

Fig. 9-22

Fig. 9-21

Fig. 9-21

See Fig. 9-19 or

Table 9-9

See Fig. 9-18 or

0.94

0.92

0.97

0.95

<107

A lower diametral pitch - 6 is used, compared with 8 for the first pair.

Comments: A smaller part of the total reduction (2.83) is taken on this second pair.

Gear: Requires HB 359: SAE 4340 OQT 1000; HB 363, 17% elongation

Pinion: Requires HB 369: SAE 4340 OQT 900; HB 388, 15% elongation

Gear: Required s ac = 144,645 psi Table 9-9 Specify materials, alloy and heat treatment, for most severe requirement. One possible material specification:

Stress Analysis: Pitting Pinion: Required s ac = 147,790 psi

22,702 psi Gear: Required s at =

1.00

1.00

1.00

1.00

>107

See Table 9-12 Guidelines: Y N , Z N

Table 9-11 Use 1.00 for R = .99

Use 1.00 if no unusual conditions

[Computed: See Fig. 9-16]

Fig. 9-14: Use 1.00 if solid blank

Fig. 9-14: Use 1.00 if solid blank

Stress Analysis: Bending Pinion: Required s at =

0.92 0.94

Pitting Stress Cycle Factor: Z NP = Pitting Stress Cycle Factor: Z NG =

0.97

0.95

0.67

Table 9-2: Use 1.00 if P d >= 5

Table 9-1

[Computed]

Figure 9-13

0.158

Commer. Precision

Gear - Number of load cycles: N G = 1.3E+08 107 cycles Bending Stress Cycle Factor: Y NG =

F/D P =

[0.50 < F/DP < 2.00]

Figure 9-12

0.054

Enter: Design Life: 15000 hours Pinion - Number of load cycles: N P = 3.8E+08

Reliability Factor: K R =

Service Factor: SF =

Dynamic Factor: K v =

Gear Rim Thickness Factor: K BG =

Pinion Rim Thickness Factor: K BP =

Size Factor: K s =

Overload Factor: K o =

Alignment Factor: K m =

Enter: C ma =

Mesh Alignment Factor, C ma =

Type of gearing:

Enter: C pf =

Pinion Proportion Factor, Cpf =

Assembly conveyor driven my an electric motor Problem 74 - Second pair of a double reduction drive Factors in Design Analysis: Alignment Factor, K m=1.0+C pf +C ma If F <1.0 If F >1.0

O

<


259

18

NP = nG = NG =

f Pinion Teeth: Output Speed: r of gear teeth: of Gear Teeth:

3.094 in 250 ft/min 66 lb

DG = C= vt = Wt =

meter - Pinion: ameter - Gear: enter Distance: ch Line Speed: nsmitted Load:

107497 psi

sc =

Pinion

Gear

Pinion

13025 psi 10043 psi

st =

Fig. 9-10 Fig. 9-17

Gear: J G = 0.415 ometry Factor: I = 0.106 REF: m G = 4.50 stresses: s t =

Fig. 9-10

J P = 0.320

metry Factors: Pinion:

Table 9-4

Av = 9

uality Number:

ommended ratio F/D P < 2.00 Cp = 2300 tic Coefficient:

1.000

Table 9-7

F= 0.44

0.750 0.500 in

0.500

nion diameter: F/D P =

Guidelines (in): : Face Width:

Min

Max

5.063 in

DP =

Nom

1.125 in

mG =

Gear Ratio:

Secondary Input Data:

4.50

nG =

188.9 rpm

81

80.5

Output Speed:

data:

16

Pd =

ametral Pitch: 190 rpm

0.5 hp 850 rpm

P= nP =

Input Power:

APPLICATION:

Input Speed:

Data:

GEARS

1.00

1.00

1.14

1.00

1.00

1.00

Bending Stress Cycle Factor: Y NP =

0.043

Ex. Prec.

Fig. 9-14: Use 1.00 if solid blank

10,248 psi

Gear: Required s at =

Fig. 9-22

Fig. 9-22

Fig. 9-21

Fig. 9-21

See Fig. 9-19 or

Table 9-9

See Fig. 9-18 or

0.95

0.92

0.98

0.95

<107

Comments: Equal reduction ratios used for both pairs. P d = 16 for both pairs.

Gear: Requires HB 260: SAE 4340 OQT 1200; HB 293, 21% elongation

Pinion: Requires HB 272: SAE 4340 OQT 1200; HB 293, 21% elongation

Gear: Required s ac = 113,155 psi Table 9-9 Specify materials, alloy and heat treatment, for most severe requirement. One possible material specification:

Stress Analysis: Pitting Pinion: Required s ac = 116,845 psi

1.00

1.00

1.00

1.00

>107

See Table 9-12 Guidelines: Y N , Z N

Table 9-11 Use 1.00 for R = .99

Use 1.00 if no unusual conditions

[Computed: See Fig. 9-16]

13,710 psi

0.95

Pitting Stress Cycle Factor: Z NG =

0.074

Fig. 9-14: Use 1.00 if solid blank

Stress Analysis: Bending Pinion: Required s at =

0.92

Pitting Stress Cycle Factor: Z NP =

0.98

0.95

0.50

Table 9-2: Use 1.00 if P d >= 5

Table 9-1

[Computed]

Figure 9-13

0.135

Commer. Precision

Gear - Number of load cycles: N G = 9.1E+07 107 cycles Bending Stress Cycle Factor: Y NG =

F/D P =

[0.50 < F/DP < 2.00] Figure 9-12

0.019

Enter: Design Life: 8000 hours Pinion - Number of load cycles: N P = 4.1E+08

Reliability Factor: K R =

Service Factor: SF =

Dynamic Factor: K v =

Gear Rim Thickness Factor: K BG =

Pinion Rim Thickness Factor: K BP =

Size Factor: K s =

1.16 1.50

Overload Factor: K o =

0.135

0.255

Open

0.025

0.025

Alignment Factor: K m =

Enter: C ma =

Mesh Alignment Factor, C ma =

Type of gearing:

Enter: C pf =

Pinion Proportion Factor, Cpf =

Food waste grinder driven by an electric motor Problem 75 - First pair of a double reduction drive Factors in Design Analysis: Alignment Factor, K m=1.0+C pf +C ma If F <1.0 If F >1.0


260

18 42 rpm

NP = nG = NG =

er of Pinion Teeth: red Output Speed: mber of gear teeth: No. of Gear Teeth:

5.063 in 3.094 in 56 ft/min 297 lb

DG = C= vt = Wt =

Diameter - Pinion: h Diameter - Gear: Center Distance: Pitch Line Speed: Transmitted Load:

149581 psi

sc =

Pinion

Gear

Pinion

25219 psi 19446 psi

st =

Fig. 9-10 Fig. 9-17

Gear: J G = 0.415 Geometry Factor: I = 0.106 REF: m G = 4.50 ted stresses: s t =

Fig. 9-10

J P = 0.320

Geometry Factors: Pinion:

Table 9-4

Av = 9

r: Quality Number:

Recommended ratio F/D P < 2.00 Cp = 2300 Elastic Coefficient:

1.000

Table 9-7

F= 1.02

0.750 1.150 in

0.500

th/pinion diameter: F/D P =

dth Guidelines (in): nter: Face Width:

Min

Max

1.125 in

DP =

Nom

4.50

mG =

Gear Ratio:

Secondary Input Data:

42.0 rpm

nG =

81

ual Output Speed:

ted data:

16

Pd =

Diametral Pitch:

81.0

0.5 hp 188.9 rpm

P= nP =

Input Power:

APPLICATION:

Input Speed:

nput Data:

UR GEARS

1.00

1.00

1.07

1.00

1.00

1.00

Bending Stress Cycle Factor: Y NP =

0.050

Ex. Prec.

Fig. 9-14: Use 1.00 if solid blank

19,253 psi

Gear: Required s at =

Fig. 9-22

Fig. 9-22

Fig. 9-21

Fig. 9-21

See Fig. 9-19 or

Table 9-9

See Fig. 9-18 or

0.98

0.95

1.01

0.98

<107

Comments: Pinion and gear made from same material and heat treatment.

Gear: Requires HB 384: SAE 4340 OQT 800; HB 415, 12% elongation

Pinion: Requires HB 399: SAE 4340 OQT 800; HB 415, 12% elongation

Gear: Required s ac = 152,634 psi Table 9-9 Specify materials, alloy and heat treatment, for most severe requirement. One possible material specification:

Stress Analysis: Pitting Pinion: Required s ac = 157,454 psi

1.00

1.00

1.00

1.00

>107

See Table 9-12 Guidelines: Y N , Z N

Table 9-11 Use 1.00 for R = .99

Use 1.00 if no unusual conditions

[Computed: See Fig. 9-16]

25,734 psi

0.98

Pitting Stress Cycle Factor: Z NG =

0.082

Fig. 9-14: Use 1.00 if solid blank

Stress Analysis: Bending Pinion: Required s at =

0.95

Pitting Stress Cycle Factor: Z NP =

1.01

0.98

1.02

Table 9-2: Use 1.00 if P d >= 5

Table 9-1

[Computed]

Figure 9-13

0.145

Commer. Precision

Gear - Number of load cycles: N G = 2.0E+07 107 cycles Bending Stress Cycle Factor: Y NG =

F/D P =

[0.50 < F/DP < 2.00] Figure 9-12

0.079

Enter: Design Life: 8000 hours Pinion - Number of load cycles: N P = 9.1E+07

Reliability Factor: K R =

Service Factor: SF =

Dynamic Factor: K v =

Gear Rim Thickness Factor: K BG =

Pinion Rim Thickness Factor: K BP =

Size Factor: K s =

1.22 1.50

Overload Factor: K o =

0.145

0.266

Open

0.079

0.077

Alignment Factor: K m =

Enter: C ma =

Mesh Alignment Factor, C ma =

Type of gearing:

Enter: C pf =

Pinion Proportion Factor, Cpf =

Food waste grinder driven by an electric motor Problem 75 - Second pair of a double reduction drive Factors in Design Analysis: Alignment Factor, K m=1.0+C pf +C ma If F <1.0 If F >1.0


261

1285.7 rpm 2.33 0.625 in 1.458 in 1.042 in 491 ft/min 17 lb

NP = nG = NG = nG = mG = DP = DG = C= vt = Wt =

f Pinion Teeth: Output Speed: r of gear teeth: of Gear Teeth:

Output Speed: Gear Ratio: meter - Pinion: ameter - Gear: nter Distance: ch Line Speed: nsmitted Load:

F=

0.333

15

0.40

0.667

Max

Fig. 9-10 Fig. 9-17 Pinion

Gear: J G = 0.355 ometry Factor: I = 0.088 REF: m G = 2.33 13288 psi 9358 psi 115385 psi

stresses: s t = st = sc =

Pinion

Gear

Fig. 9-10

J P = 0.250

metry Factors: Pinion:

Table 9-4

Av = 9

uality Number:

Table 9-7

0.250 in

0.500

Nom

35

34.6

1300 rpm

ommended ratio F/D P < 2.00 Cp = 2300 tic Coefficient:

nion diameter: F/D P =

Guidelines (in): Face Width:

Min

Secondary Input Data:

data:

Pd =

ametral Pitch:

24

0.25 hp 3000 rpm

P= nP =

Input Power:

APPLICATION:

Input Speed:

Data:

GEARS

1.00

1.00

1.19

1.00

1.00

0.041

Ex. Prec.

9,851 psi

Fig. 9-22

Fig. 9-22

Fig. 9-21

Fig. 9-21

See Fig. 9-19 or

Table 9-9

See Fig. 9-18 or

0.92

0.90

0.95

0.94

<107

Comments: Equal reduction ratios and P d used for both pairs.

Gear: Requires HB 297: SAE 4340 OQT 1100; HB 321, 19% elongation

Pinion: Requires HB 306: SAE 4340 OQT 1100; HB 321, 19% elongation

Gear: Required s ac = 125,418 psi Table 9-9 Specify materials, alloy and heat treatment, for most severe requirement. One possible material specification:

Stress Analysis: Pitting Pinion: Required s ac = 128,205 psi

14,137 psi

1.00

1.00

1.00

1.00

>107

See Table 9-12 Guidelines: Y N , Z N

Table 9-11 Use 1.00 for R = .99

Use 1.00 if no unusual conditions

[Computed: See Fig. 9-16]

Fig. 9-14: Use 1.00 if solid blank

Gear: Required s at =

0.92

Pitting Stress Cycle Factor: Z NG =

0.071

Fig. 9-14: Use 1.00 if solid blank

Stress Analysis: Bending Pinion: Required s at =

0.90

0.95 Pitting Stress Cycle Factor: Z NP =

Bending Stress Cycle Factor: Y NG =

0.94

0.50

Table 9-2: Use 1.00 if P d >= 5

Table 9-1

[Computed]

Figure 9-13

0.131

Commer. Precision

Gear - Number of load cycles: N G = 3.9E+08 107 cycles Bending Stress Cycle Factor: Y NP =

F/D P =

[0.50 < F/DP < 2.00] Figure 9-12

0.016

Enter: Design Life: 5000 hours Pinion - Number of load cycles: N P = 9.0E+08

Reliability Factor: K R =

Service Factor: SF =

Dynamic Factor: K v =

Gear Rim Thickness Factor: K BG =

Pinion Rim Thickness Factor: K BP =

1.00

1.50

Overload Factor: K o = Size Factor: K s =

1.16

0.131

0.251

Open

0.025

0.025

Alignment Factor: K m =

Enter: C ma =

Mesh Alignment Factor, C ma =

Type of gearing:

Enter: C pf =

Pinion Proportion Factor, Cpf =

Small hand drill driven by an electric motor Problem 76 - First pair of a double reduction drive Factors in Design Analysis: Alignment Factor, K m=1.0+C pf +C ma If F <1.0 If F >1.0


262

nG = NG =

sired Output Speed: umber of gear teeth: n No. of Gear Teeth:

1.042 in 210 ft/min 39 lb

C= vt = Wt =

Center Distance: Pitch Line Speed: Transmitted Load:

116826 psi 116826 psi

9593 psi

st = sc =

Pinion

13622 psi

puted stresses: s t =

sc =

Fig. 9-10 Fig. 9-17

Gear: J G = 0.355 ng Geometry Factor: I = 0.088 REF: m G = 2.33

Gear

Pinion

Gear

Fig. 9-10

J P = 0.250

g Geometry Factors: Pinion:

Table 9-4

Av = 9

er: Quality Number:

Recommended ratio F/D P < 2.00 Cp = 2300 Elastic Coefficient:

0.667

Table 9-7

F= 0.90

0.500 0.560 in

0.333

dth/pinion diameter: F/D P =

Width Guidelines (in): Enter: Face Width:

Min

Max

1.458 in

DG =

ch Diameter - Gear:

Nom

0.625 in

DP =

h Diameter - Pinion:

Secondary Input Data:

2.33

mG =

551.0 rpm

35

35.1

550 rpm

Gear Ratio:

ctual Output Speed:

nG =

NP =

mber of Pinion Teeth:

puted data:

24

Pd =

Diametral Pitch: 15

0.25 hp 1285.7 rpm

P= nP =

Input Power:

APPLICATION:

Input Speed:

Input Data:

PUR GEARS

1.00

1.00

1.12

1.00

1.00

1.00

1.50

1.20

0.136

0.256

Open

0.065

0.065

0.044

Ex. Prec.

Fig. 9-14: Use 1.00 if solid blank

9,890 psi

Fig. 9-22

Fig. 9-22

Fig. 9-21

Fig. 9-21

See Fig. 9-19 or

Table 9-9

See Fig. 9-18 or

0.94

0.92

0.97

0.95

<107

Larger face width used for second pair. Same material + heat treatment used

Comments: Equal reduction ratios and P d used for both pairs.

Gear: Requires HB 296: SAE 4340 OQT 1100; HB 321, 19% elongation

Pinion: Requires HB 304: SAE 4340 OQT 1100; HB 321, 19% elongation

Gear: Required s ac = 124,283 psi Table 9-9 Specify materials, alloy and heat treatment, for most severe requirement. One possible material specification:

Stress Analysis: Pitting Pinion: Required s ac = 126,985 psi

14,339 psi

1.00

1.00

1.00

1.00

>107

See Table 9-12 Guidelines: Y N , Z N

Table 9-11 Use 1.00 for R = .99

Use 1.00 if no unusual conditions

[Computed: See Fig. 9-16]

Gear: Required s at =

0.94

Pitting Stress Cycle Factor: Z NG =

0.075

Fig. 9-14: Use 1.00 if solid blank

Stress Analysis: Bending Pinion: Required s at =

0.92

0.97 Pitting Stress Cycle Factor: Z NP =

0.95

Bending Stress Cycle Factor: Y NP =

0.90

Table 9-2: Use 1.00 if P d >= 5

Table 9-1

[Computed]

Figure 9-13

0.136

Commer. Precision

Gear - Number of load cycles: N G = 1.7E+08 107 cycles Bending Stress Cycle Factor: Y NG =

F/D P =

[0.50 < F/DP < 2.00]

Figure 9-12

0.059

Enter: Design Life: 5000 hours Pinion - Number of load cycles: N P = 3.9E+08

Reliability Factor: K R =

Service Factor: SF =

Dynamic Factor: K v =

Gear Rim Thickness Factor: K BG =

Pinion Rim Thickness Factor: K BP =

Size Factor: K s =

Overload Factor: K o =

Alignment Factor: K m =

Enter: C ma =

Mesh Alignment Factor, C ma =

Type of gearing:

Enter: C pf =

Pinion Proportion Factor, Cpf =

Small hand drill driven by an electric motor Problem 76 - Second pair of a double reduction drive Factors in Design Analysis: Alignment Factor, K m=1.0+C pf +C ma If F <1.0 If F >1.0

7

0

O

<


DESIGN OF PLASTIC SPUR GEARS Connect blade wheel to output shaft Application: Band saw driven by electric motor of gear reducer in Problem 76 Problem 77 - Produce a linear speed of blade = 375 ft/min Blade speed = perpheral speed of 9.0 in wheel v t of wheel = D w n w /12 Initial Input Data: P =

0.25 hp

n w = 12v tw /(D w ) =159.2 rpm

Input Speed: n P =

551 rpm

From Problem 76

Input Power:

Diametral Pitch: P d =

12

Number of Pinion Teeth: N P =

18

Desired Output Speed: n G =

159.2 rpm

To produce blade

62.32

speed of 375 ft/min

Computed number of gear teeth: Enter: Chosen No. of Gear Teeth: N G = Computed data: Actual Output Speed: n G = Gear Ratio: m G =

62 160.0 rpm 3.444

Pitch Diameter - Pinion: D P =

1.500 in

Pitch Diameter - Gear: D G = Center Distance: C= Pitch Line Speed: v t =

5.167 in 6.667 in 216.4 ft/min

Transmitted Load: W t =

38.11 lb

Secondary Input Data - Pinion: Tooth Form: 20 degree full depth Lewis Form Factor: Y = 0.521 Safety Factor: SF = 1.50 Unfilled Nylon Material: Allowable Bending Stress: s at = 6000 psi Required Face Width: Enter: Specified Face Width: Actual Bending Stress in Pinion:

F= F= st =

Table 9-15 Ref: Table 9-1 (K o ) Table 9-14 or Fig. 9-26

0.219 in 0.220 in 5985 psi

Secondary Input Data - Gear: Tooth Form: 20 degree full depth Lewis Form Factor: Y = 0.716 Safety Factor: SF = 1.50 Unfilled Acetal Material: 5000 psi Allowable Bending Stress: s at = Face Width - Gear: F = 0.220 in 4355 psi Actual Bending Stress in Gear: s t =

263

Same as for pinion Table 9-15 Same as for pinion Table 9-14 or Fig. 9-26 Same as for pinion Must be < s at


78.

Rack drives furnace door.

2.0 ft/s

120 ft/min

/12

Shaft for gears B and C

.

Possible values for DD:

/ 10.0 in

45.84 rpm

32.72

9.0 in

50.93

29.45

12.167

37.76

39.72 (Used This)

Pair 1:

1500 rpm;

172.3 rpm

17, Pair 2:

148, 172.3 rpm,

16,

73,

8.71 37.76 4.56

See two spreadsheet solutions on later pages: Design Life: In each cycle, rack moves 6 ft each way, a total of 12 ft for full cycle. At 2.0 ft/s, the cycle time is: .

12 ft

6.0 sec/cycle

.

1314 hr

Use 1500 hr design life for the gear drive.

264


Summary:

.

;

.

;

.

;

Pair 1:

10

17

172

1.700

14.800

1.200

8.250

Pair 2:

6

16

73

2.667

12.167

2.500

7.417

Well balanced in size. All gears made from SAE 4340: Pair 1 – OQT 1100; HB 321 Pair 2 – OQT 900; HB 388 Two spreadsheets follow for the double‐reduction gear drive:

265


266

Pd = NP = nG = NG =

Diametral Pitch: Number of Pinion Teeth: Desired Output Speed: d number of gear teeth: osen No. of Gear Teeth:

247 lb

Wt =

Transmitted Load:

1.200 in

F=

1.600

Pinion Gear

st =

Pinion Gear

s c = 118,498 psi s c = 118,498 psi

11,679 psi

Computed basic stresses: s t = 16,826 psi

Fig. 9-10 Fig. 9-17

Gear: J G = 0.425 itting Geometry Factor: I = 0.110 REF: m G = 8.71

148 Fig. 9-10

17

J P = 0.295

ding Geometry Factors: Pinion:

. of teeth, Pinion, Gear:

ommended range of ratio: 0.50 < F/D P < 2.00 nter: Elastic Coefficient: Cp = 2300 Table 9-7 Enter: Quality Number: A v = 11 Table 9-4

0.71

1.200

Min 0.800

e width/pinion diameter: F/D P =

e Width Guidelines (in): Enter: Face Width:

Max

8.250 in 668 ft/min

C= vt =

Center Distance: Pitch Line Speed:

Nom

14.800 in

DG =

Pitch Diameter - Gear:

Secondary Input Data:

1.700 in

DP =

8.71

mG =

Gear Ratio: Pitch Diameter - Pinion:

172.30 rpm

nG =

148

148.3

172 rpm

17

10

1500 rpm

5 hp

APPLICATION:

Actual Output Speed:

omputed data:

P= nP =

Input Power: Input Speed:

tial Input Data:

F SPUR GEARS

1.00

1.00

1.35

1.00

1.00

1.00

1.50

1.19

0.146

0.267

Open

0.048

0.046

F/D P =

0.71

[0.50 < F/D P < 2.00]

0.083

0.050

Bending Stress Cycle Factor: Y NP =

Table 9-11 Use 1.00 for R = .99

11,564 psi

1.00

1.00

1.00

1.00

Fig. 9-22

Fig. 9-22

Fig. 9-21

Fig. 9-21

See Fig. 9-19 or

Table 9-9

See Fig. 9-18 or

0.99

0.94

1.01

0.97

Gear: Required s ac = 119,695 psi Table 9-9 Specify materials, alloy and heat treatment, for most severe requirement. One possible material specification: Pinion: Through hardened, 301 HB min, SAE 4340 OQT 1100, HB = 321 Pinion: Through hardened, 281 HB min, SAE 4340 OQT 1100, HB = 321

Stress Analysis: Pitting Pinion: Required s ac = 126,062 psi

17,347 psi Gear: Required s at =

0.99

Pitting Stress Cycle Factor: Z NG = Stress Analysis: Bending Pinion: Required s at =

0.94

1.01

0.97 Pitting Stress Cycle Factor: Z NP =

Bending Stress Cycle Factor: Y NG =

Fo

Oth

<---

5

Use 1.00 if no unusual conditions 0.8

[Computed: See Fig. 9-16]

Fig. 9-14: Use 1.00 if solid blank

Fig. 9-14: Use 1.00 if solid blank

Table 9-2: Use 1.00 if P d >= 5

Table 9-1

[Computed]

Figure 9-13

0.146

Commer. Precision Ex. Prec.

Figure 9-12

0.048

If F>1.0

Enter: Design Life: 1500 hours See Table 9-12 Guidelines: Y N , Z N Pinion - Number of load cycles: N P = 1.4E+08 7 >107 <107 Gear - Number of load cycles: N G = 1.6E+07 10 cycles

Reliability Factor: K R =

Service Factor: SF =

Dynamic Factor: K v =

Gear Rim Thickness Factor: K BG =

Pinion Rim Thickness Factor: K BP =

Size Factor: K s =

Overload Factor: K o =

Alignment Factor: K m =

Enter: C ma =

Mesh Alignment Factor, C ma =

Type of gearing:

Enter: C pf =

Pinion Proportion Factor, C pf =

Rack and pinion driven by a fluid power motor Problem 78 - First reduction Factors in Design Analysis: Alignment Factor, K m =1.0+C pf +C ma If F<1.0


267

NP = nG = NG =

Number of Pinion Teeth: Desired Output Speed: d number of gear teeth: osen No. of Gear Teeth:

C= vt = Wt =

Center Distance: Pitch Line Speed: Transmitted Load:

2.667

Max

Gear

s c = 151,889 psi

Gear Pinion

17,793 psi s c = 151,889 psi

st =

Pinion

Fig. 9-10 Fig. 9-17

Computed basic stresses: s t = 26,858 psi

Fig. 9-10

73 J P = 0.265

16

Gear: J G = 0.400 itting Geometry Factor: I = 0.102 REF: m G = 4.56

ding Geometry Factors: Pinion:

. of teeth, Pinion, Gear:

ommended range of ratio: 0.50 < F/D P < 2.00 nter: Elastic Coefficient: Cp = 2300 Table 9-7 Enter: Quality Number: A v = 11 Table 9-4

0.94

2.000 2.500 in

F=

Nom

1372 lb

1.333

e width/pinion diameter: F/D P =

e Width Guidelines (in): Enter: Face Width:

Min

Secondary Input Data:

12.167 in

DG =

Pitch Diameter - Gear: 7.417 in 120 ft/min

2.667 in

4.56

37.76 rpm

DP =

Gear Ratio:

73

72.2

38.2 rpm

Pitch Diameter - Pinion:

nG = mG =

Actual Output Speed:

omputed data:

6

Pd =

Diametral Pitch: 16

172.3 rpm

P= nP =

Input Power:

5 hp

APPLICATION:

Input Speed:

tial Input Data:

F SPUR GEARS

1.00

1.00

1.15

1.00

1.00

1.00

1.50

F/D P =

0.94 [0.50 < F/D P < 2.00]

0.099

0.063

Bending Stress Cycle Factor: Y NP =

Table 9-11 Use 1.00 for R = .99

17,109 psi

1.00

1.00

1.00

1.00

Fig. 9-22

Fig. 9-22

Fig. 9-21

Fig. 9-21

See Fig. 9-19 or

Table 9-9

See Fig. 9-18 or

1.03

0.99

1.04

1.01

Same material used for both Pair 1 and Pair2; Different tempering temperatures.

Same material and heat treatment used for pinion and gear.

Comments:

Gear: Required s ac = 147,465 psi Table 9-9 Specify materials, alloy and heat treatment, for most severe requirement. One possible material specification: Pinion: Through hardened, 386 HB min, SAE 4340 OQT 900, HB = 388 Pinion: Through hardened, 368 HB min, SAE 4340 OQT 900, HB = 388

Stress Analysis: Pitting Pinion: Required s ac = 153,423 psi

26,592 psi Gear: Required s at =

1.03

Pitting Stress Cycle Factor: Z NG = Stress Analysis: Bending Pinion: Required s at =

0.99

1.04

1.01 Pitting Stress Cycle Factor: Z NP =

Bending Stress Cycle Factor: Y NG =

Fo

Oth

<---

5

Use 1.00 if no unusual conditions 0.

[Computed: See Fig. 9-16]

Fig. 9-14: Use 1.00 if solid blank

Fig. 9-14: Use 1.00 if solid blank

Table 9-2: Use 1.00 if P d >= 5

Table 9-1

[Computed]

Figure 9-13

0.166

Commer. Precision Ex. Prec.

Figure 9-12

0.088

If F>1.0

Enter: Design Life: 1500 hours See Table 9-12 Pinion - Number of load cycles: N P = 1.6E+07 Guidelines: Y N , Z N 7 >107 <107 Gear - Number of load cycles: N G = 3.4E+06 10 cycles

Reliability Factor: K R =

Service Factor: SF =

Dynamic Factor: K v =

Gear Rim Thickness Factor: K BG =

Pinion Rim Thickness Factor: K BP =

Size Factor: K s =

Overload Factor: K o =

1.25

0.166

Enter: C ma = Alignment Factor: K m =

0.288

Open

0.088

0.069

Mesh Alignment Factor, C ma =

Type of gearing:

Enter: C pf =

Pinion Proportion Factor, C pf =

Rack and pinion driven by a fluid power motor Problem 78 - Second reduction Factors in Design Analysis: Alignment Factor, K m =1.0+C pf +C ma If F<1.0


79.

Gear drive for a lift truck. Rolling wheel is the inverse of a pinion driving a rack. at centerline of wheel equals speed of lift truck. /12

Wheel /

v = 20 mi/hr

560.23 rpm

Motor rotational speed = 3000 rpm Train value This

3000/560.23

Floor

5.355

could be produced by one pair of gears. However, for the power required, the gear

would be too large to attach to axle with 12 in wheel. Use double reduction. 2.94 Motor

Whee l

1.81 Gear drive 3000

563.7 rpm ‐ Slightly higher than target

Floor 6 for Pair 1 and

Notes: Gears have large.

2.50 in,

5 for Pair 2. Face widths are relatively

3.00 in. Redesign with helical gears should allow a

smaller system. Also all gears use same material and heat treatment. Life Calculation: 99 840 hr Use L Design decisions:

1.00

1.50

268

100 000 h

One failure in 10 000;

0.9999


269

er of gear teeth: . of Gear Teeth:

5.583 in 2225 ft/min 297 lb

C= vt = Wt =

Center Distance: tch Line Speed: ansmitted Load:

71442 psi 71442 psi

sc = sc =

Gear

Pinion

Gear

Pinion

5430 psi 4187 psi

st =

Fig. 9-10 Fig. 9-17

Gear: J G = 0.380 eometry Factor: I = 0.097 REF: m G = 2.94 d stresses: s t =

Fig. 9-10

J P = 0.293

ometry Factors: Pinion:

Table 9-4

Av = 7

Quality Number:

commended ratio F/D P < 2.00 Cp = 2300 astic Coefficient:

2.667

Table 9-7

F= 0.88

2.000 2.500 in

1.333

pinion diameter: F/D P =

Guidelines (in): er: Face Width:

Min

Max

8.333 in

DG =

Diameter - Gear:

Nom

2.833 in

DP =

ameter - Pinion:

Secondary Input Data:

2.94

mG =

1020.0 rpm

50

51.0

Gear Ratio:

Output Speed:

nG =

NG =

d Output Speed:

d data:

nG =

of Pinion Teeth: 1000 rpm

6 17

Pd = NP =

Diametral Pitch:

20 hp 3000 rpm

P= nP =

Input Power:

APPLICATION:

Input Speed:

ut Data:

R GEARS

1.50

1.00

1.19

1.00

1.00

1.00

1.50

1.25

0.166

0.288

Open

0.082

0.063

Bending Stress Cycle Factor: Y NP =

0.063

Ex. Prec.

Fig. 9-14: Use 1.00 if solid blank

6,901 psi

Fig. 9-22

Fig. 9-22

Fig. 9-21

Fig. 9-21

See Fig. 9-19 or

Table 9-9

See Fig. 9-18 or

0.86

0.84

0.91

0.89

<107

Same material used for pinion and gear because contact stresses are similar.

