Solutions Manual for
Advanced Mechanics of Materials and Applied Elasticity
Fifth Edition
Upper Saddle River, NJ • Boston • Indianapolis • San Francisco New York • Toronto • Montreal • London • Munich • Paris • Madrid Capetown • Sydney • Tokyo • Singapore • Mexico City
The author and publisher have taken care in the preparation of this book, but make no expressed or implied warranty of any kind and assume no responsibility for errors or omissions No liability is assumed for incidental or consequential damages in connection with or arising out of the use of the information or programs contained herein.
ISBN-10: 0-13-269049-7 ISBN-13: 978-0-13-269049-2
CONTENTS
Chapter 1
Analysis of Stress
1–1
Chapter 2
Strain and Material Properties
2–1
Chapter 3
Problem in Elasticity
3–1
Chapter 4
Failure Criteria
4–1
Chapter 5
Bending of Beams
5–1
Chapter 6
Torsion of Prismatic Bars
6–1
Chapter 7
Numerical Methods
7–1
Chapter 8
Axisymmetrically Loaded Members
8–1
Chapter 9
Beams on Elastic Foundations
9–1
Chapter 10
Applications of Energy Methods
10–1
Chapter 11
Stability of Columns
11–1
Chapter 12
Plastic Behavior of Materials
12–1
Chapter 13
Plates and Shells
13–1
NOTES TO THE INSTRUCTOR
The Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition supplements the study of stress and deformation analyses developed in the book. The main objective of the manual is to provide efficient solutions for problems dealing with variously loaded members. This manual can also serve to guide the instructor in the assignments of problems, in grading these problems, and in preparing lecture materials as well as examination questions. Every effort has been made to have a solutions manual that can cut through the clutter and is as self-explanatory as possible, thus reducing the work on the instructor. It is written and class-tested by the author, Ansel Ugural. As indicated in the book’s Preface, the text is designed for the senior and/or first year graduate level courses in stress analysis. In order to accommodate courses of varying emphasis, considerably more material has been presented in the book than can be covered effectively in a single three-credit course. The instructor has the choice of assigning a variety of problems in each chapter. Answers to selected problems are given at the end of the text. A description of the topics covered is given in the introduction of each chapter throughout the text. It is hoped that the foregoing materials will help instructor in organizing his or her course to best fit the needs of his or her students. Ansel C. Ugural Holmdel, NJ
CHAPTER 1 SOLUTION (1.1) We have
A = 50 " 75 = 3.75(10 !3 ) m 2 , ! = 90o " 40o = 50o , and ! x = P A . o
Equations (1.8), with ! = 50 :
! x ' = 700(10 3 ) = ! x cos 2 50o = 0.413! x = 110.18P
or
P = 6.35 kN
" x ' y ' = 560(10 3 )! x sin 50o cos 50o = 0.492! x = 131.2 P Solving
P = 4.27 kN = Pall
______________________________________________________________________________________ SOLUTION (1.2) Normal stress is 3
(10 ) " x = PA = 0125 .05!0.05 = 50 MPa
" 70o = 20o : ! x ' = 50 cos 2 20o = 44.15 MPa
( a ) Equations (1.11), with ! = 90
o
" x ' y ' = !50 sin 20o cos 20o = !16.08 MPa
! y ' = 50 cos 2 ( 20o + 90o ) = 5.849 MPa 5.849 MPa y’
44.15 MPa
16.08 MPa
x’ 20 o x o
( b ) Equations (1.11), with ! = 45 :
! x ' = 50 cos 2 45o = 25 MPa
" x ' y ' = !50 sin 45o cos 45o = !25 MPa ! y ' = 50 cos 2 ( 45o + 90o ) = 25 MPa 25 MPa y’ 25 MPa
25 MPa x’ 45 o x
______________________________________________________________________________________
Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 1–1
______________________________________________________________________________________ SOLUTION (1.3) From Eq. (1.11a),
# x = cos# x2'" = cos!27530o = !100 MPa o
For ! = 50 , Eqs. (1.11) give then
" x ' = !100 cos 2 50o = !41.32 MPa
" x ' y ' = !( !100) sin 50o cos 50o = 49.24 MPa o Similarly, for ! = 140 : " x ' = !100 cos 2 140o = !58.68 MPa " x ' y ' = !49.24 MPa
58.68 MPa
41.32 MPa 50 o
49.24 MPa
______________________________________________________________________________________ SOLUTION (1.4) Refer to Fig. 1.6c. Equations (1.11) by substituting the double angle-trigonometric relations, or Eqs. (1.18) with ! y = 0 and ! xy = 0 , become or
" x ' = 12 " x + 12 " x cos 2!
and
# x ' y ' = 12 " x sin 2!
20 = 2PA (1 + cos 2! )
and
10 = 2PA sin 2!
The foregoing lead to
2 sin 2" ! cos 2" = 1
(a)
By introducing trigonometric identities, Eq. (a) becomes
Thus, gives
4 sin " cos " ! 2 cos 2 " = 0 or tan ! = 1 2 . Hence ! = 26.56o P 20 = 2 (1300 ) = (1 + 0.6)
P = 32.5 kN
It can be shown that use of Mohr’s circle yields readily the same result. ______________________________________________________________________________________ SOLUTION (1.5) Equations (1.12):
P #150(103 ) = = #76.4 MPa " A 2 (50) 4 P ! max = = 38.2 MPa 2A
!1 =
______________________________________________________________________________________
Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 1–2
______________________________________________________________________________________ SOLUTION (1.6) Shaded transverse area:
A = 2at = 2(10)(75) = 1.5(103 ) mm 2 Metal is capable of supporting the load
P = ! A = 90(106 )(1.5 #10"3 ) = 135 kN
Apply Eqs. (1.11):
P (cos 2 55o ) , P = 114 kN "3 1.5(10 ) P ! x ' y ' = 12(106 ) = " sin 55o cos 55o , P = 38.3 kN "3 1.5(10 )
! x ' = 25(106 ) =
Thus,
Pall = 38.3 kN
______________________________________________________________________________________ SOLUTION (1.7) Use Eqs. (1.11):
P (cos 2 40o ) , P = 51.1 kN 3 1.5(10 ) P ! x ' y ' = 8(106 ) = " sin 40o cos 40o , P = 24.4 kN 1.5(103 )
! x ' = 20(106 ) =
Thus,
Pall = 24.4 kN
______________________________________________________________________________________ SOLUTION (1.8)
A = 15 ! 30 = 450 mm 2 Apply Eqs. (1.11):
120(103 ) (cos 2 40o ) = 156 MPa 450 #10"6 120(103 ) sin 40o cos 40o = "131 MPa ! x' y' = " 450 #10"6
! x' =
______________________________________________________________________________________ SOLUTION (1.9) We have A = 450(10
!6
) m2 .
Use Eqs. (1.11):
3
"100(10 ) (cos 2 60o ) = "55.6 MPa "6 450 #10 "100(103 ) sin 60o cos 60o = 96.2 MPa ! x' y' = " "6 450 #10
! x' =
______________________________________________________________________________________
Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 1–3
______________________________________________________________________________________ SOLUTION (1.10)
! = 40o + 90o = 130o (103 ) # x = PA = ! " ( 0150 = !31.83 MPa .082 !0.07 2 ) Equations (1.11):
" x ' = !31.83 cos 2 130o = !13.15 MPa
" x ' y ' = 31.83 sin 130o cos 130o = !15.67 MPa x’
13.15 MPa
130 o
15.67 MPa
x Plane of weld y’
______________________________________________________________________________________ SOLUTION (1.11) Use Eqs. (1.14),
( 2 x ) + ( !2 xy ) + ( x ) + Fx = 0 ( ! y 2 ) + ( !2 yz + x ) + (0) + Fy = 0
( z ! 4 xy ) + (0) + ( !2 z ) + Fz = 0 3
Solving, we have (in MN m ):
Fx = !3x + 2 xy
Fy = ! x + y 2 + 2 xz
Fz = 4 xy + z
(a)
Substituting x=-0.01 m, y=0.03 m, and z=0.06 m, Eqs. (a) yield the following values
Fx = 29.4 kN m 3
Fy = 14.5 kN m 3
Fz = 58.8 kN m 3
Resultant body force is thus
F = Fx2 + Fy2 + Fz2 = 67.32 kN m 3 ______________________________________________________________________________________ SOLUTION (1.12) Equations (1.14):
" 2c1 y " 2c1 y + 0 + 0 = 0, 0 + c3 z + 0 + 0 = 0, 0+0+0+0=0
4c1 y ! 0 c3 z ! 0
No. Eqs. (1.14) are not satisfied. ______________________________________________________________________________________
Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 1–4
______________________________________________________________________________________ SOLUTION (1.13) ( a ) No. Eqs. (1.14) are not satisfied. ( b ) Yes. Eqs. (1.14) are satisfied. ______________________________________________________________________________________ SOLUTION (1.14) Eqs. (1.14) for the given stress field yield:
Fx = Fy = Fz = 0
______________________________________________________________________________________ SOLUTION (1.15) y
! x ' y ' "A ! x ' "A
y’ 40 !A cos20o
50 !A cos20o
20o
20o
x’
x 50 !A sin20o 60 !A sin20o
$F = 0:
! x ' "A + 40 cos 2 20o # 60"A sin 2 20o
$F = 0: !
x' y'
x'
!2(50"A sin 20o cos 20o ) = 0 ! x ' = "35.32 + 7.02 + 32.14 = 3.84 MPa
y'
"A # 40"A sin 20o cos 20o
!60"A sin 20o cos 20o ! 50"A cos 2 20o +50!A sin 2 20o = 0 ! x ' y ' = 12.86 + 19.28 + 44.15 " 5.85 = 70.4 MPa
______________________________________________________________________________________ SOLUTION (1.16) 50 !A cos25o y’
15 !A cos25o 15 !A sin25o
25o
90 !A sin25o
! x ' "A 2
o
# F = 0 : ! "A + 50"A cos 25 x'
x'
! x ' y ' "A x’
!90"A sin 2 25o ! 2(15"A sin 25o cos 25o ) = 0 ! x ' = "41.7 + 16.07 + 11.49 = "12.9 MPa
(CONT.) ______________________________________________________________________________________
Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 1–5
______________________________________________________________________________________ 1.16 (CONT.)
$F = 0: ! y'
x' y'
"A # 50"A sin 25o cos 25o
!90"A sin 25o cos 25o ! 15"A cos 2 25o +15!A sin 2 25o = 0 ! x ' y ' = 19.15 + 34.47 + 12.32 " 2.68 = 63.3 MPa
______________________________________________________________________________________ SOLUTION (1.17) y y’ 40 MPa
! x' y'
! x' 20
o
x’
! =20o
! x
50 MPa 60 MPa
1 1 ! x ' = ("40 + 60) + ("40 " 60) cos 40o + 50sin 40o 2 2 = 10 ! 38.3 + 32.1 = !3.8 MPa 1 ! x ' y ' = " ("40 " 60) sin 40o + 50 cos 40o 2 = 32.14 + 38.3 = 70.4 MPa ______________________________________________________________________________________ SOLUTION (1.18)
! x' x’
! y’
! x' y' 90 MPa 25o 15 MPa
x
! =115o
50 Mpa
1 1 ! x ' = (90 " 50) + (90 + 50) cos 230o " 15sin 230o 2 2 = 20 ! 45 + 11.5 = !13.5 MPa 1 ! x ' y ' = " (90 + 50) sin 230o " 15cos 230o 2 = 53.62 + 9.64 = 63.3 MPa ______________________________________________________________________________________
Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 1–6
______________________________________________________________________________________ SOLUTION (1.19) o
Transform from ! = 40 to ! = 0 . For convenience in computations, Let
! x = #160 MPa,
! y = #80 MPa,
" xy = 40 MPa and ! = "40o
Then
1 1 ! x ' = (! x + ! y ) + (! x $ ! y ) cos 2" + # xy sin 2" 2 2 1 1 = (!160 ! 80) + (!160 + 80) cos(!80o ) + 40sin(!80o ) 2 2 = !138.6 MPa
1 ! x ' y ' = $ (" x $ " y ) sin 2# + ! xy cos 2# 2 1 = ! (!160 + 80) sin(!80o ) + 40 cos(!80o ) 2 = !32.4 MPa
! y ' = ! x + ! y " ! x ' = "160 " 80 + 138.6 = "101.4 MPa
So
o
For ! = 0 :
y
101.4 MPa 32.4 MPa 138.6 MPa x
______________________________________________________________________________________ SOLUTION (1.20)
4 = 53.1o 3 45 + 90 45 " 90 + cos106.2o ! x' = 2 2 = 67.5 + 6.28 = 73.8 MPa 45 " 90 sin106.2o = 43.2 MPa ! x' y' = " 2
! = tan "1
43.2 MPa y’
73.8 MPa x’
53.1o x ______________________________________________________________________________________
Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 1–7
______________________________________________________________________________________ SOLUTION (1.21)
" = 70o
! xy = 0 (a)
" x ' y ' = #30 = #
(b)
! x ' = 80 =
! # 60 sin140o 2
! = 153.3 MPa
! + 60 ! " 60 + cos140o 2 2
! = 231 MPa
______________________________________________________________________________________ SOLUTION (1.22) ! (MPa)
60 MPa
20o
(60, 50)
10
50 MPa
r
O #
40 MPa (-40, -50)
C
" (MPa)
40o x’
50 = 39.8o 60 1 2 r = (60 + 502 ) 2 = 78.1
! = tan "1
! x ' y ' = sin 79.8o (78.1) = 76.9 MPa
! x ' = cos 79.8o (78.1) = "13.83 MPa Sketch of results is as shown in solution of Prob. 1.15. ______________________________________________________________________________________ SOLUTION (1.23) ! (MPa) "’=20 50 MPa r
15 MPa 25
o
(-50, -15)
90 MPa x
O 62.1o
y’ #
(90, 15)
C
" (MPa)
("x’, ! x’y’)
15 ! = tan = 12.1o 70 1 2 r = (15 + 702 ) 2 = 73.14 ! x ' y ' = 73.14sin 62.1o = 64.6 MPa
x’
"1
! x ' = "73.14 cos 62.1o + 20 = !14.22 MPa
y’
14.22 MPa
25o x’
64.6 MPa 90 MPa 15 MPa
x
50 MPa ______________________________________________________________________________________
Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 1–8
______________________________________________________________________________________ SOLUTION (1.24) ! (MPa)
! ' =67.5
x’
r =22.5 r
45 MPa
90
45
53.1o
O
x
C
90 MPa
" (MPa) 73.8o x’ ("x’, $! x’ y’ )
106.2o
! x ' y ' = 22.5sin 73.8o = 21.6 MPa
! x ' = 67.5 + 22.5cos 73.8o = 73.8 MPa
Sketch of results is as shown in solution of Prob. 1.20. ______________________________________________________________________________________ SOLUTION (1.25) ! (MPa) (a) x’ 1 60 MPa 140o
x’ O
70o
"
60
C
r
r=
"
2
(! " 60)
" (MPa)
x
! # 60 sin 40o ; ! = 153.3 MPa 2 ! " 60 ! x ' = 80 = 60 + (1 " cos 40o ) 2 ! = 231 MPa
" x ' y ' = #30 = (b)
______________________________________________________________________________________ SOLUTION (1.26) ( a ) From Mohr’s circle, Fig. (a):
# 1 = 121 MPa o
" p ' = !19.3
" s ' = 25.7
! (MPa) !max
"
# 2 = !71 MPa
A(100,60) 2! p '
O
2
C
" max = 96 MPa
o
"
1
" (MPa)
B (CONT.) Figure (a) ______________________________________________________________________________________
Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 1–9
______________________________________________________________________________________ 1.26 (CONT.) By applying Eq. (1.20):
! 1, 2 = 502 ± [22,4500 + 36000]2 = 25 ± 96
or
1
" 1 = 121 MPa
" 2 = !71 MPa
Using Eq. (1.19):
tan 2" p = ! 12 15 = !0.8
" p ' = !19.3o
" s ' = 25.7 o
( b ) From Mohr’s circle, Fig. (b):
# 1 = 200 MPa
! p ' = 26.55o ! (MPa)
"
2
O
# 2 = !50 MPa
" max = 125 MPa
! s ' = 71.55o !max
C
2%p’
"
" (MPa)
1
A(150,-100) Figure (b) Through the use of Eq. (1.20),
! 1, 2 = 75 ± [22,4500 + 10,000]2 = 75 ± 125 1
or
" 1 = 200 MPa " 2 = !50 MPa Using Eq. (1.19), tan 2! p = 4 3 : ! p ' = 26.55o
! s ' = 71.55o
______________________________________________________________________________________ SOLUTION (1.27) Referring to Mohr’s circle, Fig. 1.15:
" x ' = " 1 +2" 2 + " 1 #2" 2 cos 2!
(a)
" y ' = " 1 +2" 2 # " 1 #2" 2 cos 2!
" x ' y ' = # 1 $2# 2 sin 2!
(b)
From Eqs. (a),
! x' + ! y' = ! 1 + ! 2 2! + sin 2 2! = 1 , and Eqs. (a) and (b), we have # x ' ! # y ' " $ x2' y ' = # 1 ! # 2 = const .
By using cos
2
______________________________________________________________________________________
Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 1–10
______________________________________________________________________________________ SOLUTION (1.28) We have 2#
70 ) tan 2$ p = " x !xy" y = 502 (!!(190 ) = !0.583
2" p = !30.26o
o
and " p = !15.13
Equations (1.18):
" x ' = 50!2190 + 50+2190 cos( !30.26o ) ! 70 sin( !30.26o ) = "70 + 103.65 + 35.275 = 68.92 MPa = ! 1 ! y ' = ! x + ! y " ! x ' = "208.9 MPa = ! 2 208.9 MPa 15.13o 68.92 MPa
______________________________________________________________________________________ SOLUTION (1.29) " #"
! max = ( x 2 y ) 2 + ! xy2 Substituting the given values 2
140 2 = (60+2100 ) + ! xy2
or
! xy ,max = 114.19 MPa
______________________________________________________________________________________ SOLUTION (1.30) o
o
Transform from ! = 60 to ! = 0 with " x ' = !20 MPa , " y ' = 60 MPa ,
" x ' y ' = !22 MPa , and " = !60o . Use Eqs. (1.18): " x = !202+60 + !202!60 cos 2( !60o ) ! 22 sin 2( !60o ) = 59 MPa " y = " x ' + " y ' ! " x = !19 MPa
" xy = !23.6 MPa y
19 MPa 23.6 MPa 59 MPa x
______________________________________________________________________________________
Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 1–11
______________________________________________________________________________________ SOLUTION (1.31) "y
"ycos60o
14 MPa !xy
!xycos60o "xsin60o
60
30 MPa Area =1
30 MPa
o
!xysin60o Figure (b)
Figure (a) ( a ) Figure (a):
! y = 14 sin 60o = 12.12 MPa
! xy = 14 cos 60o = 7 MPa Figure (b):
o
y
or
xy
! xy = 7 MPa (as before) o
o
! F = "# sin 60 + 30 + 7 cos 60 = 0 x
or
o
" F = 12.12 cos 60 ! # sin 60 = 0 x
! x = 38.68 MPa
( b ) Equation (1.20) is therefore:
" 1, 2 = 38.68+212.12 ± [( 38.682!12.12 ) 2 + 7 2 ]2 1
or Also,
! 1 = 40.41 MPa ,
! 2 = 10.39 MPa
" p = 12 tan !1 38.682 (!712) .12 = 13.9 o
Note: Eq. (1.18a) gives, ! x ' = 40.41 MPa . Thus,
! p ' = 13.9 o 10.39 MPa 40.41 MPa x’ %p’
x
______________________________________________________________________________________
Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 1–12
______________________________________________________________________________________ SOLUTION (1.32) "y !xy Figure (a)
"x
Figure (a):
! x = 100 cos 45o = 70.7 MPa ! y = 100 sin 45o = 70.7 MPa
! xy = 100 cos 45o = 70.7 MPa Now, Eqs. (1.18) give (Fig. b):
! x ' = 70.7 + 0 + 70.7 sin 240o = 9.47 MPa
" x ' y ' = !0 + 70.7 cos 240o = !35.35 MPa " y ' = 70.7 ! 0 ! 70.7 sin 240o = 131.9 MPa "y
y
"x’ !xy
x’ "x y’
!x’y’
Figure (b)
n 30o
m
"y’
x
______________________________________________________________________________________ SOLUTION (1.33)
" y = !70 sin 30o = !35 MPa
! xy = 70 cos 30o = 60.6 MPa ( a ) Figure (a):
" F = !150 + 0.5# + 60.6(0.866) = 0 x
or
x
! x = 195 MPa
35cos30o
150 MPa
60.6cos30o
30o Area=1
60.6sin30o "xsin30o
Figure (a)
(CONT.) ______________________________________________________________________________________
Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 1–13
______________________________________________________________________________________ 1.33 (CONT.) ( b ) Equation (1.20):
" 1, 2 = 1952!30 ± [( 1952+35 ) 2 + 60.6 2 ]2 1
or Also,
" 1 = 210 MPa
" 2 = !50 MPa
2 ( 60.6 ) o " p = 12 tan !1 195 + 35 = 13.89
Equation (1.18a):
! x ' = 80 + 115 cos 2(13.89 o ) + 60.6 sin 2(13.89 o ) = 210 MPa
Thus,
! p ' = 13.89 o
50 MPa 210 MPa x’ %p’
x
______________________________________________________________________________________ SOLUTION (1.34) For pure shear, ! 1 = "! 2 : pr t
from which
! 1 = pr t
= " 2prt + 2!Prt
" 2 = 2prt # 2!Prt
P = 3!pr 2
______________________________________________________________________________________ SOLUTION (1.35) "! y Table C.1:
A = 2!rt J = 2!r 3t
! +!a ! xy
Figure (a)
x
Stresses are (Fig. a): 3
# = !AP = 2" !( 030.12(10)( 0)."005) ! 25 MPa 6
! a = 2prt = 4 (102 ( 5))120 = 48 MPa ! " = 2! a = 96 MPa 3
) # xy = !JTr = 2" (!010.12"2()(100.005 = !69.4 MPa )
(CONT.) ______________________________________________________________________________________
Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 1–14
______________________________________________________________________________________ 1.35 (CONT.) Hence,
" x = 48 ! 25 = 23 MPa
! y = 96 MPa
Therefore, we have
" max = ±[( 23!296 ) 2 + 69.4 2 ]2 = ±78.4 MPa 1
Also and
y’
! ' = 12 ( 23 + 96) = 59.5 MPa o !96 " s = 12 tan !1 2 (23!69 .4 ) = !13.87
!s ' '
59.4 MPa
o
Equation (1.18b) with " s = !13.87 :
78.4 MPa
" x ' y ' = !16.99 ! 61.42 = !78.4 MPa Thus,
x x’
Figure (b)
! s ' ' = 13.87 o
______________________________________________________________________________________ SOLUTION (1.36)
A = 2!rt = 2! (60)( 4) = 1508 mm 2 J = 2"r 3t = 2" (60) 3 ( 4) = 5.429 ! 10 6 mm 4
! y = prt = 5( 460 ) = 75 MPa
!y
( 0.05 ) " xy = ! TrJ = ! 5600 .429 (10! 6 )
Thus
= !5.526 MPa P ! x = 2prt + PA = 37.5 + 1508 ( P in newtons )
"1 =
" x +" y 2
!x ! xy
" #"
+ ( x 2 y ) 2 + ! xy2
Substituting the numerical values gives
[
] 1
80 = 56.3 + 331.6 " 10 !6 P + ( !18.75 + 331.6 " 10 !6 P ) 2 + ( !5.526) 2 2 Solving,
P = 64.01 kN
______________________________________________________________________________________
Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 1–15
______________________________________________________________________________________ SOLUTION (1.37) At point A, T = 8 kN and P = 400 kN
!x = $
P 4(400 #103 ) =$ = $50.9 MPa A " (0.1) 2
! xy A
3
16T 16(8 #10 ) = = 40.7 MPa ! xy = "d3 " (0.1)3
!x
Hence
" max = (
!x 2 2 ) + " xy 2
= (!25.45) 2 + (40.7) 2 = 48 MPa = R
! y
! ! avg = x = "25.45 MPa 2 tan 2! p " =
40.7 , 25.45
C
! 2 2%p"
! p " = 29o
O "avg
!1
"
x
______________________________________________________________________________________ SOLUTION (1.38)
! = " + 90 = 50 + 90 = 140o x'
!x =
!
! xy =
y' Equations(1.18):
! w = ! x' = and
16T "d3
x
120 #103 = 95.5 MPa " 2 (0.04) 4 16(1.5 $10#3 ) = 119.4 MPa != " (0.04)3
!x =
P A
95.5 95.5 cos 280o + 119.4sin 280o = 61.5 MPa + 2 2
! w = ! x' y' = " x’ 61.5 MPa 26.3 MPa
95.5 sin 280o " 119.4 cos 280o = 47.02 " 20.73 = 26.3 MPa 2 140o x
y’ ______________________________________________________________________________________
Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 1–16
______________________________________________________________________________________ SOLUTION (1.39)
A = #4 (180 2 " 120 2 ) = 11.31 ! 10 3 mm 2 # J = 32 (180 4 " 120 4 ) = 82.70 ! 10 6 mm 4
" x = ! PA = ! 11700 .31 = !61.89 MPa ,
"y =0
( 90 ) # xy = TrJ = 8220 = 21.76 MPa .70"10! 6
Equation (1.20) is therefore
" max = " 1 = ! 612.89 + ( 612.89 ) 2 + ( 21.76) 2 = 6.885 MPa ______________________________________________________________________________________ SOLUTION (1.40)
P = ! 0 Lt
! 0 Lt
M = ! 0 Lth A = 2ht I = 121 t ( 2h ) 3 = 23 th 3
A
2h
B
L
P M
! L
Axial stress: " a = PA = 20h
Bending stress: " b = Mc I = Point A
3! 0 L 2h
!0 A
" a + " b = !20hL
From Eqs. (1.20) and (1.22), we obtain
" 1, 2 = ! 0hL ± ! 0 ( Lh ) 2 + 1 ! max = ! 0 ( Lh ) 2 + 1 Point B B
" b # " a = ! 0hL
Hence
! 1 = " 0hL
!2 = 0
! max = 2! 0h
______________________________________________________________________________________
Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 1–17
______________________________________________________________________________________ SOLUTION (1.41) y
T
P
P M
M
A
T
x
A = " (30 2 ! 152 ) = 2.121(10 !3 ) m 2 I = "4 (30 4 ! 154 ) = 0.596(10 !6 ) m 4
J = 2I
y
!a +!b
A
! xy
x
We have 3
" a = PA = 2.5012((1010!)3 ) = 23.58 MPa ( 0.03) " b = MrI = 0200 = 10.07 MPa .596 (10! 6 ) 500 ( 0.03) " xy = !JTr = 1!.192 = !12.58 MPa (10! 6 )
Thus,
! x = 23.58 + 10.07 = 33.65 MPa
! ' = 16.83 MPa
! (MPa)
O
C
(33.65, 12.58) 2%p’ " (MPa)
Figure (a)
16.83
From Mohr’s circle (Fig. a):
r = 12.582 + 16.832 = 21.01 MPa
o .58 " p ' = 12 tan !1 12 16.83 = 18.39
! 1 = 16.83 + 21.01 = 37.84 MPa " 2 = !4.18 MPa Results are shown in Fig. (b). %p’
A
x x’
Figure (b)
37.84 MPa 4.18 MPa ______________________________________________________________________________________
Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 1–18
______________________________________________________________________________________ SOLUTION (1.42) A
y 30
20o
o
x
! 0 = ! xy ( a ) At " = !60
o
0= or
B
C !0
"x’
-60o
y’ Figure (a)
x’
(Fig. a): # x +# y 2
+
# x !# y 2
cos 2( !60o ) + " 0 sin 2( !60o )
0 = 0.5" x + 1.5" y # 1.732! 0
(a)
We also have " !"
# 0 = ! x 2 y sin 2( !60o ) + cos 2( !60o ) or
! x = 3.464" 0 + ! y
(b)
Substituting Eq. (b) into (a), we obtain ! y = 0 . Results are shown in Fig. b. y
! xy = ! 0
" x = 3.464! 0
Figure (b)
x Alternatively, using an element ABC (Fig. c): A
"x !0
!0 30o
!0
C
Figure (c)
Area=1
B
! F = 0.5$ " 0.866# " 0.866# = 0 x
x
0
0
or " x = 3.464! 0 , as before. o
o
Stresses on planes at 20 , taking " = !70 (Fig. b): o o 3.464 " 20o = [ 3.464 2 + 2 cos( #140 ) + sin( #140 )]! 0 = #0.237! 0 o o ! 20o = [ " 3.464 2 sin( "140 ) + cos( "140 )]! 0 = 0.347! 0
(CONT.) ______________________________________________________________________________________
Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 1–19
______________________________________________________________________________________ 1.42 (CONT.) ( b ) Principal stresses: 2 2 2 " 1, 2 = 3.464 ( 3.464 2 ±[ 2 ) +!0 ] 1
" 1 = 3.732! 0
" 2 = #0.268! 0
The maximum principal stress is on plane inclined at "0 o # p ' = 12 tan !1 1.732 " 0 = 15
______________________________________________________________________________________ SOLUTION (1.43) At a critical point on the shaft surface, the state of stress of stress is as shown in Fig. (a). y
!1
! max
!2
!x
!p''
x
! xy
x
Figure (a)
Figure (b)
We have
" x = ! PA ! MrI 3
3
) )( 0.075 ) = ! "81( 0(.10 ! 13"((100.075 = !43.818 MPa 075 ) 2 )4 4 3
) 0.075 $ xy = ! TrJ = ! (15# .(60".10 = !23.54 MPa 075 ) 4 2
Therefore,
" 1, 2 = !432.818 ± [( 43.2818 ) 2 + ( !23.54) 2 ]2 1
or
and
" 1 = 10.248 MPa, " 2 = !54.066 MPa 1 # max = 2 (" 1 ! " 2 ) = 32.157 MPa ( 23.54 ) o " p ' ' = 12 tan !1 243 .818 = 23.53
Results are shown in Fig. (b). ______________________________________________________________________________________ SOLUTION (1.44) o
Apply Eqs. (1.20) to Fig. P1.44b, for " = !30 :
" xb = !40 sin 2( !30o ) = 20 3 MPa
" yb = !20 3 MPa
(b) o
" xyb = !40 cos 2( !30 ) = !20 MPa (CONT.) ______________________________________________________________________________________
Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 1–20
______________________________________________________________________________________ 1.44 (CONT.) o
Now apply Eqs. (1.18) to Fig. P1.44c, for " = !60 :
" xc = 10 sin 2( !60o ) = !5 3 MPa
! yc = 5 3 MPa
(c) o
" xyc = 10 cos 2( !60 ) = !5 MPa Superposing stresses in Eqs. (b) and (c) and those in Fig. P1.44a, we obtain Fig. (a). y
15 3 MPa 15 3 MPa x
45 MPa Figure (a) Referring to Fig. (a):
[
] 1
" 1, 2 = 0 ± (15 3 ) 2 + ( !45) 2 2 or When
" 1 = 51.96 MPa
" 2 = !51.96 MPa
" p ' = 12 tan !1 22((15!453)) = !30o
is substituted into Eq. (1.18a), we have 51.96 MPa (Fig. b). x
!p' x’
51.96 MPa 51.96 MPa Figure (b) ______________________________________________________________________________________ SOLUTION (1.45) o
Apply Eqs. (1.18) to Fig. P1.45a, for " = !15 , to obtain stresses in Fig. (a):
" xa = ! 302 ! 302 cos 2( !15o ) = !27.99 MPa
" ya = !15 + 15 cos 2( !15o ) = !2.01 MPa
" xya = 15 sin 2( !15o ) = !7.5 MPa Superposition of stresses in Figs. (a) and P1.45b gives Fig. (b).