Comments:

Gear: Requires HB 297: SAE 4340 OQT 1100; HB 321, 19% elongation

Pinion: Requires HB 306: SAE 4340 OQT 1100; HB 321, 19% elongation

Gear: Required s ac = 124,609 psi Table 9-9 Specify materials, alloy and heat treatment, for most severe requirement. One possible material specification:

Stress Analysis: Pitting Pinion: Required s ac = 127,576 psi

9,152 psi

1.00

1.00

1.00

1.00

>107

See Table 9-12 Guidelines: Y N , Z N

Table 9-11 Use 1.00 for R = .99

Use 1.00 if no unusual conditions

[Computed: See Fig. 9-16]

Gear: Required s at =

0.86

Pitting Stress Cycle Factor: Z NG =

0.099

Fig. 9-14: Use 1.00 if solid blank

Stress Analysis: Bending Pinion: Required s at =

0.84

Pitting Stress Cycle Factor: Z NP =

0.91

0.89

0.88

Table 9-2: Use 1.00 if P d >= 5

Table 9-1

[Computed]

Figure 9-13

0.166

Commer. Precision

Gear - Number of load cycles: N G = 6.1E+09 107 cycles Bending Stress Cycle Factor: Y NG =

F/D P =

[0.50 < F/DP < 2.00] Figure 9-12

0.082

Enter: Design Life: 100000 hours Pinion - Number of load cycles: N P = 1.8E+10

Reliability Factor: K R =

Service Factor: SF =

Dynamic Factor: K v =

Gear Rim Thickness Factor: K BG =

Pinion Rim Thickness Factor: K BP =

Size Factor: K s =

Overload Factor: K o =

Alignment Factor: K m =

Enter: C ma =

Mesh Alignment Factor, C ma =

Type of gearing:

Enter: C pf =

Pinion Proportion Factor, Cpf =

Industrial lift truck drive to wheels - Driven by a DC motor Problem 79 - First pair Factors in Design Analysis: Alignment Factor, K m=1.0+C pf +C ma If F <1.0 If F >1.0


[Problems 80 to 83 are single‐reduction gear pairs made from plastic gears.]

270

er of gear teeth: . of Gear Teeth:

5.900 in 1122 ft/min 588 lb

C= vt = Wt =

Center Distance: tch Line Speed: ansmitted Load:

75676 psi 75676 psi

sc = sc =

Gear

Pinion

Gear

Pinion

6338 psi 5504 psi

st =

Fig. 9-10 Fig. 9-17

Gear: J G = 0.380 eometry Factor: I = 0.092 REF: m G = 1.81 d stresses: s t =

Fig. 9-10

J P = 0.330

ometry Factors: Pinion:

Table 9-4

Av = 7

Quality Number:

commended ratio F/D P < 2.00 Cp = 2300 astic Coefficient:

3.200

Table 9-7

F= 0.71

2.400 3.000 in

1.600

pinion diameter: F/D P =

Guidelines (in): er: Face Width:

Min

Max

7.600 in

DG =

Diameter - Gear:

Nom

4.200 in

DP =

ameter - Pinion:

Secondary Input Data:

1.81

mG =

563.7 rpm

38

Gear Ratio:

Output Speed:

nG =

NG =

d Output Speed:

d data:

560.23 rpm

nG =

of Pinion Teeth: 38.2

5 21

Pd = NP =

Diametral Pitch:

20 hp 1020 rpm

P= nP =

Input Power:

APPLICATION:

Input Speed:

ut Data:

R GEARS

1.50

1.00

1.14

1.00

1.00

1.00

1.50

1.24

0.173

0.296

Open

0.071

0.046

Bending Stress Cycle Factor: Y NP =

0.068

Ex. Prec.

Fig. 9-14: Use 1.00 if solid blank

8,974 psi

Fig. 9-22

Fig. 9-22

Fig. 9-21

Fig. 9-21

See Fig. 9-19 or

Table 9-9

See Fig. 9-18 or

0.87

0.86

0.92

0.91

<107

Same material used for pinion and gear because contact stresses are similar.

Comments:

Gear: Requires HB 315: SAE 4340 OQT 1100; HB 321, 19% elongation

Pinion: Requires HB 320: SAE 4340 OQT 1100; HB 321, 19% elongation

Gear: Required s ac = 130,475 psi Table 9-9 Specify materials, alloy and heat treatment, for most severe requirement. One possible material specification:

Stress Analysis: Pitting Pinion: Required s ac = 131,992 psi

10,447 psi

1.00

1.00

1.00

1.00

>107

See Table 9-12 Guidelines: Y N , Z N

Table 9-11 Use 1.00 for R = .99

Use 1.00 if no unusual conditions

[Computed: See Fig. 9-16]

Gear: Required s at =

0.87

Pitting Stress Cycle Factor: Z NG =

0.105

Fig. 9-14: Use 1.00 if solid blank

Stress Analysis: Bending Pinion: Required s at =

0.86

Pitting Stress Cycle Factor: Z NP =

0.92

0.91

0.71

Table 9-2: Use 1.00 if P d >= 5

Table 9-1

[Computed]

Figure 9-13

0.173

Commer. Precision

Gear - Number of load cycles: N G = 3.4E+09 107 cycles Bending Stress Cycle Factor: Y NG =

F/D P =

[0.50 < F/DP < 2.00] Figure 9-12

0.071

Enter: Design Life: 100000 hours Pinion - Number of load cycles: N P = 6.1E+09

Reliability Factor: K R =

Service Factor: SF =

Dynamic Factor: K v =

Gear Rim Thickness Factor: K BG =

Pinion Rim Thickness Factor: K BP =

Size Factor: K s =

Overload Factor: K o =

Alignment Factor: K m =

Enter: C ma =

Mesh Alignment Factor, C ma =

Type of gearing:

Enter: C pf =

Pinion Proportion Factor, Cpf =

Industrial lift truck drive to wheels - Driven by a DC motor Problem 79 - Second pair Factors in Design Analysis: Alignment Factor, K m=1.0+C pf +C ma If F <1.0 If F >1.0


DESIGN OF PLASTIC SPUR GEARS Application: Small band saw driven by an electric motor Problem 80 - One possible design Initial Input Data: Input Power: P = 0.5 hp Input Speed: n P = 860 rpm Diametral Pitch: P d =

12

Number of Pinion Teeth: N P =

18

Desired Output Speed: n G =

266 rpm

Computed number of gear teeth: Enter: Chosen No. of Gear Teeth: N G = Computed data: Actual Output Speed: n G = Gear Ratio: m G =

58.2 58 266.9 rpm 3.222

Pitch Diameter - Pinion: D P =

1.500 in

Pitch Diameter - Gear: D G = Center Distance: C= Pitch Line Speed: v t =

4.833 in 6.333 in 337.7 ft/min

Transmitted Load: W t =

48.84 lb

Secondary Input Data - Pinion: Tooth Form: 20 degree full depth Lewis Form Factor: Y = 0.521 Table 9-15 Safety Factor: SF = 1.50 Ref: Table 9-1 (K o ) Material: Nylon 6000 psi Table 9-14 or Fig. 9-26 Allowable Bending Stress: s at = Required Face Width: Enter: Specified Face Width: Actual Bending Stress in Pinion:

F= F= st =

0.281 in 0.300 in 5624 psi

Secondary Input Data - Gear: Tooth Form: 20 degree full depth Lewis Form Factor: Y = 0.709 Safety Factor: SF = 1.50 Material: Acetal Allowable Bending Stress: s at = 5000 psi Face Width - Gear: F = 0.300 in 4133 psi Actual Bending Stress in Gear: s t =

271

Same as for pinion Table 9-15 Same as for pinion Table 9-14 or Fig. 9-26 Same as for pinion Must be < s at


DESIGN OF PLASTIC SPUR GEARS Application: Paper feed roll driven by an electric motor Problem 81 - One possible design Initial Input Data: Input Power: P = 0.06 hp Input Speed: n P = 88 rpm Diametral Pitch: P d =

20

Number of Pinion Teeth: N P =

16

Desired Output Speed: n G =

21 rpm

Computed number of gear teeth: Enter: Chosen No. of Gear Teeth: N G = Computed data: Actual Output Speed: n G = Gear Ratio: m G =

67.05 67 21.0 rpm 4.188

Pitch Diameter - Pinion: D P =

0.800 in

Pitch Diameter - Gear: D G = C= Center Distance: Pitch Line Speed: v t =

3.350 in 4.150 in 18.4 ft/min

Transmitted Load: W t =

107.4 lb

Secondary Input Data - Pinion: 20 degree stub Tooth Form: Y = 0.578 Lewis Form Factor: Safety Factor: SF = 1.25 Material: Nylon-glass filled Allowable Bending Stress: s at = 12000 psi Required Face Width: Enter: Specified Face Width: Actual Bending Stress in Pinion:

F= F= st =

Table 9-15 Ref: Table 9-1 (K o ) Table 9-14 or Fig. 9-26

0.387 in 0.400 in 11612 psi

Secondary Input Data - Gear: 20 degree stub Tooth Form: Y = 0.782 Lewis Form Factor: Safety Factor: SF = 1.25 Material: Nylon-glass filled Allowable Bending Stress: s at = 12000 psi F = 0.400 in Face Width - Gear: Actual Bending Stress in Gear: s t = 8583 psi

272

Same as for pinion Table 9-15 Same as for pinion Table 9-14 or Fig. 9-26 Same as for pinion Must be < s at


DESIGN OF PLASTIC SPUR GEARS Application: Wheels of remote control car-Electric motor drive Problem 82 - One possible design Initial Input Data: Input Power: P = 0.025 hp 430 rpm Input Speed: n P = Diametral Pitch: P d =

48

Number of Pinion Teeth: N P =

14

Desired Output Speed: n G =

121 rpm

Computed number of gear teeth: Enter: Chosen No. of Gear Teeth: N G = Computed data: Actual Output Speed: n G = Gear Ratio: m G =

49.75 50 120.4 rpm 3.571

Pitch Diameter - Pinion: D P =

0.292 in

Pitch Diameter - Gear: D G = Center Distance: C= Pitch Line Speed: v t =

1.042 in 1.333 in 32.8 ft/min

Transmitted Load: W t =

25.1 lb

Secondary Input Data - Pinion: Tooth Form: 20 degree stub Lewis Form Factor: Y = 0.54 Safety Factor: SF = 1.25 Nylon-unfilled Material: 6000 psi Allowable Bending Stress: s at = Required Face Width: Enter: Specified Face Width: Actual Bending Stress in Pinion:

F= F= st =

Table 9-15 Ref: Table 9-1 (K o ) Table 9-14 or Fig. 9-26

0.465 in 0.470 in 5938 psi

Secondary Input Data - Gear: Tooth Form: 20 degree stub Lewis Form Factor: Y = 0.758 Safety Factor: SF = 1.25 Material: Nylon-unfilled Allowable Bending Stress: s at = 6000 psi Face Width - Gear: F = 0.470 in 4230 psi Actual Bending Stress in Gear: s t =

273

Same as for pinion Table 9-15 Same as for pinion Table 9-14 or Fig. 9-26 Same as for pinion Must be < s at


DESIGN OF PLASTIC SPUR GEARS Application: Food-chopping machine driven by electric motor Problem 83 - One possible design Initial Input Data: Input Power: P = 0.65 hp Input Speed: n P = 1560 rpm Diametral Pitch: P d =

16

Number of Pinion Teeth: N P =

18

Desired Output Speed: n G =

469 rpm

Computed number of gear teeth: Enter: Chosen No. of Gear Teeth: N G = Computed data: Actual Output Speed: n G = Gear Ratio: m G =

59.87 60 468.0 rpm 3.333

Pitch Diameter - Pinion: D P =

1.125 in

Pitch Diameter - Gear: D G = C= Center Distance: Pitch Line Speed: v t =

3.750 in 4.875 in 459.5 ft/min

Transmitted Load: W t =

46.7 lb

Secondary Input Data - Pinion: Tooth Form: 20 degree full depth Y = 0.521 Lewis Form Factor: Table 9-15 Safety Factor: SF = 1.75 Ref: Table 9-1 (K o ) Nylon-unfilled Material: 6000 psi Table 9-14 or Fig. 9-26 Allowable Bending Stress: s at = Required Face Width: Enter: Specified Face Width: Actual Bending Stress in Pinion:

F= F= st =

0.418 in 0.420 in 5971 psi

Secondary Input Data - Gear: Tooth Form: 20 degree full depth Y = 0.713 Lewis Form Factor: Safety Factor: SF = 1.75 Acetal-unfilled Material: 5000 psi Allowable Bending Stress: s at = F = 0.420 in Face Width - Gear: 4363 psi Actual Bending Stress in Gear: s t =

274

Same as for pinion Table 9-15 Same as for pinion Table 9-14 or Fig. 9-26 Same as for pinion Must be < s at


CHAPTER 10 HELICAL GEARS, BEVEL GEARS AND WORMGEARING 1.

Helical Gears:

a)

5.0 hp;

8;

14 °;

45;

.

1250 rpm; Torque

/2

45 8

; 252 ∙ 5.625 /2

W b)

2.00 in;

252 lb ∙ in

5.625 in

89.6 lb

89.6

30°

89.6

1 14 ° 2

15; Drive to a reciprocating pump;

51.7 lb 23.2 lb

1.50

; Assume Approximate

1.0

= 0.38 from Figure 10‐5(a) for a 75‐tooth mate. Modifying K‐factor = 0.97

from Figure 10‐5(b).

Data are for

15° 14 °

Actual

0.38 0.97 /

15 8

1.875 in;

1.0

11: The

/

30°

0.075

5.625 1250 /12

1.55 (Figure 9‐16) 275

12.6°

0.369

1.867; 1.00

/12 Specify

30°

0.075; 0.155

1.23

1841 ft/min

0.155


89.6 8 1.50 1.0 1.23 1.0 1.55 2.00 0.369

89.6 1.50 1.0 1.23 1.55 2.00 1.875 0.20

1960 36 228 psi: c)

2778 psi

estimated from Table 10

1.

Specify cast iron because of low stresses

Gray cast iron – Class 20:

;

2.

16;

48;

.

90.0 lb ∙ in

Helical Gears:

2.50 hp;

1.50 in; Torque

12;

20°;

1750 rpm a)

[From results of Problem 8‐42:

b)

. /

.

8.485;

31.8 lb

45°

31.8 lb

27.2°

1.25

16.4 lb 1.00;

5.657 1750 /12

Centrifugal blower: Let 1.50/1.887

9;

2592 ft/min

0.05; .

. .

0.21;

≅ 0.30

1.40

0.795; .

Pitting:

1.887 in

31.8 lb

; /12

/

27.2°

31.8 lb

/

16 8.485

c)

5.657 in;

. .

1960 for Cast iron

276

0.15; .

.

1.20

1259 psi

45°


.

1960

.

.

.

.

: 3.

Helical Gears:

15 hp;

12;

.

14 °;

45°;

1.00 in

6.00 in;

2.00 in

143 lb

/

;

143

45°

143

143

1 14 ° 2

37.0

1.00

/12

6.00 2200 /12 1.44;

1.00 2.00

;

0.15;

9;

6;

430 lb ∙ in

2.00

b)

,

36;

From the results of Problem 8‐43:

/

.

;

2200 rpm;

a)

. .

0.50;

1.18 3456 ft/min

0.30

,

0.190 Estimated

143 6 1.0 1.18 1.0 1.44 2.0 1.00 0.30 Use nodular (Ductile) iron:

0.025

9720 psi

2050

2050

143 2.0 1.0 1.18 1.44 1.0 2.00 0.19

277

73 300 psi


c)

Specify: Ductile iron ASTM A536 60‐40‐18;

Or Cast Iron, Class 40:

,

Note: Problem 8‐43 gives

Axial Pitch

0.5236 in

Should be

2.0

.

Then 4.

1.91

.

low

Helical Gears:

0.50 hp;

45°;

72;

16;

From Problem 8‐44;

.

a)

/

.

3450 rpm;

24;

0.25 in; Winch

Moderate shock

16.97; .

/12 9;

1.50

0.943 in

.

9.13 lb ∙ in

4.30 lb

/

4.30

Let

14 °

4.243 in;

4.30 lb

b)

,

20°

1.57

4.243 3450 / 12

1.48;

1.00

0.25 0.943

0.265;

;

45° ;

4.30 lb

20.0°

44

3832 ft/min 0.32

≅ 0;

8

;

0.14;

0.25 Estimated

1.14

4.30 16.97 1.50 1.0 1.14 1.0 1.48 0.25 0.32

2308 psi

Try Cast iron: 1960

4.30 1.50 1.0 1.14 1.48 0.25 0.943 0.25

278

26 633 psi


Specify class 20 cast iron; Note: Problem 8‐44 gives Then

0.25 0.1815

, Axial Pitch

0.1815 in

1.35

Should be

Low

2.0

.

SPREADSHEETS FOR SOLUTIONS TO CHAPTER 10 PROBLEMS: The following pages give sample designs for helical gears, bevel gears, and wormgearing. The methods used to create the spreadsheets follow generally materials presented in the pertinent sections of the book and demonstrated in Example Problems in Chapter 10. The spreadsheets are shown in U.S. units. 

Helical gearing is used for Problems 5 to 11.



Bevel gearing is used for Problems 14‐17.



Wormgearing is used for Problems 19‐24.

Because many design decisions are required, other designs are possible. The reader is encouraged to work toward a particular goal of material type, center distance, overall size or other application‐specific goals, creating improved designs. Notes concerning the spreadsheets: 1.

All design approaches involve gearing geometry, force analysis, stress analysis, and

surface durability analysis. 2.

Blue highlighting is used for data that are input by the designer.

3.

Red highlighting is used to identify the various sections of the solution.

4.

Green highlighting is used for the efficiency of the gearing.

279


5.

Light purple highlighting is used for key results for stresses and surface durability

calculations. 6.

Items without highlighting are calculated data.

7.

Care should be used to not change cells where calculations are performed.

8.

Spreadsheets are shown in landscape form to enhance the size of the images. It may

be desirable to print these pages for greater ease of reading. HELICAL GEARING The first spreadsheet shown here is for Example Problem 10‐3 so the user can compare the data in Chapter 10 with the presentation of those data and calculations in spreadsheet form.

280


281

NG =

uted number of gear teeth: Chosen No. of Gear Teeth:

C= vt = Wt =

Center Distance: Pitch Line Speed: Transmitted Load:

15.0

= px =

Helix angle: Axial Pitch:

Fig 10-5,6,7 Tab. 10-1,2

I = 0.202

307 lb 432 lb

Radial Force:

Wr =

3.13

Fig 10-5,6,7

Table 9-5

0.162

0.096

0.061

Table 9-11: Use 1.00 for R = .99

Use 1.00 if no unusual conditions

[Computed: See Fig. 9-16]

Fig. 9-14: Use 1.00 if solid blank

Fig. 9-14: Use 1.00 if solid blank

Table 9-2: Use 1.00 if P d >= 5

Table 9-1

[Computed]

Figure 9-13

38,163 psi

Gear: Required s at =

Fig. 9-22

Fig. 9-22

Fig. 9-21

Fig. 9-21

<107

Table 9-9

See Fig. 9-19 or

Table 9-9

See Fig. 9-18 or

0.91

0.88

0.94

0.93

>107

For Kv :

Red: HB > 4

HB 457

HB 469

HB 328

HB 381

Grade

Through

B = 0.6303 C = 70.71

Gear

Computed contact stress no. = s c = 128,343 psi

Gear Pinion

28,699 psi Computed contact stress no. = s c = 128,343 psi

Computed bending stress no. = s t =

Computed stresses without modifying factors for reliability and life: Pinion Computed bending stress no. = s t = 31,449 psi

Gear requires HRC 58 min.: SAE 4320 SOQT 450; HRC 59; Carburized

Pinion requires HRC 58 min.: SAE 4320 SOQT 450; HRC 59; Carburized

One possible material specification: Steel pinion and gear: Carburized, Grade 1 for through h

Specify materials, alloy and heat treatment, for most severe requirement.

Gear: Required s ac = 176,295 psi

Stress Analysis: Pitting Pinion: Required s ac = 180,257 psi

42,270 psi

1.00

1.00

1.00

1.00

7

Stress Analysis: Bending Pinion: Required s at =

0.91

Pitting Stress Cycle Factor: Z NG =

0.94

0.93

in

J P = 0.480

75

Bending Stress Cycle Factor: Y NP = Bending Stress Cycle Factor: Y NG =

0.89

Table 9-7

F/DP = 1.09 [0.50 < F/DP < 2.00]

Commer. Precision Ex. Prec.

Figure 9-12

0.099

If F>1.0

Gear - Number of load cycles: NG = 6.6E+08 10 cycles

Pitting Stress Cycle Factor: Z NP =

J G = 0.526

24

1.25

1.00

1.35

1.00

1.00

1.00

1.50

1.26

0.162

0.284

Open

0.099

0.084

Enter: Design Life: 10000 hours See Table 9-7 Pinion - Number of load cycles: NP = 2.1E+09 Guidelines: YN , ZN

Reliability Factor: K R =

Service Factor: SF =

Dynamic Factor: Kv =

Gear Rim Thickness Factor: K BG =

Pinion Rim Thickness Factor: K BP =

Size Factor: K s =

Overload Factor: K o =

Alignment Factor: Km =

Enter: C ma =

Mesh Alignment Factor, Cma =

Type of gearing:

Enter: C pf =

Pinion Proportion Factor, Cpf =

Milling machine driven by an electric motor Example Problem 10-3 Factors in Design Analysis: If F<1.0 Alignment Factor, Km =1.0+Cpf +Cma

in

Axial Force: W x =

REF: mG =

Gear: : Pitting Geometry Factor:

ending Geometry Factors: Pinion:

REF: NP, NG =

e Width (2 x Axial Pitch): F min = 2.023 Enter: Face Width: F = 2.250 Enter: Elastic Coefficient: Cp = 2300 Enter: Quality Number: A v = 9

1.012 in

deg

20.65 deg

t =

1147 lb

ransverse pressure angle:

Secondary Input Data:

6.471 in

DG =

Pitch Diameter - Gear: 4.271 in 1870 ft/min

2.071 in

DP =

3.13

1104.0 rpm

75

75.3

Pitch Diameter - Pinion:

Gear Ratio: m G =

Actual Output Speed:

nG =

nG =

Desired Output Speed:

Computed data:

24

Number of Pinion Teeth: 1100 rpm

11.59

Pd = NP =

verse Diametral Pitch, P d :

65 hp 3450 rpm

P= nP =

Input Power:

APPLICATION:

Input Speed:

nitial Input Data:

OF HELICAL GEARS-U.S.


NG =

uted number of gear teeth: Chosen No. of Gear Teeth:

282

3.111 in 2.056 in 314 ft/min 525 lb

DG = C= vt = Wt =

Pitch Diameter - Gear: Center Distance: Pitch Line Speed: Transmitted Load:

in

0.749 1.200

Axial Pitch: ce Width (2 x Axial Pitch): F min = Enter: Face Width: F=

Fig 10-5,6,7 Tab. 10-1,2

I = 0.205

191 lb

Wr =

Radial Force:

245 lb

3.11

Fig 10-5,6,7

J P = 0.453 J G = 0.486

56

Table 9-5

A v = 11 18

Table 9-7

Cp = 2300

in

Axial Force: W x =

REF: mG =

Gear: r: Pitting Geometry Factor:

ending Geometry Factors: Pinion:

REF: NP, NG =

Enter: Elastic Coefficient: Enter: Quality Number:

in

25.0 0.374

= px =

Helix angle:

deg

20.00 deg

t =

Transverse pressure angle:

Secondary Input Data:

1.000 in

DP =

3.11

385.7 rpm

56

Pitch Diameter - Pinion:

Gear Ratio: m G =

Actual Output Speed:

nG =

387.5 rpm

nG =

Desired Output Speed:

Computed data:

18 55.7

18

Pd = NP =

1200 rpm

Number of Pinion Teeth:

nP =

Input Speed:

5 hp

verse Diametral Pitch, P d :

P=

Input Power:

Initial Input Data:

1.00

1.00

1.24

1.00

1.00

F/DP = 1.20 [0.50 < F/DP < 2.00]

0.083

0.050

Table 9-11: Use 1.00 for R = .99

Use 1.00 if no unusual conditions

[Computed: See Fig. 9-16]

Fig. 9-14: Use 1.00 if solid blank

Fig. 9-14: Use 1.00 if solid blank

Table 9-2: Use 1.00 if P d >= 5

Table 9-1

[Computed]

Figure 9-13

0.146

Commer. Precision Ex. Prec.

Figure 9-12

0.098

If F>1.0

39,050 psi

Gear: Required s at =

1.00

1.00

1.00

1.00

Fig. 9-22

Fig. 9-22

Fig. 9-21

Fig. 9-21

<107

Table 9-9

See Fig. 9-19 or

Table 9-9

See Fig. 9-18 or

0.92

0.90

0.96

0.94

>107

For Kv

Red: HB

HB 455

HB 467

HB 340

HB 388

Gra

Throu

B = 0.8 C = 59

Gear

Computed contact stress no. = s c = 161,614 psi

Gear Pinion

37,488 psi Computed contact stress no. = s c = 161,614 psi

Computed bending stress no. = s t =

Computed stresses without modifying factors for reliability and life: Pinion Computed bending stress no. = s t = 40,219 psi

Gear requires HRC 58 min.: SAE 4118 DOQT 300; HRC 62; Carburized

Pinion requires HRC 58 min.: SAE 4118 DOQT 300; HRC 62; Carburized

One possible material specification: Steel pinion and gear: Carburized, Grade 1 for throug

Specify materials, alloy and heat treatment, for most severe requirement.

Gear: Required s ac = 175,668 psi

Stress Analysis: Pitting Pinion: Required s ac = 179,572 psi

42,786 psi

0.92

Pitting Stress Cycle Factor: Z NG = Stress Analysis: Bending Pinion: Required s at =

0.90

0.96

0.94

Pitting Stress Cycle Factor: Z NP =

Bending Stress Cycle Factor: Y NG =

Bending Stress Cycle Factor: Y NP =

Gear - Number of load cycles: NG = 3.5E+08 10 cycles

7

Enter: Design Life: 15000 hours See Table 9-12 Pinion - Number of load cycles: NP = 1.1E+09 Guidelines: YN , ZN

Reliability Factor: K R =

Service Factor: SF =

Dynamic Factor: Kv =

Gear Rim Thickness Factor: K BG =

Pinion Rim Thickness Factor: K BP =

1.00

1.50

Overload Factor: K o = Size Factor: K s =

1.24

0.146

0.267

Open

0.098

0.095

Alignment Factor: Km =

Enter: C ma =

Mesh Alignment Factor, Cma =

Type of gearing:

Enter: C pf =

Pinion Proportion Factor, Cpf =

Factors in Design Analysis: If F<1.0 Alignment Factor, Km =1.0+Cpf +Cma

Problem 10-5

Problem 10‐5 – Helical gearing.


NG =

d number of gear teeth: osen No. of Gear Teeth:

283

C= vt = Wt =

Center Distance: Pitch Line Speed: Transmitted Load:

in

2.345 2.500

Axial Pitch: Width (2 x Axial Pitch): F min = Enter: Face Width: F=

Fig 10-5,6,7 Tab. 10-1,2

I = 0.220

695 lb

Wr =

Radial Force:

512 lb

3.00

Fig 10-5,6,7

J P = 0.480 J G = 0.526

72

Table 9-5

Av = 9 24

Table 9-7

Cp = 2300

in

Axial Force: W x =

REF: mG =

Gear: itting Geometry Factor:

ding Geometry Factors: Pinion:

REF: NP, NG =

nter: Elastic Coefficient: Enter: Quality Number:

in

15.0 1.172

= px =

Helix angle:

deg

20.00 deg

t =

1910 lb

nsverse pressure angle:

Secondary Input Data:

7.200 in

DG =

Pitch Diameter - Gear: 4.800 in 346 ft/min

2.400 in

DP =

3.00

183.3 rpm

72

71.4

185 rpm

24

10

Pitch Diameter - Pinion:

Gear Ratio: m G =

Actual Output Speed:

nG =

nG =

Desired Output Speed:

omputed data:

Pd = NP =

se Diametral Pitch, P d : Number of Pinion Teeth:

20 hp 550 rpm

P= nP =

Input Power:

APPLICATION:

Input Speed:

tial Input Data:

F HELICAL GEARS-U.S.

1.25

1.00

1.16

1.00

1.00

1.00

1.50

F/DP = 1.04 [0.50 < F/DP < 2.00]

0.099

0.063

Table 9-11: Use 1.00 for R = .99

Use 1.00 if no unusual conditions

[Computed: See Fig. 9-16]

Fig. 9-14: Use 1.00 if solid blank

Fig. 9-14: Use 1.00 if solid blank

Table 9-2: Use 1.00 if P d >= 5

Table 9-1

[Computed]

Figure 9-13

0.166

Commer. Precision Ex. Prec.

Figure 9-12

0.098

If F>1.0

38,931 psi

Gear: Required s at =

1.00

1.00

1.00

1.00

Fig. 9-22

Fig. 9-22

Fig. 9-21

Fig. 9-21

<107

Table 9-9

See Fig. 9-19 or

Table 9-9

See Fig. 9-18 or

0.94

0.91

0.97

0.95

>107

For Kv :

Red: HB >

HB 431

HB 448

HB 338

HB 398

Grad

Through

B = 0.63 C = 70.7

Gear

Computed contact stress no. = s c = 126,177 psi

Gear Pinion

30,210 psi Computed contact stress no. = s c = 126,177 psi

Computed bending stress no. = s t =

Computed stresses without modifying factors for reliability and life: Pinion Computed bending stress no. = s t = 33,105 psi

Gear requires HRC 58 min.: SAE 4320 SOQT 450; HRC 59; Carburized

Pinion requires HRC 58 min.: SAE 4320 SOQT 450; HRC 59; Carburized

One possible material specification: Steel pinion and gear: Carburized, Grade 1 for through

Specify materials, alloy and heat treatment, for most severe requirement.

Gear: Required s ac = 167,788 psi

Stress Analysis: Pitting Pinion: Required s ac = 173,320 psi

43,560 psi

0.94

Pitting Stress Cycle Factor: Z NG = Stress Analysis: Bending Pinion: Required s at =

0.91

0.97

0.95

Pitting Stress Cycle Factor: Z NP =

Bending Stress Cycle Factor: Y NG =

Bending Stress Cycle Factor: Y NP =

Gear - Number of load cycles: NG = 1.7E+08 10 cycles

7

Enter: Design Life: 15000 hours See Table 9-12 Guidelines: YN , ZN Pinion - Number of load cycles: NP = 5.0E+08

Reliability Factor: K R =

Service Factor: SF =

Dynamic Factor: Kv =

Gear Rim Thickness Factor: K BG =

Pinion Rim Thickness Factor: K BP =

Size Factor: K s =

Overload Factor: K o =

1.20

0.099

Enter: C ma = Alignment Factor: K m =

0.288

Open

0.098

0.079

Mesh Alignment Factor, Cma =

Type of gearing:

Enter: C pf =

Pinion Proportion Factor, Cpf =

Milling machine driven by an electric motor Problem 10-6 Factors in Design Analysis: If F<1.0 Alignment Factor, K m =1.0+Cpf +Cma

Problem 10‐6 – Helical gearing


C= vt = Wt =

Center Distance: Pitch Line Speed: Transmitted Load:

284 in

2.246 2.500

Axial Pitch: Width (2 x Axial Pitch): F min = Enter: Face Width: F=

Fig 10-5,6,7 Tab. 10-1,2

I = 0.220

637 lb

Wr =

Radial Force:

816 lb

3.96

Fig 10-5,6,7

J P = 0.465 J G = 0.496

95

Table 9-5

Av = 9 24

Table 9-7

Cp = 2300

in

Axial Force: W x =

REF: mG =

Gear: Pitting Geometry Factor:

ding Geometry Factors: Pinion:

REF: NP, NG =

nter: Elastic Coefficient: Enter: Quality Number:

in

25.0 1.123

= px =

Helix angle:

deg

20.00 deg

t =

1751 lb

nsverse pressure angle:

Secondary Input Data:

15.833 in

DG =

Pitch Diameter - Gear: 9.917 in 942 ft/min

4.000 in

DP =

3.96

227.4 rpm

95

Pitch Diameter - Pinion:

Gear Ratio: m G =

Actual Output Speed:

nG =

NG =

omputed data:

ed number of gear teeth: osen No. of Gear Teeth:

94.9

227.5 rpm

nG =

Desired Output Speed:

6 24

Pd = NP =

se Diametral Pitch, P d : Number of Pinion Teeth:

50 hp 900 rpm

P= nP =

Input Power:

APPLICATION:

Input Speed:

tial Input Data:

F HELICAL GEARS-U.S.