(CONT.) ______________________________________________________________________________________
Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 1–21
______________________________________________________________________________________ 1.45 (CONT.) 2.01 MPa
47.99 MPa 27.99 MPa
27.99 MPa
30o
30o 7.5 MPa
7.5 MPa
Figure (b)
Figure (a) Apply Eq. (1.20) to Fig. (b):
" 1, 2 = !27.992+ 47.99 ± [14 ( !27.99 ! 47.99) 2 + ( !7.5) 2 ]2 1
or When
" 1 = 48.72 MPa,
" 2 = !28.72 MPa
5) o " p = 12 tan !1 !( 272.(99!7+.47 .99 ) = 5.58
is substituted into Eq. (1.18a), we obtain –28.72 MPa (Fig. c). 48.72 MPa
28.72 MPa 35.58o x
Figure (c) ______________________________________________________________________________________ SOLUTION (1.46) o
Equations (1.18) are applied to Fig. P1.46a, for " = !30 :
" xa = 20+2 30 + 20!2 30 cos 2( !30o ) = 22.5 MPa " ya = 25 ! ( !5) cos 2( !30o ) = 27.5 MPa " xya = !( !5) sin 2( !30o ) = !4.33 MPa These stresses and that of Fig. P1.46b are superimposed to yield Fig. (a). y
14.33 MPa 37.5 MPa x 22.5 MPa Figure (a)
(CONT.) ______________________________________________________________________________________
Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 1–22
______________________________________________________________________________________ 1.46 (CONT.) Principal stresses are thus
" 1, 2 = 37.5+2 22.5 ± [( 37.5!2 22.5 ) 2 + 14.332 ]2 1
or Hence We have
! 1 = 46.17 MPa
! 2 = 13.83 MPa
# max = 12 (" 1 ! " 2 ) = 16.17 MPa " p = 12 tan !1 237( !.514!22.33.5) = !31.2 o
Equation (1.18a) results in
" x ' = 37.5+2 22.5 + 37.5!2 22.5 cos( !62.4 o ) ! 14.33 sin( !62.4 o ) = 46.17 MPa
Therefore
! p ' = 31.2 o
Results are shown in a properly oriented element in Fig. (b). 13.83 MPa
x
!p' x’
Figure (b)
46.17 MPa ______________________________________________________________________________________ SOLUTION (1.47) State of stress is represented by Mohr’s circle in Fig. (a). From this circle, we determine
50
" x = !40 MPa ! y = 20 MPa " p ' = tan 1 2
!1 4 3
= 26.57
o
-60 (-"x,-40)
! (MPa) ("y,40) O
C
" (MPa)
2%!p’ 40
10
Figure (a)
x
Results are shown in Fig. (b). 50 MPa
!p''
Figure (b)
60 MPa
40 MPa ______________________________________________________________________________________
Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 1–23
______________________________________________________________________________________ SOLUTION (1.48) 27 MPa
!
y’
x’
21 MPa
! x
! x + ! y = ! x' + ! y' 45 " 30 = "27 + ! ; ! = 42 MPa 45 # 30 45 + 30 + cos 2" + 15sin 2" ! x ' = 42 = 2 2
or
49.5 = 37.5cos 2! + 15sin 2! ! x ' y ' = #21 = #37.5sin 2" + 15cos 2"
(1)
Multiply this by ! 2.5 :
52.5 = 93.75sin 2! " 37.5cos 2!
(2)
Add Eqs. (1) and (2),
102 = 108.75sin 2! , 2! = 69.71o
or
! = 34.9o
______________________________________________________________________________________ SOLUTION (1.49) State of stress is represented by Mohr’s circle in Fig. (a). ! (MPa)
O
50
10
C
(100,!xy) 2%p’ 60
110
" (MPa)
Figure (a)
(20,-!xy) Referring to this circle, we obtain the results (Fig. b).
" p ' = 12 tan !1 43 = 18.43o 20 MPa
100 MPa 30 MPa
50 MPa
10 MPa
x x’
!p'
110 MPa
(b) (a) Figure (b) ______________________________________________________________________________________
Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 1–24
______________________________________________________________________________________ SOLUTION (1.50)
" x = 60 MPa
" y = !18 MPa
# xy = !15 MPa
" x ' = 30 MPa
From Equation (1.18a):
30 = 602"18 + 602+18 cos 2!1 " 15 sin 2!1
or
13 cos 2"1 ! 5 sin 2"1 ! 3 = 0
Solving
2!1 = 56.52 o
!1 = 28.26o
We have
" y ' = " x + " y ! " x ' = 12 MPa
Equation (1.14b) gives
" x ' y ' = ! 602+18 sin 56.52 o ! 15 cos 56.52 o = !40.8 MPa
______________________________________________________________________________________ SOLUTION (1.51) We have 3
" = 4!Mr 3 = 4 (!21( 0!.1))103 = 84 MPa State of stress is represented by Mohr’s circle in Fig. (a). ! (MPa)
56 (84,!)
! O
84 MPa
C
42
98
" (MPa)
Figure (a) 1
" = (56 2 ! 42 2 ) 2 = 37.04 MPa Thus 3
Hence
T = #rJ = ( 37.04 )2" ( 0.1 ) = 58.18 kN ! m P = 2!fT = 2! ( 20)58.18 = 7311 kW
______________________________________________________________________________________
Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 1–25
______________________________________________________________________________________ SOLUTION (1.52) ! "
1
!xy
60o "2
O
"1=2"2
r
C
"1
"
r = 2! 22"! 2 = !22
From Mohr’s circle,
" x ' y ' = ( !22 ) sin 60o = 0.433! 2
Therefore We have Solving
30 = 0.433! 2
! 2 = 69.28 MPa
! 2 = 2prt = 69.28
p( 250 2 ) = 69.28
p = 2.771 MPa
______________________________________________________________________________________ SOLUTION (1.53) pr t
P
P
A pr 2t
+ 2!Prt
Mohr’s circle representing stress at point A is shown in Fig. (a). ! (MPa)
(84,!xy) 60o
O
42
C
98
" (MPa)
(56,-!xy) Figure (a) From this circle: Then gives
.45 ) 42 = p0(.0005 = 90 p
or
p = 467 kPa
98(103 ) = 902P + 2! ( 0.45P)( 0.005)
P = 1069 kN
______________________________________________________________________________________
Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 1–26
______________________________________________________________________________________ SOLUTION (1.54) "’=70 ! (MPa)
y’
r
O
C
(40,-!xy)
35o
" (MPa)
70o
x’ 30
(a)
(100,!xy)
r = cos3035o = 36.62 MPa
30
" xy = !36.62 sin 35o = !21 MPa
( b ) Because of symmetry:
" x ' y ' = !" xy = 21 MPa
and
! x + ! y = ! x ' + ! y ' = 140 MPa
gives
! y ' = 40 MPa
______________________________________________________________________________________ SOLUTION (1.55) State of stress is represented by Mohr’s circle in Fig. (a). ! (MPa) (-12,20) -14
O
C
" (MPa) ("x,-20)
Figure (a) ( a ) Using this circle, we write
[
] 1
" max = ( ! x 2+12 ) 2 + 20 2 2
and
# max = 14 + OC = 14 + 12 (" x ! 12)
Solving,
! x = 186 MPa
Note that, alternately,
(CONT.) ______________________________________________________________________________________
Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 1–27
______________________________________________________________________________________ 1.55 (CONT.)
[
] 1
! 14 = " x 2!12 ! ( " x 2+12 ) 2 + 20 2 2 yields ! x = 186 MPa , as before. ( b ) We have
" 1, 2 = 1862!12 ± [( 1862+12 ) 2 + 20 2 ]2 1
or and Also
" 1 = 188 MPa
" 2 = !14 MPa
# max = 12 (" 1 ! " 2 ) = 101 MPa 2 ( 20 ) o " p ' = 12 tan !1 186 +12 = 5.71
Results are shown in Fig. (b). 14 MPa 101 MPa
188 MPa
!p'
x
Figure (b) ______________________________________________________________________________________ SOLUTION (1.56) (a)
! 1 = 96.05 MPa
! 2 = 23.05 MPa
(b)
(# 12 ) max = 12 (" 1 ! " 2 ) = 36.05 MPa
!3 = 0
(# 13 ) max = 12 (" 1 ! " 3 ) = 48.03 MPa (# 23 ) max = 12 (" 2 ! " 3 ) = 11.98 MPa Plane of (! 12 ) max is shown in Fig. (a). Other maximum shear planes are sketched similarly. "2 (!12)max
"1 "3
28.15o x
Figure (a)
______________________________________________________________________________________
Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 1–28
______________________________________________________________________________________ SOLUTION (1.57)
A = 2!rt = 2! (60)( 4) = 1508 mm 2 ! y = prt = 2 (460 ) = 30 MPa 3
50 (10 ) " x = ! PA + 2prt = ! 1508 + 15 = 11,684 MPa (10! 6 )
! (MPa) "’ y
"x’
30 MPa
64o 11.684 MPa
x
O
C
11.684
" (MPa) r
30
! ' = (30 + 11.684) = 20.84 MPa r = 12 (30 ! 11.684) = 9.158 MPa 1 2
(a)
" x ' = " '! r cos 64 o = 16.82 MPa
(b)
! x ' y ' = r sin 64 o = 8.231 MPa
______________________________________________________________________________________ SOLUTION (1.58) 0.009& MN
! 1 = prt ! " 2 = 2prt # 0.2009 !rt
x’
60
21
o
7
60o
y’
50p Figure (a)
25p-2.5
Equilibrium of x ' and y ' directed forces results in (Fig. a): or
21 ! 50 p( 23 ) 2 ! ( 25 p ! 2.5)( 12 ) 2 = 0
pall = 494 kPa
and
7 + ( 25 p ! 2.5)( 43 ) ! 50 p( 43 ) = 0
from which
p = 547 kPa
______________________________________________________________________________________
Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 1–29
______________________________________________________________________________________ SOLUTION (1.59) Direction cosines are:
l1 = 3 2 m1 = 1 2 n1 = 0 l 2 = ! 1 2 m2 = 3 2 n 2 = 0 l3 = 0 m3 = 0 n3 = 1 Equation (1.28a) is thus
! x ' = 20( 43 ) + 0 + 0 + 2(12)( 23 )( 12 ) + 0 + 0 = 25.392 MPa Similarly, applying Eqs. (1.28b) through (1.28e), we obtain [! i ' j ' ] :
& 25.342 ' 2.66 ' 7.99# $ ' 2.66 ' 5.392 16.16! MPa $ ! 16.16 6 !" $% ' 7.99 Then, Eqs. (1.34) result in
I 1 = I 1 ' = 26 MPa I 2 = I 2 ' = !349 ( MPa ) 2 I 3 = I 3 ' = !6464 ( MPa ) 3 ______________________________________________________________________________________ SOLUTION (1.60) Direction cosines are:
l1 = 3 2 m1 = 1 2 l2 = ! 1 2 l3 = 0
n1 = 0
m2 = 3 2 n 2 = 0 m3 = 0 n3 = 1
Equation (1.28a) is therefore
! x ' = 60( 43 ) + 0 + 0 + 2( 40)( 23 )( 12 ) + 0 + 0 = 20[( 94 ) + 3 ] = 79.64 MPa Similarly, applying Eqs. (1.28b) through (1.28e), we obtain [! i ' j ' ] :
& 79.64 ' 5.98 ' 44.64# $ ' 5.98 ' 19.64 ' 2.68! MPa $ ! 20 !" $% ' 44.64 ' 2.68 Then, Eqs. (1.34) lead to
I 1 = I 1 ' = 80 MPa I 2 = I 2 ' = !2400 ( MPa ) 2 I 3 = I 3 ' = 8000 ( MPa ) 3
______________________________________________________________________________________
Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 1–30
______________________________________________________________________________________ SOLUTION (1.61) Referring to Appendix B:
" 1 = 13.212 MPa
and Thus,
l1 = 0.9556
" 2 = 5.684 MPa
m1 = 0.1688
" 3 = !8.896 MPa
n1 = 0.2416
# max = 12 (" 1 ! " 3 ) = 11.054 MPa
______________________________________________________________________________________ SOLUTION (1.62) Referring to Appendix B:
" 1 = 66.016 MPa
and
l1 = 0.9556
" 2 = 28.418 MPa
m1 = 0.1688
" 3 = !44.479 MPa
n1 = 0.2416
______________________________________________________________________________________ SOLUTION (1.63) Referring to Appendix B:
" 1 = 30.493 MPa
Thus,
" 2 = 12.485 MPa
" 3 = !16.979 MPa
# max = 12 (" 1 ! " 3 ) = 23.736 MPa
______________________________________________________________________________________ SOLUTION (1.64) Referring to Appendix B:
! 1 = 24.747 MPa
and
l1 = 0.6467
! 2 = 8.480 MPa
m1 = 0.3958
! 3 = 2.773 MPa
n1 = 0.6421
______________________________________________________________________________________ SOLUTION (1.65) ( a ) Equation (1.32) becomes
(30 ! " p ) 0 0 !" p 20
0
20 0 =0 !" p
Expanding,
! " p [" p (" p ! 30) ! 400] = 0
(CONT.) ______________________________________________________________________________________
Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 1–31
______________________________________________________________________________________ 1.65 (CONT.) or
" p = 0,
Thus
" p = !10,
" 1 = 40 MPa ,
" p = 40
" 2 = 0,
" 3 = !10 MPa
( b ) For ! 1 = 40 MPa :
(30 ! 40)l1 + (0)m1 + 20n1 = 0, (0)m1 = 0, 2
l1 = 2n1 m1 = 0
2
The condition l1 + 0 + n1 = 1 gives
( 2n1 ) 2 + n12 = 1, Thus
l1 = 25 ,
n1 = 15
m1 = 0,
n1 = 15
______________________________________________________________________________________ SOLUTION (1.66) y 60o
y’
x,x’
30o z
60o
z’
Figure (a)
( a ) At point (3,1,5) with respect to xyz axis, we have [! ij ] :
&10 $ 0 $ $% 0
0 '4 0
0# 0 ! MPa ! 8 !"
Then, Eqs. (1.34) result in
I 1 = 14 MPa
(a)
I 2 = 8 ( MPa ) 2
I 3 = !320 ( MPa ) 3
Direction cosines of x’ y’ z’, referring to Fig. (a) are
l1 = 1 m1 = 0 l 2 = 0 m2 = 1 2
n1 = 0 n2 = 3 2
l 3 = 0 m3 = ! 3 2 n 3 = 1 2 Now Eqs. (1.28) and (a) give [! i ' j ' ] :
0 0 # &10 $0 5 3 3 ! MPa $ ! $% 0 3 3 ' 1 !"
(CONT.) ______________________________________________________________________________________
Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 1–32
______________________________________________________________________________________ 1.66 (CONT.) Thus, Eqs. (1.34) yield
I 2 ' = 8 ( MPa ) 2
I 1 ' = 14 MPa
I 3 ' = !320 ( MPa ) 3
as before. y
y” x
26.56o
Figure (b)
x”
z,z” ( b ) Direction cosines are (Fig. b):
l1 = 2
5 m1 = ! 1
l2 = 1 5 l3 = 0
m2 = 2 m3 = 0
5 n1 = 0 5
n2 = 0 n3 = 1
With these and Eq. (a), Eqs. (1.28) yield [! i ' j ' ] :
5.6 0 # &7.2 $5.6 ' 1.2 0 ! MPa $ ! 0 8 !" $%0 Thus, Eqs. (1.34) result in
I 1 ' ' = 14 MPa
I 2 ' ' = 8 ( MPa ) 2
I 3 ' ' = !320 ( MPa ) 3
The I’s are thus invariants. ______________________________________________________________________________________ SOLUTION (1.67) Introducing the given data into Eq. (1.28a), we obtain
! x ' = 12( 12 ) 2 + 10( 23 ) 2 + 14(0) + 2[6( 12 )( 23 )] + 0 + 0 = 15.696 MPa Remaining stress components are determined in a like manner. The result, [! i ' j ' ] , is
7.089# & 15.696 ' 3.866 $' 3.866 6.304 ' 6.294! MPa $ ! $% 7.089 ' 6.294 14. !" ______________________________________________________________________________________
Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 1–33
______________________________________________________________________________________ SOLUTION (1.68) Equations (1.34) become
I 2 = " x $ " y # ! xy2
I1 = ! x + ! y
I3 = 0
Equation (1.33) is then
" 3p ! (" x + " y )" p2 + (" x" y ! # xy2 )" p = 0
or
# p2 ! (# x + # y )# p + (# x# y ! " xy2 ) = 0
Solution of this quadratic equation is 1
" 1, 2 =
" x +" y 2
± 12 [" x2 + 2" x" y + " y2 # 4(" x + " y # ! xy2 )] 2
=
" x +" y 2
± [( x 2 y ) 2 + ! xy2 ]
" #"
1 2
______________________________________________________________________________________ SOLUTION (1.69) Referring to Appendix B, we obtain the following values.
! 1 = 12.049 MPa
(a) and
l1 = 0.6184
" 2 = !1.521 MPa
and
n1 = 0.5772
m1 = 0.5333
! 1 = 19.238 MPa
(b)
l1 = 0.3339
" 3 = !4.528 MPa
! 2 = 13.704 MPa
m1 = 0.3862
! 3 = 4.648 MPa
n1 = 0.8599
______________________________________________________________________________________ SOLUTION (1.70) ( a ) Direction cosines are: y C
!
4
5
A
3
l = 4 5 = 0.8 m = 3 5 = 0.6 n=0
" x’ B
x
Equation (1.40) is thus
! = 100(0.8) 2 + 60(0.6) 2 + 2( 40)(0.8)(0.6) = 124 MPa
Equations (1.26) yield
p x = 100(0.8) + 40(0.6) = 104 MPa
p y = 40(0.8) + 60(0.6) = 68 MPa
p z = 80(0.6) = 48 MPa
Equation (1.41) is then
1
" = [104 2 + 682 + 482 ! 124 2 ] 2 = 48.66 MPa (CONT.) ______________________________________________________________________________________
Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 1–34
______________________________________________________________________________________ 1.70 (CONT.) ( b ) Direction cosines are:
y "
!
F
20
4
y’ z
l=0 m=2
20 = 0.447
n=4
20 = 0.894
G
B 2
Equation (1.40) results in
! = 60(0.447) 2 + 20(0.894) 2 + 2(80)(0.447)(0.894) = 91.913 MPa
Equations (1.26) yield
p x = 40(0.447) = 17.88 MPa
p y = 60(0.447) + 80(0.894) = 98.34 MPa
p z = 80(0.447) + 20(0.894) = 53.64 MPa Equation (1.41) leads to 1
" = [17.882 + 98.34 2 + 53.66 2 ! 91.9132 ] 2 = 66.481 MPa ( c ) Direction cosines are:
l = 0.512
m = 0.384
n = 0.768
Equation (1.40) is therefore
! = 100(0.512) 2 + 60(0.384) 2 + 20(0.768) 2 + 2[40(0.512)(0.384) + 80(0.384)(0.768)] = 109.77 MPa
Equations (1.26) yield
p x = 100(0.512) + 40(0.384) = 66.56 MPa p y = 40(0.512) + 60(0.384) + 80(0.768) = 104.96 MPa
p z = 80(0.384) + 20(0.768) = 46.08 MPa Equation (1.41) gives 1
" = [66.56 2 + 104.96 2 + 46.082 ! 109.77 2 ] 2 = 74.3 MPa ______________________________________________________________________________________ SOLUTION (1.71) (a)
Direction cosines are: y C 2 A
"
x’
l=2 !
13
3
B
x
13 = 0.555
m = 3 13 = 0.882 n=0
(CONT.) ______________________________________________________________________________________
Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 1–35
______________________________________________________________________________________ 1.71 (CONT.) Equation (1.40) is then
! = 100(0.555) 2 + 60(0.832) 2 + 2( 40)(0.555)(0.832) = 109.277 MPa
Equations (1.26) lead to
p x = 100(0.555) + 40(0.832) = 88.78 MPa
p y = 40(0.555) + 60(0.832) = 72.12 MPa
p z = 80(0.832) = 66.56 MPa Equation (1.41) gives then 1
" = [88.782 + 72.12 2 + 66.56 2 ! 109.277 2 ] 2 = 74.67 MPa ( b ) Direction cosines are:
y "
!
F
5
2
y’ z
B 1
G z’
l=0 m =1
5 = 0.447
n=2
5 = 0.894
Thus, the results are the same as those obtained in Solution of Prob. 1.70b.
r r
r
r r
r
( c ) We have rg = 3i , re = 2 j , ra = k . Equation (P1.70) is therefore
& x ' 3 y z# $ ' 3 2 0! = 0 $ ! $% ' 3 0 1!" or
2 x + 3 y + 6z = 6
Direction cosines are:
l=
2 2 2 + 32 + 62
= 72
m = 73
n = 76
With these and given stresses, Eqs. (1.40) and (1.26) yield
! = 102.449 MPa
and
p x = 45.714 MPa
p y = 105.714 MPa
p z = 51.429 MPa
Substituting the above values into Eq. (1.41), we obtain
! = 73.582 MPa
______________________________________________________________________________________
Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 1–36
______________________________________________________________________________________ SOLUTION (1.72) See: Hint, Prob. 1.70:
l=
2 32 +12 + 2 2
= 214
m=
1 14
n = ! 314
Equation (1.40) gives
" = 20( 214 ) 2 + 30( 114 ) 2 + 50( ! 314 ) 2 + 2[10( 214 )( 114 ) ! 10( 214 )( ! 314 )] = 51.43 MPa
Equation (1.41):
" = {[20( 214 ) + 10( 114 ) ! 10( ! 314 )]2 1
+ [10( 214 ) + 30( 114 ) + 0]2 + [ !10( 214 ) + 0 + 50( ! 314 )]2 ! 51.34 2 } 2
= 7.413 MPa
______________________________________________________________________________________ SOLUTION (1.73) Direction cosines are
l = cos 35o = 0.8192
m = cos 60o = 0.5
n = cos 73.6o = 0.2823
Equation (1.40) results in
" = 60(0.8192) 2 ! 40(0.5) 2 + 30(0.2823) 2 + 2[20(0.8192)(0.5) ! 5(0.5)(0.2823) + 10(0.8192)(0.2823)] = 52.25 MPa
Equations (1.26):
p x = 60(0.8192) + 20(0.5) + 10(0.2823) = 61.9725 MPa
p y = 20(0.8192) ! 40(0.5) ! 5(0.2823) = !5.0287 MPa
p z = 10(0.8192) ! 5(0.5) + 30(0.2823) = 14.1618 MPa Equation (1.41) is thus 1
" = [(61.9725) 2 + ( !5.0287) 2 + (14.1618) 2 ! (52.25) 2 ] 2 = 36.56 MPa ______________________________________________________________________________________ SOLUTION (1.74) Direction cosines are
l = cos 40o = 0.766
m = cos 75o = 0.259
n = cos 54 o = 0.588
(CONT.) ______________________________________________________________________________________
Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 1–37
______________________________________________________________________________________ 1.74 (CONT.) Equation (1.40):
! = 40(0.766) 2 + 20(0.259) 2 + 20(0.588) 2 + 2[40(0.766)(0.259) + 0 + 30(0.766)(0.588)] = 23.47 + 1.34 + 6.91 + 42.9 = 74.62 MPa
Equation (1.41) gives
" = {[40(0.766) + 40(0.259) ! 30(0.588)]2 1
+ [40(0.766) + 20(0.259) + 0]2 + [30(0.766) + 0 + 20(0.588)]2 ! 74.62 2 } 2 1
= [3436.3 + 1282.9 + 1206.7 ! 5568.1] 2 = 18.93 MPa ______________________________________________________________________________________ SOLUTION (1.75) Note: Planes of maximum shear stresses can be determined upon following a procedure similar to that used in Solution of Prob. 1.56. ( a ) From Problem 1.69a: Thus,
" 1 = 12.049 MPa " 2 = !1.521 MPa 1 (# 13 ) max = 2 (" 1 ! " 3 ) = 8.288 MPa (# 12 ) max = 12 (" 1 ! " 2 ) = 6.785 MPa (# 23 ) max = 12 (" 2 ! " 3 ) = 1.503 MPa
( b ) From Problem 1.69b: Thus,
! 1 = 19.237 MPa ! 2 = 13.704 MPa (# 13 ) max = 12 (" 1 ! " 3 ) = 7.294 MPa (# 12 ) max = 12 (" 1 ! " 2 ) = 2.766 MPa (# 23 ) max = 12 (" 2 ! " 3 ) = 4.528 MPa
" 3 = !4.528 MPa
! 3 = 4.648 MPa
______________________________________________________________________________________ SOLUTION (1.76) We have
" 1 = 48 MPa
" 2 = 36 MPa
" 3 = !72 MPa
( a ) From Eqs. (1.43) and (1.44): 1
" oct = 13 [( 48 ! 36) 2 + (36 + 72) 2 + ( !72 ! 48) 2 ] 2 = 53.96 MPa " oct = 13 ( 48 + 36 ! 72) = 4 MPa ( b ) Using Eq. (1.45),
" max = 12 ( 48 ! 36) = 6 MPa
______________________________________________________________________________________
Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 1–38
______________________________________________________________________________________ SOLUTION (1.77)
( !100 ! " p ) 0 ! 80 0 ( 20 ! " p ) 0 =0 (a) ! 80 0 ( 20 ! " p ) Expanding,
( 20 ! " )[(" + 100)(" ! 20) ! 6400] = 0
and
" 1 = 60 MPa ,
" 2 = 20 MPa ,
" 3 = !140 MPa
( b ) Apply Eqs. (1.43), (1.44), and (1.45): 1
" oct = 13 [(60 ! 20) 2 + ( 20 + 140) 2 + ( !140 ! 60) 2 ] 2 = 86.41 MPa " oct = 13 (60 + 20 ! 140) = !20 MPa ! max = 12 (60 + 140) = 100 MPa
______________________________________________________________________________________ SOLUTION (1.78) Octahedral and shearing stresses are given by
2 " oct = 19 [(! 1 # ! 2 ) 2 + (! 2 # ! 3 ) 2 + (! 3 # ! 1 ) 2 ]
2 " max = 14 (! 1 # ! 3 ) 2 2
2
Let us say, ! max > ! oct . Then
( ! 1 "2! 3 ) 2 > 19 [(! 1 " ! 2 ) 2 + (! 2 " ! 3 ) 2 + (! 3 " ! 1 ) 2 ] or 9 4
(! 1 " ! 3 ) > [(! 1 " ! 2 ) 2 + (! 2 " ! 3 ) 2 + (! 3 " ! 1 ) 2 ] 2
Subtracting (! 1 " ! 3 ) from both sides and noting that (! 1 " ! 3 ) we have 5 4
But
2
= (! 3 " ! 1 ) 2 ,
(! 1 " ! 3 ) 2 > (! 1 " ! 3 ) 2 + (! 2 " ! 3 ) 2
(! 1 " ! 3 ) 2 > (! 1 " ! 2 ) 2 + (! 2 " ! 3 ) 2
Thus, 5 4
(! 1 " ! 3 ) 2 > (! 1 " ! 2 ) 2 + (! 2 " ! 3 ) 2
(a)
The squares of the difference between ! 1 and ! 3 will always be greater then the sum of the squares of the difference between ! 1 and ! 2 , ! 2 and ! 3 , since ! 1 > ! 2 > ! 3 . Hence, Eq. (a) is true and our assumption is correct. That is
! max > ! oct ______________________________________________________________________________________
Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 1–39
______________________________________________________________________________________ SOLUTION (1.79) From Solution of Problem 1.64:
! 1 = 24.747 MPa
! 2 = 8.48 MPa
! 3 = 2.773 MPa
Applying Eqs. (1.43) and (1.44): 1
and
" oct = 13 [( 24.747 ! 8.48) 2 + (8.48 ! 2.773) 2 + ( 2.773 ! 24.747) 2 ] 2 = 9.31 MPa ! oct = 13 ( 24.747 + 8.48 + 2.773) = 12 MPa
Therefore
1
poct = (9.312 + 12 2 ) 2 = 15.19 MPa
______________________________________________________________________________________ SOLUTION (1.80) Shearing stress, in terms of principal stresses, is given by
" 2 = ! 12 l 2 + ! 2 m 2 + ! 32 n 2 # (! 1l 2 + ! 2 m 2 + ! 3n 2 ) 2 2
2
(a)
2
We substitute n = 1 ! m ! l into Eq. (a), calculate its derivatives with respect to l and m , and equate these derivatives to zero: "$ "l
= l[(# 1 ! # 3 )l 2 + (# 2 ! # 3 )m 2 ! 12 (# 3 ! # 1 )] = 0
(b)
"$ "m
= m[(# 1 ! # 3 )l 2 + (# 2 ! # 3 )m 2 ! 12 (# 2 ! # 3 )] = 0
(c)
One solution is l = m = 0 . Solutions for the direction cosines of planes for which ! is a maximum of minimum can also be found as follows. Take l = 0 :
Eq. (c) gives m = ±
12
Take m = 0 :
Eq. (c) gives l = ±
12
There are, in general, no solutions of Eqs. (b) and (c) in which l and m are both different from zero, for this case the expressions in brackets cannot both vanish. By the above procedure we can form the following table. Direction cosines for planes of ! max and ! min
l= 0 0 ±1 0 m = 0 ±1 0 ± 1 2 n = ±1 0 0 ± 12
± 12 0 ± 12
± 12 ± 12 0
The first three columns define the planes for ! min , where ! = 0 . The last three columns give planes through each principal axes bisecting the angles between the two other principal axes. Substituting the latter direction cosines into Eq. (a), we have
(" 23 ) max = ± ! 2 #2! 3
(" 13 ) max = ± ! 1 #2! 3
(" 12 ) max = ± ! 1 #2! 2 Similarly, introducing the direction cosines given in the above table into Eq. (1.37), we obtain the normal stresses associated with the maximum shearing stresses:
! 12 ' = ! 1 +2! 2
! 13 ' = ! 1 +2! 3
! 23 ' = ! 2 +2! 3
______________________________________________________________________________________
Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 1–40
______________________________________________________________________________________ SOLUTION (1.81)
1 ! avg = (! x + ! y ) 2 1 = (100 + 20) = 60 MPa 2 ! x #! y 2 2 r= ( ) + " xy 2 100 ! 20 2 = ( ) + 602 2 = 72.1 MPa
! (MPa) "avg =60
"1
C
"3
" (MPa)
r
! 1 = ! avg + R = 132.1 MPa
! 3 = "12.1 MPa (a)
! 2 = 30 MPa ! 1 = 132.1 MPa ! 3 = "12.1 MPa 1 (! max ) a = (" 1 # " 3 ) 2 1 = [132.1 ! (!12.1)] = 72.1 MPa 2
(b)
! 3 = "30 MPa ! 1 = 132.1 MPa 1 (! max ) a = (" 1 # " 3 ) 2 1 = [132.1 ! (!30)] = 81 MPa 2
! 2 = "12.1 MPa
______________________________________________________________________________________ SOLUTION (1.82) ! (MPa)
-50
"2
O 100+ 60 2
= 80
C1
o r 45
"1
" (MPa)
(100,-20)
(CONT.) ______________________________________________________________________________________
Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 1–41
______________________________________________________________________________________ 1.82 (CONT.) From Mohr’s circle, we have
r = 202 + 202 = 28.3 MPa ! 1 = 108 MPa ! 2 = 51.7 MPa # 3 = !50 MPa " p ' = 22.5o ______________________________________________________________________________________ SOLUTION (1.83) ! (MPa)
-60
"2
O
C1 80 2
= 40
" (MPa)
"1
45o r
(80,-40)
Referring to Mohr’s circle:
r = 402 + 402 = 56.57 MPa ! p ' = 22.5o
! 1 = 96.57 MPa
! 2 = 16.57 MPa
______________________________________________________________________________________ SOLUTION (1.84) ( a ) In the yz plane: 50 MPa
z
"=25
y
15 MPa
!(MPa)
15
"3
C r
O "1
" (MPa)
50
(CONT.) ______________________________________________________________________________________
Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 1–42
______________________________________________________________________________________ 1.84 (CONT.) We have
r = 252 + 152 = 29.16 MPa Thus
" 1 = r ! " = 29.16 ! 25 = 4.16 MPa " 3 = ! r ! " = !29.16 ! 25 = !54.16 MPa " 2 = !20 MPa
( b ) Using Eqs. (1.43) and (1.44): 1
" oct = 13 [( 4.16 + 20) 2 + ( !20 + 54.16) 2 + ( !54.16 ! 4.16) 2 ] 2 = 23.92 MPa " oct = 13 ( 4.16 ! 20 ! 54.16) = !23.33 MPa From Eq. (1.45),
! max = 12 ( 4.16 + 54.16) = 29.16 MPa
______________________________________________________________________________________ SOLUTION (1.85) It is noted that l
2
+ m2 + n2 = 1 .