1.25

1.00

1.26

1.00

1.00

1.00

1.75

1.22

0.166

0.288

Open

0.056

0.038

F/DP = 0.63 [0.50 < F/DP < 2.00]

0.099

0.063

Table 9-11: Use 1.00 for R = .99

Use 1.00 if no unusual conditions

[Computed: See Fig. 9-16]

Fig. 9-14: Use 1.00 if solid blank

Fig. 9-14: Use 1.00 if solid blank

Table 9-2: Use 1.00 if P d >= 5

Table 9-1

[Computed]

Figure 9-13

0.166

Commer. Precision Ex. Prec.

Figure 9-12

0.056

If F>1.0

29,607 psi

1.00

1.00

1.00

1.00

Fig. 9-22

Fig. 9-22

Fig. 9-21

Fig. 9-21

<107

Table 9-9

See Fig. 9-19 or

Table 9-9

See Fig. 9-18 or

0.93

0.90

0.96

0.94

>107

Gear

Computed contact stress no. = s c = 106,299 psi

Gear Pinion

22,738 psi Computed contact stress no. = s c = 106,299 psi

Computed bending stress no. = s t =

Computed stresses without modifying factors for reliability and life: Computed bending stress no. = s t = 24,254 psi Pinion

Gear requires HB 353 min.: SAE 4140 OQT 900:HB 388

Pinion requires HB 368 min.: SAE 4140 OQT 900:HB 388

One possible material specification: Steel pinion and cast iron gear

Specify materials, alloy and heat treatment, for most severe requirement.

Gear: Required s ac = 142,875 psi

Stress Analysis: Pitting Pinion: Required s ac = 147,637 psi

Gear: Required s at =

32,253 psi

0.93

Pitting Stress Cycle Factor: Z NG = Stress Analysis: Bending Pinion: Required s at =

0.90

0.96

0.94

Pitting Stress Cycle Factor: Z NP =

Bending Stress Cycle Factor: Y NG =

Bending Stress Cycle Factor: Y NP =

Gear - Number of load cycles: NG = 2.0E+08 10 cycles

7

Enter: Design Life: 15000 hours See Table 9-12 Pinion - Number of load cycles: NP = 8.1E+08 Guidelines: YN , ZN

Reliability Factor: K R =

Service Factor: SF =

Dynamic Factor: Kv =

Gear Rim Thickness Factor: K BG =

Pinion Rim Thickness Factor: K BP =

Size Factor: K s =

Overload Factor: K o =

Alignment Factor: Km =

Enter: C ma =

Mesh Alignment Factor, Cma =

Type of gearing:

Enter: C pf =

Pinion Proportion Factor, Cpf =

Punch press driven by an electric motor Problem 10-7 Factors in Design Analysis: If F<1.0 Alignment Factor, Km =1.0+Cpf +Cma

For Kv :

for through

Red: HB >

HB 353

HB 368

HB 217

HB 252

Grad

Through

B = 0.63 C = 70.7

Problem 10‐7 – Helical gearing


NG =

puted number of gear teeth: Chosen No. of Gear Teeth:

285

20.000 in 10.833 in 393 ft/min 210 lb

DG = C= vt = Wt =

Pitch Diameter - Gear: Center Distance: Pitch Line Speed: Transmitted Load:

in

1.123 1.750

Axial Pitch: ace Width (2 x Axial Pitch): F min = Enter: Face Width: F=

Fig 10-5,6,7 Tab. 10-1,2

I = 0.260

98 lb 76 lb

Radial Force:

Wr =

12.00

Fig 10-5,6,7

J P = 0.451 J G = 0.512

240

Table 9-5

A v = 12 20

Table 9-7

Cp = 2100

in

Axial Force: W x =

REF: mG =

Gear: er: Pitting Geometry Factor:

Bending Geometry Factors: Pinion:

REF: NP, NG =

Enter: Elastic Coefficient: Enter: Quality Number:

in

25.0 0.561

= px =

Helix angle:

deg

20.00 deg

t =

Transverse pressure angle:

Secondary Input Data:

1.667 in

DP =

12.00

75.0 rpm

240

Pitch Diameter - Pinion:

Gear Ratio: m G =

Actual Output Speed:

nG =

75 rpm

nG =

Desired Output Speed:

Computed data:

20 240.0

12

Pd = NP =

Number of Pinion Teeth:

900 rpm

nP =

Input Speed: sverse Diametral Pitch, P d :

2.5 hp

P=

APPLICATION:

Input Power:

Initial Input Data:

N OF HELICAL GEARS-U.S.

1.00

1.00

1.33

1.00

1.00

1.00

2.00

1.37

0.276

0.276

Open

0.089

0.080

F/DP = 1.05 [0.50 < F/DP < 2.00]

0.090

0.056

Table 9-11: Use 1.00 for R = .99

Use 1.00 if no unusual conditions

[Computed: See Fig. 9-16]

Fig. 9-14: Use 1.00 if solid blank

Fig. 9-14: Use 1.00 if solid blank

Table 9-2: Use 1.00 if P d >= 5

Table 9-1

[Computed]

Figure 9-13

0.154

Commer. Precision Ex. Prec.

Figure 9-12

0.089

If F>1.0

Gear: Required s at =

68,583 psi

72,310 psi

10,295 psi

1.00

1.00

1.00

1.00

Fig. 9-22

Fig. 9-22

Fig. 9-21

Fig. 9-21

<107

Table 9-9

See Fig. 9-19 or

Table 9-9

See Fig. 9-18 or

0.97

0.92

0.99

0.95

>107

10,192 psi 66,525 psi 66,525 psi

Computed bending stress no. = s t = Computed contact stress no. = s c = Computed contact stress no. = s c =

Gear

Pinion

Gear

Computed stresses without modifying factors for reliability and life: Pinion Computed bending stress no. = s t = 11,571 psi

Gear: Gray cast iron-Grade 40; s at = 13 ksi; s ac = 75 ksi (Table 9-10)

Pinion requires HB 134 min.: SAE 1020 CD:HB 160 - or almost any steel

One possible material specification: Steel pinion and cast iron gear

Specify materials, alloy and heat treatment, for most severe requirement.

Gear: Required s ac =

Stress Analysis: Pitting Pinion: Required s ac =

12,180 psi

0.97

Pitting Stress Cycle Factor: Z NG = Stress Analysis: Bending Pinion: Required s at =

0.92

0.99

0.95

Pitting Stress Cycle Factor: Z NP =

Bending Stress Cycle Factor: Y NG =

Bending Stress Cycle Factor: Y NP =

Gear - Number of load cycles: NG = 3.6E+07 10 cycles

7

Enter: Design Life: 8000 hours See Table 9-12 Guidelines: YN , ZN Pinion - Number of load cycles: NP = 4.3E+08

Reliability Factor: K R =

Service Factor: SF =

Dynamic Factor: Kv =

Gear Rim Thickness Factor: K BG =

Pinion Rim Thickness Factor: K BP =

Size Factor: K s =

Overload Factor: K o =

Alignment Factor: Km =

Enter: C ma =

Mesh Alignment Factor, Cma =

Type of gearing:

Enter: C pf =

Pinion Proportion Factor, Cpf =

Small cement mixer driven by a gasoline engine Problem 10-8 Factors in Design Analysis: If F<1.0 Alignment Factor, Km =1.0+Cpf +Cma

For Kv :

for through

Red: HB >

HB 123

HB 134

HB -32

HB -8

Grad

Through

B = 0.91 C = 54.7

Problem 10‐8 – Helical gearing


nG = NG =

Desired Output Speed:

puted number of gear teeth: Chosen No. of Gear Teeth:

286

9.000 in 6.667 in 2496 ft/min 992 lb

DG = C= vt = Wt =

Pitch Diameter - Gear: Center Distance: Pitch Line Speed: Transmitted Load:

in

2.246 2.500

Axial Pitch:

ace Width (2 x Axial Pitch): F min = Enter: Face Width: F=

Fig 10-5,6,7 Tab. 10-1,2

I = 0.196

462 lb 361 lb

Radial Force:

Wr =

2.08

Fig 10-5,6,7

J P = 0.426 J G = 0.492

54

Table 9-5

Av = 9 26

Table 9-7

Cp = 2300

in

Axial Force: W x =

REF: mG =

Gear: er: Pitting Geometry Factor:

Bending Geometry Factors: Pinion:

REF: NP, NG =

Enter: Elastic Coefficient: Enter: Quality Number:

in

25.0 1.123

= px =

Helix angle:

deg

20.00 deg

t =

Transverse pressure angle:

Secondary Input Data:

4.333 in

DP =

2.08

4569.2 rpm

54

53.8

Pitch Diameter - Pinion:

Gear Ratio: m G =

Actual Output Speed:

nG =

26

NP =

Number of Pinion Teeth:

Computed data:

6

Pd =

sverse Diametral Pitch, P d : 4550 rpm

75 hp 2200 rpm

P= nP =

Input Power:

APPLICATION:

Input Speed:

Initial Input Data:

N OF HELICAL GEARS-U.S.

0.033

1.00

1.00

1.44

1.00

1.00

1.00

2.75

1.34

0.288

0.288

Open

0.051

0.051

[0.50 < F/DP < 2.00]

0.099

0.063

Table 9-11: Use 1.00 for R = .99

Use 1.00 if no unusual conditions

[Computed: See Fig. 9-16]

Fig. 9-14: Use 1.00 if solid blank

Fig. 9-14: Use 1.00 if solid blank

Table 9-2: Use 1.00 if P d >= 5

Table 9-1

[Computed]

Figure 9-13

0.166

Commer. Precision Ex. Prec.

Figure 9-12

27,011 psi

Gear: Required s at =

1.00

1.00

1.00

1.00

Fig. 9-22

Fig. 9-22

Fig. 9-21

Fig. 9-21

<107

Table 9-9

See Fig. 9-19 or

Table 9-9

See Fig. 9-18 or

0.91

0.90

0.95

0.94

>107

Gear

Computed contact stress no. = s c = 114,456 psi

Gear Pinion

25,660 psi Computed contact stress no. = s c = 114,456 psi

Computed bending stress no. = s t =

Computed stresses without modifying factors for reliability and life: Computed bending stress no. = s t = 29,638 psi Pinion

Gear requires HB 300 min.: SAE 3140 OQT 1000 steel; HB = 311

Pinion requires HB 305 min.: SAE 3140 OQT 1000 steel; HB = 311

One possible material specification: Steel pinion and gear: Through hardened

Specify materials, alloy and heat treatment, for most severe requirement.

Gear: Required s ac = 125,776 psi

Stress Analysis: Pitting Pinion: Required s ac = 127,173 psi

31,529 psi

0.91

Pitting Stress Cycle Factor: Z NG = Stress Analysis: Bending Pinion: Required s at =

0.90

0.95

0.94

Pitting Stress Cycle Factor: Z NP =

Bending Stress Cycle Factor: Y NG =

Bending Stress Cycle Factor: Y NP =

Gear - Number of load cycles: NG = 5.1E+08 10 cycles

7

Enter: Design Life: 8000 hours See Table 9-12 Guidelines: YN , ZN Pinion - Number of load cycles: NP = 1.1E+09

Reliability Factor: K R =

Service Factor: SF =

Dynamic Factor: Kv =

Gear Rim Thickness Factor: K BG =

Pinion Rim Thickness Factor: K BP =

Size Factor: K s =

Overload Factor: K o =

Alignment Factor: K m =

Enter: C ma =

Mesh Alignment Factor, Cma =

Type of gearing:

Enter: C pf =

Pinion Proportion Factor, Cpf =

Wood chipper driven by a gasoline engine Problem 10-9 Speed increaser - cells changed Factors in Design Analysis: If F<1.0 If F>1.0 Alignment Factor, K m =1.0+Cpf +Cma F/DP = 0.58

For Kv :

for through

Red: HB >

HB 300

HB 305

HB 184

HB 242

Grade

Through

B = 0.63 C = 70.7

Problem 10‐9 – Helical gearing: Note that this design is for a speed increaser. Modest adjustments in the manner if inputting data are used.


NG =

Desired Output Speed: puted number of gear teeth: Chosen No. of Gear Teeth:

6

287

20.333 in 11.917 in 412 ft/min 1601 lb

DG = C= vt = Wt =

Pitch Diameter - Gear: Center Distance: Pitch Line Speed: Transmitted Load:

25.0

= px =

Helix angle: Axial Pitch:

1.00

1.00

1.27

1.00

1.00

1.00

Bending Stress Cycle Factor: Y NP =

REF: NP, NG =

Fig 10-5,6,7 Tab. 10-1,2

I = 0.240

746 lb 583 lb

Radial Force:

Wr =

5.81

Fig 10-5,6,7

J P = 0.444 J G = 0.494

122

Axial Force: W x =

REF: mG =

Gear: er: Pitting Geometry Factor:

21

0.061

Table 9-11: Use 1.00 for R = .99

Use 1.00 if no unusual conditions

[Computed: See Fig. 9-16]

Fig. 9-14: Use 1.00 if solid blank

Fig. 9-14: Use 1.00 if solid blank

7

37,194 psi

Gear: Required s at =

1.00

1.00

1.00

1.00

Fig. 9-22

Fig. 9-22

Fig. 9-21

Fig. 9-21

<107

Table 9-9

See Fig. 9-19 or

Table 9-9

See Fig. 9-18 or

0.97

0.93

0.99

0.96

>107

Pinion Gear

Gear Computed contact stress no. = s c = 138,176 psi

36,822 psi Computed contact stress no. = s c = 138,176 psi

Computed bending stress no. = s t =

Computed stresses without modifying factors for reliability and life: Pinion Computed bending stress no. = s t = 40,969 psi

Gear requires HB 352 min.: SAE 4340 OQT 1000; HB 363

Pinion requires HB 371 min.: SAE 4340 OQT 900:HB 388

One possible material specification: Steel pinion and gear: Through hardened

Specify materials, alloy and heat treatment, for most severe requirement.

Gear: Required s ac = 142,449 psi

Stress Analysis: Pitting Pinion: Required s ac = 148,576 psi

42,676 psi

0.97

Pitting Stress Cycle Factor: Z NG =

in

Bending Geometry Factors: Pinion:

0.096

Table 9-2: Use 1.00 if P d >= 5

Table 9-1

[Computed]

Stress Analysis: Bending Pinion: Required s at =

0.93

Pitting Stress Cycle Factor: Z NP =

0.99

0.96

in

Bending Stress Cycle Factor: Y NG =

ace Width (2 x Axial Pitch): F min = 2.246 Enter: Face Width: F = 2.250 Enter: Elastic Coefficient: Cp = 2300 Enter: Quality Number: A v = 11 Table 9-5

0.162 Figure 9-13

Gear - Number of load cycles: NG = 3.7E+07 10 cycles

in

Table 9-7

F/DP = 0.64 [0.50 < F/DP < 2.00]

Commer. Precision Ex. Prec.

Figure 9-12

0.055

If F>1.0

Enter: Design Life: 8000 hours See Table 9-12 Guidelines: Y N , ZN Pinion - Number of load cycles: NP = 2.2E+08

Reliability Factor: K R =

Service Factor: SF =

Dynamic Factor: K v =

Gear Rim Thickness Factor: K BG =

Pinion Rim Thickness Factor: K BP =

Size Factor: K s =

1.22 2.75

Overload Factor: K o =

0.162

0.284

Open

0.055

0.039

Alignment Factor: Km =

Enter: C ma =

Mesh Alignment Factor, Cma =

Type of gearing:

Enter: C pf =

Pinion Proportion Factor, Cpf =

Small tractor driven by a gasoline engine Problem 10-10 Factors in Design Analysis: If F<1.0 Alignment Factor, Km =1.0+Cpf +Cma

1.123

deg

20.00 deg

t =

Transverse pressure angle:

Secondary Input Data:

3.500 in

DP =

5.81

77.5 rpm

122

121.9

77.5 rpm

21

Pitch Diameter - Pinion:

Gear Ratio: m G =

Actual Output Speed:

nG =

nG =

Number of Pinion Teeth:

Computed data:

Pd = NP =

sverse Diametral Pitch, P d :

20 hp 450 rpm

P= nP =

Input Power:

APPLICATION:

Input Speed:

Initial Input Data:

N OF HELICAL GEARS-U.S.

For K v :

for through

Red: HB >

HB 352

HB 371

HB 316

HB 386

Grad

Through

B = 0.82 C = 59.7

Problem 10‐10 – Helical gearing


NG =

d number of gear teeth: osen No. of Gear Teeth:

288

2.083 in 1.875 in 1963 ft/min 252 lb

DG = C= vt = Wt =

Pitch Diameter - Gear: Center Distance: Pitch Line Speed: Transmitted Load:

1.25

1.00

1.36

1.00

1.00

1.00

1.20

1.20

0.147

0.268

Open

0.053

0.050

Fig 10-5,6,7 Tab. 10-1,2

I = 0.150

118 lb 92 lb

Radial Force:

Wr =

1.25

Fig 10-5,6,7

J P = 0.418 J G = 0.432

25

Table 9-5

Axial Force: W x =

REF: mG =

Gear: itting Geometry Factor:

ding Geometry Factors: Pinion:

20

0.84

Pitting Stress Cycle Factor: Z NG =

in

REF: NP, NG =

0.83

Pitting Stress Cycle Factor: Z NP =

in

Width (2 x Axial Pitch): F min = 1.123 Enter: Face Width: F = 1.250 ter: Elastic Coefficient: Cp = 2300 Enter: Quality Number: A v = 9

0.083

0.051

Table 9-11: Use 1.00 for R = .99

Use 1.00 if no unusual conditions

[Computed: See Fig. 9-16]

Fig. 9-14: Use 1.00 if solid blank

Fig. 9-14: Use 1.00 if solid blank

Table 9-2: Use 1.00 if P d >= 5

Table 9-1

[Computed]

7

15,397 psi

Gear: Required s at =

1.00

1.00

1.00

1.00

Fig. 9-22

Fig. 9-22

Fig. 9-21

Fig. 9-21

<107

Table 9-9

See Fig. 9-19 or

Table 9-9

See Fig. 9-18 or

0.84

0.83

0.89

0.88

>107

10,962 psi 91,382 psi 91,382 psi

Computed bending stress no. = s t = Computed contact stress no. = s c = Computed contact stress no. = s c =

Gear

Pinion

Gear

Computed stresses without modifying factors for reliability and life: Computed bending stress no. = s t = 11,329 psi Pinion

Gear requires HB 332 min.: SAE 4340 OQT 1000; HB 363

Pinion requires HB 337 min.: SAE 4340 OQT 1000:HB 363

One possible material specification: Steel pinion and gear: Through hardened

Specify materials, alloy and heat treatment, for most severe requirement.

Gear: Required s ac = 135,985 psi

Stress Analysis: Pitting Pinion: Required s ac = 137,623 psi

16,093 psi

0.89

Stress Analysis: Bending Pinion: Required s at =

Bending Stress Cycle Factor: Y NG =

0.88

Axial Pitch:

Bending Stress Cycle Factor: Y NP =

in

25.0 0.561

= px =

Helix angle:

Table 9-10

0.147 Figure 9-13

Gear - Number of load cycles: NG = 2.2E+10 10 cycles

20.00 deg

t = deg

F/DP = 0.75 [0.50 < F/DP < 2.00]

Commer. Precision Ex. Prec.

Figure 9-12

0.053

Enter: Design Life: 100000 hours See Table 9-12 Guidelines: YN , ZN Pinion - Number of load cycles: NP = 2.7E+10

Reliability Factor: K R =

Service Factor: SF =

Dynamic Factor: Kv =

Gear Rim Thickness Factor: K BG =

Pinion Rim Thickness Factor: K BP =

Size Factor: K s =

Overload Factor: K o =

Alignment Factor: Km =

Enter: C ma =

Mesh Alignment Factor, Cma =

Type of gearing:

Enter: C pf =

Pinion Proportion Factor, Cpf =

Electric power generator driving by a water turbine Problem 10-11 Factors in Design Analysis: If F<1.0 If F>1.0 Alignment Factor, Km =1.0+Cpf +Cma

nsverse pressure angle:

Secondary Input Data:

1.667 in

DP =

1.25

3600.0 rpm

25

25.0

3600 rpm

20

12

Pitch Diameter - Pinion:

Gear Ratio: m G =

Actual Output Speed:

nG =

nG =

Desired Output Speed:

mputed data:

Pd = NP =

se Diametral Pitch, P d : Number of Pinion Teeth:

15 hp 4500 rpm

P= nP =

Input Power:

APPLICATION:

Input Speed:

ial Input Data:

F HELICAL GEARS-U.S.

For Kv :

for through

Red: HB >

HB 332

HB 337

HB 34

HB 43

Grad

Through

B = 0.63 C = 70.7

Problem 10‐11 – Helical gearing


7.765 in

DG = C= vt = Wt =

Pitch Diameter - Gear: Center Distance: Pitch Line Speed: Load at P min Capacity:

289 75

REF: mG =

Gear: ing Geometry Factor:

Tab. 10-1,2

I = 0.200 3.75

Fig. 10-5,6,7

J G = 0.521

ng Geometry Factors: Press. angle = 20 deg Pinion: J P = 0.465 Fig. 10-5,6,7

20

0.92

Pitting Stress Cycle Factor: Z NG =

nsmission Capacity: 22.59 hp er: Elastic Coefficient: Cp = 2300 nter: Quality Number: A v = 12 REF: NP, NG =

0.89

Pitting Stress Cycle Factor: Z NP =

ed on Contact Stress: 24.14 hp

Table 9-5

0.099

0.063

Use 1.00 if no unusual conditions Fig. 9-25 or 9-26; Gear only Table 9-11 Use 1.00 for R = .99

[Computed: See Fig. 9-16]

Fig. 9-14: Use 1.00 if solid blank

Fig. 9-14: Use 1.00 if solid blank

Table 9-2: Use 1.00 if P d >= 5

Table 9-1

[Computed]

Figure 9-13

0.166

Commer. Precision Ex. Prec.

39,200 psi

1.00

1.00

1.00

1.00

Fig. 9-24

Fig. 9-24

Fig. 9-22

Fig. 9-22

Table 9-9

See Fig. 9-19 or

Table 9-9

See Fig. 9-18 or

0.92

0.89

0.95

0.93

29,165 psi 29,792 psi 98,897 psi 102,230 psi

Computed bending stress no. = s t = Computed bending stress no. = s t = Computed contact stress no. = s c = Computed contact stress no. = s c =

Pinion material: AISI 4140 OQT 1000 Gear material: AISI 4140 OQT 1000

gear

pinion

gear

pinion

341 HB 341 HB

Material specification: Steel pinion; Steel gear, Through HT

Gear: s ac = 138,900 psi

Allowable Contact Stress Numbers: (Input) Pinion: s ac = 138,900 psi

Gear: s at =

Allowable Bending Stress Numbers: (Input) Pinion: s at = 39,200 psi

0.95

0.93

Bending Stress Cycle Factor: Y NP = Bending Stress Cycle Factor: Y NG =

Table 9-7

1.25

1.00 1.00

1.50

1.00

1.00

1.00

F/D P = 1.21 [0.50 < F/D P < 2.00]

Figure 9-12

0.114

If F>1.0

Enter: Design Life: 15000 hours See Table 9-12 Pinion - Number of load cycles: N P = 1.6E+09 Guidelines: Y N , Z N 7 >107 <107 Gear - Number of load cycles: N G = 4.1E+08 10 cycles

Reliability Factor: K R =

Service Factor: SF = Hardness Ratio Factor: C H =

Dynamic Factor: K v =

Gear Rim Thickness Factor: K BG =

Pinion Rim Thickness Factor: K BP =

Size Factor: K s =

47.41 hp

d on Bending Stress:

1.28

Alignment Factor: K m = 1.25

0.166

Enter: C ma = Overload Factor: K o =

0.288

Open

0.114

0.096

Mesh Alignment Factor, C ma =

Type of gearing:

Enter: C pf =

Pinion Proportion Factor, C pf =

Centrifugal pump driven by an electric motor Problem 10-12 Factors in Design Analysis: Alignment Factor, K m=1.0+C pf +C ma If F<1.0

ed on Contact Stress: 22.59 hp

ed on Bending Stress: 41.43 hp

ransmission Capacity: (Using Eq. 9-35, 9-37)

797 lb

4.918 in 935 ft/min

2.071 in

DP =

3.75

460.0 rpm

tch Diameter - Pinion:

Gear Ratio: m G =

Actual Output Speed:

nG =

75

NG =

Number of Gear Teeth:

mputed data:

20

9.659

Pd = NP =

Diametral Pitch:

1725 rpm

2.500 in

APPLICATION:

mber of Pinion Teeth:

nP =

Input Speed:

ARS ANSMISSION CAPACITY al Input Data: Enter: Face Width: F =

138.9 ks

138.9 ks

39.2 ks

39.2 ks

Gra

Throu

0 54

For K B A

Problem 10‐12 – Helical gearing: Note that this problems calls for rating the transmission capacity of the gear set. Modest adjustments in the spreadsheet are used.


nG =

7.765 in

DG = C= vt = Wt =

Pitch Diameter - Gear: Center Distance: Pitch Line Speed: Load at Pmin Capacity:

290 75

REF: mG =

Gear: ing Geometry Factor:

Tab. 10-1,2

I = 0.200 3.75

Fig. 10-5,6,7

J G = 0.521

ng Geometry Factors: Press. angle = 20 deg Pinion: J P = 0.465 Fig. 10-5,6,7

20

0.92

Pitting Stress Cycle Factor: Z NG =

nsmission Capacity: 37.94 hp er: Elastic Coefficient: Cp = 2300 nter: Quality Number: A v = 12 REF: NP, NG =

0.89

Pitting Stress Cycle Factor: Z NP =

ed on Contact Stress: 40.54 hp

Table 9-5

[0.50 < F/D P < 2.00]

0.099

0.063

Use 1.00 if no unusual conditions Fig. 9-25 or 9-26; Gear only Table 9-11 Use 1.00 for R = .99

[Computed: See Fig. 9-16]

Fig. 9-14: Use 1.00 if solid blank

Fig. 9-14: Use 1.00 if solid blank

Table 9-2: Use 1.00 if P d >= 5

Table 9-1

[Computed]

Figure 9-13

0.166

Commer. Precision Ex. Prec.

55,000 psi

1.00

1.00

1.00

1.00

Fig. 9-22

Fig. 9-22

Fig. 9-21

Fig. 9-21

Table 9-9

See Fig. 9-19 or

Table 9-9

See Fig. 9-18 or

0.92

0.89

0.95

0.93

40,920 psi 41,800 psi 128,160 psi 132,480 psi

Computed bending stress no. = s t = Computed bending stress no. = s t = Computed contact stress no. = s c = Computed contact stress no. = s c =

Pinion material: SAE 4620 DOQT 300 Gear material: SAE 4620 DOQT 300

gear

pinion

gear

pinion

62 HRC 62 HRC

Material specification: Steel pinion+gear, Carburized case hard.

Gear: s ac = 180,000 psi

Allowable Contact Stress Numbers: (Input) Pinion: s ac = 180,000 psi

Gear: s at =

Allowable Bending Stress Numbers: (Input) Pinion: s at = 55,000 psi

0.95

0.93

Bending Stress Cycle Factor: Y NP = Bending Stress Cycle Factor: Y NG =

Table 9-7

1.25

1.00 1.00

1.50

1.00

1.00

1.00

0.114 Figure 9-12

Enter: Design Life: 15000 hours See Table 9-12 Guidelines: Y N , Z N Pinion - Number of load cycles: N P = 1.6E+09 7 >107 <107 Gear - Number of load cycles: N G = 4.1E+08 10 cycles

Reliability Factor: K R =

Service Factor: SF = Hardness Ratio Factor: C H =

Dynamic Factor: K v =

Gear Rim Thickness Factor: K BG =

Pinion Rim Thickness Factor: K BP =

Size Factor: K s =

66.52 hp

d on Bending Stress:

1.28

Alignment Factor: K m = 1.25

0.166

Enter: C ma = Overload Factor: K o =

0.288

Open

ed on Contact Stress: 37.94 hp

ed on Bending Stress: 58.12 hp

ransmission Capacity: (Using Eq. 9-35, 9-37)

1338 lb

4.918 in 935 ft/min

2.071 in

DP =

3.75

460.0 rpm

tch Diameter - Pinion:

Gear Ratio: m G =

Actual Output Speed:

mputed data:

0.096 0.114

Mesh Alignment Factor, C ma =

Type of gearing:

20 75

NP = NG =

mber of Pinion Teeth: Number of Gear Teeth:

Enter: C pf =

Pinion Proportion Factor, C pf =

1725 rpm 9.659

Pd =

Diametral Pitch:

Centrifugal pump driven by an electric motor Problem 10-13; Same as Problem 10-12 except case hardened steel Factors in Design Analysis: F/D P = 1.21 Alignment Factor, K m=1.0+C pf +C ma If F<1.0 If F>1.0

nP =

2.500 in

APPLICATION:

Input Speed:

ARS ANSMISSION CAPACITY al Input Data: Enter: Face Width: F =

49.1 ks

49.1 ks

17.6 ks

17.6 ks

Gra

Throu

0. 54

For K B= A=

Problem 10‐13 – Helical gearing: Note that this problems calls for rating the transmission capacity of the gear set. Modest adjustments in the spreadsheet are used. Also, this is a modest change from Problem 12 with case hardened steel.


8 16

Pd = NP = nG = NG = nG =

ametral Pitch: Pinion Teeth: Output Speed: of gear teeth: of Gear Teeth: mputed data: utput Speed:

291 3.162 in

= = Ao = vt =

angle - Pinion: one distance: h Line Speed: ress analysis: Max

A v = 11 J P = 0.230

ality Number: actor - Pinion:

312 lb 35.9 lb 108 lb

- Radial load: W rG = r - Axial load: W xG =

787.5 lb-in

TG = ngential load: W tG =

haft - Torque:

108 lb 35.9 lb

- Radial load: W rP = n - Axial load: W xP =

0.842 in 20 degrees 312 lb [Eq. 10-10]

rm =

essure angle: = ngential load: W tP =

dius of pinion:

Factor - Gear: J G = 0.187 Fig. 10-15 metry Factor: I = 0.076 Fig. 10-19 ue for shaft and bearing load analysis: haft - Torque: T P = 262.5 lb-in

Fig. 10-15

Table 9-5

1.000 in Cp = 2300 Table 9-7

1.250

ic Coefficient:

Max 1.054

Nom

263 lb

314 ft/min

uidelines (in): 0.949 Face Width: F =

dary Input Data:

Wt =

71.57 degrees

DG =

meter - Gear: angle - Gear:

6.000 in

DP = 18.43 degrees

3.00 2.000 in

mG =

Gear Ratio: meter - Pinion:

200.0 rpm

48

48.0

200 rpm

2.5 hp 600 rpm

P= nP =

Input Power:

APPLICATION:

Input Speed:

l Input Data:

EARS

0.948

2.700

107,938 psi

7,502 psi

9,227 psi

Figure 9-21

Figure 9-17

Figure 9-17

1.109

Gear: HB 247 required: SAE 6150 OQT 1300; HB = 241

Gear: Required s ac = 107,938 psi Figure 9-21 Specify materials, alloy and heat treatment, for most severe requirement. One possible material specification: Pinion: HB 247 required: SAE 6150 OQT 1300; HB = 241

Pinion: Required s ac =

Stress Analysis: Pitting

Gear: Required s at =

Stress Analysis: Bending Pinion: Required s at =

>104

5.599E-01

9.479E-01

>103but<3x106 >3x106 cyc.

number of cycles.