Applying Eq. (1.37), we have
" = 35( 133 ) ! 14( 131 ) ! 28( 139 ) = !12.39 MPa
Equation (1.39), substituting the given data and the direction cosines determined above, gives
! = 26.2 MPa
Surface tractions.
Equations (1.48) give
p x = ! 1l = 35(
3 13
) = 16.81 MPa
p y = " 2 m = !14(
1 13
p z = " 3n = !28(
9 13
Check: p
2
) = !3.88 MPa
) = !23.30 MPa
= p x2 + p 2y + p z2 = " 2 + ! 2 = 840 ( MPa ) 2
Observe that Approach I is more conveniently leads to results. ______________________________________________________________________________________ SOLUTION (1.86)
! oct = 13 ( 40 + 25 + 15) = 26.667 MPa 1
" oct = 13 [( 40 ! 25) 2 + ( 25 ! 15) 2 + (15 ! 40) 2 ] 2 = 10.274 MPa
(CONT.) ______________________________________________________________________________________
Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 1–43
______________________________________________________________________________________ 1.86 (CONT.) We have l = m = n = 1
3 . Note that l 2 + m 2 + n 2 = 1 .
Surface tractions. Equations (1.48) give
p x = ! 1l = 40( 13 ) = 23.09 MPa
p y = ! 2 m = 25( 13 ) = 14.43 MPa p z = ! 3n = 15( 13 ) = 8.66 MPa Check:
p 2 = p x2 + p 2y + p z2 = " 2 + ! 2 = 816.7 ( MPa ) 2 End of Chapter 1
Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 1–44
CHAPTER 2 SOLUTION (2.1) ( a ) Yes. Eqs. (2.12) are satisfied. ( b ) No. Eqs. (2.12) are not satisfied. ______________________________________________________________________________________ SOLUTION (2.2) Apply Eqs. (2.4):
# x = 2c
(a)
# y = !6cy
3
u AB = ! " x dx = 4c = 0.4 mm 1
2
2
v AD = "1 # y dy = ! 6c y2 2
Thus,
(b)
" xy = 2c( x + y )
2 1
= !11.25c = !1.125 mm
2
LA' B ' = 2000.4 mm
LA' D ' = 1498.875 mm
! xy = 2c(1 + 12 ) = 300 µ
( c ) We have and
u A = c( 2 ! 1 + 14 ) = 2.25c
v A = c(12 " 3 ! 14 ) = 0.25c
x A' = 1 + 2.25c = 1000.225 mm y A' = 0.5 + 0.25c = 500.025 mm
______________________________________________________________________________________ SOLUTION (2.3) Equations (2.4), for the given displacement field, yield [! ij ] :
0 'y 2 # & 2x $ 0 2z ( 2 y ' x ) 2! c $ ! 2z $% ' y 2 ( 2 y ' x ) 2 !" At point (0,2,1), we have [! ij ] :
0 ' 100# & 0 $ 0 200 200 ! µ $ ! $% ' 100 200 200 !"
______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 2–1
______________________________________________________________________________________ SOLUTION (2.4) First two of Eqs. (2.4) give
! x = 2a0 xy 2 + a1 y 2 + 2a 2 xy ! y = b0 x 2 + b1 x
Equation (2.11):
( 4a0 + 2a1 ) + ( 2b0 ) = 2c0 x + c1
or
2( 2a0 ! c0 ) x + 2( a1 + b0 ) ! c1 = 0
This is satisfied if x ! 0 :
2a0 ! c0 = 0,
c0 = 2 a 0
2( a1 + b0 ) ! c1 = 0,
c1 = 2( a1 + b0 )
______________________________________________________________________________________ SOLUTION (2.5) Equation (2.11) yields
2a1 + 12 y 2 + 2b1 + 12 x 2 = 3c1 ( x 2 + y 2 ) + c1c2
Solving,
c1 = 4
c2 = 12 ( a1 + b1 )
______________________________________________________________________________________ SOLUTION (2.6) The change in length of bar AB is
! AB = " AB LAB = (#500 $10#6 )(400) = #0.2 mm From triangles B’BF and EE’F: 250 mm B’ 0.2 mm B
D
F D’
x
500 mm E
E’
x = 117.2 mm
132.8 632.8 , = 3 !D
! D = 0.63 mm
From triangles DD’F and EE’F:
!D 3 mm
0.2 3 = , x 750 ! x
Thus
" CD =
! D 0.63 = = 1260 µ LCD 500
______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 2–2
______________________________________________________________________________________ SOLUTION (2.7) C
"LAB 2.5 =# 1800 LAB = !1389 µ
! AB = 3.0 m
2.4 m
!LBC
! A
2.5 mm
B
" BC =
1..8 m
=
#$LBC #0.0025cos ! = 3.0 LBC
!0.0025(1.8 3.0) = !500 µ 3.0
______________________________________________________________________________________ SOLUTION (2.8) (a)
(b)
2.8 = 1400 µ 2000 "1.3 = "1300 µ !y = 1000 ! xy = 0
!x =
ACB = 90o
1.0014 = 90.1547 o 0.9987 ! = 90o " 90.1547 o = "0.1547o = "2.7 # 10"3 rad = !2700 µ A ' C ' B ' = 2 tan !1
______________________________________________________________________________________ SOLUTION (2.9) ( a ) Equations (2.4) give
"0.075 ! x = ##ux = 0.175150 = 667 µ
"( "0.05 ) ! y = ##yv = 0.025100 = 750 µ
and
"( "0.05 )] 0.075 ! xy = 0"100 + [ "0.125150 = "1250 µ
( b ) Equation (2.16) is therefore 1
" 1, 2 = 667+2 750 ± [( 667!2 750 ) 2 + 6252 ] 2 or When
! 1 = 1335 µ ! 2 = 82 µ !1 !1250 1 " p = 2 tan 667!750 = 43.1o
and stresses are substituted into Eq. (2.14a), we obtain ! x ' = 82 µ . Thus,
! p ' ' = 43.1o ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 2–3
______________________________________________________________________________________ SOLUTION (2.10) Use Eq. (2.16) with the strains obtained in Example 2.1: 1
" 1, 2 = 1250!22000 ± [( 1250+22000 ) 2 + 750 2 ] 2 or ! 1 = 1415 µ Apply Eq. (2.15):
! 2 = "2165 µ
o " p = 12 tan !1 12501500 ! 2000 = 12.39
Substituting this angle and the stresses, Eq. (2.14a), gives 1415 µ . Thus,
! p ' = 12.39 o
______________________________________________________________________________________ SOLUTION (2.11) We have, using Eqs. (2.3):
004 ! x = ""ux = 0.20 = 200 µ #v "0.003 ! y = #y = 12 = "250 µ
and
! xy = ##vx + ##uy = "1000 " 500 = "1500 µ Then, Eq. (2.16) yields 1
" 1, 2 = 200!2 250 ± [( 200+2 250 ) 2 + ( !750) 2 ] 2 or
! 1 = 758 µ
! 2 = "808 µ
Apply Eq. (2.15):
o !1500 " p = 12 tan !1 200 + 250 = 36.65
For this angle, Eq. (2.14a) gives ! x ' = 758 µ . Therefore,
" p ' = !36.65o ______________________________________________________________________________________ SOLUTION (2.12) y
20 mm
A x”
!
2
!
x’ B 12 mm
1
Q
C
x
We have, from geometry:
AC = QB = 23.32 mm !1 = 30.96o ! 2 = 149.04 o
Equation (2.14a) leads to
! x ' = 300+2 500 + 300"2500 cos 61.92 o + 100 sin 61.92 o = 441 µ
(CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 2–4
______________________________________________________________________________________ 2.12 (CONT.) Thus,
! QB = 441 µ ( 23.32) = 0.01 mm
Similarly,
! x " = 400 " 100 cos 298.08o + 100 sin 298.08o = 265 µ
and
! AC = 265 µ ( 23.32) = 0.006 mm
______________________________________________________________________________________ SOLUTION (2.13) y x’ 30 mm A B !
x”
2
15 mm !
1
Q
x
C
We find, from geometry:
AC = QB = 33.54 mm !1 = 26.56o ! 2 = 153.44 o
Equation (2.14a) gives
! x ' = 400+2 200 + 400"2 200 cos 53.12 o + 150 sin 53.12 o = 240 µ
Hence,
! QB = 240 µ (33.54) = 0.008 mm
In a like manner,
! x " = 300 + 100 cos 306.88o " 150 sin 306.88o = 480 µ
and
! AC = 480 µ (33.54) = 0.016 mm
______________________________________________________________________________________ SOLUTION (2.14) x’ x” C 60 mm B ! x’’’ 40 mm 30o ! x D A 3
2
We obtain, from geometry:
AC = 96.73 mm BD = 32.29 mm o ! 2 = 11.93 ! 3 = 141.73o
From Solution of Problem 1.42:
" x = 3.464! 0
"y =0
! xy = ! 0
Thus, (CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 2–5
______________________________________________________________________________________ 2.14 (CONT.) 6
( 70"10 ) ! x = 3.464 = 1212 µ 200 (109 )
! y = "0.3(1212) = "364 µ 6
0.3)( 70"10 ) ! xy = 2 (1+200 = 910 µ (109 )
(a)
! x ' = 12122"364 + 12122+364 cos 60o + 455 sin 60o = 1212 µ ! AB = 1212 µ ( 40) = 0.05 mm
(b)
! x " = 424 + 788 cos 23.86o + 455 sin 23.86o = 1328.7 µ ! AC = 1328.7 µ (96.73) = 0.13 mm Similarly,
! x ''' = 424 + 788 cos 283.46o + 455 sin 283.46o = 164.92 µ ! BD = 164.92(32.29) = 0.005 mm 1
" 1, 2 = 12122!364 ± [( 12122+364 ) 2 + 4552 ] 2
(c) or
! 1 = 1334 µ
! 2 = 486 µ
Substitution of
" p ' = 12 tan !1 1212910+364 = 15o into Eq. (2.14a) yields 1334 µ .
______________________________________________________________________________________ SOLUTION (2.15) ( a ) We have
! max = 400 " 200 = 200 µ
Maximum shearing strain occurs on a plane oriented at 45 o from the plane of principal strains. ! 2
(106 )
100
(" x , 12 ! xy ) 60o
O
200
C
400
! (10 6 )
(" y ,# 12 ! xy ) Figure (a) ( b ) From Mohr’s circle Fig. (a):
! x = 300 + 100 cos 60o = 350 µ ! x = 300 " 100 cos 60o = 250 µ
! xy = "( 400 " 200) sin 60o = "173 µ ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 2–6
______________________________________________________________________________________ SOLUTION (2.16) We have u B = 3 mm and v B = 1.5 mm . ( a ) Take: Hence,
u = c1 xy
v = c2 xy c1 = 500(10 !6 )
3(10 "3 ) = c1 (3 ! 2) ,
c2 = 250(10 !6 )
1.5(10 "3 ) = c2 (3 ! 2) , Thus,
u = 500(10 !6 ) xy
( b ) Using Eqs. (2.3),
" x = 500 µy
v = 250(10 !6 ) xy
" y = 250 µx
! xy = 250 µ ( 2 x + y )
which satisfy Eq. (2.11): the strain field is possible. At point B, we thus have
(" x ) B = 1000 µ
( c ) We obtain " = tan
(" y ) B = 750 µ
( ! xy ) B = 2000 µ
= 33.69 o .
!1 2 3
Equation (2.14a) is therefore
! x ' = 875 + 125 cos 67.38o + 1000 sin 67.38o = 1846 µ
______________________________________________________________________________________ SOLUTION (2.17) (-300,450) C
!2
2! p '
(-900,-450)
!1
! 2
(106 )
O
! (10 6 )
-600
Figure (a) Refer to Mohr’s circle (Fig. a): 1
" 1, 2 = !600 ± [(300) 2 + ( 450) 2 ] 2 or and or
! 1 = "59 µ
! 2 = "1141 µ
o 450 ( 2 ) 2" p ' ' = tan !1 !( 900 !300 ) = !56.31
! p ' = 61.85o
______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 2–7
______________________________________________________________________________________ SOLUTION (2.18) ! 2
(106 )
(300,450)
O
2! p '
!2 C
! (10 6 )
!1 (900,-450)
600
Figure (a) Referring to Mohr’s circle shown in Fig. (a), we obtain 1
! 1, 2 = 600 ± [(300) 2 + ( 450) 2 ] 2 from which and or
! 1 = 1141 µ
! 2 = 59 µ
o 450 ( 2 ) 2" p ' ' = tan !1 900 !300 = 56.31
" p ' = !61.85o
______________________________________________________________________________________ SOLUTION (2.19) Referring to Fig. P2.19,
c1 = !83.3(10 !6 )
u A = !0.0005 = c1 (3 " 1 " 2),
c2 = 50(10 !6 )
v A = 0.0003 = c2 (6),
c3 = !100(10 !6 )
w A = !0.0006 = c3 (6), Hence,
u = !83.3(10 !6 ) xyz
( a ) Using Eqs. (2.4), we thus have
! x = "83.3 µyz
v = 50(10 !6 ) xyz
! y = 50 µxz
! xy = ( "83.3xz + 50 yz ) µ
w = !100(10 !6 ) xyz
! z = "100 µxy
! xz = ( "100 yz " 83.4 xy ) µ
! yz = (50 xy " 100 xz ) µ This forgoing expressions satisfy Eqs. (2.12): the strain field is possible. Substitute x=-3 m, y=1 m, and z=2 m into the above equations to obtain strains at A, [! ij ] :
& ' 167 ' 200 ' 225# $ ' 200 300 ' 225! µ $ ! %$ ' 225 ' 225 ' 300"!
(CONT.) ______________________________________________________________________________________
Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 2–8
______________________________________________________________________________________ 2.19 (CONT.) ( b ) Let, for example, x’-axis lie along the line from A to B (Fig. P2.19). The direction of cosines of AB are
l1 = ! 313
m1 = 0
n1 = ! 213
Thus, Eq. (2.18a):
" x ' = " x l12 + " z n12 + ! xz l1n1 = !167( 139 ) ! 300( 134 ) ! 450( !133 )( !132 ) = !416 µ
( c ) Let y’-axis be placed along AC (Fig. P2.19). The direction cosines of AC are
m 2 = !1
l2 = 0
n2 = 0
Equation (2.18b) is therefore
! x ' y ' = ! xy l1m2 + ! yz n1m2 = !400( !133 )( !1) ! 450( !132 )( !1)
= !582 µ Negative sign shows that the angle BAC has increased. ______________________________________________________________________________________ SOLUTION (2.20) We now have (Fig. P2.19):
c1 = 100(10 !6 )
u A = 0.0006 = c1 (3 " 1 " 2),
Hence,
v A = !0.0003 = c2 (6),
c2 = !50(10 !6 )
w A = !0.0004 = c3 (6),
c3 = !66.7(10 !6 )
u = 100(10 !6 ) xyz
v = !50(10 !6 ) xyz
( a ) Applying Eqs. (2.4), we obtain
! x = 100 µyz
! y = "50 µxz
w = !66.7(10 !6 ) xyz
! z = "66.7 µxy
! xz = ( "66.7 yz + 100 xy ) µ
! xy = (100 xz " 50 yz ) µ
! yz = (100 xy " 66.7 xz ) µ These expressions satisfy Eqs. (2.12): the strain field is possible. Introducing x=3 m, y=1 m, and z=2 m into the above equations we find strains at A, [! ij ] :
250 &200 $250 ' 300 $ %$ 83.5 ' 275
83.5# ' 275 ! µ ! ' 200 "!
( b ) Let, for instance, x’-axis lie along the line from A to B (Fig. P2.19). The direction of cosines of AB are
l1 = ! 313
m1 = 0
n1 = ! 213
(CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 2–9
______________________________________________________________________________________ 2.20 (CONT.) Therefore, Eq. (2.18a):
" x ' = " x l12 + " z n12 + ! xz l1n1 = 200( 139 ) ! 200( 134 ) ! 167( !133 )( !132 ) = !154 µ
( c ) Let y’-axis be placed along (Fig. P2.19). The direction cosines of AC are
m 2 = !1
l2 = 0
Equation (2.18b) is thus
n2 = 0
! x ' y ' = ! xy l1m2 + ! yz n1m2 = 500( !133 )( !1) ! 550( !132 )( !1)
= 111 µ Positive sign means that the angle BAC has decreased. ______________________________________________________________________________________ SOLUTION (2.21) ( a ) Applying Eqs. (2.21),
J 1 = 200 ! 100 ! 400 = !300 µ
and
J 2 = ( !2 ! 8 + 4 ! 9 ! 4 ! 25)(10 4 ) = !44(10 4 ) ( µ ) 2 200 J 3 = 300 200
300 ! 100 500
200 500 = 58(106 ) ( µ ) 3 ! 400
( b ) Table of direction cosines:
x' y'
x 3 2 !1 2
z'
0
y z 12 0 3 2 0 0
1
Thus, using Eqs. (2.18a),
" x ' = " x l12 + " y m12 + ! xy l1m1 = 200( 23 ) 2 ! 100( 12 ) 2 + 600( 23 )( 12 ) = 385 µ
( c ) Use Table B.1 (with " # ! and " # !
! 1 = 598 µ (d)
! 2 = "126 µ
2 ):
! 3 = "772 µ
! max = 598 + 772 = 1370 µ
______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 2–10
______________________________________________________________________________________ SOLUTION (2.22) ( a ) Applying Eqs. (2.21),
J 1 = 400 + 0 + 600 = 1(103 ) µ
and
J 2 = (0 + 24 + 0 ! 1 ! 4 ! 0)(10 4 ) = 19(10 4 ) ( µ ) 2 400 J 3 = 100 0
100 0 ! 200
0 ! 200 = !22(106 ) ( µ ) 3 600
( b ) Using Eq. (2.18a),
! x ' = 400( 23 ) 2 + 200( 23 )( 12 ) = 387 µ ( c ) Use Table B.1 (with " # ! and " # !
! 1 = 664 µ
2 ):
! 2 = 416 µ
! 3 = "80 µ
! max = 664 + 80 = 744 µ
(d)
______________________________________________________________________________________ SOLUTION (2.23)
! 1 = 1807 µ
2 ): ! 2 = "228 µ
! 3 = "679 µ
l1 = 0.6184
m1 = 0.5333
n1 = 0.5772
Use Table B.1 (with " # ! and " # ! and
______________________________________________________________________________________ SOLUTION (2.24)
! = "L = 050.10 = 2000 µ 3
) " = PA = (! 164 )((10 = 141.5 MPa 0.012 ) 2 !6
(a)
.5(10 ) E = #" = 141 = 70.8 GPa 2000 (10! 6 )
(b)
#& = $%d = 0.33( 2000 " 10 !6 )(12) = 7.92(10 !3 ) mm e = $ (1 ! 2# ) = 2000(10 !6 )(1 ! 2 " 0.33) = 6.80(10 !4 )
______________________________________________________________________________________ SOLUTION (2.25) Nominal strain
025 ! 0 = 0.75 = 333 µ
(CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 2–11
______________________________________________________________________________________ 2.25 (CONT.) Nominal stress 3
10 ) " 0 = ! ( 09.(012 = 79.577 MPa )2 4
Modulus of elasticity 6
.577 (10 ) E = 79333 = 238.97 GPa (10! 6 )
True strain
! = ln(1 + 0.000333) = 333 µ
True stress
! = 79.577(1 + 0.000333) = 79.603 MPa
______________________________________________________________________________________ SOLUTION (2.26) d 5 kN
5 kN L
!x =
2 mm
5(103 ) 20(103 ) = = 160 #106 "d2 4 "d2 d min = 0.0063 m = 6.3 mm
Also,
E= or
160 !106 = 210 !109 0.002 L
Lmin = 2.625 m
______________________________________________________________________________________ SOLUTION (2.27) (a) Axial stress in the bar ! s = ! a = ! is
! = " s Es = 600(210) = 126 MPa Hence
! P = " A = 126[ (402 )] = 158.3 kN 4 (b)
Axial strain in aluminum equals
"a = Therefore
! a 126(106 ) = = 1,800 µ Ea 70(109 )
! = " a La + " s Ls = [1,800(0.5) + 600(1.5)]10!6 = 1.8 mm
______________________________________________________________________________________
Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 2–12
______________________________________________________________________________________ SOLUTION (2.28)
A = 2(! " 402 4) = 2.513! mm 2 (a)
P 600! (103 ) "= = = 239 MPa A 2513! (10#6 ) Since ! < ! yp , the result is valid. Thus,
(b)
! 239(106 ) = = 1195 µ E 200(109 ) #L = L! = 5(103 )(1195 $10"6 ) = 5.98 mm
"=
! t = #"! = #0.3(1195)(10#6 ) = #358 µ "d = !358(10!6 )(40) = !0.014 mm
______________________________________________________________________________________ SOLUTION (2.29)
"=
! P $150(103 ) = !758 µ = = E AE 70(109 )(# 4)(0.12 $ 0.082 )
(a)
#L = ! L = "758(10"6 )(0.4 $ 103 ) = !0.303 mm
(b)
$D = ! (" D) = 0.3(758)(10#6 )100 = 0.023 mm #6
(c) $t = ! (" t ) = 0.3(758)(10 )10 = 0.0023 mm ______________________________________________________________________________________ SOLUTION (2.30) (a) According to assumption 1, the rubber is in triaxial stress:
! x = ! z = # p,
!y = #
Q
" 2 d 4
=#
4Q "d2
Strains are: ! x = ! z = 0. The first of Eqs. (2.34) gives
!x = 0 = or
1 [" x $# (" y + " z )] E
0 = p #! ( # Solving,
p=
4Q # p) "d2
4! Q " d 2 (1 #! )
!y
!x !z
(CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 2–13
______________________________________________________________________________________ 2.30 (CONT.) (b) Substituting the data,
p=
4(0.3)(5 "103 ) = 1.091 MPa (C ) ! (0.05) 2 (1 # 0.3)
______________________________________________________________________________________ SOLUTION (2.31) p=160 MPa= -!
! x = ! y = ! z = "!
d=250 mm
4 4! (1253 ) = 8.18(106 ) mm3 Vo = ! r 3 = 3 3 (a)
" x = $ E1 [! $# (! + ! )] = $ !E (1 $ 2# ) !160(106 ) = (1 ! 0.6) = !914 µ 70 "109 #d = ! x d = "914(10"6 )250 = !0.229 mm Decrease in circumference:
! ("d ) = #0.229! = #0.72 mm
(b)
#V = (1 $ 2! )" xVo = (0.4)(!914)(10!6 )(8.18 "106 ) = !2291 mm3
______________________________________________________________________________________ SOLUTION (2.32)
500 " 100 = 200 µ 2 1 75 ! p ' = tan "1 = 7o 2 300 ! s " = 45 + 7 = 52o
!'=
(a) ! 2 (µ)
!' y
!2
r O
!1 C
2! p '
x
" (µ)
(500, -75)
r = 752 + 3002 = 309 µ ! max = 2 R = 618 µ !1 = 200 + 309 = 509 µ ! 2 = "390 + 200 = "109 µ
(CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 2–14
______________________________________________________________________________________ 2.32 (CONT.) 509 µ
y’
x’
109 µ
220 µ
x’ 7o (b)
!3 = ! z = " Thus,
200 µ
x
618 µ
52o
x
0.3 (500 " 100) = "172 µ 0.7
(! max )t = 509 + 172 = 681 µ
______________________________________________________________________________________ SOLUTION (2.33) ! 2 (µ)
1 ! avg = (! x + ! y ) 2 1 = (480 + 800) = 640 µ 2
480 r
O
!2
C
!1
" (µ)
640
(a)
r = (640 ! 800) 2 + 5602
= 582 µ
!1,2 = ! avg ± r
!1 = 640 + 582 = 1222 µ ! 2 = 640 " 582 = 58 µ (b)
! max = 2r = 2(582) = 1164 µ
(c)
(! max )t = "1 # " 3 = "1 # 0 = 1222 µ
______________________________________________________________________________________ SOLUTION (2.34) (a)
P 25(103 ) !x = = = 69.4 MPa A (0.06 " 0.006) ! 69.4(106 ) = 347 µ "x = x = 200(109 ) E ! y = #"! x = #(0.3)(347 $10#6 ) = #104 µ
(CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 2–15
______________________________________________________________________________________ 2.34 (CONT.) (b)
(c)
1 1 ! x ' = (! x + ! y ) + (! x # ! y ) cos 2" 2 2 o For ! = "30 : 1 1 ! x ' = (347 " 104) + (347 + 104) cos("60o ) = 182 µ 2 2 1 1 ! y ' = (347 " 104) " (347 + 104) cos("60o ) = 8.8 µ 2 2 o
For ! = "30 :
! x ' y ' = $(" x $ " y ) sin 2# = !(347 + 104) sin(!60o ) = 391 µ
______________________________________________________________________________________ SOLUTION (2.35) o
o
o
Substituting ! a = 0 , ! b = 45 , and ! c = 90 , Eqs (2.44) give
1 ! a = ! x , ! c = ! y , ! b = (! x + ! x + " xy ) 2 ! x = ! a , ! y = ! c , " xy = 2! b # (! a + ! c ) Thus, we have
! x = #800 µ ,
! y = 400 µ ,
(P2.35)
" xy = 2(#1000) # (#800 + 400) = #1600 µ
Thus,
"800 + 400 1200 2 1600 2 ± (" ) + (" ) = !200 ± 1000 2 2 2 !1 = 800 µ , ! 2 = "1200 µ "1600 ] = 26.6o ! p = 12 tan "1[ "800 " 400 ! x ' = "200 " 600 cos 53.2o " 800sin 53.2o = "1200 µ = ! 2
!1,2 =
Thus,
! p " = 26.6o y’
1200 µ
800 µ
x’ 26.6o x ______________________________________________________________________________________
Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 2–16
______________________________________________________________________________________ SOLUTION (2.36)
DB = 0.005 2 m
10 MPa D y’
5 MPa
50 mm 50
x’ 45o
20 MPa x
B
( a ) Hooke’s law gives
# y = (10"0E.3!20 ) = E4
# x = ( 20"0E.3!10 ) = 17E
! xy = 5( 2E.6 ) = 13E Then, using Eq. (2.14a) with ! = ! + " 2 ,
" y ' = 21E (17 + 4) ! 0 ! 213E sin 90o = E4 Thus,
! BD = (" y ' )( BD ) = 0.283 m E
( b ) Applying Eqs. (1.18a,c):
! x ' = 302 + 102 cos 90o + 5 sin 90o = 20 MPa
" y ' = 15 ! 5 cos 90o ! 5 sin 90o = 10 MPa As before, Hooke’s law yields
# y ' = (10"0E.3!20 ) = E4
and
! BD = (" y ' )( BD ) = 0.283 m E
______________________________________________________________________________________ SOLUTION (2.37) The generalized Hooke’s law gives
# x = 0 = E1 [! x $ " (! y + ! z )]
# z = 0 = E1 [! z $ " (! x + ! y )] or
" x # !" z = !" y
# !" x + " z = !" y
Solving,
! x = ! z = 1#1" ! y Thus
" x = " z = # 1!#p!