Input value from pertinent

See Table 9-12

Table 9-11; ;Use 1.00 for R = .99

Figure 10-16 <103 Cyc.

1.8E+08

F >3.15 0.83 Use 1.00 if no unusual conditions

15000 hours 5.4E+08

0.5<F<3.15 0.563

Use 0.50 if P d > 15

Computed: Table 9-6

F <0.5 0.50

0.513

Table 9-1

Neither gear straddle mounted

4 Stress cycle factor-Pitting Figure 10-20 <10 Cyc. Enter Stress cycle factor-Pitting, C L = 1.109 2.000

Enter Stress cycle factor-Bending, K L =

Stress cycle factor-Bending

Gear - Number of load cycles: N G =

Enter: Design Life: Pinion - Number of load cycles: N P =

1.00

1.00

Reliability Factor: K R =

1.239

Service Factor: SF =

0.56

Dynamic Factor: K v =

Fig. 10-18-Gear Size Factor: C s =

0.513

1.50

Figure 10-13-Pinion Size Factor: K s =

1.004

Enter K m =

1.254

1.104

1.004

Overload Factor: K o =

Neither gear straddle mounted:

One gear straddle mounted:

Both gears straddle mounted:

Load with moderate shock driven by an electric motor Example Problems 10-6, 7, 8 Both gears straddle mounted Factors in Design Analysis: Load distribution factor, K m: From Figure 10-14 and Equation 10-16

F

Bevel Gearing ‐ Example Problems – This is the first of a set of five spreadsheets dealing with bevel gearing. This page uses data from Example Problems 10‐6, ‐7, and ‐8. Following pages give solutions to the four end‐of‐chapter problems.


292

15

3.00 2.500 in 7.500 in 71.57 degrees 3.953 in

NP = nG = NG = nG = mG = DP = DG = = = Ao = vt = Wt =

Pinion Teeth: Output Speed: of gear teeth: of Gear Teeth: puted data: utput Speed: Gear Ratio: meter - Pinion: meter - Gear: ngle - Pinion: angle - Gear: one distance: h Line Speed: ess analysis: Max

Av = 8 J P = 0.228

ality Number: actor - Pinion:

599 lb 68.9 lb 207 lb

- Radial load: W rG = r - Axial load: W xG =

1890 lb-in

haft - Torque:

TG = ngential load: W tG =

207 lb 68.9 lb

- Radial load: W rP = n - Axial load: W xP =

1.052 in 20 degrees 599 lb [Eq. 10-10]

rm =

essure angle: = ngential load: W tP =

dius of pinion:

Factor - Gear: J G = 0.190 Fig. 10-15 metry Factor: I = 0.074 Fig. 10-19 ue for shaft and bearing load analysis: haft - Torque: T P = 630 lb-in

Fig. 10-15

Table 9-5

1.250 in Cp = 2300 Table 9-7

1.667

c Coefficient:

Max 1.318

Nom

504 lb

196 ft/min

18.43 degrees

100.0 rpm

45

45.0

100 rpm

uidelines (in): 1.186 Face Width: F =

ary Input Data:

6

Pd =

ametral Pitch:

300 rpm

P= nP =

Input Power:

3 hp

APPLICATION:

Input Speed:

l Input Data:

EARS

1.006

Use 1.00 if no unusual conditions

1.007

2.700

15,075 psi

131,709 psi

12,563 psi

Figure 9-21

Figure 9-17

Figure 9-17

1.274

>104

8.397E-01

Gear: HB 238 required: SAE 6150 OQT 1300; HB = 241

1.007E+00

>103but<3x106 >3x106 cyc.

number of cycles.

Gear: Required s ac = 131,709 psi Figure 9-21 Specify materials, alloy and heat treatment, for most severe requirement. One possible material specification: Pinion: HB 295 required: SAE 6150 OQT 1200; HB = 295

Pinion: Required s ac =

Stress Analysis: Pitting

Gear: Required s at =

Stress Analysis: Bending Pinion: Required s at =

See Table 9-12 Input value from pertinent Figure 10-16 <103 Cyc.

6.0E+06

F >3.15 0.83

Table 9-11; ;Use 1.00 for R = .99 1000 hours 1.8E+07

0.5<F<3.15 0.594

Use 0.50 if P d > 15

Computed: Table 9-6

F <0.5 0.50

0.522

Table 9-1

Neither gear straddle mounted

4 Stress cycle factor-Pitting Figure 10-20 <10 Cyc. Enter Stress cycle factor-Pitting, C L = 1.274 2.000

Enter Stress cycle factor-Bending, K L =

Stress cycle factor-Bending

Gear - Number of load cycles: N G =

Enter: Design Life: Pinion - Number of load cycles: N P =

1.00

1.00

Reliability Factor: K R =

1.091

Service Factor: SF =

0.594

Dynamic Factor: K v =

Fig. 10-18-Gear Size Factor: C s =

0.522

2.00

Overload Factor: K o = Figure 10-13-Pinion Size Factor: K s =

1.256

1.256

1.106

Enter K m =

Neither gear straddle mounted:

One gear straddle mounted:

Both gears straddle mounted:

Concrete mixer with moderate shock driven by a gasoline engine Problem 10-14 Neither gear straddle mounted Factors in Design Analysis: Load distribution factor, K m: From Figure 10-14 and Equation 10-16

F

Problem 10‐14 – Bevel gearing


293 63.43 degrees 2.795 in

nG = NG = nG = mG = DP = DG = = = Ao = vt =

ed Output Speed: mber of gear teeth: No. of Gear Teeth: Computed data: al Output Speed: Gear Ratio: Diameter - Pinion: h Diameter - Gear: one angle - Pinion: cone angle - Gear: ter cone distance: Pitch Line Speed:

Max

A v = 10 J P = 0.228

: Quality Number: ry Factor - Pinion:

Fig. 10-15

Table 9-5

Table 9-7

rm =

161 lb 26.3 lb 53 lb

ear - Radial load: W rG = Gear - Axial load: W xG =

352.8 lb-in

TG = - Tangential load: W tG =

ar Shaft - Torque:

53 lb 26.3 lb

nion - Axial load: W xP =

20 degrees 161 lb [Eq. 10-10]

1.093 in

nion - Radial load: W rP =

r: Pressure angle: = - Tangential load: W tP =

n radius of pinion:

etry Factor - Gear: J G = 0.218 Fig. 10-15 Geometry Factor: I = 0.083 Fig. 10-19 orque for shaft and bearing load analysis: on Shaft - Torque: T P = 176.4 lb-in

Cp = 2300

Elastic Coefficient:

1.000 0.700 in - Low

Max 0.932

Nom

141 lb

818 ft/min

26.57 degrees

625.0 rpm

50

50.0

625 rpm

25

10

th Guidelines (in): 0.839 nter: Face Width: F =

condary Input Data:

Wt =

5.000 in

NP =

er of Pinion Teeth:

d: stress analysis:

2.00 2.500 in

Pd =

Diametral Pitch:

1250 rpm

P= nP =

Input Power:

3.5 hp

APPLICATION:

Input Speed:

nitial Input Data:

EL GEARS

1.002

0.936

2.700

115,859 psi

15,005 psi

15,694 psi

Figure 9-21

Figure 9-17

Figure 9-17

0.993

Gear: HB 293 required: SAE 4140 OQT 1100; HB = 311

Gear: Required s ac = 115,859 psi Figure 9-21 Specify materials, alloy and heat treatment, for most severe requirement. One possible material specification: Pinion: HB 309 required: SAE 4140 OQT 1100; HB = 311

Pinion: Required s ac =

Stress Analysis: Pitting

Gear: Required s at =

Stress Analysis: Bending Pinion: Required s at =

>104

0.513

0.936

>103but<3x106 >3x106 cyc.

number of cycles.

Input value from pertinent

See Table 9-12

Table 9-11; ;Use 1.00 for R = .99

Figure 10-16 <103 Cyc.

5.63E+08

F >3.15 0.83 Use 1.00 if no unusual conditions 15000 hours 1.13E+09

0.5<F<3.15 0.525

Use 0.50 if P d > 15

Computed: Table 9-6

F <0.5 0.50

0.508

Table 9-1

Neither gear straddle mounted

4 Stress cycle factor-Pitting Figure 10-20 <10 Cyc. Enter Stress cycle factor-Pitting, C L = 0.993 2.000

Enter Stress cycle factor-Bending, K L =

Stress cycle factor-Bending

Gear - Number of load cycles: N G =

Enter: Design Life: Pinion - Number of load cycles: N P =

1.00

1.00

Reliability Factor: K R =

1.305

Service Factor: SF =

0.525

Dynamic Factor: K v =

Fig. 10-18-Gear Size Factor: C s =

0.508

2.00

Overload Factor: K o = Figure 10-13-Pinion Size Factor: K s =

1.252

1.252

1.102

Enter K m =

Neither gear straddle mounted:

One gear straddle mounted:

Both gears straddle mounted:

Conveyor with moderate shock driven by a gasoline engine Problem 10-15 Neither gear straddle mounted Factors in Design Analysis: Load distribution factor, K m: From Figure 10-14 and Equation 10-16

F

Problem 10‐15 – Bevel gearing


294 70.56 degrees 3.380 in

nG = NG = nG = mG = DP = DG = = = Ao = vt =

ed Output Speed: mber of gear teeth: No. of Gear Teeth: Computed data: al Output Speed: Gear Ratio: Diameter - Pinion: Diameter - Gear: ne angle - Pinion: one angle - Gear: ter cone distance: Pitch Line Speed:

Max

A v = 10 J P = 0.240

: Quality Number: ry Factor - Pinion:

395 lb 47.9 lb 136 lb

ear - Radial load: W rG = Gear - Axial load: W xG =

1050 lb-in

ar Shaft - Torque:

TG = - Tangential load: W tG =

136 lb 47.9 lb

ion - Radial load: W rP = nion - Axial load: W xP =

0.938 in 20 degrees 395 lb [Eq. 10-10]

rm =

r: Pressure angle: = - Tangential load: W tP =

n radius of pinion:

etry Factor - Gear: J G = 0.192 Fig. 10-15 Geometry Factor: I = 0.078 Fig. 10-19 orque for shaft and bearing load analysis: on Shaft - Torque: T P = 370.59 lb-in

Fig. 10-15

Table 9-5

1.125 in Cp = 2300 Table 9-7

1.250

Elastic Coefficient:

Max 1.127

Nom

330 lb

501 ft/min

19.44 degrees

300.0 rpm

51

51.0

300 rpm

18

8

th Guidelines (in): 1.014 nter: Face Width: F =

ondary Input Data:

Wt =

6.375 in

NP =

er of Pinion Teeth:

: stress analysis:

2.83 2.250 in

Pd =

Diametral Pitch:

850 rpm

P= nP =

Input Power:

5 hp

APPLICATION:

Input Speed:

nitial Input Data:

EL GEARS

1.005

Use 1.00 if no unusual conditions

0.942

2.700

136,032 psi

10,615 psi

13,268 psi

Figure 9-21

Figure 9-17

Figure 9-17

1.016

>104

0.537

Gear: HB 330 required: SAE 1340 OQT 1100; HB = 331

0.942

>103but<3x106 >3x106 cyc.

number of cycles.

Gear: Required s ac = 136,032 psi Figure 9-21 Specify materials, alloy and heat treatment, for most severe requirement. One possible material specification: Pinion: HB 330 required: SAE 1340 OQT 1100; HB = 331

Pinion: Required s ac =

Stress Analysis: Pitting

Gear: Required s at =

Stress Analysis: Bending Pinion: Required s at =

See Table 9-12 Input value from pertinent Figure 10-16 <103 Cyc.

2.7E+08

F >3.15 0.83

Table 9-11; ;Use 1.00 for R = .99 15000 hours 7.7E+08

0.5<F<3.15 0.578

Use 0.50 if P d > 15

Computed: Table 9-6

F <0.5 0.50

0.513

Table 9-1

Neither gear straddle mounted

4 Stress cycle factor-Pitting Figure 10-20 <10 Cyc. Enter Stress cycle factor-Pitting, C L = 1.016 2.000

Enter Stress cycle factor-Bending, K L =

Stress cycle factor-Bending

Gear - Number of load cycles: N G =

Enter: Design Life: Pinion - Number of load cycles: N P =

1.00

1.00

Reliability Factor: K R =

1.241

Service Factor: SF =

0.578

Dynamic Factor: K v =

Fig. 10-18-Gear Size Factor: C s =

0.513

2.00

Overload Factor: K o = Figure 10-13-Pinion Size Factor: K s =

1.005

1.255

1.105

Enter K m =

Neither gear straddle mounted:

One gear straddle mounted:

Both gears straddle mounted:

Heavy-duty conveyor with moderate shock driven by a gasoline engine Problem 10-16 Both gears straddle mounted Factors in Design Analysis: Load distribution factor, K m: From Figure 10-14 and Equation 10-16

F

Problem 10‐16 – Bevel gearing


295 75.17 degrees 1.759 in

nG = NG = nG = mG = DP = DG = = = Ao = vt =

ed Output Speed: mber of gear teeth: No. of Gear Teeth: Computed data: al Output Speed: Gear Ratio: Diameter - Pinion: h Diameter - Gear: cone angle - Gear: ter cone distance: Pitch Line Speed: : stress analysis: Max

A v = 11 J P = 0.252

: Quality Number: ry Factor - Pinion:

68 lb 6.3 lb 24 lb

ear - Radial load: W rG = Gear - Axial load: W xG =

99.167 lb-in

TG = - Tangential load: W tG =

ar Shaft - Torque:

24 lb 6.3 lb

ion - Radial load: W rP = nion - Axial load: W xP =

0.386 in 20 degrees 68 lb [Eq. 10-10]

rm =

r: Pressure angle: = - Tangential load: W tP =

n radius of pinion:

etry Factor - Gear: J G = 0.208 Fig. 10-15 Geometry Factor: I = 0.086 Fig. 10-19 orque for shaft and bearing load analysis: on Shaft - Torque: T P = 26.25 lb-in

Fig. 10-15

Table 9-5

0.500 in Cp = 2300 Table 9-7

0.500

Elastic Coefficient:

Max 0.586

Nom

58 lb

424 ft/min

14.83 degrees

476.5 rpm

68

68.2

475 rpm

18

th Guidelines (in): 0.528 nter: Face Width: F =

condary Input Data:

Wt =

3.400 in

NP =

er of Pinion Teeth:

ne angle - Pinion:

3.78 0.900 in

Pd =

Diametral Pitch: 20

0.75 hp 1800 rpm

P= nP =

Input Power:

APPLICATION:

Input Speed:

nitial Input Data:

EL GEARS

Use 1.00 if no unusual conditions

0.930

2.700

119,148 psi

9,196 psi

11,142 psi

Figure 9-21

Figure 9-17

Figure 9-17

0.971

>104

0.491

Gear: HB 280 required: SAE 1340 OQT 1200; HB = 293

0.930

>103but<3x106 >3x106 cyc.

number of cycles.

Gear: Required s ac = 119,148 psi Figure 9-21 Specify materials, alloy and heat treatment, for most severe requirement. One possible material specification: Pinion: HB 280 required: SAE 1340 OQT 1200; HB = 293

Pinion: Required s ac =

Stress Analysis: Pitting

Gear: Required s at =

Stress Analysis: Bending Pinion: Required s at =

See Table 9-12 Input value from pertinent Figure 10-16 <103 Cyc.

4.3E+08

F >3.15 0.83

Table 9-11; ;Use 1.00 for R = .99 15000 hours 1.6E+09

0.5<F<3.15 0.500

Use 0.50 if P d > 15

Computed: Table 9-6

F <0.5 0.50

0.497

Table 9-1

Neither gear straddle mounted

4 Stress cycle factor-Pitting Figure 10-20 <10 Cyc. Enter Stress cycle factor-Pitting, C L = 0.971 2.000

Enter Stress cycle factor-Bending, K L =

Stress cycle factor-Bending

Gear - Number of load cycles: N G =

Enter: Design Life: Pinion - Number of load cycles: N P =

1.00

1.00

Reliability Factor: K R =

1.277

Service Factor: SF =

0.500

Dynamic Factor: K v =

Fig. 10-18-Gear Size Factor: C s =

0.500

1.75

Overload Factor: K o = Figure 10-13-Pinion Size Factor: K s =

1.001

1.251

1.101

1.001

Enter K m =

Neither gear straddle mounted:

One gear straddle mounted:

Both gears straddle mounted:

Reciprocating saw driven by an electric motor Problem 10-17 Both gears straddle mounted Factors in Design Analysis: Load distribution factor, K m: From Figure 10-14 and Equation 10-16

F

Problem 10‐17 – Bevel gearing


WORMGEARING 18.

[Shown here are data from the solution to Problem 8‐52 that has the same

requirements]

924 lb ∙ in,

30 rpm ∙

Forces:

462 lb

.

/

/

Pitch Line Speed of Gear Sliding Velocity

/

From Figure 10‐25;

31.4/

4.57

.

.

.

.

.

.

.

.

.

.

.

Input Power Efficiency

. .

Friction Power Loss

100%

0.44

. .

Pitting Because

0.185

0.625 hp

70.4% 30 40

Input Speed Stress

15.5 lb (Equation 10‐32)

0.185 hp

0.185 /

27

120 lb (Equation 10‐31)

. .

Friction Force

394 ft/min

53 lb (Equation 10‐30)

.

. .

31.4 ft/min

0.0323 Computed from Equation 10 .

462

4.00 30 /12

.

1000 4.00

.

. .

1200 rpm 24 235 psi

0.625 0.814 0.427

659 lb

– Ok for pitting

(The spreadsheet solution to Problem 10‐18 is on the following page.)

296


1 40 40

NG = NG =

n =

Required No. of gear teeth: Specify No. of gear teeth: Normal pressure angle:

297 L= =

[Used given face width]

0.625 in

Effective gear face width:

Fe =

Sliding velocity:

0.735 in 0.8375 in

Nominal gear face width:

F eG =

Enter: C m = 4.200 in

D tG =

Gear Ratio: m G =

1000

<2.5 in

6 to 20

0.427

0.427

<700

0.814

#NUM!

1143 1

>25 in <

0.439 0.642

700-3000 >3000

Actual v s = 39

>76 Actual m G = 40

0.814 0.885

20 to 76

<8 in

1137 1000

>8 in

1000 Sand Cast

903

>2.5 in

NOTE: For the Ratio correction factor, if #NUM! appears, the argument of equation for C m is negative resulting in an invelid result.

*

659 lb 462 lb Satisfactory Suggest using larger face width; Approx. 0.75 in, to reduce bending stress

Rated tangential load: W tR = Must be > W t =

Enter: C v =

Velocity factor: C v =

Ratio correction factor: C m =

Gear throat diameter:

*

1.789 in

Enter: Materials factor: C s =

Centrifugally cast: C s =

Chill cast or forged: C s =

DG → Sand cast: C s =

Surface Durability: [Hardened steel worm; bronze gear] Type of bronze ↓

D RW =

Max effective gear face width: 0.67*D W =

0.100 --------> 0.100 0.125 0.150 0 0.313 in 0.974 [Stress slightly high]

14.5 20 25 Lewis form factor, y

Normal pressure angle

Bending stress on gear: 24223 psi [Using effective gear face w Allowable stresses-Bronze: Manganese = 17000 psi; Phosphor = 24000 p

Normal circular pitch: Dynamic factor: K v =

Bending Stress on Gear: Enter: Lewis form factor: y =

Stresses:

70.3 %

0.626 hp

0.440 hp

Power input: Efficiency:

F Wnom =

1.019 in

Worm 53 120 462

15.6 lb

Gear 462 120 53

0.186 hp

Worm root diameter:

1.450 in

D oW =

Worm outside diameter:

394 ft/min 0.032 If v s > 10 ft/min

Power loss - friction:

Power output from gear:

Power:

Forces: (lb) Tangential: Radial: Axial: Friction force, W f =

Coefficient of friction:

Sliding velocity v s =

Additional Computed Results: Pitch line speed - Gear: 31.42 ft/min

Nominal worm face length:

0.116 in

0.100 in

a= b=

Dedendum:

4.574 deg

0.314 in

0.314 in

Addendum:

Lead angle:

p xW =

Lead of the worm:

Should be >1.6 and <3.0 pG = 0.314 in

Axial pitch of worm:

Circular pitch of gear:

1.250 in DW = C= 2.625 in C 0.875 /D W = 1.86

4.000 in

DG =

Gear pitch diameter: Specify worm diameter: Actual center distance:

40

VR =

Actual velocity ratio:

Computed Results and Additional Inputs: nW = 1200 rpm Actual input speed:

14.5 degrees

10

NW =

30 rpm 40

No. of worm threads:

924 lb-in

To =

Problem: 10-18

Output speed: nG = Velocity Ratio: VR = Design Decisions: Diametral pitch: Pd =

Desired output torque:

Input Data:

Wormgearing - Design

Spreadsheet solution to Problem 10-18. Small differences from the solution on the preceding page are due to rounding differences and reading of data from graphs, rather than calculations.




Comments on the following Problems 19 and 20:

 These problems have three distinct solutions for the three configurations described in the Problem 19 statement. Also, Problem 20 uses the same data and calls for calculating the efficiency. These results are integrated in the spreadsheet. Each configuration is presented in a separate spreadsheet called: o

19a and 20a

o

19b and 20b

o

19c and 20c



The three solutions are followed by a summary and comparison of the results.

 You are advised to review the text coverage of Wormgearing in Chapters 8 and 10, evaluate each solution yourself, and compare your observations with the summary presented here.  Furthermore, you are advised to work toward improving the performance of any particular version of the solutions by changing the given data and any design decisions that were used in the given solutions.  As an example, following the summary page presented after Problems 19c and 20c is a modified version of problems 19a and 20a. o Note that the solution to the given Problem 19a calls for using a worm diameter, DW = 1.00 in. This resulted in a value for the center distance that is below the range defined in Equation 8‐27: 1.6 < C0.875/DW < 3.0 Thus the worm diameter is too large. o The modified solution reduces the worm diameter to DW = 0.700 in, bringing the center distance into the recommended range. This is an example of how the spreadsheet can be used to iterate on design decisions to work toward a desirable solution.

298


1 20 20

NG = NG =

n =

No. of gear teeth: No. of gear teeth: al pressure angle:

299 0.096 in 1.167 in

a= b=

Addendum: Dedendum:

F G2 = Fe =

ce width-Eq. 8-30: d gear face width:

0.500 in

0.500 in

0.601 in

1.833 in

1.054 in

0.807 in

Design decision

D tG = F G1 =

ce width-Eq. 8-28:

F Wnom =

worm face length: ar throat diameter:

D oW = D RW =

outside diameter: orm root diameter:

0.083 in

4.764 deg

0.262 in

L= =

Lead angle:

Lead of the worm:

0.262 in

p xW =

xial pitch of worm:

DW = 1.000 in center distance: C= 1.333 in C 0.875 /D W = 1.29 LOW r worm diameter Should be >1.6 and <3.0 pG = cular pitch of gear: 0.262 in

D G = 1.66667 in

ar pitch diameter: fy worm diameter:

20

VR =

tual velocity ratio:

ted Results and Additional Inputs: nW = ctual input speed: 1800 rpm

14.5 degrees

12

NW =

90 rpm 20

of worm threads:

202 lb-in

To =

Problem: 10-19a and 20a

Output speed: nG = Velocity Ratio: VR = Design Decisions: Diametral pitch: Pd =

Trial output torque:

Input Data:

aring - Design ve procedure] 473 ft/min Worm 28 63 242

72.9 %

0.396 hp

0.107 hp

0.289 hp

7.5 lb

Gear 242 63 28

14.5 20 25 30 Lewis form factor, y

Normal pressure angle, n

0.030 If v s > 10 ft/min - Eq. 10-27

1000

<2.5 in

<8 in

1311 1000

>8 in

1211 1000

>25 in <25 in

1000 Chilled cast phosphor bronze

1084

0.392

0.392

<700

0.819

0.820

0.395 0.557

700-3000 >3000

0.819 1.017 Actual v s = 473

242 lb Eq. 10-42 242 lb Adjusted output torque until limits reached on either bending or surface durab Using chilled phosphur bronze, surface durability controls this design.

Rated tangential load: W tR = Must be > W t =

Enter: C v =

Velocity factor: C v =

Sliding velocity:

Enter: C m =

Ratio correction factor: C m =

Gear Ratio: m G = 6 to 20 20 to 76 >76 Actual m G = 20

Enter: Materials factor: C s =

Centrifugally cast: C s =

Chill cast or forged: C s =

Sand cast: C s =

Type of bronze:/D G ---> >2.5 in

Surface Durability: [Hardened steel worm; bronze gear]

0.100 --------> 0.100 0.125 0.150 0.175 Normal circular pitch: 0.261 in Dynamic factor: K v = 0.968 Bending stress on gear: 19190 psi- Using specified gear face width Allowable stresses-Bronze: Manganese = 17000 psi; Phosphor = 24000 psi

Bending Stress on Gear: Enter: Lewis form factor: y =

Stresses:

Efficiency:

Power input:

Power loss - friction:

Power output from gear:

Power:

Forces: (lb) Tangential: Radial: Axial: Friction force, W f =

Coefficient of friction:

Sliding velocity v s =

Additional Computed Results: Pitch line speed - Gear: 39.27 ft/min

Problems 10‐19a and 10‐20a – Wormgearing


2 40 40

NG = NG =

n =

No. of worm threads: ed No. of gear teeth: ify No. of gear teeth: rmal pressure angle:

300 D G = 3.33333 in

Gear pitch diameter: ecify worm diameter:

L= = a=

Lead of the worm: Addendum:

0.807 in 1.491 in

D RW = F Wnom = D tG =

Worm root diameter: al worm face length: Gear throat diameter: inal gear face width:

0.096 in

84.1 %

14.5 20 25 30 Lewis form factor, y

Normal pressure angle, n

1000

<2.5 in

<8 in

1173 1000

>8 in

1157 1000

>25 in <25 in

1000 Chilled Cast - Phosphor bronze

940

Sliding velocity: 0.670 in 0.500 in

ctive gear face width:

0.390

0.390

<700

0.819

0.820

0.393 0.553

700-3000 >3000

0.819 1.017 Actual v s = 478

418 lb 290 lb Adjusted output torque until limits reached on either bending or surface durab Bending stress controls this design

Rated tangential load: W tR = Must be > W t =

Enter: C v =

Velocity factor: C v =

0.601 in

F eG =

Ratio correction factor: C m =

Gear Ratio: m G = 6 to 20 20 to 76 >76 Actual m G = 20

Enter: Materials factor: C s =

Centrifugally cast: C s =

Chill cast or forged: C s =

Sand cast: C s =

Type of bronze:/D G ---> >2.5 in

Surface Durability: [Hardened steel worm; bronze gear]

0.100 --------> 0.100 0.125 0.150 0.175 Normal circular pitch: 0.258 in Dynamic factor: K v = 0.939 Bending stress on gear: 23963 psi [Using effective gear face width Allowable stresses-Bronze: Manganese = 17000 psi; Phosphor = 24000 psi

Bending Stress on Gear: Enter: Lewis form factor: y =

Stresses:

Efficiency:

0.822 hp

0.691 hp 0.131 hp

ctive gear face width: 0.67*D W = Fe =

Worm 58 77 290

9.1 lb

Gear 290 77 58

Power input:

Enter: C m =

[Used given face width] e width is small; Could use F > 0.601 in

478 ft/min 0.030 If v s > 10 ft/min

Power loss - friction:

Power output from gear:

Power:

Forces: (lb) Tangential: Radial: Axial: Friction force, W f =

Coefficient of friction:

Sliding velocity v s =

Additional Computed Results: Pitch line speed - Gear: 78.54 ft/min

3.500 in

1.167 in

b= D oW =

Dedendum:

0.083 in

9.462 deg

0.524 in

0.262 in

rm outside diameter:

Lead angle:

p xW =

Axial pitch of worm:

1.000 in DW = ual center distance: C= 2.167 in OK C 0.875 /D W = 1.97 Should be >1.6 and <3.0 pG = 0.262 in Circular pitch of gear:

VR =

Actual velocity ratio:

20

puted Results and Additional Inputs: nW = Actual input speed: 1800 rpm

14.5 degrees

12

90 rpm 20

NW =

484 lb-in

To =

Problem: 10-19b and 20b

Output speed: nG = Velocity Ratio: VR = Design Decisions: Diametral pitch: Pd =

esired output torque:

Input Data:

aring - Design

Problems 10‐19b and 10‐20b – Wormgearing


4 80 80

NG = NG =

n =

No. of worm threads: ed No. of gear teeth: ify No. of gear teeth: rmal pressure angle:

301 D G = 6.66667 in

Gear pitch diameter: ecify worm diameter:

L= = a=

Lead of the worm: Addendum:

0.807 in 2.108 in

D RW = F Wnom = D tG =

Worm root diameter: al worm face length: Gear throat diameter: inal gear face width:

0.096 in

90.8 %

14.5 20 25 30 Lewis form factor, y

Normal pressure angle, n

1000

<2.5 in

<8 in

1036 1000

>8 in

1103 1000

>25 in <25 in

1000 Chilled Cast - Phosphor bronze

797

Sliding velocity: 0.670 in 0.500 in

ctive gear face width:

0.382

0.382

<700

0.819

0.820

0.384 0.537

700-3000 >3000

0.819 1.017 Actual v s = 497

714 lb 263 lb Adjusted output torque until limits reached on either bending or surface durab Bending stress controls this design

Rated tangential load: W tR = Must be > W t =

Enter: C v =

Velocity factor: C v =

0.601 in

F eG =

Ratio correction factor: C m =

Gear Ratio: m G = 6 to 20 20 to 76 >76 Actual m G = 20

Enter: Materials factor: C s =

Centrifugally cast: C s =

Chill cast or forged: C s =

Sand cast: C s =

Type of bronze:/D G ---> >2.5 in

Surface Durability: [Hardened steel worm; bronze gear]

0.100 --------> 0.100 0.125 0.150 0.175 Normal circular pitch: 0.248 in Dynamic factor: K v = 0.884 Bending stress on gear: 23987 psi [Using effective gear face width Allowable stresses-Bronze: Manganese = 17000 psi; Phosphor = 24000 psi

Bending Stress on Gear: Enter: Lewis form factor: y =

Stresses:

Efficiency:

1.381 hp

1.254 hp 0.127 hp

ctive gear face width: 0.67*D W = Fe =

Worm 97 73 263

8.4 lb

Gear 263 73 97

Power input:

Enter: C m =

[Used given face width] e width is small; Could use F > 0.601 in

497 ft/min 0.029 If v s > 10 ft/min

Power loss - friction:

Power output from gear:

Power:

Forces: (lb) Tangential: Radial: Axial: Friction force, W f =

Coefficient of friction:

Sliding velocity v s =

Additional Computed Results: Pitch line speed - Gear: 157.08 ft/min

6.833 in

1.167 in

b= D oW =

Dedendum:

0.083 in

18.435 deg

1.047 in

0.262 in

rm outside diameter:

Lead angle:

p xW =

Axial pitch of worm:

1.000 in DW = ual center distance: C= 3.833 in HIGH C 0.875 /D W = 3.24 er worm diameter Should be >1.6 and <3.0 pG = 0.262 in Circular pitch of gear:

VR =

Actual velocity ratio:

20

puted Results and Additional Inputs: nW = Actual input speed: 1800 rpm

14.5 degrees

12

90 rpm 20

NW =

878 lb-in

To =

Problem: 10-19c and 20c

Output speed: nG = Velocity Ratio: VR = Design Decisions: Diametral pitch: Pd =

esired output torque:

Input Data:

aring - Design

Problems 10‐19c and 10‐20c – Wormgearing


SUMMARY OF RESULTS OF THE THREE PARTS OF PROBLEMS 19 AND 20:

Problems 10-19 and 10-20 Summary Given data:

COMPARISON OF THREE PROPOSED DESIGNS See details on the preceding three spreadsheets

Diametral pitch, Pd = Velocity ratio, VR = Output speed (Gear) =

12 20 90

rpm

Worm pitch diameter, DW = Gear face width, F =

1.000 0.500

in in

See comment See comment

Normal pressure angle, n = 14.5 degrees Assumed gear is made from chilled cast phosphor bronze Allowable bending stress = 24,000 psi DESIGN Results: A B Number of threads in worm: 1 2

C 4

Output torque (lb-in), To = Output power (hp), Po =

202 0.289

484 0.691

878 1.254

Gear bending stress (psi) Allowable bending stress (psi) Rated load for surface durability (lb) Gear transmitted load (lb) Efficiency (%) [Problem 20] Power input (hp) Lead angle (degrees) Gear pitch diameter (in) Center distance (in)

19190 24000

23963 24000

23987 24000

242 242 72.9 0.396 4.76 1.667 1.333

418 290 84.1 0.822 9.46 3.333 2.167

714 263 90.8 1.381 18.4 6.667 3.833

Limits in Bold Limits in Bold

Comments on results: The given face width is small. Could use F > 0.601 in to maximize effective face width. Worm diameter is too large for Design A. See Equations 10-52 and 10-53 Worm diameter is too small for Design C. See Equations 10-52 and 10-53 Design A is limited by surface durability Designs B and C are limited by bending stress in gear teeth. As number of threads in worm increases: Lead angle increases Efficiency increases Torque and power capacity increase BUT: Gear size and center distance increase

The following page shows the results for a modified design for the data for Problems 10‐ 19a and 10‐20a. Note that the initial design for the worm diameter was 1.00 in. That was considered to be too large. The new worm diameter is 0.700 in, putting the center distance term in the proper range. Bending stress and surface durability remain acceptable.