______________________________________________________________________________________ SOLUTION (2.38) Using Eqs. (2.46): 1
" 1, 2 = 12 {( !100 + 100) ± [( !200) 2 + 100 2 ] 2 } = 12 (0 ± 224) (CONT.) ______________________________________________________________________________________
Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 2–17
______________________________________________________________________________________ 2.38 (CONT.)
! 1 = 112 µ
or
! 2 = "112 µ
3
! 1, 2 = 200(210 ) [0 ± ( 224 1.3 )] or
" 1 = 17.2 MPa
and
" 2 = !17.2 MPa
o " p = 12 tan !1 !100 200 = !13.28
Equations (2.44),
! x = !a
! y = !c
" xy = 2! b # ! a # ! c
Equation (2.14a) gives
! x ' = 0 " 100 cos( "26.56o ) + 50 sin( "26.56o ) = "112 µ
Thus,
" p ' ' = !13.28o
______________________________________________________________________________________ SOLUTION (2.39) We have
! x + ! y = ! a + ! c = 1200 µ
and the first two of Eqs. (2.44):
1000 = # x cos 2 ( !15o ) + # y sin 2 ( !15o ) + " xy sin( !15o ) cos( !15o ) # 250 = " x cos 2 30o + " y sin 2 30o + ! xy sin 30o cos 30o
These may be written
! y = 1200 " ! x
1000 = 0.933" x + 0.067" y # 0.25! xy # 250 = 0.75" x + 0.25" y + 0.433! xy Solving,
" x = 522 µ
" y = 678 µ
! xy = #1873 µ
______________________________________________________________________________________ SOLUTION (2.40) ( a ) We have
! c = ! y = "50 µ
First two of Eqs. (2.44):
400 = " x ( 43 ) # 50( 14 ) + ! xy ( 12 )( 23 ) 300 = # x ( 43 ) ! 50( 14 ) + " xy ( ! 12 )( 23 ) Solving,
" x = 482 µ
! xy = 116 µ
(CONT.) ______________________________________________________________________________________
Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 2–18
______________________________________________________________________________________ 2.40 (CONT.) Applying Eq. (2.16), 1
" 1, 2 = 4832!50 ± [( 4832+50 ) 2 + 582 ] 2 or Thus,
! 1 = 489 µ
! 2 = "56 µ
" max = ! 1 # ! 2 = 545 µ
( b ) Using Eq. (3.11b) of Chap.3, Hence,
! z = # 1"#" ( 483.50) = #217 µ = ! 3 (" max ) t = ! 1 # ! 3 = 706 µ
______________________________________________________________________________________ SOLUTION (2.41) From Eqs. (2.35), (2.37), and (2.38), we have 9
(10 ) # = 2200 ! 1 = 0.25 ( 80"109 ) 9
and
) " = 0.251!.25200!0(.10 = 80(10 9 ) 5
e = 200 + 300 = 500 µ
Then, Eqs. (2.36) lead to the following stress components, [! ij ] :
&72 16 0# $16 88 64! MPa $ ! $% 0 64 40!" ______________________________________________________________________________________ SOLUTION (2.42) Equation (2.35) yields 9
(10 ) # = 2200 ! 0.25 ( 80"109 )
Then, introducing the given data into the generalized Hooke’s law, Eqs. (2.34), we calculate the following strain components, [! ij ] :
31.25# & 81.25 ' 25 $ ' 25 ' 43.75 62.5 ! µ $ ! 62.5 50 !" $% 31.25 ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 2–19
______________________________________________________________________________________ SOLUTION (2.43) Using Eq. (2.35), 9
G = 279(1(+100.3)) = 26.92 GPa For x=1 m, y=2 m, and z=4 m, we obtain [! ij ] :
&34 48 8# $ 48 5 1! MPa $ ! $% 8 1 5!" Then, Eqs. (2.34) yield [! ij ] : & 443 892 149# $892 ' 96 19! µ $ ! 19 ' 96!" $%149
______________________________________________________________________________________ SOLUTION (2.44) Substituting x=3/4 m, y=1/4 m, and z=1/2 m into Eqs. (d) of Example 1.2, we have [! ij ] :
& ' 0.359 2.625 0.234# $ 0.234 0.875 0 ! MPa $ ! 0.125"! %$ 0.234 0
Equation (2.35) gives, 9
(10 ) G = 2200 (1+ 0.25 ) = 80 GPa
Applying Hooke’s law, we compute the strain components [! ij ] :
& ' 3 33 3# $ 33 5 0! µ $ ! $% 3 0 0!"
______________________________________________________________________________________ SOLUTION (2.45) We have ! z = 0 . Using Hooke’s law:
# x = E1 (" x $ !" y ) = 70%1103 (60 $ 903 ) = 1286 µ # y = E1 (" y $ !" z ) = 70%1103 (90 $ 603 ) = 1571 µ
" z = $ #E (! x + ! y ) = $ 2101%103 (60 + 90) = $714 µ (a)
" AB = $ y b = (1571 ! 10 #6 )( 400) = 0.628 mm
(b)
e = ! x + ! y + ! z = 1286 + 1571 " 714 = 2143 µ V0 = 300 ! 400 ! 10 = 1.2 ! 10 6 mm 3 "V = eV0 = ( 2143 ! 10 #6 )(1.2 ! 10 6 ) = 2,571.6 mm 3
______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 2–20
______________________________________________________________________________________ SOLUTION (2.46) ( a ) Using generalized Hooke’s law, 6
! x = 20010(109 ) [ "60 " 0.3( "50 " 40)] = "165 µ
! y = 200(1103 ) [ "50 " 0.3( "60 " 40)] = "100 µ ! z = 200(1103 ) [ "40 " 0.3( "60 " 50)] = "35 µ Thus,
"a = a# x = !0.04125 mm "b = b# y = !0.02 mm
"c = c# z = !0.00525 mm e = ! x + ! y + ! z = "300 µ
(b) and
"V = e( abc ) = !2250 mm 3
______________________________________________________________________________________ SOLUTION (2.47) Applying generalized Hooke’s law, 6
! x = 7010(109 ) [70 " 13 ( "30 " 15)] = 1214 µ
! y = 70(1103 ) [ "30 " 13 (70 " 15)] = "691 µ
! z = 70(1103 ) [ "15 " 13 (70 " 30)] = "405 µ Thus,
!a = a" x = 0.1821 mm "b = b# y = !0.0691 mm
"c = c# z = !0.0304 mm e = ! x + ! y + ! z = 118 µ
(b) and
!V = e( abc ) = 132.75 mm 3
______________________________________________________________________________________ SOLUTION (2.48) We have 9
(10 ) G = 200 2 (1+ 0.3) = 76.96 GPa 9
(10 ) " = 0.31!.200 = 111.11(10 9 ) 3( 0.4 )
Let
! 1 = 5c
! 2 = 4c
! 3 = 3c
We then obtain e=12c.
(CONT.) ______________________________________________________________________________________
Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 2–21
______________________________________________________________________________________ 2.48 (CONT.) Using the first of Eqs. (2.36),
# 1 = 2G" 1 + !e
or
140(10 6 ) = 2(76.96 ! 10 9 )(5c ) + 111.11(10 9 )(12c )
This yields
c = 66.587(10 !6 )
Hence,
! 1 = 332.935 µ
! 2 = 266.348 µ
! 3 = 199.761 µ
Now applying Eqs. (2.36), we calculate the principal stresses as follows:
! 1 = 51.165 + 88.782 = 139.947 MPa ! 2 = 40.975 + 88.782 = 129.757 MPa ! 3 = 30.731 + 88.782 = 119.513 MPa
Therefore
! 3 : ! 2 : ! 1 = 119.513 : 129.757 : 139.947
or
! 3 : ! 2 : ! 1 = 1 : 1.086 : 1.171
______________________________________________________________________________________ SOLUTION (2.49)
% x = $E = !!ux
(a)
% y = " #$E = !!yv
Integrating; Then
u = #E x + f ( y ) !u !y
gives
v = ! "#E y + g ( x )
(a)
+ !!vx = 0
!f ( y ) !y
+ !g!(xx ) = 0 or
Integration leads to
g ( x ) = cx + d
"g ( x ) "x
= ! "f"(yy ) = c
f ( y ) = !cy + e
Equations (a) are thus
u = #E x ! cy + e
v = ! "#E y + cx + d
Boundary conditions u(0,0)=0 and v(0,0)=0 result in c=d=e=0. Thus
u = "E x
(b)
v = # !"E y
$ x = #E = const. Hence ! x = u x and " y = #!
$ y = ! "#E = const. y . Therefore
u = !E x and v = # !"E y ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 2–22
______________________________________________________________________________________ SOLUTION (2.50) Equations (2.34) become 2
" x = cy +E!cx
2
2
" y = # cx E+!cy
2
Integrating,
Given:
u( x, y ) = ! # x dx = 3cE (3 y 2 x + "x 3 ) + g1 ( y )
(1)
v ( x, y ) = ! # y dy = 3cE (3 y 2 x + "y 2 ) + g 2 ( x )
(2)
" xy = 0
" xy = !!uy + !!vx = 0
(3)
From Eq. (1), !u !y
= dgdy1 + 2 Ec xy
(a)
Equation (2) leads to "v "x
= dgdx2 ! 2 Ec xy
dg1 dy
= 2 Ec xy + a1
(b)
Substituting Eqs. (a) and (b) into Eq. (3): dg 2 dx
= !2 Ec xy + a1
from which, after integration,
g1 ( y ) = Ec xy 2 + a1 y + a 2
(4)
g 2 ( x ) = ! Ec yx 2 ! a1 x ! a 2
Constants a1 and a 2 are obtained upon satisfying the prescribed boundary conditions. Substitution of Eqs. (4) into Eqs. (1) and (2) yields the solution for displacement field. ______________________________________________________________________________________ SOLUTION (2.51) Equations (2.39) and (2.35) give
K = 3(1"E2! ) = 23G(1("12+!! ))
Also,
K = 3(1"E2! ) = 3(12+E! ()(1+1!"2)! ) = 3E(1(+3!! +)(11""22!!)) = (1+! !)(E1"2! ) + 3(1E+! )
= ! + ( 2G3 )
Equations (2.39) and (2.35) yield 2
G = 3 K2 ((11+"!2!) ) = ( 3"1E+ 2(!1") 2(!1") 2! ) = E {[E3 (1(1!!22"")])!1}
= 9E
3E 2 3 E (1! 2" )
1 3 1! 2"
!E
= 93KKE! E
Equations (2.35) and (2.39) give,
E = 2G (1 + " )
and G ( 3+ 2 G ) " +G
=
E 2 (1+! )
E = 3K (1 ! 2 E )
[3" + 1+E! ]
" + 2 (1E+! )
The above expression, after substituting ! from Eq. (2.38) and simplifying, reduce to E. (CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 2–23
______________________________________________________________________________________ 2.51 (CONT.) From formula (2.39),
(1 ! 2" ) = 3EK
or
" = 12 ! 6EK = 3 K6 K! E
We also have or
G = 2EG ! 1
(1 + " ) = 2EG
" = 2EG ! 1
This expression is written as
" = 3 K (21G!2" ) ! 1 = 32KG ! 62KG" ! 1
from which or
" + 62KG" = " (1 + 26"G ) = 32KG ! 1
" = 23( K3 K!+2GG ) Finally, we write
" = 2 (1+!2!)(E1#2! ) = 12#!2G! or
(1 ! 2" )# ! 2"G = 0
This yields,
" = 2 ( !!+G ) ______________________________________________________________________________________ SOLUTION (2.52) Equations (2.4) yield,
$ y = ! "# ( aE! x )
# x = " ( aE! x )
# xy = ! "#Ey + "#Ey = 0
The stresses are therefore,
% x = 1!E# 2 ($ x + #$ y ) = " ( a ! x )
$ y = 1!E" 2 (# y + "# x ) = 0
" xy = G! xy = 0 At x=0 and x=a, we have
! x = "a
!x =0
Applying Eqs. (1.48) at x=a, we obtain
' p x $ -0 0 0* '1 $ '0$ ! ! + (! ! ! ! & p y # = +0 0 0( &0# = &0# ! p ! +0 0 0( !0! !0! % z" , )% " % " This is, boundary conditions at x=a are satisfied.
(CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 2–24
______________________________________________________________________________________ 2.52 (CONT.) At y = ± b , stresses are
# x = $ (a ! x )
# y = " xy = 0
' p x $ -( x . a )/ ! ! + & py # = + 0 !p ! + 0 % z" ,
0 0* ' 0 $ '0$ ! ! ! ! 0 0( &± 1# = &0# ( 0 0() !% 0 !" !%0!"
and
We see that boundary conditions at y = ± b are also satisfied. ______________________________________________________________________________________ SOLUTION (2.53) Equations (2.4) give,
# x = $ !"Ez , " z = !Ez ,
# y = $ !"Ez
(a)
! xy = ! yz = ! xz = 0
Equations (2.12) are satisfied by the above strains. Equations (2.36) and (a) yield,
# x = 2G! x + " (! x + ! y + ! z ) = 0
and
# z = "z
#y =0
Note that
Fx = Fy = 0
" xy = ! yx = ! xz = 0
and
Fz = "!