302


1 20 20

NG = NG =

n =

No. of worm threads: equired No. of gear teeth: Specify No. of gear teeth: Normal pressure angle:

303 DG =

Gear pitch diameter: Specify worm diameter:

1.667 in

20

L= =

Lead of the worm:

332 ft/min

0.289 hp

76.4 %

0.378 hp

0.089 hp

1.833 in

D tG = F G1 = F G2 = Fe =

Gear throat diameter: Gear face width-Eq. 8-28: Gear face width-Eq. 8-30: Spedified gear face width:

Design decision

0.500 in

0.500 in

0.511 in

1.054 in

0.507 in

D RW = F Wnom =

Worm root diameter:

0.867 in

D oW =

Worm outside diameter: ominal worm face length:

0.096 in

0.083 in

a=

<8 in

1311 1000

>8 in

1211 1000

>25 in <25 in

1000 Chilled cast phosphor bronze

1000

<2.5 in

0.392

0.457

<700

0.819

0.820

0.484 0.733

700-3000 >3000

0.819 1.017 Actual v s = 332

242 lb Eq. 10-42 242 lb Adjusted output torque until limits reached on either bending or surface durab Using chilled phosphur bronze, surface durability controls this design.

Rated tangential load: W tR = Must be > W t =

Enter: C v =

Velocity factor: C v =

Sliding velocity:

Enter: C m =

Ratio correction factor: C m =

Gear Ratio: m G = 6 to 20 20 to 76 >76 Actual m G = 20

Enter: Materials factor: C s =

Centrifugally cast: C s =

Chill cast or forged: C s =

1084

Sand cast: C s =

6.789 deg

b=

14.5 20 25 30 Lewis form factor, y

Normal pressure angle, n

Surface Durability: [Hardened steel worm; bronze gear] Type of bronze:/D G ---> >2.5 in

Dedendum:

Worm 38 63 242

8.9 lb

Gear 242 63 38

0.035 If v s > 10 ft/min - Eq. 10-27

0.100 --------> 0.100 0.125 0.150 0.175 Normal circular pitch: 0.260 in Dynamic factor: K v = 0.968 Bending stress on gear: 19259 psi- Using specified gear face width Allowable stresses-Bronze: Manganese = 17000 psi; Phosphor = 24000 psi

Bending Stress on Gear: Enter: Lewis form factor: y =

Stresses:

Efficiency:

Power input:

Power loss - friction:

Power output from gear:

Power:

Forces: (lb) Tangential: Radial: Axial: Friction force, W f =

Coefficient of friction:

Sliding velocity v s =

Additional Computed Results: Pitch line speed - Gear: 39.27 ft/min

0.262 in

0.262 in

Addendum:

Lead angle:

p xW =

Axial pitch of worm:

DW = 0.700 in Actual center distance: C= 1.183 in OK C 0.875 /D W = 1.66 Should be >1.6 and <3.0 pG = 0.262 in Circular pitch of gear:

VR =

Actual velocity ratio:

Computed Results and Additional Inputs: nW = 1800 rpm Actual input speed:

14.5 degrees

12

90 rpm 20

NW =

202 lb-in

To =

Problem: 10-19a and 20a Modified-changed D w

Output speed: nG = Velocity Ratio: VR = Design Decisions: Diametral pitch: Pd =

Trial output torque:

Input Data:

ormgearing - Design [Iterative procedure]

Modified Problems 10‐19a and 10‐20a – New worm diameter, DW = 0.700 in.


80 rpm 7.5 5 2 15 15

NW = NG = NG =

n =

No. of worm threads: ed No. of gear teeth: ify No. of gear teeth: rmal pressure angle:

304 DG =

Gear pitch diameter: ecify worm diameter:

3 in

7.5

L= = a=

Lead of the worm: Addendum:

0.737 in 0.737 in

inal gear face width:

ctive gear face width: 0.67*D W = ctive gear face width:

Used Max effective face width

Fe =

1.020 in

D tG = F eG =

Gear throat diameter:

3.400 in

2.191 in

0.637 in

D RW = F Wnom =

al worm face length:

1.500 in

0.231 in

0.200 in

19.983 deg

1.257 in

0.628 in

Worm root diameter:

b= D oW =

Dedendum: rm outside diameter:

Lead angle:

p xW =

Axial pitch of worm:

1.1 in DW = ual center distance: C= 2.050 in OK. C 0.875 /D W = 1.70 Should be >1.6 and <3.0 pG = Circular pitch of gear: 0.628 in

VR =

Actual velocity ratio:

puted Results and Additional Inputs: nW = 600 rpm Actual input speed:

25 degrees

984 lb-in

esired output torque:

To =

Problem: 10-21 One possible solution

Output speed: nG = Velocity Ratio: VR = Design Decisions: Diametral pitch: Pd =

Input Data:

aring - Design

Worm 276 331 656

86.5 %

1.445 hp

0.195 hp

1.250 hp

35.0 lb

Gear 656 331 276

14.5 20 2 Lewis form fac

Normal pressure

0.045 If v s > 10 ft/min

184 ft/min

1000

962

1000

<2.5 in

<8 in

1194 1000

>8 in

116

>25

Rated tangential load: W tR = Must be > W t =

Enter: C v =

Velocity factor: C v =

Sliding velocity:

Enter: C m =

Ratio correction factor: C m =

0.794 1.099

0.678 1.158

700-3000 >3000

687 lb 656 lb

0.538

0.538

<700

0.719

0.719

Actual v s

Gear Ratio: m G = 6 to 20 20 to 76 >76 Actual m G

Enter: Materials factor: C s =

Centrifugally cast: C s =

Chill cast or forged: C s =

Sand cast: C s =

Type of bronze:/D G ---> >2.5 in

Surface Durability: [Hardened steel worm; bronze gear]

0.150 --------> 0.100 0.125 0.1 Normal circular pitch: 0.590 in Dynamic factor: K v = 0.950 Bending stress on gear: 10575 psi [Using effective gear fa Allowable stresses-Bronze: Manganese = 17000 psi; Phosphor = 24

Bending Stress on Gear: Enter: Lewis form factor: y =

Stresses:

Efficiency:

Power input:

Power loss - friction:

Power output from gear:

Power:

Forces: (lb) Tangential: Radial: Axial: Friction force, W f =

Coefficient of friction:

Sliding velocity v s =

Additional Computed Results: Pitch line speed - Gear: 62.83 ft/min

Spreadsheet solution to Problem 10-21.


6 18 18

NG = NG =

n =

ed No. of gear teeth: ify No. of gear teeth: rmal pressure angle:

305 DG =

Gear pitch diameter: ecify worm diameter:

1.5 in

3

L= =

Lead of the worm:

0.335 in 0.335 in

D tG = F eG =

Gear throat diameter: inal gear face width:

ctive gear face width: 0.67*D W = ctive gear face width:

Fe =

0.441 in

F Wnom =

al worm face length:

1.667 in

1.000 in

0.307 in

0.667 in

D oW = D RW =

0.096 in

0.083 in

Worm root diameter:

Dedendum:

45.000 deg

1.571 in

0.262 in

rm outside diameter:

a= b=

Addendum:

Lead angle:

p xW =

Axial pitch of worm:

0.5 in DW = ual center distance: C= 1.000 in OK. C 0.875 /D W = 2.00 Should be >1.6 and <3.0 pG = Circular pitch of gear: 0.262 in

VR =

Actual velocity ratio:

puted Results and Additional Inputs: nW = Actual input speed: 1800 rpm

25 degrees

12

NW =

600 rpm 3

No. of worm threads:

52.5 lb-in

To =

Problem: 10-22

Output speed: nG = Velocity Ratio: VR = Design Decisions: Diametral pitch: Pd =

esired output torque:

Input Data:

aring - Design

Worm 76 48 70

14.5 20 Lewis form fac

Normal pressure

1000

1106

1000

<2.5 in

<8 in

1331 1000

>8 in

122

>25

Rated tangential load: W tR = Must be > W t =

Enter: C v =

Velocity factor: C v =

Sliding velocity:

Enter: C m =

Ratio correction factor: C m =

0.779 1.129

0.483 0.731

700-3000 >3000

122 lb 70 lb

0.457

0.457

<700

0.578

0.578

Actual v s

Gear Ratio: m G = 6 to 20 20 to 76 >76 Actual m G

Enter: Materials factor: C s =

Centrifugally cast: C s =

Chill cast or forged: C s =

Sand cast: C s =

Type of bronze:/D G ---> >2.5 in

Surface Durability: [Hardened steel worm; bronze gear]

0.150 --------> 0.100 0.125 0.1 Normal circular pitch: 0.185 in Dynamic factor: K v = 0.836 Bending stress on gear: 9003 psi [Using effective gear fa Allowable stresses-Bronze: Manganese = 17000 psi; Phosphor = 24

Bending Stress on Gear: Enter: Lewis form factor: y =

Stresses:

92.6 %

0.540 hp

Efficiency:

0.040 hp

Power input:

0.500 hp

4.0 lb

Gear 70 48 76

0.035 If v s > 10 ft/min

333 ft/min

Power loss - friction:

Power output from gear:

Power:

Forces: (lb) Tangential: Radial: Axial: Friction force, W f =

Coefficient of friction:

Sliding velocity v s =

Additional Computed Results: Pitch line speed - Gear: 235.62 ft/min

Spreadsheet solution to Problem 10-22.


80 80

NG = NG =

n =

uired No. of gear teeth: ecify No. of gear teeth: Normal pressure angle:

10 in

DG =

Gear pitch diameter: Specify worm diameter:

306 L= =

Lead of the worm:

10.250 in 1.090 in 1.5075 in

D tG = F eG =

Gear throat diameter: ominal gear face width:

ffective gear face width: 0.67*D W =

1.090 in

3.162 in

F Wnom =

minal worm face length:

Fe =

1.961 in

ffective gear face width:

2.500 in

D oW = D RW =

0.145 in

0.125 in

Worm root diameter:

Dedendum:

6.340 deg

0.785 in

0.393 in

Worm outside diameter:

a= b=

Addendum:

Lead angle:

p xW =

Axial pitch of worm:

2.25 in DW = Actual center distance: C= 6.125 in C 0.875 /D W = 2.17 OK Should be >1.6 and <3.0 pG = 0.393 in Circular pitch of gear:

40

VR =

Actual velocity ratio:

mputed Results and Additional Inputs: nW = Actual input speed: 1800 rpm

14.5 degrees

8 2

NW =

45 rpm 40

No. of worm threads:

4200 lb-in

To =

Problem: 10-23

Output speed: nG = Velocity Ratio: VR = Design Decisions: Diametral pitch: Pd =

Desired output torque:

Input Data:

gearing - Design 1067 ft/min Worm 111 219 840

84.0 %

3.570 hp

0.570 hp

3.000 hp

17.6 lb

Gear 840 219 111

14.5 20 25 Lewis form factor

Normal pressure ang

0.020 If v s > 10 ft/min

1000

<2.5 in

956

>8 in

713 Sand Cast

713

1000

<8 in

1072

>25 in

0.814

0.248

0.204

<700

0.248 0.297

700-3000 >3000

0.814 0.885 Actual v s =

990 lb 840 lb NOTE: For the Ratio correction factor, if #NUM! appears, the argument equation for Cm is negative resulting in an invalid result.

Rated tangential load: W tR = Must be > W t =

Enter: C v =

Velocity factor: C v =

Sliding velocity:

Enter: C m =

Ratio correction factor: C m = #NUM!

Gear Ratio: m G = 6 to 20 20 to 76 >76 Actual m G =

Enter: Materials factor: C s =

Centrifugally cast: C s =

Chill cast or forged: C s =

Sand cast: C s =

Type of bronze:/D G ---> >2.5 in

Surface Durability: [Hardened steel worm; bronze gear]

0.100 --------> 0.100 0.125 0.150 Normal circular pitch: 0.390 in Dynamic factor: K v = 0.911 Bending stress on gear: 21689 psi [Using effective gear face Allowable stresses-Bronze: Manganese = 17000 psi; Phosphor = 2400

Bending Stress on Gear: Enter: Lewis form factor: y =

Stresses:

Efficiency:

Power input:

Power loss - friction:

Power output from gear:

Power:

Forces: (lb) Tangential: Radial: Axial: Friction force, W f =

Coefficient of friction:

Sliding velocity v s =

Additional Computed Results: Pitch line speed - Gear: 117.81 ft/min

Spreadsheet solution to Problem 10-23.


30 30

NG = NG =

n =

quired No. of gear teeth: pecify No. of gear teeth: Normal pressure angle:

DG =

Gear pitch diameter: Specify worm diameter:

5 in

30

307 1.614 in 2.582 in 5.333 in 1.202 in 1.340 in 1.000 in

F Wnom = D tG = F eG =

minal worm face length: Gear throat diameter: ominal gear face width:

ffective gear face width: 0.67*D W = ffective gear face width:

[Used given face width] face width is small; Could use F > 1.202

Fe =

2.333 in

D oW = D RW =

Worm root diameter:

0.193 in

0.167 in

4.764 deg

0.524 in

0.524 in

Worm outside diameter:

a= b=

Lead angle: Addendum:

L= =

Lead of the worm:

Dedendum:

p xW =

Axial pitch of worm:

2.000 in DW = Actual center distance: C= 3.500 in LOW C 0.875 /D W = 1.50 maller worm diameter Should be >1.6 and <3.0 pG = 0.524 in Circular pitch of gear:

VR =

Actual velocity ratio:

omputed Results and Additional Inputs: nW = 600 rpm Actual input speed:

14.5 degrees

6 1

NW =

20 rpm 30

No. of worm threads:

1200 lb-in

To =

Problem: 10-24A

Output speed: nG = Velocity Ratio: VR = Design Decisions: Diametral pitch: Pd =

Desired output torque:

Input Data:

gearing - Design 315 ft/min Worm 58 125 480

69.1 %

0.552 hp

0.171 hp

0.381 hp

17.9 lb

Gear 480 125 58

14.5 20 25 Lewis form factor

Normal pressure ang

0.036 If v s > 10 ft/min

1000

<2.5 in

<8 in

1093 1000

>8 in

857 Sand cast

857

1126

>25 in

0.466

0.466

<700

0.824

0.759

0.498 0.763

700-3000 >3000

0.824 0.951 Actual v s =

1193 lb OK For sand cast bro 480 lb Can use Manganese bronze based on bending stress in gear. Worm diameter is too large.

Rated tangential load: W tR = Must be > W t =

Enter: C v =

Velocity factor: C v =

Sliding velocity:

Enter: C m =

Ratio correction factor: C m =

Gear Ratio: m G = 6 to 20 20 to 76 >76 Actual m G =

Enter: Materials factor: C s =

Centrifugally cast: C s =

Chill cast or forged: C s =

Sand cast: C s =

Type of bronze:/D G ---> >2.5 in

Surface Durability: [Hardened steel worm; bronze gear]

0.100 --------> 0.100 0.125 0.150 Normal circular pitch: 0.522 in Dynamic factor: K v = 0.979 Bending stress on gear: 9400 psi [Using effective gear face Allowable stresses-Bronze: Manganese = 17000 psi; Phosphor = 2400

Bending Stress on Gear: Enter: Lewis form factor: y =

Stresses:

Efficiency:

Power input:

Power loss - friction:

Power output from gear:

Power:

Forces: (lb) Tangential: Radial: Axial: Friction force, W f =

Coefficient of friction:

Sliding velocity v s =

Additional Computed Results: Pitch line speed - Gear: 26.18 ft/min

Spreadsheet solution to Problem 10-24A.

Noting that the worm diameter, DW = 2.00 in, is too large, a modified solution follows with a smaller diameter, DW = 1.75 in. A successful design is achieved.


30 30

NG = NG =

n =

quired No. of gear teeth: pecify No. of gear teeth: Normal pressure angle:

DG =

Gear pitch diameter: Specify worm diameter: 5 in

30

Problem 10‐24B follows.

308 L= = a=

Lead of the worm: Addendum:

0.524 in

1.173 in 1.130 in

ffective gear face width: 0.67*D W = ffective gear face width:

5.333 in

[Used nominal face width]

Fe =

1.130 in

D tG = F eG =

Gear throat diameter: ominal gear face width:

2.582 in

1.364 in

D RW = F Wnom =

Worm root diameter:

2.083 in

0.193 in

0.167 in

5.440 deg

0.524 in

minal worm face length:

b= D oW =

Dedendum: Worm outside diameter:

Lead angle:

p xW =

Axial pitch of worm:

DW = 1.750 in Actual center distance: C= 3.375 in C 0.875 /D W = 1.66 OK Should be >1.6 and <3.0 pG = 0.524 in Circular pitch of gear:

VR =

Actual velocity ratio:

omputed Results and Additional Inputs: nW = Actual input speed: 600 rpm

14.5 degrees

6 1

NW =

20 rpm 30

No. of worm threads:

1200 lb-in

To =

Problem: 10-24A - Revised Larger worm diameter

Output speed: nG = Velocity Ratio: VR = Design Decisions: Diametral pitch: Pd =

Desired output torque:

Input Data:

gearing - Design 276 ft/min Worm 65 125 480

14.5 20 25 Lewis form factor

Normal pressure ang

1000

<2.5 in

<8 in

1093 1000

>8 in

857 Sand cast

857

1126

>25 in

0.486

0.486

<700

0.824

0.759

0.537 0.845

700-3000 >3000

0.824 0.951 Actual v s =

1406 lb OK For sand cast bro 480 lb Can use Manganese bronze based on bending stress in gear. Changed worm diameter to 1.75 in; Changed face width to 1.13 in

Rated tangential load: W tR = Must be > W t =

Enter: C v =

Velocity factor: C v =

Sliding velocity:

Enter: C m =

Ratio correction factor: C m =

Gear Ratio: m G = 6 to 20 20 to 76 >76 Actual m G =

Enter: Materials factor: C s =

Centrifugally cast: C s =

Chill cast or forged: C s =

Sand cast: C s =

Type of bronze:/D G ---> >2.5 in

Surface Durability: [Hardened steel worm; bronze gear]

0.100 --------> 0.100 0.125 0.150 Normal circular pitch: 0.521 in Dynamic factor: K v = 0.979 Bending stress on gear: 8324 psi [Using effective gear face Allowable stresses-Bronze: Manganese = 17000 psi; Phosphor = 2400

Bending Stress on Gear: Enter: Lewis form factor: y =

Stresses:

70.6 %

0.540 hp

Power input: Efficiency:

0.159 hp

0.381 hp

19.0 lb

Gear 480 125 65

0.038 If v s > 10 ft/min

Power loss - friction:

Power output from gear:

Power:

Forces: (lb) Tangential: Radial: Axial: Friction force, W f =

Coefficient of friction:

Sliding velocity v s =

Additional Computed Results: Pitch line speed - Gear: 26.18 ft/min

Spreadsheet solution to Problem 10-24A – Modified: DW = 1.75 in.


2 60 60

NG = NG =

n =

No. of worm threads: uired No. of gear teeth: ecify No. of gear teeth: Normal pressure angle:

DG =

Gear pitch diameter: Specify worm diameter: 6 in

30

309 L= =

Lead of the worm:

1.019 in 2.191 in 6.200 in 0.735 in 0.838 in 0.625 in

D RW = F Wnom = D tG = F eG =

Worm root diameter: minal worm face length: Gear throat diameter: ominal gear face width:

ffective gear face width: 0.67*D W = ffective gear face width:

[Used given face width] face width is small; Could use F > 0.735

Fe =

1.450 in

D oW =

Worm outside diameter:

0.100 in 0.116 in

a= b=

Addendum:

9.090 deg

0.628 in

0.314 in

Dedendum:

Lead angle:

p xW =

Axial pitch of worm:

DW = 1.250 in Actual center distance: C= 3.625 in OK C 0.875 /D W = 2.47 Should be >1.6 and <3.0 pG = 0.314 in Circular pitch of gear:

VR =

Actual velocity ratio:

mputed Results and Additional Inputs: nW = 600 rpm Actual input speed:

14.5 degrees

10

20 rpm 30

NW =

1200 lb-in

To =

Problem: 10-24B

Output speed: nG = Velocity Ratio: VR = Design Decisions: Diametral pitch: Pd =

Desired output torque:

Input Data:

gearing - Design 199 ft/min Worm 82 106 400

77.6 %

0.491 hp

0.110 hp

0.381 hp

18.3 lb

Gear 400 106 82

14.5 20 25 Lewis form factor

Normal pressure ang

0.043 If v s > 10 ft/min

1000

<2.5 in

<8 in

1057 1000

>8 in

819 Sand cast

819

1111

>25 in

0.530

0.530

<700

0.824

0.759

0.648 1.090

700-3000 >3000

0.824 0.951 Actual v s =

937 lb OK For sand cast br 400 lb Can use Phosphor bronze based on bending stress in gear.

Rated tangential load: W tR = Must be > W t =

Enter: C v =

Velocity factor: C v =

Sliding velocity:

Enter: C m =

Ratio correction factor: C m =

Gear Ratio: m G = 6 to 20 20 to 76 >76 Actual m G =

Enter: Materials factor: C s =

Centrifugally cast: C s =

Chill cast or forged: C s =

Sand cast: C s =

Type of bronze:/D G ---> >2.5 in

Surface Durability: [Hardened steel worm; bronze gear]

0.100 --------> 0.100 0.125 0.150 Normal circular pitch: 0.310 in Dynamic factor: K v = 0.974 Bending stress on gear: 21171 psi [Using effective gear face Allowable stresses-Bronze: Manganese = 17000 psi; Phosphor = 2400

Bending Stress on Gear: Enter: Lewis form factor: y =

Stresses:

Efficiency:

Power input:

Power loss - friction:

Power output from gear:

Power:

Forces: (lb) Tangential: Radial: Axial: Friction force, W f =

Coefficient of friction:

Sliding velocity v s =

Additional Computed Results: Pitch line speed - Gear: 31.42 ft/min

Spreadsheet solution to Problem 10-24B.


COMPARISON OF THE RESULTS FOR PROBLEMS 10‐24A, 10‐24A (REV.), AND 10‐24B

Wormgearing Comparisons for:

10‐24A

Problems 10‐24A (Rev)

Common data: Output Torque Output speed Pressure angle Input speed

1200 lb‐in 20 rpm 14.5 deg. 600 rpm

1200 lb‐in 20 rpm 14.5 deg. 600 rpm

1200 lb‐in 20 rpm 14.5 deg. 600 rpm

6 1 30 2.00 in 5.00 in 3.5 in 1.00 in

6 1 30 1.75 in 5.00 in 3.375 in 1.13 in

10 2 60 1.25 in 6.00 in 3.625 in 0.625 in

Forces (on gear): Tangential Radial Axial

480 lb 125 lb 58 lb

480 lb 125 lb 65 lb

400 lb 106 lb 82 lb

Efficiency:

69.10%

70.60%

77.60%

Bending Stress Rated tangential load

9400 psi 1193 lb

8324 psi 1406 lb

21171 psi 937 lb

10‐24B

Variable data: Diametral pitch, P d No. of worm threads No. of gear teeth Worm diameter Gear diameter Center distance Gear face width Computed results:

Observations: Bending stress for Design 24B are much higher Design 24B has highest efficiency Forces are nearly equal for all three designs All rated tangential loads are well above the actual loads

310

Too large

OK


CHAPTER 11 KEYS, COUPLINGS, AND SEALS

General Notes for key design problems 1‐15: For SAE 1018 CD steel:

54 000 psi. If key material is weakest –

.

.

9000 psi 18 000 psi

1.

2.00 in; Use in square key, SAE 1018 CD. ∙ /

But hub length

2.

0.5 77 /3

77 000 psi

.

= 3.27 in; Use L = 3.75 in to more nearly match hub length.

.

3.60 in; Use in square key; SAE 1018 CD

.

3.

4.667 in

.

4.00 in. Use SAE 1045 CD;

0.5 / .

.

.

1.48 in Use L = 3.50 in to more nearly match hub length.

1.75 in; Use in square key; SAE 1018 CD; For hub; Class 20 CI,

20 000 psi

For bearing

6667 psi Conservative

9000 psi

Because compressive strength of CI is much greater than tensile strength. Shear of Key:

.

.

311

.


Bearing on hub:

.

.

.

Use L = 1.50 in to more nearly match hub length. 4.

63 000 110 /1700

.

Use 5.

.

2.50 in; Use square key.

0.580 in

.

to more nearly match hub length.

Express data from Table 11‐6 as Required a)

/

b)

2.00 in,

21 000 lb ∙ in;

.

3.60 in;

;

;

1112 lb ∙ in;

1.75 in;

4076 lb ∙ in;

2.50 in;

At 220 hp:

63 000 220 /1700

8153 lb ∙ in

At 110 hp:

63 000 110 /1700

4076 lb ∙ in 0.75

;

Pin should not yield at

;

Section 2

0.5

For a given pin d and Shaft D in Equation 11‐18: 0.5

;

4.00 in

1.75 in

3.25 in

; Use either 4 (K = 219) or 6 splines (K = 208)

.

Pin should shear at

4.00 in

; Use 6 splines; K = 208

.

Problem 4 data: .

Fit

Too high for any spline in Table 11‐6.

.

Problem 3 data: .

d)

21 000 lb ∙ in;

Problem 2 data: .

c)

Hub length Use B

Problem 1 data: .

6.

4076 lb ∙ in;

0.75

312

2


Ratio

.

0.75

.

Most cold drawn steels have

54 ksi;

For SAE 1018 CD;

.

7.

.

.

Minimum

At

.

:

.

64 ksi 0.294 in

.

4076 lb ∙ in; τ

.

.

From example Problem 12‐3:

4168 lb ∙ in

2 in; Sprocket:

in square key; SAE 1018 CD

.

Wormgear:

.

8.

1 in

0.823 in

.

.

Square key 1.647 in

.

.

Woodruff key 204: Nominal

: Nominal

Actual dimensions in Table 11‐3. 9.

Woodruff key 1628: Nominal

: Nominal

10, 11, 12 Are Drawings 13.

/2;

2 / ; No. 1210 Woodruff key

From Table 11‐3: Key

in

; .

.

.

313

0.75


.

14.

.

No. 406 Woodruff key: 15.

No. 2428 key: W

19.

a

139

139 1.50

b

326

326 3.50

c

688

688 2.500

0.75 in;

.

∙ in .

.

.

/ ∙ ∙

Problem 16 – 4 Splines

/

Problem 17 – 10 Splines

/

Problem 18 – 16 Splines

NOTE: Problems 20‐46 call for narrative answers for which the proper information can be found in the text. Guidance is provided below for sections in which additional information can be found. 20.

Section 11‐6 includes discussion of applying set screws to transmit torque. A table of approximate holding force capacity vs. set screw size is provided.

21.

Press fit is described briefly in Section 11‐6. More discussion follows in Chapter 13.

22.

Section 11‐7 describes both rigid and flexible couplings and compares their performance. Examples of commercially available couplings are shown and described.

23.

Section 11‐8 contains general information about universal joints.

314


24.

Section 11‐9 contains general information about retaining rings and other means of locating machine elements axially on shafts and in other devices. Included are collars, shoulders, spacers, and locknuts.

25.

to 38. Section 11‐10 contains general information about seals.

39.

to 46. Section 11‐11 contains general information about seal materials, including elastomers.

40.

to 45. A list of 14 elastomers in included Section 11‐11. Following the list of 14 elastomers, their general performance capabilities are described.

46.

The required conditions for shafts on which elastomeric seals operate are discussed in the last part of Section 11‐11. Examples are:  Steels, hardened to HRC 30 with tolerances of less than 0.005 in 0.13 mm are typically used for shafts on which seals operate. The surface must be free of burrs with a surface finish of 10 to 20 microinches is recommended. Lubrication is recommended.

315


CHAPTER 12 SHAFT DESIGN GENERAL NOTES CONCERNING SOLUTIONS TO SHAFT DESIGN PROBLEMS  Design values for stress concentrations as given in Section 12‐4 are used for the initial calculations. These values must be checked once final design details are specified for diameters, fillet radii, and other features.  Estimates are originally used for the size factors used in calculations because they depend on the shaft sizes that are unknown at the start of a design problem. These values must be checked once final design decisions have been specified.  The choice of the reliability factor, CR, is a design decision. Other values may be preferred.  In most cases, the proposed final values for diameters are expected to be safe because trial values are typically conservative and because final specified diameters are typically made to the next larger preferred size according to Appendix Table A‐2.  Final specifications for diameters where bearings are to be mounted must await the selection of suitable bearings that can accommodate the radial and thrust loads applied to them. This process is described in Chapter 14. Use of commercially available software is an excellent tool for making those decisions. The computed ‘minimum required diameter’ from the shaft design process should be used as to limit the bearing selection to only feasible sizes. Shafts with Only Radial Loads Applied to Them: Problems P1 through P30 relate to one of the Figures P12‐1 through P12‐17 showing shafts carrying a variety of combinations of gears, belt sheaves, chain sprockets, and a few other items such as a flywheel and a propeller‐type fan. All of these elements apply only radial loads to the shafts on which they are mounted.  Problems 22‐30 are comprehensive design problems that use the same shaft assemblies that are used for Problems 1‐21. The solutions to these problems include the analyses of forces and torques and should be used as the solutions for problems 1‐21.  Problems 1‐11 include only force and torques exerted by gears on shafts. No separate solutions for these problems are included here.  Problems 12‐21 include only forces and torques exerted by belt drives and chain drives on shafts. No separate solutions are included here.

316


 The parts of the solutions for torques and forces give discrete, single‐answers.  The remaining parts of the comprehensive shaft designs include many design decisions and multiple solutions are possible. The given solutions should be considered examples only. There are multiple ways in which the problems P1 through P30 may be assigned. The following table may help instructors decide how to assign the problems for student solution and may help students comprehend how the sets of problems lead to the more general shaft designs. Any combination of problems may be chosen. Torques and Forces Acting Radial to Shaft

Comprehensive

Figure P12‐1: P1 – Gear B; P14 – Sheave D

P22

Figure P12‐2: P2 – Gear C; P12 – Sprocket D; P13 – Pulley A

P23

Figure P12‐3: P3 – Gear B; P15 – Sprocket C; P16 – Sheaves D, E

P24

Figure P12‐4: P4 – Gear A; P19 – Sprockets C, D

P25

Figure P12‐5: P5 – Gear D; P20 – Sheave A; P21 – Sprocket E

P26

Figure P12‐6: P6 – Gear E; (No separate analysis of Sheave A)

P27 (Includes Sheave A)

Figure P12‐7: P7 – Gear C; P8 – Gear A

P28 (Includes Sheaves D, E)

Figure P12‐9: P9 – Gear C; P10 – Gear D; P11 – Gear F

P29 (Includes Sheave B)

Figure P12‐17: P17‐ Sheave C; P18 – Pulley D

P30 (Includes Fan A)

Shafts with both Radial and Axial Loads Applied to Them: Problems P31 to P34 deal with shafts carrying helical gears and wormgears that produce forces directed axially in addition to radial forces. Solutions are only shown for the comprehensive problems (12‐32 and 12‐34) in which the details of the analyses of torques and forces are included. Torques and Forces Acting Radial and Axial to Shaft

Comprehensive

Figure P12‐31: P31 – Helical Gear B

P32

Figure P12‐33: P33 – Wormgear C

P34 (Includes Sheave A)

Other Comprehensive Design Problems Problems 35 to 41 contain a variety of loading situations for which the general solution procedure must be adapted. Some of the problems involve more than one shaft, considering shafts for mating gears and multiple reductions.

317


Figure P12‐35: P35 – Double reduction helical drive Figure P10‐8 in Chapter 10: P36 – Bevel gear drive Figure P12‐37: P37 – Bevel gear drive with two chain sprockets Figure P12‐38: P38 – Double reduction spur gear drive; design three shafts. Figure P12‐39: P39 – Drive system consisting of an electric motor, a V‐belt drive, a double reduction spur gear type reducer, and a chain drive. Figure P12‐40: P40 – Shaft with three spur gears Figure P12‐41: P41 – Shaft for windshield wiper mechanism with two levers 22.

Figure P12‐1 Torque on gear B:

63 000 30 /550

Same torque on sheave D: Torque in shaft:

3436 lb ∙ in

3436 lb ∙ in

0;

3436 lb ∙ in

Forces on gear B: ∙

430 lb ←

20°

156 lb ↓

F

Forces on sheave D: ∙ .

687 lb 1.5 687

1.5 40°

790

40°

663

318

1031 lb


Bending Moment Diagrams

Vertical plane: Horizontal plane:

V (lb)

V (lb)

M (lbin) M (lbin)

√4520

1210

4679 lb ∙ in

√4740

3980

6189 lb ∙ in

3436 lb ∙ in Assume

2.5 at left of

SAE 1040

:

80 ksi;

30 ksi

.5

Bearin g seat

71 ksi

11

0.81,

0.80 0.81 30 000

19 440 psi

Design geometry at C Use N = 3

/

.

23.

0.80

2.90 in → Specify D

3.00 in, C

0.78 Ok

Figure P12‐2 Torque on Pulley A:

63 000 10 /200

Torque on Gear C:

63 000 6 /200

Torque on Sprocket D:

3150 lb ∙ in 1890 lb ∙ in

63 000 4 /200

Torque Distribution in Shaft:

1260 lb ∙ in

3150 lb ∙ in;

319

1260 lb ∙ in;

0


Forces on Pulley A: 315 lb 2.0 315

2.0

630 lb ↓

;

0

Forces on Gear C: ∙

378 lb →

.

20°

Gear C drives Q

138 lb ↑

Forces on Sprocket D: 420 lb ↑ 0 Bending Moment Diagrams Vertical plane:

Horizontal plane:

V (lb)

V (lb)

M (lbin)

M (lbin)

3780 lb ∙ in √1588

3732

4056 lb ∙ in

√454

2272

2317 lb ∙ in

3150 lb ∙ in To left; 1260 lb ∙ in To right;

Ring groov e

3.0 Ring Groove 2.0 Key

320

Design at C


69 ksi;

SAE 1170 CD;

57 ksi

3.00 in

Design at C Specify 26 ksi;

0.78 Ok

0.85 0.81 26

17.9 ksi

/ .

2.75 in 1.06 2.75

Increase by 6% at groove 24.

2.92 in

Figure P12-3 63 000 5 /480

Torque on Gear B:

656 lb ∙ in

63 000 3 /480

Torque on Sheaves D and E:

63 000 11 /480

Torque on Sprocket C:

394 lb ∙ in

1444 lb ∙ in

Torque Distribution in Shaft: 0;

656 lb ∙ in

T (lbin)

788 lb ∙ in 394 lb ∙ in;

0 Torque diagram for shaft

Forces on Gear B: 437 lb →

.

20°

159 lb ↑

Forces on Sprocket C: 289 lb

.

15°

289

15°

75 lb ←

15°

289

15°

279 lb ↓

321


Forces on Sheave D: .

197 lb

1.5

1.5 197

;

296 lb ↑

0

Forces on Sheave E: 296 lb 30°

296

30°

256 lb → ;

296

30°

148 lb ↑

Vertical plane

Horizontal plane

V (lb)

V (lb)

M (lbin)

M (lbin) 0

Worst Case at D: 1254

√1014 788 lb ∙ in

1613 lb ∙ in &

SAE 1137 OQT 1300;

87 ksi;

0.9 0.81 33

24.1 ksi

;

3.0 Retaining Ring

60 ksi;

33 ksi Figure 5

8

0.90 Estimate /

.

Increase by 6%: Check:

0.81;

1.83 in 1.06 1.83

1.94 in; Specify

21 200 psi;

2.00 in

2.01 in; Acceptable to use

322

D

.


25.

Figure P12-4 Torque on Gear A:

63 000 40 /120

21 000 lb ∙ in

63 000 20 /120

Torque on Sprockets C & D: 21 000 lb ∙ in;

Torque in Shaft:

10 500 lb ∙ in

10 500 lb ∙ in;

0

Forces on Gear A: 2625 lb ↓ 20°

255 lb ←

Forces on Sprockets C & D: 1500 lb ← Vertical plane

Horizontal plane

V (lb)

V (lb)

M (lbin)

M (lbin)

At B: 21 000 lb ∙ in √7640 SAE 1020 CD: Use

0.75

21 000

22 347 lb ∙ in

51 000 psi;

61 000 psi;

Large Diameter;

22 000 psi Figure 5

0.81 0.75 22 000

323

13 400 psi

11


D DBR Small radius, Kt 

To the right of B: ≅ 2.5

25

DBL

small fillet radius / .

Well-rounded radius; Kt  1.5

.

;

.

;

.

Ok Bearing seat

To the left of B: / .

. 26.

;

.

;

.

Ok

Figure P12-5 63 000 10 /240

Torque on Sheave A:

63 000 15 /240

Torque on Gear D:

2625 lb ∙ in 3938 lb ∙ in

63 000 5 /240

Torque on Sprocket E:

In shaft

1313 lb ∙ in

In shaft

Forces on Sheave A: 438 lb;

0

1.5

1.5 438

Forces on Gear D: 985 lb 20°

358

985

30° ←

358

985

30°

358

30° → 30°

324

182 lb ←

1032 lb ↑

657 lb ↓


Forces on Sprocket E: 438 lb 30°

379 lb →;

30°

Horizonta l plane

219 lb ↑ Vertical plane

V (lb)

V (lb)

M (lbin)

M (lbin)

C

At C: 2625 lb ∙ in: Use √4980

Kt  1.5

4 Shock

9708

10 911 lb ∙ in Kt  2.5

Choose 1137 CD; 0.8 0.81 37

82 000 psi,

98 ksi,

37 ksi Bearing seat

24.0 ksi /

.

. With

; 1.5;

3.59 in .

Ok

3.03 in;

.

325

;

.

Ok


27.

Figure P12-6 63 000 20 /310

Torque on Sheave A and Gear E:

4065 lb ∙ in

Forces on Sheave A: 370 lb 554 lb

1.5 20°

521 lb →

20° ↑

120 lb ↓

189 lb ↑

120 lb ↑

69 lb ↑

Forces on Gear E: 1355 lb ↑ 20° 45

493 lb →

1310 lb ↑

Vertical plane

Horizontal plane

V (lb)

V (lb)

M (lbin) M (lbin)

At C: Profile keyseat

4065 lb ∙ in 2662

9782

/

10 138 lb ∙ in

326

Light interference fit


2.0;

Use

3 84 ksi;

SAE 1050 CD: 0.8 0.81 38

100 ksi;

38 ksi

24.6 ksi /

.

Specify 28.

2.93 in

.

;

.

Ok

63 000 30 /480

Torque on Gear A:

63 000 50 /480

Torque on Gear C:

6563 lb ∙ in

63 000 10 /480

Torque on Sheaves D and E: 3938 lb ∙ in;

Torque in Shaft:

3938 lb ∙ in

1313 lb ∙ in

2626 lb ∙ in;

Figure P12-7 T (lbin)

Forces on Gear A:

Torque diagram

1575 lb ↑

.

20°

1575

20°

573 lb →

20°

478 lb ↑

Forces on Gear C: 1313 lb → 20°

1313

327

1313 lb ∙ in;

0


Forces on Sheave D: 438 lb 1.5

1.5 438

657 lb ↑:

20°

225 lb ↓

0

Forces on Sheave E: 657 lb 20°

617 lb →; Vertical plane

Horizonta l plane

V (lb)

V (lb)

M (lbin

M (lbin

At B: 3938 lb ∙ in;

3

2292

6300

SAE 3140 OQT 1000; 0.85 0.81 52

Wellrounded fillet, Kt  1.5

6704 lb ∙ in

133 ksi;

152 ksi;

35.8 ksi

328

52 ksi

Sharp fillet Kt  2.5


/ .

Specify

.

2.43 in

;

.

2.05 in with 29.

Ok

1.5;

.

;

.

Ok

Figure P12-9 63 000 2.5 /220

Torque on Sheave B:

716 lb ∙ in

63 000 5 /220

Torque in Shaft Gears C and F: Torque on Gear D:

63 000 12.5 /220

Torque in Shaft:

0;

1432 lb ∙ in

3580 lb ∙ in

716 lb ∙ in;

2148 lb ∙ in;

Forces on Sheave B: 239 lb 1.5 30°

1.5 239 179 lb ←;

358 lb 30°

310 lb ↓

Forces on Gear C: 477 lb ← 20°

477

20°

174 lb ↓

20°

217 lb ↑

Forces on Gear D: 597 lb ← 20°

597

Forces on Gear F: 477 lb

174 lb

329

1432 lb ∙ in


477

45° ←

477

45°

174 174

45° → 45°

214 lb ←

460 lb ↓

Horizonta l plane

Vertical plane

V (lb)

V (lb)

M (lbin

M (lbin

At C: 2148 lb ∙ in to right;

3.0;

716 lb ∙ in to left; 57 ksi;

SAE 1020 CD;

0.85 0.81 22

2.0;

3428 lb ∙ in 3428 lb ∙ in

61 ksi;

22 ksi 3.0

Retaining ring groove, Kt 

C

Profile keyseat Kt  2.0

15.1 ksi /

.

2.40 in

/ .

Increase by 6%: Specify

.

2.75 in Critical 1.06 2.75

2.98 in

;

Ok

.

330

Well-rounded fillet Kt  1.5

Shaft at C where Gear C is mounted


30.

Figure P12-17 Torque at Fan:

63 000 12 /475

1592 lb ∙ in

Torque on Pulley D:

63 000 3.5 /475

Torque on Sheave C:

63 000 15.5 /475

Torque in Shaft:

1592 lb ∙ in;

464 lb ∙ in 2056 lb ∙ in

464 lb ∙ in;

0

Forces on A: 0;

34 lb ↓

The fan would also produce an axial thrust force but its effect on shaft diameter is small. Forces on C: (V-Belt sheave) 411 lb

.

1.5

1.5 411

617 lb ← ;

Forces on D: (Flat belt pulley) 155 lb 2.0

2.0 155

60°

155 lb →

60°

268 lb ↑

310 lb

Vertical plane

Horizontal plane

V (lb)

V (lb)

M (lbin)

M (lbin)

331

0


At C: 1592 lb ∙ in;

464 lb ∙ in

688

√3340

0.85 0.81 38

100 ksi;

38 ksi

26.2 ksi

2.0 keyseat

At C & to left:

/ .

2.00 in 3.0

At right of C:

Ring groove /

.

Increase by 6%: Specify 31.

.

2.29 Critical 1.06 2.29

2.42 in

;

Ok

.

Figure P12-31 And

Torque on Gear B and in Shaft from B to Coupling: 63 000 7.5 /650

32.

Use SAE 1020 CD: 0.9 0.81 22

C

Retaining ring groove, Kt  3.0

3410 lb ∙ in

90 ksi;

SAE 1144 CD:

Profile keyseat; Kt  2.0

727 lb ∙ in 51 ksi;

61 ksi;

22 ksi

16.0 ksi

Vertical plane

Horizontal plane

V (lb)

V (lb)

M (lbin)

M (lbin) 332

Wellrounded Fillet, Kt  1.5


At B: 275

421

503 lb ∙ in; Use

3;

2.0 Keyseat

/ .

1.25 in;

33.

Figure P12-33: Torque at A:

63 000 7.5 /1750

And

Forces on Sheave at A:

1.5

270 lb ∙ in

.

. .

Vertical plane

34.

0.9 Ok

162 lb ↓

Horizontal plane

V (lb)

V (lb)

M (lbin)

0 M (lbin)

MC =  (1131)2 + (398)2 = 1199 lbin

Assume Torque is Negligible, Use N = 4 . .

4357 psi

/

0.83 0.81

0.67

4 4357

Required

17428 psi

Required

/0.67

26 000 psi

From Figure 5

11;

68 ksi

Specify SAE 1040 CD; 30 ksi;

0.67 30

80 ksi;

0.67

70 ksi

20.1 ksi

333


and .

Check using Equation 12-24 with

/ .

. .

This is less than actual 35.

Ok

Figure P12-35 Torques on Gears and in Shafts: 63 000 5 hp /1800 rpm

Gear P, Shaft 1:

63 000 5 hp /900 rpm

Gears B & C, Shaft 2:

63 000 5 hp /300 rpm

Gear Q, Shaft 3:

14 °; Ψ

Shaft 2: Given:

175 lb ∙ in 350 lb ∙ in

1050 lb ∙ in

45° (See Chapter 10)

Gear B:  .

233 lb → 233

(Equation 10-2)

45°

233 lb

20.1° or

0.366 (Equation 10-1)

233 lb 0.366

85 lb

Gear C: .

350 lb ← 350 lb

(Equation 10-9)

45°

350 lb

350 lb 0.366

128 lb

334

(Equation 10-8)


114 ksi;

For SAE 4140 OQT 1200; 0.9 0.81 46

130 ksi;

46 ksi Figure 5

11

33.5 ksi

Vertical plane

Horizonta l plane

V (lb)

V (lb)

M (lbin)

M (lbin)

At C: 350 lb ∙ in;

470

√592

.

Specify

.

756 lb ∙ in: Use

2.0 Key

1.11 in

;

.

Ok

Shafts 1 and 3 can be designed similar to Problem 33. 36.

Data from Figure 10-8 to 10-12 and Example Problems 10-4 and 10-5. Pinion: 263 lb ∙ in; SAE 1040 OQT 1200;

√220

96.6

63 ksi;

335

240 lb ∙ in; 93 ksi;

3, 36 ksi

2.0 Key


0.86 0.81 36

25.1 ksi /

.

.

Gear: 788 lb ∙ in;

404 lb ∙ in;

3;

2.0 Key

/ .

.

63 000 4.0 hp /600 rpm

37.

420 lb ∙ in;

42 lb .

V (lb)

420/2 Γ

108 lb 108 lb

20°

71.6°

12 lb

108

20°

71.6°

37 lb

See Figure P12-37 Bottom

;

Top

V (lb)

M (lbin) 0

0 M (lbin)

336

.

Ok

210 lb ∙ in each 45/15

71.6°

15/45

18.4°


At Bearing D: 351

√105

2.5 Fillet

3;

Use

366 lb ∙ in

SAE 4140 OQT 1000

152 ksi;

0.95 0.81 58

44.6 ksi

168 ksi;

58 ksi

/ .

1.00 in;

Specify 38.

0.86 in

15.0 hp;

0.88 Ok

1725 rpm;

575 rpm;

287.5 rpm

Torque on Shaft 1

63 000 15 /1725

548 lb ∙ in

Torque on Shaft 2

63 000 15 /575

1643 lb ∙ in

Torque on Shaft 3

63 000 15 /287.5

Figure P12-38

3287 lb ∙ in

609 lb ←

.

609 lb Reactions act on A:

20°

222 lb ↓

609 lb →;

222 lb ↑

Gear A drives Gear B

Shaft 1

Horizontal

Vertical

V, M

V, M

At middle of Shaft: 337


333

√913

972 lb ∙ in

548 lb ∙ in; From Coupling to Gear

Couplin g

Gear A

Bearin g

Bearing

Shaft 1

Equation 12‐24 Used to compute all diameters. Diameter D1:

548 lb ∙ in;

Use SAE 1040 CD steel:

0; Design for 0.999 Reliability

71 000 psi;

30 000 psi; Then

0.75

80 000 psi; 12% Elongation

30 000 0.9 0.75

20 250 psi; Let

3

0.589 in

Diameter D2:

ame conditions as

;

0.589 in

Diameter D3: Depends on D4 Diameter D4:

972 lb ∙ in

548 lb ∙ in; At shoulder At Shoulder:

1.54 in

At Ring Groove:

0;

3.0:

Increase by 6% for Diameter D5:

0;

2.5 ; At keyseat

:

2.0

1.64 in ≅ 1.06 1.64

1.74 in Governing value

0: Very small diameter required to resist shear.

Bearing Seats: ,

: Assume bearings with bore

0.7874 in 20 mm

can be found to carry radial loads. Chapter 14, Table 14‐3; Bearing No. 6204 Specifications:

338


0.750 in 0.7874 in and right end of

Relief provided on left side of

of bearing does not contact rotating shaft. 0.969 in Shaft shoulder 2.00 in 1.80 in checked for all diameters

Ok

Shaft 2 1643 lb ∙ in ∙ .

822 lb ←

822 lb → 822

20°

299 lb ↑

299 lb ↓ Vertical

Horizontal

V (lb)

M (lbin)

V (lb)

M (lbin)

339

to ensure that outer race


Gear C drives Gear D

At A:

0;

At B:

√2001

240

2015 lb ∙ in

At C:

√2291

470

2339 lb ∙ in

At D:

0;

0

√667

0

√764

80

641 lb

157

DC = 4.00 in

780 lb DD = 8.00 in

Shaft 2

Bearing

Gear B

SAE 1040 CD steel: 30 000 psi;

Bearin g

Gear

71 000 psi;

80 000 psi; 12% Elongation

20 250 psi Same as Shaft 1

: 2015 lb ∙ in; 1.968 in At ring groove:

164 lb ∙ in; Keyseat K

2.0 ; Shoulder

At shoulder 1.06 2.089

.

: Governs

: 2339 lb ∙ in;

1643 lb ∙ in; At shoulder

2.068 in

340

2.5

2.5


At ring groove:

0;

1.06 2.1959

3.0;

2339 lb ∙ in

.

Governs

0;

780 lb;

: Right Bearing:

0;

2.94 :

/

671 lb →

Let:

. and

2.5

2.94 2.5 780 3 / 20 250

0.922 in

0.855 in ;

.

;

.

depend on bearing selection

Shaft 3 Horizontal

Vertical

V (lb)

V (lb)

M 0 (lbin)

M (lbin)

√1233

449

1312 lb ∙ in

3287 lb ∙ in from keyseat to right end of shaft. Use same material as for

341


Shafts 1 and 2. 0.80;

71 000 psi;

18 000 psi

Shaft 3

Bearing

Bearin g

Gear D

Diameter D2: 1312 lb ∙ in;

3287 lb ∙ in;

2.5 at shoulder

1.79 in at shoulder At Groove:

1.88 in for

Increase by 6%: Diameters

;

3.0;

1.06 1.88

.

:

3287 lb ∙ in;

0;

Specify: .

;

. . .

0

;

. Ok

342

Governs 1.07 in


39.

12.0 hp;

1150 rpm; Figure P12

39

Motor Shaft:

V-belt drive

Net driving force 63 000

/

/

63 000 12

Bending force

/1150

657 lb ∙ in View from left end

1.5

352 lb

35°

352 lb

35°

202 lb ←

35°

352

35°

288 lb ↑

Forces act on motor shaft. Directions as viewed from behind the left end of the motor. Reducer Input Shaft: Forces shown as viewed from right end for consistency with views of gear system in Figure P12‐38. Shaft speed:

1150 rpm

63 000 12 hp / 767 rpm Forces at sheave : 1.5

/

352 lb;

. .

767 rpm

986 lb ∙ in 986

202 lb ←;

/ 8.4

/2

235 lb

288 lb ↓

See motor shaft analysis

V-belt drive

From Problem 38: Gear :

∙ .

1096 lb →

1096

20°

343

399 lb ↑

View from right end


Position of sheave on Shaft 1 Assumed Horizontal plane

Vertical plane

Bearing D

Sheave Bearing Gear V (lb)

V (lb)

M (lbin)

M (lbin)

Resultant Moments: √606

864

√1947

1032

1055 lb ∙ in 2204 lb ∙ in

Bearing Forces: √245

232

358 lb

√649

344

735 lb

Design of Shaft 1: Completed in a manner similar to that shown in Problem 38. Shaft 2: See Problem 38 for analysis and design procedure. Forces on Gear :

1096 lb ←;

344

399 ↓


Shaft 2 speed

256 rpm

63 000 12 /256 /

2958 lb ∙ in

2958 lb ∙ in/2.00 in 20°

128 rpm

1479 lb → Gear C

538 lb ↓

Shaft 3: See Problem 38 for analysis and design procedure. Forces:

1479 lb ←;

538 lb ↑

Chain sprocket at end of Shaft 3: Speed:

256 rpm

128 rpm

63 000 12 /128

5917 lb ∙ in

2817 lb ↑

.

20°

/

2817

20°

345

Chain drive

964 lb →


20°

2817

20°

2647 lb ↑ Vertical plane

Horizontal plane

Bearin g

Bearing Gear

Gea r Bearing

Bearing

Sprocket Sprocket V (lb)

V (lb)

M (lbin)

M (lbin)

Resultants: √3666

3096

4798 lb ∙ in

√2892

7941

8451 lb ∙ in

√1222

1032

1600 lb

√707

4262

4320 lb

Bearing Forces:

Conveyor Shaft Forces: 964 lb →;

2647 lb ↓

346


Speed:

4.2/10.6

128

63 000 12 hp / 50.6 rpm 40.

Figure P12‐40: Shaft 2: Power out at

50.6 rpm

14 932 lb ∙ in

480 rpm; Power in at

15 kW; Power out at

Coal Crusher – Use

4.2/10.6

22.5 kW

7.5 kW

4 because of impact and shock. 50.27 rad/s

∙ / . .

298 N ∙ m

/ ∙ /

.

Torque on Gear

TC = 447 Nm

T (Nm)

149 N ∙ m

/ .

∙ / .

/

Torque in shaft

447 N ∙ m Gear Q drives Gear C

Forces: ∙

Gear : 20°

5960

20°

Gear : 20° Gear :

5960 N ← 2169 N ↑

2980 N ←

2980

20°

1065 N ↓

4806 N ↑

347

Geat A drives Gear R

Geat E drives Gear S


Horizontal plane

V (N)

Vertical plane

V (N)

M 0 (Nm)

M (Nm)

Resultants: √596

217

634 N ∙ m

√389

249

462 N ∙ m

√481

175

512 N ∙ m

√8027

1846

8237 N

√5719

1006

5807 N

Bearing Forces:

348


Proposed Shaft Design: Gear A

Bearing B

D1

D2

D3

Gear C

D4

Bearing D

D5

D6

D7

2.5, except

, ; Use

Gear E

D8

D9 Assume all fillets are small radius with at ring grooves with shaft diameter Use

1.5 at

and

1.06

3.0

groove diameter.

Well rounded

Material Selection: SAE 4140 OQT 1000,

1160 MPa,

1050 MPa

17% Elongation – Good strength and ductility. From Figure 5‐11: Select

0.80

400 MPa 65

;

0.80 0.81 400

349

0.81 0.99 Reliability

259 MPa

259 N/mm


Kt

Location

2.5

N ∙ mm 0

N ∙ mm 298 000

2.156

Specified D 50.0 mm

1.5

634 000

298 000

53.13

60.0 mm

2.5

634 000

298 000

62.96

65.0 mm

3.0

525 000*

298 000

62.82

2.5

462 000

298 000

56.69

3.0

462 000

149 000

60.19

2.5

512 000

149 000

58.62

60.0 mm

1.5

512 000

149 000

49.45

55.0 mm

2.5

0

149 000

17.11

45.0 mm

Solutions for diameters using Equation 12‐24 – Summary: N

1.06 D5

D4

66.6 mm D6

1.06

80.0 mm

63.8 mm

4

Notes: 

and



*Moment at



80.0 mm used for

are standard bearing bores from Table 14‐3. estimated between points B and C. ,

, and

to provide shoulder for bearing at B and D.



and

provide ease of installation for bearings.



and

made larger than required for compatibility with adjacent diameters

and to withstand moments at shoulders.

350




Final stresses must be checked after specifying fillet radii, groove geometry, and bearing selection.

41.

Figure P12‐41 Design shaft and levers.

20 N

60

60

/ 40

Use SAE 1137 CD steel 0.9,

Let

0.75;

20 N: Torque 676 MPa;

1200 N ∙ mm from B to D.

565 MPa;

0.9 0.75 260

260 MPa Figure 5

175 MPa

V (N)

M 0 (Nmm)

Wiper mechanism has an oscillating motion. Both bending and torsion will be varying. Shaft restrained in bearing at A but can float in bearing C.

Lever 1

Lever 2

351

11


Assume

2.5 at fillet to right of A. Assume

1.0 at C.

Assume levers are installed with a light press fit and tack welded in position. Use 3.0 for weld area. Design Equation 12‐24 must be modified for varying torque. Add

for torsion. Substitute

for

. Then: /

At C: / .

.

.

.

5.94 mm

At B: /

At

.

8.18 mm

, , .

.

.

Lever Design: Use flat stock, 4.0 mm thick

b

Same material as shaft:

175 MPa;

20

1200 N ∙ mm:

Required

60 ∙ .

/

20.57 mm

352

58.3 MPa


Required

6 /

6 20.57

/4.0

5.55 mm at shaft

Because shaft is 10.0 mm diameter, lever is adequate.

Cross section of lever

353


CHAPTER 13 TOLERANCES AND FITS Clearance Fits: Refer to Table 13‐3 for tolerance grades; data in thousandths of an inch. 1.

.

Limits: Hole 2.

.

;

.

Shaft

;

.

7 ; Clearance 10.5

7 15.5

Clearance 0.0070 to 0.0155

Basic size = 0.500 in; Precision fit – RC2: Hole

0.4 ; Shaft 0 .

Limits: Hole 3.

5 ; Shaft 0

Basic size = 3.500 in; Loose fit – RC8: Hole

;

.

0.25 ; Clearance 0.55 .

Shaft

0.25 0.95

; Clearance 0.00025 to 0.00065

.

Basic size = 5/8 in – 0.625 in; Loose fit – RC8: Hole

2.8 ; Shaft 0

3.5 ; Clearance 5.1

3.5 7.9

Adjust tolerances for basic shaft system – Add 3.5 6.3 ; 3.5

Hole Limits: Hole 4.

; Shaft

.

.

Clearance

3.5 7.9

; Clearance 0.0035 to 0.0079

.

Basic size = 0.800 in; Close fit – Reliable motion – RC5: Hole

1.2 ; Shaft 0

Limits: Hole 5.

.

0 ; 1.6

Shaft

. .

1.6 ; Clearance 2.4 ;

.

Shaft

;

.

1.6 3.6 Clearance 0.0016 to 0.0036

Basic size = 1.250 in; Loose fit – RC8: Hole Limits: Hole

. .

;

Pin

. .

;

4.0 ; Pin 0

5.0 ; Clearance 7.5

Clearance 0.0050 to 0.0115

354

5.0 11.5


6.

Basic size = 4.000 in; Loose fit – RC8: Hole

7.0 ; Clearance 10.5

5.0 ; Pin 0

7.0 15.5

Adjust tolerance for basic shaft system – Add 7.0 12.0 ; Pin 7.0

Hole Limits: Hole 7.

.

.

Shaft

.

0 ; Clearance 3.5

7.0 15.5

Clearance 0.0070 to 0.0155

.

Basic size = 0.750 in; Precision with wide temperature variations would typically

call for RC3 or RC4. RC2 – probably too tight for temperature change. RC5 probably too loose for required precision. RC3 or RC4 not available in Table 13‐4. Illustrate limits with RC5: Hole Limits: Hole 8.

1.2 ; Pin 0 . .

;

1.6 ; Clearance 2.4 Pin

.

;

.

1.6 3.6

Clearance 0.0016 to 0.0036

Basic size = 1.500 in; Loose – RC8: Hole

4.0 ; Shaft 0

5.0 ; Clearance 7.5

Adjust tolerances for basic shaft system – Add 5.0 9.0 ; Shaft 5.0

Hole Limits: Hole

. .

;

Shaft

. .

0 ; Clearance 2.5 ;

5.0 11.5

Clearance 0.0050 to 0.0115

355

5.0 11.5


9.

Tolerance diagrams for Problems 1 to 8 shown below:

Problem number B.H. B.H. B.S. B.H. B.H. B.S. B.H. B.S. B.H. = Basic Hole System; B.S. = Basic Shaft

356


Force or Shrink Fits: See Table 13‐4 10.

Basic ID = 3.25 in; OD = 4.00 in: Both are steel – E = 30 X 106 psi 0;

3.25/2

1.625 in;

4.000/2

2.000 in

Use FN5 – Heavy force fit 8.4 4.8 ; Interference: 7.0 8.4

2.2 ; Shaft 0

Hole

.

Limits: Hole

.

Shaft

.

0.0084 in

.

.

[Eq. 13‐2]

.

.

. .

. .

13 175 psi [Eq. 13‐4]

13 175

Not acceptable for 1020 HR; 11.

1.750 in;

4.0/2

FN3: Hole

1.4 Shaft 0

4.9 2.6 Int. 4.0 4.9 .

1575 psi Using

30

.

. .

64 363 psi

.

55 ksi

3.50/2

Limits: Steel sleeve

.

2.000 in;

4.50/2

.

: Bronze bushing

Equation 13

3

10 psi;

15

10 psi;

2.250 in

.

0.27;

:

0.0049 in

0.27

13 438 psi

Equation 13

4 At inner surface of steel sleeve

11 869 psi

Equation 13

5 At outer surface of bronze bushing

Note: Appendix A‐13 – Bearing bronze has a yield strength of 18 000 psi. 1.52 Low Evaluate FN5 fit for maximum interference. Hole tolerance:

0.0018 ; Shaft: 0

0.0072 0.0042 ; Interference: 0.0060 0.0072 357


Maximum interference = 4.0000 Stress in aluminum Let

4.0072

0.0072 [Smallest hole, Largest shaft]

18 901 psi Tension

2. Required

2 18 901

37 802 psi

Specify any aluminum alloy with

37 800 psi

42 ksi or 6061

Examples: 2014‐T4,

T6,

40 ksi

Any steel for rod would be satisfactory, provided 2 8834

17 788 psi

Any carbon or alloy steel with

18 000 psi

From Appendix 3: Examples:

13.

AISI 1020 HR,

30 ksi

AISI 1040 HR,

42 ksi

Steel sleeve on aluminum tube 2.00

2 0.065 /2

0.935 in;

[Equation 13‐5] 8500 psi;

For

2.00/2 .

.

.

.

1.000 in;

14.898

570 psi Maximum allowable pressure

.

From Equation 13‐3: Solve for 2 30

10 psi;

10

3.00/2

10 psi;

.

358

0.27;

0.33

1.50 in


14.

Nominal Diameter = 3.250 in; Assume maximum interference = 0.0084 in For final clearance = 0.0020 in; Change in diameter .

∆ 15.

492°F:

.

°

.

Bronze – shrink from 75 to ∆

10.0

10

75°

20°; ∆ 4.00

0.0084

0.0020

492°F

°

0.0104

95°F 95

0.0038 in

Max interference = 0.0049 in 0.0049 in

0.0038 in

0.0011in

0.0040 in Desired Clearance

∆ 209°F 16.

. .

.

75°F

°

0.0011 in 0.0051 in (Required expansion of steel)

209°F .

Use Equation 13‐7 to find decrease in diameter: .

.

.

.

.

0.27

0.00269 in Final inside diameter

3.500 00 in

0.002 69 in

359

.


CHAPTER 14 ROLLING CONTACT BEARINGS

1.

Equation 14 – 2:

2.

10

20 000

880

/

Equation 14 – 3: 3.

Use

0.343 1150

/

/

.

10

10 1500

.

1250 1.06

Equation 14 – 2 (a)

/10 5.

60

/10

(b) 4.

10

10

10

/

1450 1.04

10 /10 .

. 60

/

1.04

10 rev

/

10 /10

Shaft for an industrial blower. Reactions from Figure 12‐12: Reaction at B:

√458

4620

4643 lb

Reaction at D:

√1223

1680

2078 lb

From Example Problem 12‐1; Dia. At B (min.) 1.09 in

Dia. At D (min.) Use

10 000

Required

600

3.55 in

/

60

value at :

3.6

10 /10

/

4643 7.114

33 029 lb

:

3.6

10 /10

/

2078 7.114

14 782 lb

From Table 14‐3:

360

/

3.60

10 rev

;

.

;

.


6.

Data of Example Problem 12‐2: From Figure 12‐16 we find, √589

164

611 lb;

2.02 in;

188

√393

436 lb

1.98 in; From Table 12‐2

Table 14‐4: Agricultural Equipment – Let

5000 hr

5000 hr 1700 rev/min 60 min/hr Required C value at B:

611 5.1

5.1

10 rev

/

4882 lb

10 /10

At B: From Table 14‐3: Bearing 6011 has

6317 lb and a bore of 2.1654 in.

C is higher than required but specify Bearing 6011 for both B and D. 7.

Data of Example Problem 12‐3 and Figures 12‐17 and 12‐18. Conveyor shaft. √507

41

509 lb;

√1697

393

1742 lb Radial

purely radial; Bearing C also carries 265 lb thrust load 0.59 in; Use

20 000

Required

value at :

Bearing 6302 has

2.26 in [From Table 12‐3] 101

/

60

509 1.2

/

10 /10

1.2 /

10 rev

2519 lb

2563 lb and a bore of 0.5906 in [Figure 12‐16] to provide a shoulder for the

Should be compatible with diameter

bearing. A lighter bearing with a larger bore may be preferred. Bearing C: Combined radial & thrust load. [Equation 14‐5] Assume

1.5:

1.0 0.56 1742

1373 1.2 Bearing 6212 has Check: /

/

10 /10

10 679 lb, bore

265/7307

1.5 265

0.0363 →

1373 lb

6772 lb 2.3622 in, ≅ 0.24

361

7307 lb


/

265/1742 1742 1.2

19.

0.152

10 /10

use Equation 14 /

Varying loads: (Bearing 6324) 1.

4500 lb

25 min

2.

2500 lb

15 min

600 rpm;

47 783 lb

25 4500

1630

Bearing 6314,

600 rpm;

23 381 lb

25 min

2.

1500 lb

15 min

/

Bearing 6209,

1700 rpm,

7464 lb

480 min

2.

200 lb

115 min

3.

100 lb

45 min

/

40

23 381/2226

600 lb

15 1500

25 2500

/

1.

/

7464

480 600

/547

/

362

2226 lb

/

115 200 640

640 min

/

3975 lb

10 rev

40 min

21.

15 2500 40

46 783/3975

2500 lb

1742 lb

Ok

/

1.

1.0

8592 →

40 min

20.

4;

/

45 100

/

547 lb


22.

Bearing 6209,

1700 rpm,

1.

450 lb

480 min

2.

180 lb

115 min

3.

50 lb

45 min

7464 lb

480 450

45 50

/

0.85 100

/

115 180 640

411 lb

640 min

23.

/

7464/ 411

Bearing 6205,

101 rpm,

1.

500 lb

6.75 hr

2.

800 lb

0.40 hr

3.

100 lb

0.85 hr

/

/

3147 lb 0.40 800 8.0

6.75 500

508 lb

8.00 hr

. /

24.

Bearing 6211,

101 rpm,

/

9802 lb,

6502 lb

Combined radial and thrust loads: Compute equivalent load

as in Section 14 – 10.

R

T

T/R

/

e

Y

P

1.

6.75 hr

1750 lb

350 lb

0.20

0.653

0.26

1750 lb

2.

0.40 hr

600 lb

250 lb

0.417

0.0383

0.234

1.89

809 lb

3.

0.85 hr

280 lb

110 lb

0.393

0.017

0.20

2.24

403 lb

8.00 hr

0.56

363


Use equivalent loads to compute .

.

: /

.

1658 lb

. . /

25.

1450 lb, Actual

1150 rpm,

10 rev

1.04

10 /0.62 /

60

20 000 hr,

20000 101 60

1.21

/

436 lb,

1.21 509

5.10

5.10 436

1250 lb,

880 rpm,

0.21

10 rev

0.97 →

0.44

10 rev 1.16

10 rev

/

.

20 000 hr,

0.95 →

0.62

/

1.06

10 rev

1.70

10 rev

20 000

880

60

Adjusted

/

1.06

10 /0.62

1250

5.77

10 /0.44

Actual

[Equation 14 – 3]

0.99 →

/

.

5000 1700 60

[Equation 14 – 3]

10 rev /

.

10 /0.21

5000 hr,

/

1.04

10 rev

1700 rpm,

Adjusted

1.68

1450

101 rpm,

[Equation 14 – 3]

28.

/

/

509 lb,

Actual

0.62 [Table 14‐6]

/

Adjusted

27.

0.95 →

1150

[Equation 14 – 3]

Actual

15 000 hr,

15 000

Adjusted

26.

/

.

/

364


CHAPTER 16 PLAIN SURFACE BEARINGS All of the problems in this chapter are design problems with no unique solutions. A sample of each type of design problem is shown here. Plain Surface Bearings 1. Let

225 lb;

3.00 in;

1750 rpm

1.5

1.5 3.00

4.50 in

.

16.67 psi

. .

1374 ft/min

16.67 psi 1374 ft/min Required

Rating

22 900 psi ∙ fpm

2

2 22 900

Porous bronze bearing material/oil impregnated or BU or DU dry lubricated bearing. 4.

75 lb; Let

1.5

0.50 in; 1.5 0.50 in

600 rpm 0.75 in

75 lb/ 0.75 in 0.50 in 0.50 in 600 rpm /12 200 psi 78.5 fpm Required

200 lb/in 78.5 ft/min

15 700 psi ∙ fpm

2 15700

Porous bronze or BU bearing

365


7.

800 lb; Let

3.00 in;

1.50

350 rpm

1.50 3.00 in

.

4.50 in

59.3 psi

.

3.00 in 350rpm /12

275 fpm

16 290 psi ∙ fpm Required

2 16 290

Porous bronze or BU bearing 8.

60 lb; Let

0.75 in;

1.00 in; / .

750 rpm; Try 1.00/0.75

1.33 Ok

0.75 in 750 rpm /12

80 psi 147.3 fpm Required

1.25 0.75

80 psi

.

/12

1.25

rating

147.3 ft/min

11 784 psi ∙ fpm

2 11 784

Use Babbitt – high tin Hydrodynamically Lubricated Bearings 9.

1250 lb;

2.60 in;

Let

2.75 in,

For

300 psi;

/

1.515/2.75 .

0.0036 in;

/2

1750 rpm; Electrical motor

1.375 in /

.

0.55: Let

1.515 in

.

0.5

1.375 in; /

331 psi Ok 0.0018 in;

. .

366

754

0.50

0.938 in


Figure 16-4 Surface Finish: 16

32 μ in Avg.

0.000 25 2.75 /

0.0069 in: Use

0.0007/0.0018 /60

1750/60

0.389 →

0.29 Fig. 16

6.5

10

S is proprotional to : From Fig 16 /

5.79

.

/

SAE 50 oil has

9:

.

500 lb; 1.200 in;

For

200 psi;

/2

2500 rpm; Precision spindle 0.600 in /

1.73; Let

.

18.2 lb ∙ in

0.506 hp

1.15 in;

Let

.

0.326

8.0

0.0106 1250 1.375

.

reyns

0.0106

/

13.

10

reyns @ 160°F

0.29 6.5/5.79

/

.

8

29.17 rev/s .

Required

0.0007 in

1.50;

2.08 in

.

1.50

1.5 1.200 in

1.800 in

232 psi Ok

.

0.0014 in;

0.0007 in;

Surface finish: 8

16 μ in Avg.

.

0.00025 1.200 in

0.00030 in;

0.11;

41.67 rev/s

2500/60

857

.

367

/

0.0003/0.0007

0.429


.

Required

/

SAE 5W has

0.91

10

S is proportional to μ: /

0.832

.

reyns

@ 160°

0.11 0.91/0.832

0.120

2.80 From Figure 16-9: /

.

0.0033

/

0.0033 500 .

0.60

100 mm;

0.98 lb ∙ in

0.039 hp 100 mm;

18.7 kN;

16.

10

500 rpm; Conveyor

50 mm

For

2.0 MPa

Let /

1.0;

.

2.0 N/mm ;

.

93.5 mm

/

100 mm

.

1.87 N/mm

0.15 mm;

1.87 MPa Ok

0.075 mm; /

667

.

(Large clearance desired) 1.0

Then 8 μin

0.40 μm; 32 μ in

63 μin

0.20 μm; 16 μm

0.0254 μm 0.80 μm

1.60 μm

Specify surface finish

0.8 to 1.6 μm Avg.

0.00025 100 mm 0.096 Required

10 in

.

Surface Finish: Note: 1.0 μ in

16

0.025 mm; 8;

/60

. /

/

. .

0.025/0.075

500/60

8.33 rev/s

0.0485 Pa ∙ s

/

368

0.333


At 70°C, SAE 50 has .

0.096

0.091 →

.

/

0.046 Pa ∙ s;

.

0.0039 18.7 3.65 N ∙ m

/2

0.036 mm; .

2.0 MPa;

Let

2

191 watts

2200 RPM; Machine Tool

12.5 mm

.

50 mm; /

45 mm

/

2.0

1.80 N/mm

Surface Finish: 16

0.00625 mm ≅ 0.006 mm

0.006/0.018 2200/60

0.333 →

/

SAE 5W has μ

0.057

36.7 rev/s .

Required

1.80 MPa Ok

32 μin Avg. 0.4 to 0.8 μm Avg.

0.00025 25

. .

0.0058 Pa ∙ s

/

0.0066 Pa ∙ s @ 70°C

0.057 0.0066/0.0058 /

3.65 N ∙ m

191

.

.

/

10

0.018 mm

For

/60

50

694

.

/

2.6

8.33

25 mm;

/

10

25 mm;

2.25 kN; Let

/

0.025 mm

0.0039

/

17.

Slightly

.

0.065 →

0.0023

369

/

1.6


0.0023 2.25 0.065

10

12.5

10

.

0.065 N ∙ m ∙

15.0

15.0 Watts

Hydrostatic Bearings 19. Let

1250 lb; Supply pressure

p

/

1.40 [Figure 16-13]

0.50;

0.55;

.

4 /2 Let

9.09 in

/

/

4 9.09 1.70 in;

.

3500 lb; Let

0.5 1.7

.

/

.

/

0.85 in

0.60;

0.62;

4

/2

1.60 [Figure 16-13]

4 16.13 /

4.53 in

/4

4.50 /4

15.90 in

2.25 in;

350 psi

/

.

lb ∙ s/in

16.13 in

/

.

10

725 lb ∙ in/s

/

2.90

8.3 2.90 in /s

∙ /

500 psi: Let

.

Let

/4

0.005 in; SAE 30 oil @ 120°F →

250

250 psi

3.40 in Ok 0.5

.

21.

300 psi: Let Recess pressure

Use

4.50 in

355 psi Ok 0.60

1.35 in

0.008 in: SAE 40 oil @ 146°F;

370

7.0

10

lb ∙ s/in

∙ /

0.11 hp


.

.

.

.

355 25.

25.8 in /s

∙ /

/

25.8

/

/

1.39 hp

/ /

Hydrostatic Lubrication – Metric Data 22.5 kN; /

20 MPa: Let

0.60;

0.62;

4

.

/

/2

2.27

/

4 2.27 85 mm;

10 / 0.6

.

51.0 mm

.

1.20 kN;

26. Let

9.91

750 kPa

0.75 MPa

0.62;

.

4

/

/2 Let

.

10

32 mm;

m /s 159 Watts

1.60 [Figure 16-13]

64 mm Ok

0.6

0.6 32

0.10 mm: at 60° , SAE 10W oil has .

. .

10

159

10

3226 mm

/

4 3226 /

0.60

0.054 Pa ∙ s 9.91

∙ /

10

0.60 MPa; .

1.60 N/mm

170 mm Ok

.

.

1.60

10 N/m

10 mm

0.15 mm; at 50°C, SAE 30 oil has

Let

1.6

1.60 [Figure 16-13]

. .

1.60 MPa

0.014 Pa ∙ s 4.25

∙ /

4.25

19.2 mm

10

371

25.5

10 ∙

m /s 25.5 watts


CHAPTER 17 LINEAR MOTION ELEMENTS 5.

Required Use 2 1/2

6.

3.0 in

/

3 Acme thread

Required

. 5.0 in

/

For an Acme thread: 2 ½ ‐3: Required

5.0/4.075

4.075 in per in of length .

minimum .

7.

0.0463

.

2.65°

tan 17

10 ;

14.5° .

0.968

.

.

.

.

. .

∙ 8.

.

Use Problem 7 data:

.

. .

. .

.

∙ 9.

Square thread: ¾ ‐6;

4000 lb;

0.1667 in .

Equation 17‐2:

.

. .

. .

.

∙ 10.

.

Equation 17‐4:

. .

372

.

. .

.


11.

.

Equation 17‐3: 0.083

12.

.

.

°

→ .

Equation 17‐7:

.

%

10 yrs

.

.

13.

.

. 14.

Travel At 600 lb; ¾‐2 screw required;

15.

.

.

.

.

. .

17.

.

Equation 17‐13:

16.

.

.

.

For the ¾ ‐2 screw at 600 lb, travel life = . 1.04

10 in

.

Metric trapezoidal power screws – Problems 18‐29 – Table 17‐1 M 18.

Required Use

75 MPa

Specify a size: Load = 125 kN;

/

1667 mm –

; Dp = 50.5 mm; Nominal Lead

Problems 18 to 23 use same data

Pitch

.

373

55 mm;


19.

Find torque to raise 125 kN load for

0.15

.

.

.

.

.

658 559 N ∙ mm 20.

.

125 kN,

2

0.15

.

.

. .

21.

Equation 17

.

Find torque to lower load

291 905 N ∙ mm

.

.

Equation 17

.

4

Find power to raise 125 kN – 4250 mm in 7.5 s; M55

9 Screw

658.6 N ∙ m From prob. 19 /

Define:

395.6 rad/s

.

658.6 N ∙ m

395.6 rad/s

260 531 N ∙ m/s

P = 260.5 kW ‐ (Very high) 22.

Find lead angle : For λ

°

Equation 17

3

; or

. %

23.

Find efficiency [Equation 17‐7]:

24.

Specify a power screw size:

8500 ;

Required

77.3 mm

. 25.

.

.

/

;

.

Find torque to raise load; 17 12 167 N ∙ mm

.

;

110 MPa

.

0.15 .

2

.

. .

.

374

. .


26.

Find torque to lower load;

8500 ; .

0.15; [Use Equation 17‐4]

.

. .

3956 N ∙ mm 27.

.

.

Find power to raise load; 240 mm in 3.5s ;

12.167 N ∙ m From Problem 25 / .

143.62 rad/s

.

12.167 N ∙ m 143.62

/

1747 N ∙ m/s

1747 W

. .

.

28.

Lead angle

29.

[Use Equation 17‐7] Efficiency

30.

Ball screw from problem 14: ¾ ‐2, Length = 28.0 in

.

° [Borderline self‐locking] . ∙

0.334

. %

Find estimate of critical speed. [Equation 17‐15] .

minor diameter of screw. This value not available in this book, or on Internet site 10. As an estimate, use minor diameter for a ¾ acme screw – Machinery’s handbook, 28th ed., page 1830. 28.0 in

between single bearings at ends

1.00 Let

1.0 to estimate critical speed. .

. .

.

3339 RPM

375

≅ 0.55 in – from


Safe operating speed ‐

3.0

376


CHAPTER 18 SPRINGS 1.

∆ /∆

12.0/ 2.75

2.

;

;

3.

:

∆ /∆

0.830

/

. .

37.1 mm

21.4

29.4

134/8.95

.

2

1.100

2 0.085

.

1.100

0.085

; 8.

2

/

134 N

.

.

/

0.563/0.085

0.560

0.059

.

.

0.501 in:

2

19

2

/

. .

0.501/0.059

17 Active coils

.

Tan 19 0.059

.

.

: .

32.2

.

/

8.95 29.4

1.015/0.085

0.626

.

. .

.

/

.

/

/

Tan

32.2/76.7

39.47 mm

6.

7.

/

1.25

99.2 / 63.5

5.

.

76.7 0.830 /

4.

1.85

.

.

377

°

.


9.

.

From Equation 18‐6:

.

.

.

Equation 18‐4:

.

.

10.25 lb

74 500 psi

.

.

.

.

.

.

.

1.17

.

From Figure 18‐9: Music wire: 10.

/

4.22/0.501 0.18

Actual 11.

8.42: From Figure 18

0.18 4.22

4.22

.

3.00

.

15, Curve A,

0.18

0.76 in

.

0.76

– Buckling should occur

(Equation 18‐3)

8.40 4.22

12.

0.501

.

1.12

.

.

From Problem 9: 74 500 psi

.

0.059

.

8.40 lb/in

.

.

; Too high

.

From Figure 18‐9, Light service,

.

147 000 psi

approximate

Notes concerning Problems 13‐35: Most of these problems are design problems. No single unique solutions exist. Sample solutions are shown. Problems 13 through 24 are compression springs. Problem 13 is done by both methods 1 and 2 as outlined in the text. Others are done by one or the other method. In some problems only summary results are shown. Problems 25 through 31 are extension springs. Problem 25 is worked out in detail. Problems 26 through 30 were designed with the aid of a computer program using the same procedure. Only summary results are shown. Problem 31 is the stress analysis of the ends of the spring.

378


Problems 32 through 35 are torsion springs. In each case, the design of each end is required. It was assumed that ends would be straight with length L1 and L2 as shown. The effects of the ends on the spring rate were then included in the analysis. 13.

220 lb;

Method 1

180 lb; ∆

Step 1

ASTM A229; Severe service;

Steps 2‐5

Let

3.00 in; ∆ /∆

5.25

2.50

2.75 in

(Equation 18‐7)

80 000 psi

/

.

.

/

3.00/0.3065 .

.

.

Step 12

2

.

.

0.3065 5.72

2

14

2.365 in

2365

231 lb

67 126 231/220

;

1.15 Fig. 18

5.72 coils

80 5.25

Step 13

104 ksi

67 126 psi Ok

.

/

0.293 in

78 ksi; max

9.79:

.

Step 11

/

.

0.3065 in U.S. Gage 0;

Select

Step 10

Summary:

10 psi

5.25 in

2.50 in

Step 7

Step 9

180/80 0.50

Assume

0.50 in.

80 lb/in

3.00

Step 6

40 lb; ∆

3.00 in Design Decisions 3.00

180

11.2

40 lb/0.50 in /

Step 8

220

70 420 psi

3.00

0.3065

3.3065 in

3.00

0.3065

2.694 in

.

;

379

.

;

Ok

.


13.

Method 2

Process starts the same as method 1 without

Step 2

(Eq. 18‐10)

21.4

Step 3

Try

Step 4

(Equation 18‐11)

/

21.4 220 / 80 000

0.2625 in U. S. Gage 2;

2

/

Step 5

Use

Step 6

(Equation 18‐12)

.

2.50

0.243 in

80 000 psi

2 0.2625 0.2625

7.5 coils

6.0 /

.

.

/

.

9.15

1.16 (Figure 18‐4) (Equation 18‐4; Note: 8/ = 2.546) .

Step 8

.

.

86 262 psi Too high

.

Repeat from step 3: Try

0.2830 in U. S. Gage 1,

79 000 psi

104 000 psi Step 4 Step 5

2.50

2 0.2830 /0.2830

6.83

6 coils

Use .

Step 6

/

. . .

Operating stress

.

9.38;

.

1.155 75 770 psi Ok

.

Solid length & Stress at solid length 2

0.2830 6.0

2

2.264 in

80 lb/in 5.25

2.264 in

Stress at solid height Final geometry

/

239 lb

75 770 239/220

9.38 0.2830

380

2.655 in

82 272 psi Ok


2.655

0.2830

2.938 in

2.655

2.830

2.372 in

2.50

/

14.

Summary:

.

Method 2

1.75 in;

2.264 /6.0 ,

.

.

.

3.368

21.4 22 /125 000

2

/

/

.

/

.

.

.

6.85 →

.

13.6 3.368

1.375

Buckling:

/

1.75

1.225

27.1 lb 148 245 psi Ok

0.428 in

0.491; /

20

1.375 in

120 325 psi 27.1/22.0 6.85 0.0625

26; Try

120 325 psi Ok

.

0.0625 22

188 ksi

2 0.0625 /0.0625

.

/

5.0 lb

0.061 in

130 ksi; τ

1.75

.

2

3.00 in;

.

3.368 in

0.0625 in → τ

.

,

1.618 in

5.0/13.6

/

Try: 16 Ga.;

.

125 ksi [125 000 psi]

1.75

3.00

21.4

Ok

13.6

.

/

,

22.0 lb;

ASTM A401; Severe service; .

0.0393 in

0.366 in 1.375 /20

3.368/0.428

7.87:

381

0.019 in /

/10 Ok 0.21 Fig. 18

15


0.21

0.21 3.368

0.71 in. : Actual

will buckle

After several iterations this design was produced which will not buckle.

15.

0.072 in;

129 ksi; τ

22.3;

12;

108 200 psi;

1.008 in;

185 ksi 8.52; 32.1 lb;

0.062 in

: Buckling ⇾

0.53

1.78 in; Actual

Method 2

1.25 in;

.

/

5.49; .

.

2.00 in;

21.4 Try 16 Ga.;

0.0625 in; 2

115 ksi;

/

1.25

/

/

.

.

.

.

0.0625 18 16.67 2.09

6.64 0.0625 /

2.09/0.415 /

2.09 in

0.055 in 128 ksi

6.64 Then

18.0 → Use 1.23

1.125 in 1.125

74 540 16.09/14.0

/

1.50 lb

75 540 psi Ok

.

2

.

2 0.0625 /0.0625

. .

.

2.00

21.4 14.0 /100 000

/

.

100 ksi

16.67 lb/in:

.

/

Ok

14.0 lb;

ASTM A313, Type 302, Avg. Service; .

.

16.09 lb 85 650 psi Ok

0.415 in

5.04 No buckling 1.25

1.125 /16

382

0.008 in

/10 Ok

16


16.

0.415

0.0625

0.478 in

0.415

0.0625

0.353 in

4.00 in;

Method 2 ASTM A231:

250 lb,

21.4

29.23 lb/in:

.

/

10.50

21.4 250 /90 000

Trials with gages 2 and 1 failed 0.3065 in 0 2

/

/

.

90 000 psi,

4.00

2 0.3065 /0.3065 /

.

.

/

.

3.678 in

29.23 12.55

3.678

259/250

11.37 0.3065 12.55/3.485 / 17.

Method 2 .

4.00

259 lb

89 900 psi

Ok

3.485 in

3.678 /10

0.032 in

0.68 in;

0;

/10 Ok 1.75 in;

13.08 lb/in; Music wire; Average service; τ

21.4 14 /120 000 135 ksi;

1.125

3.60 No buckling

14.0 lb; .

11.05; Try

86 680 psi Ok

0.3065 12

86 680

130 ksi

11.37; Then

.

2

12.55 in

0.244 in

,

.

.

60 lb/29.23 lb/in

too high

.

/

60 lb

90 ksi For severe service .

For

10.50 in,

0.050 in; Use

150 ksi

383

120 ksi

0.055 in, 24 Gage

10


2 .

/

. .

.

.

0.68

/

9.20 →

. .

2

/

8.0

1.16

0.055 10

0.550 in

13.08 1.75

0.55

15.70 lb

125 750 15.7/14.0 9.20 0.055

1.75/0.506 0.68

8.9 coils; Use

125 750 psi Ok

.

/

2 0.055 /0.055

141 000 psi Ok

0.506 in

3.46 No buckling

0.55 /8

0.016 in

/10 Ok

0.561 in 0.451 in 18.

Method 2 .

2.75;

1.75 in;

1.00 in;

8.00 in

4.57 lb/in

.

ASTM A313, Type 316, Average service; 21.4 8.0 /90 000 0.85 122 ksi

.

/

.

.

.

.

.

0.0475 17 /

1.00

/

. .

0.044 in → Use

104 ksi;

2

2

90 ksi

0.85 135

0.0475 in; 18 gage 115 ksi

2 0.0475 /0.0475

9.14 →

19.05 → Use

17

1.16

95 740 psi Ok 0.9025 in;

4.57 lb/in 2.75

95 740 8.44/8.0

101 050 psi Ok

384

0.9025 in

8.44 lb


9.14 0.0475 / 19.

0.434 in;

0.32;

0.32 2.75 0.625 in

Same as 18 except Let

0.75 in; /

.

0.85 115 ksi

.

.

.

.

.

2

1.00

130 ksi; /

0.743

9.17 lb 80 400 psi Ok

0.743 /9.89

0.026 in Good

0.75

0.0625

0.8125 in

0.75

0.0625

0.6875 in

Ok

0.75 in Method 1

0.625 in; .

1.12

3.67 Ok No buckling

Same as 17 except

.

109 ksi

0.743 in

70 100 9.17/8.0

/

.

0.057 → Use

0.85 128

0.0625 11.89

2.75/0.75

Let

/

.

9.89 coils

4.57 2.75

20.

6.33 High 0.88 Will buckle

Use method 1

12.0 →

.

/

1.75

70 100 psi Ok

.

/

0.88 in;

97.8 ksi;

0.75/0.0625 .

2.75/0.434

100 ksi

.

/

/

120 ksi /

0.061 in → Use

0.063 in

145 ksi 0.625/0.063

9.92 →

385

1.15

0.0625 in


.

.

.

.

102 500 psi Ok

. .

. .

7.31 coils;

.

13.08 1.75 / /

21.

0.063 7.31

0.586

2

0.586 in

15.22 lb

111 500 psi Ok

1.75/0.625

2.80 Ok No buckling

0.68

0.586 /7.31

0.625

0.063

0.013 in

/10 Ok

0.688 in

Clearance with hole = 0.75

0.688

0.062 in Ok

/10

Method 2

45 lb;

3.50 in;

22.0 lb

.

3.05 in; 51.1 lb/in;

.

/

21.4 45 /90 000

0.103 in → Use

109 ksi;

ASTM A231: 2

3.05

.

.

/

.

.

5.44 →

71 950 psi;

.

2 /

0.1055 20

1.285

51.1 lb/in 3.93

148 700 psi

21.1

Ok

0.574 in

3.93/0.574

6.85:

0.27 3.93

1.061 in 3.93

26.9 coils → Use

Ok

2.11 in;

71 950 93.0/45.0 5.44 0.1055

/

3.93 in

0.1055 in

2 0.1055 /0.1055

. .

22/51.1

157 ksi; Severe service

/

/

3.50

3.05

/

0.27

0.88 in

386

Ok No buckling

93.0 lb

18


3.05

2.11 /18

0.052 in

/10 Ok

0.680 in 0.469 in 22.

Compression Spring: Method 1 ASTM A227 Steel wire;

11.5

10 psi Table 18

4

Stress from Figure 18‐8. 2.50 in,

20.0 lb,

2.10 in,

35 lb

Install spring around 1.50 in. diameter shaft. Spring scale

.

/

Free length Try

37.5 lb/in

.

2.50

20.0/37.5

1.75 in;

Severe service: ≅

1.75

/

.

Try U.S. wire gage 9: 87 000

0.25 in

/

.

Severe service ;

.

.

.

.

2

.

116 000 psi Light service

11.80;

1.125 Figure 18

14

53 800 psi Ok

.

.

0.130 in

0.1483 in

1.75/0.1483

3.45 coils

0.1483 3.45 37.5 3.033

/

1.50

≅ 85 000 psi

.

/

3.033 in

2

0.809 in

0.809

83.4 lb

53 800 psi 83.4/35

387

128 200 psi Too high


Try

0.162 in 8 gage ;

86 000 psi;

114 000 psi

Summary of results: 10.80;

1.13

41 455 psi Ok 4.93 coils;

1.122 in;

71.7 lb

84 900 psi Ok 1.75 23.

0.162

1.588 in Ok

Compression Spring: Method 1: Metric ASTM A227 Steel wire; 60 mm,

79.3 GPa

90 N,

79.3

50 mm,

10 MPa Table 18

155 N

6.5 N/mm /

60 mm

73.85 mm

/

Spring installed on 38 mm diameter shaft: Try Figure 18

8 Severe service;

Trial

.

Try

600 MPa 87 ksi ;

/

80 ksi 550 MPa

/

3.80 mm Table 18

11.84;

1.125 Fig. 18

364 MPa Ok

. .

2

3.39 mm

2 0.150 in

.

.

/

.

800 MPa 116 ksi

45/3.80

.

45 mm

3.49 coils

3.80 3.49

2

20.86 mm

388

14

4


6.5 N/mm 73.85 /

364 MPa 45

24.

3.80

0.054 in;

41.22 mm Ok

For

11.2

106 ksi Severe ;

0.531 in; /

344 N

809 MPa slightly high

Compression Spring: Analysis: ASTM A229, 17Ga. ;

0.531

0.477/0.054

128 ksi Avg ;

0.054

8.83;

10 psi

1.17;

141 ksi Light

0.477 in 7.0 coils;

7.0

2

5.0

10.0 lb: .

.

90 219 psi Ok for severe service

. .

.

.

.

1.25 in

0.456

. .

0.456 in 0.794;

/

0.378

Extension Spring

172 500 psi at solid length

141 000 psi Too high

7.75 lb;

2.75 in;

2.25 in,

0.300 in; Music wire, Severe service 0.250 in; /

Use 16 Ga. ,

0.378 in

19.12 lb

90 219 psi 19.12 lb/10.0 lb For light service

But

0.054 7

21.93 lb/in

.

21.93 1.25

25.

20.86 mm

120 000 psi; Trial K = 1.20 .

.

0.037 in;

.

/

0.0367 in

120 000 psi

0.287 in Ok;

0.213 in

389

5.25 lb installed


/

0.25/0.037

6.76 →

.

.

1.225

.

119 320 psi Ok

. ∆

.

.

.

.

5.0 lb/in . .

.

35.5 Coils

1

0.037 36.5

.

Body length ≅

1.350 in

. .

Assume full loop at each end . . 2 Deflection to

1.350

2 0.213

:

1.777 in

2.750

Initial force

7.75

Initial stress

/

1.777

0.973 in

5.0 0.973

2.88 lb

119 320 2.88/7.75

From Figure 18‐21 – Stress should be

14

44 340 psi High

21 ksi

Use smaller end loops – say 0.06 each . . 2 0.06 2.750 7.75

1.35 1.47

5.0 1.28 /

0.12

1.47 in

1.28 in

1.35 lb

119 320

1.35/7.75

20 800 psi Ok

Summary: . .

. ;

.

;

.

35.5 Coils; 2 Loops @ 0.06 in each .

@ .

.

@ .

;

390

.

@ .


26.

Extension: Music wire, Average service, 15.0 lb;

5.20 lb;

130 ksi

5.00 in;

7.84 lb/in;

0.60 in;

132 000 psi;

9.52;

3.75 in 0.0596 in;

1.153;

0.063 26 Ga.

105 600 psi Ok,

Body length = BL = 0.931 in; For end loop size = Change ELS 0.663 in 27.

6.80 lb/in;

0.65 in;

110 ksi;

0.709 in;

9.61 Coils;

0.626;

1.20 in →

0.591 in

;

,

0.591; 0.591 in

,

,

;

, , ,

6.00 in;

:

100 ksi

25.14 Coils;

10.0 lb;

1.542 in

6.00 in;

100 ksi

0.0545 in; 0.6325 in;

1.58 in;

1.0 in;

12.5;

113 ksi (Ok) 10.80 in;

1.50 in:

0.210 in →

81 ksi;

1.2747 in;

6.66;

391

1.114

0.6325 in;

0.96 lb; 162 lb;

0.055 in,

80 ksi Avg. service ; 1.7253 in;

17.3 ksi High

13 500 psi (Ok Fig. 18‐21)

0.7425 in;

Extension: ASTM A313: Type 302:

91.1 ksi Ok

1.89 lb;

10.0 lb;

0.6875 in 11/16 ;

0.14 lb: Change

1.31;

10.95 ksi Ok (Fig. 18‐21)

1.48 lb;

27.81 Coils;

3.00 in,

0.059 25 Ga.

11.02;

Extension: Music wire, Average service;

117.3 ksi;

1.0 lb;

0.058 in → Use

1.92 lb;

135 ksi; 24 Ga. ;

30.

100 ksi;

Extension: Music wire, Severe service;

130 ksi;

8.48 lb

0.75 in Ok

(Same as Problem 24 for

29.

0.537 in = Di;

13 500 psi Ok (Fig. 18‐21)

Extension: Music wire, Severe service;

Change 28.

1.92 lb;

1.20 in →

13.78 Coils

1.225

38.0 lb/in 0.225 in 4 Ga.


66.3

;

25.11 Coils;

71.7 lb;

1.27 in

,

29 300 psi Too high

Change 31.

5.88 in:

43.6 lb;

0.90 in;

17.8 ksi (Ok Fig. 18‐21)

Extension Spring Ends 19 Ga. :

0.041 in:

0.28 in;

146 ksi;

0.094 in;

5.0 lb

130 ksi For average service

Bending Equation 18 2

0.25 in;

/

13

Figure 18

22

2 0.25 /0.041

12.20

1.065 .

.

.

.

.

114 000 psi Ok

.

Torsion (Equation 18‐15) 2

/

2 0.094 /0.041

4.59

1.209 .

.

.

62 600 psi Ok

.

32.

Torsion Spring: ASTM A313, Type 302, Average service Assume

0.420 in;

140 000 psi;

/

.

.

/

1.15;

180°

0.0437 in; Use 18 Ga. ;

0.50 rev 0.0475 in 160 000 psi

/

0.420/0.0475

Actual 1.0 lb ∙ in/0.50 rev

.

. .

8.84: 103 800 psi Ok

2.00 lb ∙ in 392

1.092


. .

.

.

Ends: Specify

0.75 in .

.

0.38 Coil Ends

.

.

Operating

. .

Minimum

0.408 in

.

0.408 in

0.408

Make rod 90% of

0.9 0.360

0.0475

0.360 in

0.324 in

0.300 in Standard size

Use

1

0.0475 16.64 0.420 in

33.

16.64 Coils Total

.

0.0475

1

0.5

0.862 in If coils touch

0.4675 in Ok

Torsion Spring: ASTM A313, Type 302; Severe service; Mo

12.0 lbin

Assume

0.75 rev

1.125;

110 ksi;

/

.

1.15; /

.

270°

0.1085 in; Use 11 Ga. ;

0.1205 in 118 000 psi

/

1.125/0.1205 .

.

12.0 lb ∙ in/0.75 rev .

.

Ends: Let Body Operating

.

1.087

75 920 psi Ok

.

/

9.34;

.

16.0 lb ∙ in/rev 32.15 Coils total

.

1.50 in;

0.28 Coil Ends

32.15

0.28

31.89 Coils

.

1.100 in

. .

.

393


1.100 Use

0.1205

7/8 in 4.08 in;

34.

 0.9 0.9795

0.9795 in;

0.875 in; 1.125

1

0.1205

0.1205 32.15

140 ksi; /

1

1.0 rev

1.15

.

/

.

0.0549 in; Use 26 Ga. ;

0.063 in

156 000 psi /

0.625/0.063

.

.

9.92;

.

2.50 lb ∙ in/rev;

.

Specify ends; . .

0.51 coil:

0.604

0.063

28.15 coils

0.541 in

0.487 in → Use

7/16 in

0.4375 in

0.688 in

1

1.0

1.93 in

0.038;

0.368 in;

1.125 in; 401 Steel;

.

. .

180°

9.50 coils 0.50 rev

:

From Eq. 18‐22, Solve for .

0.51 0.604 in

.

0.063

Torsion Springs: 0.50 in;

. .

0.063 28.66 35.

28.66 coils

.

28.66 .

0.9 0.514 0.625

.

1.50 in

Minimum Minimum

1.081

110 100 psi Ok

.

.

0.75

1.246 in

Torsion Spring: Music wire; Severe service; 0.625 in;

0.882 in

. .

394

0.91 lb ∙ in


Where:

0.368 .

Ends:

.

. .

Where

/

0.330 in

.

0.52 coil

0.52

10.02 coils

.

9.50

0.038

184 800 psi

0.330/0.038

8.68

1.094 For severe service

200 000 psi;

184 800 psi Ok

395


CHAPTER 19 FASTENERS 4.

Load per bolt = 6000 lb/4 0.75

1500 lb; Select SAE Grade 2 bolts, Table 9‐1

0.75 55 000 psi

41 250 psi

0.0364 in

/

Use ¼‐28 UNF or 5/16‐18 UNC For 5/16‐18:

0.15 0.3125 in 1500 lb

5.

From Tables 19‐1 and 19‐4:

6.

M4

.5:

85 000

800 MPa = T.S.

.

Yield strength

0.6

. .

0.6 800 MPa

480 MPa

Proof strength

0.9

. .

0.9 480 MPa

432 MPa

9.79 7/8‐14 UNF;

432 /

4229 N

25.4 mm/in

22.2 mm

0.875 in

. .

.

8. 1/

1/14

0.0714 in

25.4 mm/in

1.81 mm

Nearest metric thread = M24

2 (Table 19‐5)

Difference in

1.8 mm

24.0

22.2

0.071 in

Metric thread is approximately 8% larger in this size 9.

Pitch

∙ /

9.79 mm ; Grade 8.6 (Section 19‐2; Tables 19‐3 and 19‐5)

Tensile strength

7.

0.0140

.

0.630/20

0.196 in

0.0315 in

25.4 mm/in

Closest standard thread is

25.5 mm/in 4.98 mm .

396

0.800 mm


American standard thread #10‐32 is similar but not as close to measured dimensions. 10.

M10

1.5:

58.0 mm 0.75 TS

Nylon 6/6: TS = 146 MPa: Max. 58.0 11.

¼‐20 UNC:

109.5 /

0.0318 in ;

6351 N

SAE grade 2:

0.5 74

37 ksi;

b)

SAE grade 5:

0.5 120

60 ksi;

c)

SAE grade 8:

0.5 150

75 ksi;

d)

ASTM A307:

0.5 60

30 ksi;

e)

ASTM A574:

0.5 180

90 ksi;

f)

Metric grade 8.8;

0.0318 37000

0.5 830

0.0318

415 MPa

60 200

4.448 N/lb

/

8513 N 0.5 68

.

Aluminum 2024‐T4;

h)

S43 000, Ann.;

i)

Ti‐6AI‐4V, Ann.;

j)

Nylon 66 dry;

0.5 21

10.5 ksi;

k)

Polycarbonate;

0.5 9

4.5 ksi;

l)

ABS (high impact);

0.5 75

34 ksi;

37.5 ksi;

0.5 130

65 ksi;

0.5 5

2.5 ksi;

Alternate for h): Screw may be full hard – App.6 90 ksi,

0.5 90

45 ksi;

397

. .

60.2 ksi

1914 lb Similar to SAE grade 5

g)

S43 000

.

0.5

a)

1914 lb

109.5 MPa


CHAPTER 20 MACHINE FRAMES, BOLTED CONNECTIONS AND WELDED JOINTS 1.

Direct shear, 5 bolts, A307 lb

24 000 lb/bolt single shear

/ lb

Required

0.240 in2

lb/in2

/4 ∶

4

/

4 0.240 /

Figure P20-1

0.55 in

Use five 9/16‐12 UNC bolts, 1 ¾ in long 2.

Direct shear; Each bar supports 4 hangers 4 750 lb

3000 lb

Total load on joint

4 bolts in double shear, A307 lb

Total As required 2 4

0.30 in2

lb/in2

2

/ 2

0.30

/ 2

0.219 in

Figure P20-2

Use – ¼‐20 UNC Bolts, 2.00 in long 3.

4 Bolts Horizontal direct shear:

5196 lb/4

Vertical direct shear:

3000 lb/4

5196 lb 13 in

67 548 lb ∙ in

√1.50

1.00

1299 lb/bolt

750 lb

1.80 in ‐ all bolts 398

Figure P20-3


4

13.0 in2

4 1.80 ∙

.

Forces on bolt at upper left:

9353 lb/bolt

.

Total

7794 lb

1299 lb

9093 lb

Total

5196 lb

750 lb

5940 lb

Total

√9093

5946

10 865 lb

Total F = 10 865 lb

A490 bolts, double shear lb

0.494 in2

lb/in2

Required

2

/

2

/4

2 0.494

/

/2 0.561 in

Use – 9/16 – 12 UNC, 3 ½ in long 4.

Fixed‐end beam – Case e; Appendix 14‐3. .

Each side: Direct shear

Figure P20-4

32 873 lb∙in

32 873 lb∙in

l between centroids of bolt patterns (See dwg. on next page)

lb Bolts

Bolt

Use 4 bolts on each face of column through flange and plate. Force on each bolt due to moment: 16.00 in2

8 1.414

1.414 in; ∙

lb

.

Bolt

.

Forces on bolt at upper right:

FR = 3041 lb

399

Solution continued on following page.

l = 87.66 in


Total

2054 lb

188 lb

2054

√2242

Tapere d washer

2242 lb

3041 lb

Specify ASTM A325 high strength bolts 17500 psi

Top view

Side view

/

Required

lb

/

lb/in2

/4;

4 /

0.174 in2

4 0.174

/ l = 84 + 2(1.83) l = 87.66 in

0.470 in Use – ½ ‐ 13 UNC bolts. No threads in the shear plane. 5.

6 Bolts, A307, 1400 lb/side of bracket lb

Shear:

1400 √2

Figure P205

233 lb/Bolt 13 in

3

18 200 lb∙in

3.61 in;

4 3.61 in

2.00 in 60 in2

2 2.00 in

13 in to load

Bolt ① ∙

Total

.

1

1095 lb

Fh = 608 lb

1296 lb (Resultant of Fv and Fh)

As = F/d =

/ .

= 0.130 in =

/4

0.406 in

Use six 7/16‐14 Bolts on each side of bracket

Fv = 1144 lb F = 1296 lb

400


6.

Vertical component of force in each cable must be 2000 lb 25°

Figure P20‐6

2000 lb

2000 lb/

25°

sin 25°

2207 lb

2207 sin 25°

933 lb Circular pattern; 8 Bolts, r = 3.00 in; A325 8 3.0

72 in2

On each bolt, Fi =

=

.

= 2500 lb

Shear‐horizontal

933

/8

117 lb ←

Shear‐vertical

2000 lb /8

250 lb ↓

√2750

117 /

4 0.157

One of four brackets

2753 lb 0.157 in2 /

/4

0.448 in

Use eight ½‐13 Bolts

Moment about center of bolt pattern: M = (2000 lb)(30 in) = 60 000 lb∙ in

2750 lb = Net vertical force

401


Welded Joints 7.

Figure P20‐1: Direct shear;

/

; V = 12 000 lb

Weld both vertical sides, 4.0 in long: lb

2 4 in

1500 lb/in

. in

For A36 steel and E60 electrode; / /

8.

8.0 in

9600 lb/in/in of leg [Table 20‐3]

0.156 in;

/

Use 3/16 in leg

From problem 4 –At each end of the beam, V = 1500 lb T = 32 873 lb∙in – Shared equally on front and back of plates that are welded to S7x153 column. Weld along top and bottom of plate. Case 3 – Fig. 20‐8: 3 37.45 in

2

/6

2 3.66 in

ch

7.32 in

3 3.66 4.00

3.66

1.83 in

A

/6

cv = 2.0 d = 4.00 in

Torsion

On each weld pattern: V = 750 lb, T = 16 436 lb ∙ in lb

At Ⓐ:

.

102

in ∙

in

.

878

. . .

Vector sum of forces:

b= 3.66 in

804

→ 87 8

1211

804

Use E60 electrode: fa = 9600 lb/in/in

906

/

102

/ /

0.131 in

Use w = 3/16 in = 0.188 in – minimum for ½ in plate.

402

fR = 1211 lb/in


9.

Figure P20‐5: Trim sides so that 2.00 in. extend onto rigid structure. b= 2

W Weld top and bottom only. Each side carries 1400 lb Torque on weld:

1400 8

/2 = 12 600 lbin d = 8.0 in

2

2 2 in

4.00 in 65.3 in 350

. ∙

.

771

. .

193

.

Case 3 – Figure 20-8 →

E60 Electrode

771 lb/in 193

/ / /

543

0.098 in

943 lb/in

350

[T Use w = 3/16 in = 0.188 in (min) 10.

Figure P20‐6 2 10

A

20 in

667 in

Weld back side

At Ⓐ

Weld

Figure 20-8 – Case 2

Shear

933 lb/20 in

46.7 lb/in ←

Shear

2000 lb/20 in

100 lb/in ↓

Torsion

450

403


Torsion

450

497

497 lb/in

550

ft = 741 lb/in

550 lb/in 741 lb/in 0.077 in – Use w = 3/16 in (min) 11.

Figure P20‐11; Case ⑥, Figure 20‐8 2

9

2 6.5

.

b= 90

22.0 in 1.92 =

1.92 in

.

.

.

22.3 in

.

887

461

bottom

A

426 in

At Ⓐ: Shear

191

.

.

Bending

.

↓ 4056

into wall .

Torsion .

Torsion 191

209

Required

213 209

← ↓

400 lb/in

Resultant = 4081 lb/in

.

.

√4056 Use E70 electrode 0.364 in;

Use 3/8 in = w

404

6.5 = d

ch = 4.5 0

cv = 4.58

213

400


12.

Figure P20‐11; With shear

0; No torsion 136

.

.

bending

2892

.

2892

√136

(Into wall)

2896

Use E60 electrode: /

0.302 in – Use 5/16 in = 0.312 in

/

13.

Figure P20‐1

P = 4000 lb; 6061 Aluminum

Direct shear – data from Table 19‐2 Throat width

.

Shear area

0.707

For 4043 filler alloy, Let

2 4.00

Required

Length of weld 5000 psi

8.00 in Vertical sides of bracket .

.

.

/

0.141 in

Use 3/16 in weld (min) 14.

Figure P20‐14

Direct shear, 6061 Aluminum, 4043 Filler alloy

Length of weld = As in Problem 13:

4.50 .

14.1 in .

.

/

0.030 in

Use w = 3/16 in. Could also consider partial weld. 15.

Figure P20‐15 Let

3/16 in

Direct shear, 6063 Aluminum, 4043 Filler 0.188 in

Solve for L

405


.

.

1.20 in

.

Distribute partial welds totaling 1.20 in equally on both sides of tab. 16.

Figure P20‐16

Direct shear, 3003 Aluminum, 4043 Filler alloy

As in Problem 14: Required

.

5000 psi 2

2 .

2.0

12.57 in

.

Weld all around

0.225 in

/

Use w = ¼ in = 0.250 in 17.

Material Comparison F = 4800 lb; N = 2; Required

/

/2 ;

4 /

Compute weight per inch of length 1.0 in

ksi

ksi

in

in

in

lb/in

lb

a) 1020 HR

30

15

0.320

0.638

0.32

0.283

0.0906

b) 5160 OQT 1300

100

50

0.096

0.350

0.096

0.283

0.0272

c) Aluminum 2014‐T6

60

30

0.160

0.451

0.16

0.100

0.0160

d) Aluminum 7075‐T6

73

36.5

0.132

0.409

0.132

0.100

0.0132

e) Ti‐6Al‐4V (annealed)

120

60

0.080

0.319

0.080

0.160

0.0128

f) Ti‐3Al‐13V‐11Cr

175

87.5

0.055

0.264

0.055

0.160

0.0088

Material

406


CHAPTER 21 ELECTRIC MOTORS AND CONTROLS Questions 1‐8: see Sections 21‐2 and 21‐3. 9.

Standard frequency for AC power in the U.S. 60 hertz.

10.

Standard frequency for AC power in Europe is 50 hertz.

11.

Single phase AC power at 115 and 230 volts.

12.

Two conductors plus a ground wire.

13.

480V, three‐phase is preferred because the current would be lower and the size of the motor would be smaller.

14.

Synchronous speed is the speed at which an AC motor tends to run at zero load. ns = 120 (f)/p, where f is the frequency of the power and p is the number of poles in the motor.

15.

Full‐load speed is the speed of the motor when it is delivering its rated torque.

16.

In U.S. :

120

In France: 17.

/

120

120 60 /4 /

1800 rpm

120 50 /4

1500 rpm

2‐pole motor. Zero‐load speed approximately 3600 rpm.

18.

120

/

120 400 /4

1200 rpm

19.

Two speed motor; 1725 rpm and 1140 rpm

20.

Variable frequency control

21, 22, 24.

See Section 21‐8.

23.

National Electrical Manufacturers Association

25.

TEFC – Totally enclosed – fan‐cooled. See Section 21‐8.

407


26.

TENV – Totally enclosed – non‐ventilated. Section 21‐8.

27.

TEFC – XP – Explosion proof motor; Enclosure – NEMA Design 9 ‐ Hazardous locations (Table 21‐6). Flour can explode.

28.

TENV because motor may be bathed in water during cleaning and to protect food from contaminants from the motor.

30.

Locked rotor torque is the torque that a motor can exert when the rotor is at rest. Also called starting torque.

31.

A poorer speed regulation means that the motor would slow down more when subjected to an increase in torque.

32.

Breakdown torque is the maximum torque a motor can develop during the increase in speed after start or the torque at which a motor would be stalled if the torque is increased after it is running.

33.

Split‐phase; capacitor‐start; permanent‐split capacitor; shaded pole.

34.

a)

Single phase, split‐phase AC motor because of the moderate starting torque and the change of torque when the switch cuts out the starting winding.

b)

From Table 21‐2, full‐load speed = 1140 rpm 63000

c)

63000 0.75 /1140

Starting torque = 150% (F.L. Torque) 1.5 41.4

d)

/

62.2 lb∙in approximate

Breakdown = 350% (F.L. Torque) 3.5 41.4

145 lb∙in approximate

408

41.4 lb∙in


35.

2‐pole; 1.50 kW rated power. b)

From Table 21‐2, full‐load speed = 3450 rpm 3450 rev/ min 2π rad/rev 1 min/60 s /

36.

1.5 103 N∙m/s / 361 rad/s 1.5 4.15 N∙m

c)

Starting torque

d)

Breakdown torque

361 rad/s

4.15 N∙m

6.23 N∙m

3.5 4.15 N∙m

14.5 N∙m

Fan requires about 18 lb∙in of torque at 1725 rpm; low starting torque; assume fan cools motor. Recommend 4‐pole, single phase permanent split capacitor AC motor. Power

37.

/63 000

18 1725 /63 000

0.49 hp use 1/2 hp

Full load torque about 0.5 N∙m at 3450 rpm; high starting torque (about 2.8xF.L.T.) due to starting compressor against high pressure in the system. Recommend capacitor start, single phase, 2‐pole, AC motor. 3450 rev/ min

2π rad/rev 1 min /60 s

0.5 N∙m 361 rad/s 38.

181 N∙m/s

361 rad/s 181 watts

Speed is adjusted by varying the resistance in the rotor circuit through an external resistance control.

39.

F.L. speed = synchronous speed = 720 rpm. (Table 21‐2)

40.

Pull‐out torque is the torque that would disengage the motor from its synchronous speed and cause it to stop.

41.

Universal motors are very small and light weight for a given power rating. Some vacuum cleaners, appliances, and hand tools utilize the high speed of rotation effectively.

409


42.

A universal motor can operate on DC or almost any frequency of AC voltage when operating near its full‐load point.

43.

Batteries, generators, rectified AC, hydrogen fuel cells.

44.

See Table 21‐7.

45.

SCR – Silicon controlled rectifier. Used to produce DC power from AC.

46.

SCR controls do not produce pure DC power; it has some variation, called ripple due to the AC input. A low‐ripple control would produce a nearly true DC power.

47.

Could use a 90V DC motor powered from a NEMA Type K SCR power supply to convert 115V AC to 90V DC power.

48‐50.

See Section 21‐11.

51.

The motor would speed up without limit and may fail catastrophically.

52.

Speed is proportional to torque.

15.0 N∙m 3000/2200 53, 56‐61.

/ 20.5 N∙m

See Sections 21‐9, 21‐11 and 21‐12.

54.

NEMA Size 2 motor starter for 10 hp, 220V AC, 3‐phase.

55.

NEMA Size 1 motor starter for 1.0 kW, 110V AC, single phase.

410


CHAPTER 22 MOTION CONTROL: CLUTCHES AND BRAKES 1.

From EQ. 22‐1:

/

63 025 5.0 2.75 /1750

495 lb∙in C and K from

Section 22‐4. Summary for problems 2‐7.

8.

Problem

C

P

K

m

Torque

2

5252

75 hp

5.0

2500

788 lb∙ft

3

63 025

0.50 hp

1.5

1150

41 lb∙in

4

63 025

5.0 hp

2.75

180

4814 lb∙in

5‐1

63 025

5.0 hp

1.0

1750

180 lb∙in

5‐2

5252

75 hp

1.0

2500

158 lb∙ft

5‐3

63 025

0.50 hp

1.0

1150

27.4 lb∙in

5‐4

63 025

5.0 hp

1.0

180

1751 lb∙in

6

9549

20 kW

2.75

3450

152 N∙m

7 (a)

9549

50 kW

4.0

900

2122 N∙m Clutch

7 (b)

9549

50 kW

1.0

900

531 N∙m Brake

Disk: D = 24.0 in; R = 12.0 in; L = 2.50 in; R2 = 0; Steel .

.

.

.

∆ .

lb∙ft

160 lb ∙ ft

. lb∙ft

411


9. R1

R2

L

Wk2

Shaft

0.625

0

16.0

0.007 54

Coupling

1.50

0.625

2.25

0.0341

Bearing 1

1.00

0.625

1.80

0.0047

Hub

2.00

0.625

1.00

0.0489

Gear

6.00

0.625

3.00

12.0023

Bearing 2

1.00

0.625

1.80

0.0047

Total

12.102 lb∙ft2

.

. lb∙ft

.

10.

Neglect clutch and short shaft between clutch and gear A. Speed of Shaft 2: In EQ. 22‐4

.

1750

/

.

/

466.7 rpm 466.7/1750

0.0711

R1

R2

L

Wk2

W

Gear A

2.00

0

3.00

0.1482

0.1482

Gear B

7.50

1.25

3.00

29.2833

2.0824

Shaft 2

1.25

0

54.0

0.4070

0.0289

Hub 1

2.50

1.25

5.00

0.5653

0.0402

Hub 2

2.50

1.25

5.00

0.5653

0.0402

End Plates

9.00

1.25

2.00

40.4974

2.8798

Hollow Cyl.

9.00

7.50

30.0

314.6284

22.3736

Total

27.5933 lb∙ft2

∆ 308

27.5933 1750 308 1.50

. lb∙ft

412


11.

Load Speed

50 ft/ min v

Drum Speed

50 ft min

.

rad min

rpm of drum

rev 2π rad

150

rad min

ω

23.87 rpm

R1

R2

L

wk2

Shaft

0.75

0

24.0

0.0234

End Plates

4.00

0.75

3.0

2.3682

Hollow Cyl.

4.00

3.00

13.0

7.0238

Total

9.4154 lb∙ft2

600 lb

50 ft/min 150 rad/min

66.6667 lb∙ft

66.6667

76.08 lb∙ft 2

Load: Total;

9.4154

Braking Torque

∆ 308

Additional Torque to Hold Load Total Brake Torque 12.

12 in ft

(a)

76.08 23.87 308 0.25

23.6 lb∙ft

600 lb 4 in / 12in /1ft

200 lb∙ft

223.6 lb∙ft

Clutch on Motor Shaft: Motor Speed = Clutch Speed = 1150 rpm = nc Barrel Speed = 38 RPM = n (n/nc)2 = (38/1150)2 = 0.001092

413

[Solution continued on following page.]


R1

R2

L

Wk2

Worm

1.75

0

8.00

0.2316

0.2316

Worm Gear

8.00

0

2.50

31.6147

0.0344

2 Hubs

4.00

2.00

4.00

2.9639

0.0032

End Plates

14.00

2.00

4.00

474.2204

0.5178

Hollow Cyl.

14.00

12.00

18.00

982.5255

1.0728

Shaft

2.00

0

36.0

1.7783

0.0019

Total

1.8617 lb∙ft2

.

3.48 lb∙ft

.

(b)

Clutch on worm gear shaft. Only barrel and hubs are accelerated to 38 rpm = clutch speed. Wk2 2 Hubs

2.9639

End Plates

474.2204

Hollow Cyl.

982.5255

Shaft

1.7783

Total

1461.5 lb∙ft2

.

. lb∙ft [Note: Tb/Ta = 90.2/3.48 = 25.9]

.

13.

;

Using Eq. 22‐8:

Let: A

hp

1.37 hp [Equation 22‐10]

0.10 hp/in2

/

1.37 hp / 0.10 hp/in2

/

1.5

1.5 1.60 Similarly, For 1.45 in;

13.7 in2

/2

: 2

1.5

2.5

2.40 in;

2.40

1.75 2.55 in;

2.00 in

[Equation 22‐11]

; Try:

75 lb∙in / 0.25 150 lb

/

.

in

414

2 .

;

.

1.60

.

10.05 low

1.60 in


14.

From Problem 9:

64 lb∙in; Try .

.

1.50 in;

0.25

170 lb

.

0.79 hp For:

0.10

Try:

1.50 2

7.9 in

; ;

/2

1.5

2.5

/1.25

1.50 in / 1.25 5.65 in

Try:

2.0

; 2

1.5 1.2

3.0

2.0 in;

2.0

; 1.0

/1.5 .

in2

From Equation 22‐13: sin α

cos α

sin .

°

cos

.

°

.

in ft

lb 16.

64 lb∙in; sin

17.

0.25; °

.

cos

.

°

12 in/ft

2

2 1800 12.0 . .

1800 lb∙in

.

/2

300 lb in

lb

.

18.

12°

lb

150 lb∙ft /

2.0 in;

.

For self‐actuation; W<0. For

0;

0

1.80 in

low

2.0

2.0 1.0 15.

1.20 in;

/

4.0 in / 0.25

16.0 in For self‐actuation 415

16.0 in

1.0 in


19.

100 lb∙ft Try:

12 in/ft

10.0 in;

1200 lb∙in 0.25 

240 lb

In Fig. 22‐17 (c); Let:

2.0 in;

6.00 in; .

.

.

100 lb ∙ ft

20.

18 in

. lb

12 in/ft

1200 lb∙in

Select woven asbestos; In Figure 22‐19:

0.25;

0.25;

6.0 in;

30 psi 9.00 in;

20.0 in;

45°;

135°

From Equation 22‐18: lb∙in cos

Use:

cos

.

.

3.25 in;

30 psi

135°

90°

45°

/ .

cos 45° cos 135°

3.14 in

29.0 psi

.

1.57 rad

°

(Equation 22‐20) 0.25 29.0 3.25 6.0 9.0 2 1.57

sin 270°

sin 90°

lb∙in (Equation 22‐21) 0.25 29.0 3.25 6.0 6.0 cos 45°

cos 135°

0.25 9.0 cos 270°

lb∙in (Equation 22‐19) /

6540

1200 /20

267 lb Actuation Force

[Solution continues on following page.]

416

cos 90°


Check wear ratio /63 000

1200 lbin 480 rpm /63 000

.

hp

(Equation 22‐23) 2

sin hp

.

hp/in2

.

. in2

21.

Use woven asbestos,

25.0 psi;

375 lb 5.50 in;

.

.

275 lb

2.5 in 375 lb

150 lb 6.0 in

1350 lb∙in High

210°;

2.0 in

5.50 in 2.0 in

275 lb

110 lb 110 lb 5.5 in

980 lb∙in Ok

For a simple band brake: Let /

0.25

150 lb

.

25.0 lb/in

350 RPM

6.0 in 2.5 in

25.0 lb/in .

900 lb∙in ;

210° 3.67 rad ;

6.0in;

Try:

Somewhat high – intermittent service only

75 lb∙ft 12 in/ft

Band Brake:

Try:

27.6 in2

2 3.25 6.0 sin 45°

5.50 in;

12.0 in

110 lb 5.5 in/12 in

. lb

2π 5.5 in 2.0 in

40.3 in2

Wear Ratio: 2

/

5.04 hp / 40.3 in

5.04 hp .

417

hp/in2 Ok


22

From Figure P22‐22: Solid steel cylinder a. Mass moment of inertia,

w = density  volume =

 ;

= 0.283 lb/in3 ; V = Area  Length; g = 32.2 ft/s2

Cylinder has three different diameters; 4.00 in, 8.00 in, 16.00 in. I ‐ Total length of 4.00 in diameter sections = LI = 12.00 in II ‐ Total length of 8.00 in diameter sections = LII = 16.00 in III ‐ Total length of 16.00 in diameter sections = LIII = 80.00 in Area = D2/4; Then w = (D2/4)L WI = [(4.00 in)2/4](12.00 in)(0.283 lb/in3) = 42.17 lb WII = [(8.00 in)2/4](16.00 in)(0.283 lb/in3) = 227.6 lb WIII = [(16.00 in)2/4](80.00 in)(0.283 lb/in3) = 4 552.0 lb Total weight = 4 822.3 lb II =

.

=

III =

=

IIII =

=

.

. .

/ . .

/

0.018 lb ∙ ft ∙ s = 0.22 lbins2

/

0.40 lb ∙ ft ∙ s = 4.70 lbins2 31.4 lb ∙ ft ∙ s = 377 lbins2

Itotal = 381.9 lbins2 b. Required deceleration rate, , to stop the cylinder from 800 rpm to zero in 5.0 s: =

∆ ∆

= ‐160 rpm/s 

= ‐16.76 rad/s2 = 

c. Required braking torque to sop the cylinder in 5.0 s or less: Torque = Tbrake = Itotal   = (381.9 lbins2)  (16.7 rad/s2) = 6399.1 lbin = Tbrake

418


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.