Thus, the first of Eqs. (1.14) are satisfied, and the third leads to
0 + 0 + !!"zz + Fz = 0 or " ! " = 0 At ends, since x’ and z are parallel, n=cos(x’,z)= ± 1. Thus, boundary conditions (1.48) at z=L:
px = 0 + 0 + 0 = 0
py = 0 + 0 + 0 = 0
p z = 0 + 0 + !L(1) = !L
as required. Similarly, at z=0:
px = 0
py = 0
p z = " (0)( !1) = 0
Therefore, all equations of elasticity are satisfied. ______________________________________________________________________________________ SOLUTION (2.54)
L
Using Eq. (2.59), with P1 = P1 + P2 : 2
P1
P2 ) L U = ( P12+ AE
P2
(CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 2–25
______________________________________________________________________________________ 2.54 (CONT.) From Example 2.8, with P1 = P2 = P :
U v = 12! E ( AL) = 3PAEL 2
Hence,
5! 5P L U d = 12 E ( AL ) = 3 AE 2
2
2
U = U v + U d = 2 PAEL 2
______________________________________________________________________________________ SOLUTION (2.55) We have 2
2
2
L 4) U 2 = P 2(AE + P2 E( 3( 2LA4)) = 85 U 1
2
2
U 1 = 2PAEL And
L 8) U 3 = P 2(AE + P2 E( 7( 3LA8)) = 125 U 1
Comparison of these results show that strain energy decreases as the volume of the bar is increased, although all three bars have the same maximum stress. ______________________________________________________________________________________ SOLUTION (2.56) Stress field is described by
# x = # y = # z = ! p,
( a ) Equation (2.37) reduces to
e = " 3(1"E2! ) p ;
or
" xy = " xz = " yz = 0
1!( 2 3)] p ! 0.005 = ! 3[110 (109 )
p = 550 MPa
( b ) Equation (2.52) becomes 2
U 0 = 21E ( p 2 + p 2 + p 2 ) ! "E ( p 2 + P 2 + p 2 ) = 3 p 2(1E"2! ) 6 2
"10 ) = 32((550 (1 ! 23 ) = 1.375 MPa 110"109 )
Thus,
U = U 0V0 = 1.375(10 6 )( 43" ! 0.153 ) = 19.439 kN ! m
______________________________________________________________________________________ SOLUTION (2.57) Substituting the given data into Eq. (2.52), we have 3
(10 ) U 0 = 2 (10200 ) (60 2 + 50 2 + 40 2 ) ! 0.3200 (3000 + 2400 + 2000) = 8.15 kPa 3
Thus,
U = U 0 ( abc ) = 8.15(10 3 )(0.25 ! 0.2 ! 0.15) = 61.125 N ! m
______________________________________________________________________________________
Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 2–26
______________________________________________________________________________________ SOLUTION (2.58) Equation (2.59) leads to 2
2
U n = P 2( 3AEL 4 ) + 2P( n(2LA)4E) = 8PAEL (3 + n12 ) 2
Hence,
2
= 1+43nn2 2PAEL
We have, Thus,
2
for n = 1 :
U 1 = 2PAEL
for n = 12 :
U 1 2 = 7U4 1
for n = 2 :
U 2 = 1316U1
U1 2 > U1
and
2
U 2 < U1
______________________________________________________________________________________ SOLUTION (2.59) (a)
U = 21E ! dx ! " 2 dA = 21E ! dx ! ( PA + MyI ) 2 dA Since
! ydA = 0 , this becomes: U =! +! =U +U P 2 dx 2 AE
Here
M 2 dx 2 EI
a
b
a b 2 2 U b = 2 1EI & ' M AD dx + ' M DB dx # $% 0 !" 0 a b = 2 1EI & ( ( ' ML0 x ) 2 dx + ( ( ML0 x ' ) 2 dx '# $% 0 !" 0 2
= 6MEIL0 2 ( a 3 + b 3 ) 2
U = 2PAEL + 6MEIL0 2 ( a 3 + b 3 ) 2
Thus,
( b ) Substituting the given data: 3 2
3 2
) ( 2!10 ) ( 0.027 + 0.729 ) U = 2 ( 7.(58!!1010"3))((701.2!10 9 + ) 6 ( 70!109 )( 0.075!0.13 12 )(1.2 ) 2
= 0.0731 + 0.8 = 0.8731 N ! m ______________________________________________________________________________________ SOLUTION (2.60) 2
2
U = ! 2TJGL = T "( L 42 ) + T "( L 42 ) 2
2(
32
d1 ) G
2(
32
d2 )G
2
= 8!TGL ( d14 + d14 ) 1
(a)
2
TL # = ! JG = T"( L 42 ) + T"( L 42 ) 32
d1 G
= 16!GTL ( d14 + d14 ) 1
2
32
d2 G
(b)
Solving T from Eq. (b) and substituting into Eq. (a) result in Eq. (P2.60). ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 2–27
______________________________________________________________________________________ SOLUTION (2.61) We have for segment AB, T AB = 3T and for segment BC , TBC = T (a)
2
U AB = ( 2TJGL ) AB = ! (91T.4 d(1)4.2Ga )16 = 44.977 !Td 4aG 2
2
U BC = ( 2TJGL ) BC = 16!dT4Ga 2
2
and
The total energy is thus
U = 60.981 !Td 4aG 2
( b ) Substituting the given data into the above equation, 3 2
U = 60.981 # ((10..402"10)4 ()42("010.5)9 ) = 2.831 kN ! m ______________________________________________________________________________________ SOLUTION (2.62)
M = 2p ( Lx ! x 2 ) b h x
pL 2
pL 2
L
The maximum bending moment occurs at the midspan: 2
2
c ( pL 8 )( h 2 ) pL ! max = M max = 34 bh 2 I bh 3 12
Maximum strain energy density, 2
2 4
9p L U 0,max = !2max E = 32 Eb 2 h 4
Using Eq. (2.63), we obtain L
U = 2 1EI ! ( 2p ) 2 ( Lx " x 2 ) 2 dx 0
=
p 2 L5 240 EI
2 5
L = 20pEbh 3
It is required to find c: U 0,max = cU or V Thus, and
c = U 0,max UV
2 4
p L bhl c = 329 Eb = 458 2 4 h p 2 L5 20 Ebh 3
U 0,max = 458VU
______________________________________________________________________________________ SOLUTION (2.63) P
B
A
C
x a
x’ L
Pa L
M AB = Px M BC = Pax L
(CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 2–28
______________________________________________________________________________________ 2.63 (CONT.) We have a
U AB = 2 1EI ! ( Px )dx = P6 EIa
2 3
0 a
2 P a L U BC = 2 1EI ! ( Pax L ) dx ' = 6 EI 2 2
0
Therefore
U = U AB + U BC = P6 EIa ( L + a ) 2 2
______________________________________________________________________________________ SOLUTION (2.64)
Mo
P
A P 2
C
x L/2
! MLo
M AC = ( P2 ! MLo ) x
B x’ L/2
P 2
+ MLo
M BC = ( P2 + MLo ) x '
We have L
2
2 U AB = 2 1EI " M AB dx = ( P2 ! ML0 ) 2 ( 48LEI ) + M 0 ( P2 ! ML0 )( 8LEI ) + M4 EI0 L 2
3
2
0
L
Thus
U BC = 2 1EI ! M BC dx ' = ( P2 + ML0 ) 2 ( 48LEI ) 2
3
0
U = U AB + U BC 2
2
PM 0 L M0 L P L = 96 EI + 16 EI + 6 EI 2 3
______________________________________________________________________________________ SOLUTION (2.65) Equation (2.66) yields
" oct = 13 [( !19 ! 4.6) 2 + ( 4.6 + 8.3) 2 + ( !8.3 + 19) 2 1
+ 6.452 + 11.82 ] 2 = 15.11 MPa Applying Eqs. (2.65) and (2.64), respectively,
U 0 d = 4 ( 76.93!109 ) (15.11) 2 = 2226.71 Pa
and 2
12
.6"8.3) (10 ) U 0 v = ( "1918+(4166 = 171.76 Pa .67!109 )
It follows that U0 d U0 v
= 12.96 ! 13
______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 2–29
______________________________________________________________________________________ SOLUTION (2.66) Dilatational stress is
+ 40 ) " m = ( 200!50 = 63.33 MPa 3
Distortional stresses are then
" x ! " m = 200 ! 63.33 = 136.6 MPa " y ! " m = !50 ! 63.33 = !113.3 MPa " z ! " m = 40 ! 63.33 = !23.33 MPa
Dilatational and deviator stress matrices are, respectively,
0 # &63.33 0 $ 0 63.33 0 ! MPa $ ! 0 63.33!" $% 0
and
20 10 # &136.6 $ 20 ' 113.3 0 ! MPa $ ! 0 ' 23.33!" $% 10 Next, substitute the above deviator stresses into Eq. (1.33). Then, solve the resulting equation for principal deviator stresses, using Table B.1:
! 1d = 138.8 MPa
" 2 d = !23.9 MPa
" 3d = !114.9 MPa
______________________________________________________________________________________ SOLUTION (2.67) Only existing stresses are: " x = "
! xy = !
Here, 3
!10 ) # = "2rT3 = 2"( 20 = 58.95 MPa ( 0.06 )3 3
!10 ) # = 4"Mr 3 = 4"(15 = 88.42 MPa ( 0.06 )3
We have
G = 25E
K = 23E
Equations (2.64) and (2.65): 2
3
) (10 ) U 0 v = 18! K = 12! E = (8812.42( 200 ) 2
2
= 3.258 kPa 2
U 0 d = 125E (" 2 + 3! 2 ) = 125((10200)) (7818.1 + 10,425.3)
= 38.007 kPa Thus,
U 0 = U 0 v + U od = 41.265 kPa
______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 2–30
______________________________________________________________________________________ SOLUTION (2.68) Principal stresses are 1
! 1, 2 = !2 ± [ !4 + " 2 ] 2 , 2
!3 = 0
and 1
! oct = 13 ( 2" 2 + 6! 2 ) 2 Equations (2.64) and (2.65) are therefore
U 0 v = 181K (! 12 + ! 22 ) = 18! K = 1#6 2E" ! 2 2
2 U 0 d = 43G ! oct = 13+E# (" 2 + 3! 2 )
______________________________________________________________________________________ SOLUTION (2.69) Only existing stress components are: " x = "
! xy = !
where,
# = !Pr 2
" = !2rT3
The area properties are:
A = !r 2
J = !2r
4
Thus, Eqs. (2.64) and (2.65) become
U 0 v = 18! K = 1#6 2E" ! 2 = 12! E 2
2
2 5" 5! U 0 d = 43G ! oct = 12 E + 4E 2
2
The components of strain energy are
U v = ! U 0 v dV = 121E " PA dx = 12P!rL2 E 2
2
U d = ! U 0 d dV = 125E ! PE dx + 45E ! TJ dx 2
2
2
2
= 125!Pr 2LE + 25!Tr 4LE Total strain energy is therefore
U = 2!Lr 2 E ( P 2 + 5 Tr 2 ) 2
End of Chapter 2
Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 2–31
CHAPTER 3 SOLUTION (3.1) ( a ) We obtain " 4# "x 4
= !12 pxy
" 4# "y 4
= 6 pxy
" 4# "x 2"y 2
=0
4
Thus, # " = !12 pxy + 2(6 pxy ) = 0 and the given stress field represents a possible solution. (b)
= pxy 3 ! 2 px 3 y
" 2# "x 2
Integrating twice 3 3
5
" = px6 y ! px10 y + f1 ( y ) x + f 2 ( y ) 4
The above is substituted into " ! = 0 to obtain d 4 f1 ( y ) dy 4
4
x + d dyf 2 4( y ) = 0
This is possible only if d 4 f1 ( y ) dy 4
d 4 f2 ( y )
=0
dy 4
=0
We find then
f 1 = c 4 y 3 + c5 y 2 + c 6 y + c 7 f 2 = c8 y 3 + c9 y 2 + c10 y + c11
Therefore, 3 3
5
" = px6 y ! px10 y + ( c4 y 3 + c5 y 2 + c6 y + c7 ) x + c8 y 3 + c9 y 2 + c10 y + c11
( c ) Edge y=0:
a
a
"a a
"a a
"a
"a
4
5
Vx = # ! xy tdx = # ( px2 + c3 )tdx = pa5 t + 2c3 at Py = ! # y tdx = ! (0)tdx = 0
Edge y=b:
a
4
Vx = " (! 32 px 2b 2 + c1b 2 + px2 + c3 )tdx !a
= ! pa 3 (b 2 ! a5 )t + 2a ( c1b 2 + c3 )t 2
a
Py = " ( pxb3 ! 2 px 3b)tdx = 0 !a
______________________________________________________________________________________ SOLUTION (3.2) Edge x = ± a :
" xy = 0 :
! 23 pa 2 y 2 + c1 y 2 + 12 pa 4 + c3 = 0
" xy = 0 :
! 23 pa 2 y 2 + c1 y 2 + 12 pa 4 + c3 = 0
Adding, ( !3 pa
2
+ 2c1 ) y 2 + pa 4 + 2c3 = 0
(CONT.) ______________________________________________________________________________________
Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 3–1
______________________________________________________________________________________ 3.2 (CONT.)
c1 = 23 pa 2 Edge x = a : "x = 0:
c3 = ! 12 pa 4
or
or
pa 3 y ! 2c1ay + c2 y = 0
c2 = 2 pa 3
______________________________________________________________________________________ SOLUTION (3.3) ( a ) Equations (3.6) become !# x !x
!"
!" xy !x
+ !yxy = 0
=0
Substituting the given stresses, we have
c 2 y ! 2 c3 y = 0
Thus
(b)
c 2 = 2 c3
c1 = arbitrary
# x = c1 y + c2 xy
" xy = c22 (b 2 ! y 2 )
Assume c1 > 0 and c2 > 0 . y
" xy =
c2 2
2
2
(b ! y )
b
! x = c1 y
b
" xy = c22 (b 2 ! y 2 ) x
! x = ( c1 + c2 a ) y
a ______________________________________________________________________________________ SOLUTION (3.4) Boundary conditions, Eq. (3.6): !" x !x
!#
+ !yxy = 0
!# xy !x
!"
+ !yy = 0
( 2ab ! 2ab) x = 0 ( !2ab + 2ab) y = 0 or are fulfilled. However, equation of compatibility: 2
2
( !!x 2 + !!y 2 )(" x + " y ) = 0 or 4ab ! 0 is not satisfied. Thus, the stress field given does not meet requirements for solution. ______________________________________________________________________________________ SOLUTION (3.5) It is readily shown that
" 4!1 = 0 4
" !2 = 0
is satisfied is satisfied
(CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 3–2
______________________________________________________________________________________ 3.5 (CONT.) We have 2
2
% x = ""y#21 = 2c,
% y = ""x#21 = 2a,
Thus, stresses are uniform over the body. Similarly, for ! 2 :
# x = 2cx + 6dy
# y = 6ax + 2by
2
$ xy = ! ""x#"y1 = !b
" xy = !2bx ! 2cy
Thus, stresses vary linearly with respect to x and y over the body. ______________________________________________________________________________________ SOLUTION (3.6) Note: Since ! z = 0 and ! y = 0 , we have plane stress in xy plane and plane strain in xz plane, respectively. Equations of compatibility and equilibrium are satisfied by
" y = !c
" x = !" 0
"z = 0
! xy = ! yz = ! xz = 0 We have
!y = 0
(a)
(b)
Stress-strain relations become
#x =
(" x $!" y ) E
#z =
!% ($ x +$ y ) E
,
#y = ,
(" y $!" x ) E
(c)
" xy = " yz = " xz = 0
Substituting Eqs. (a,b) into Eqs. (c), and solving
! y = $"! 0 2
" x = ! (1#!0$E )
# z = " (1+E" )! 0 "y = 0
Then, Eqs. (2.3) yield, after integrating: 2
u = ! (1!# E)" 0 x
v=0
w = " (1+"E )! 0 z ______________________________________________________________________________________ SOLUTION (3.7) Equations of equilibrium, !"
2axy + 2axy = 0
"#
ay 2 ! ay 2 = 0
!# x !x
+ !yxy = 0,
"$ xy "y
+ "xy = 0,
are satisfied. Equation (3.12) gives
( ##x 2 + ##y 2 )($ x + $ y ) = "4ay ! 0 2
2
Compatibility is violated; solution is not valid. ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 3–3
______________________________________________________________________________________ SOLUTION (3.8) We have " 2$ x
" 2$ y
=0
"y 2
"x 2
" 2# xy "x"y
= !2ay
= 2ay
Equation of compatibility, Eq. (3.8) is satisfied. Stresses are
# x = 1$E! 2 (" x + !" y ) = 1$aE! 2 ( x 3 + !x 2 y )
# y = 1$E! 2 (" y + !" x ) = 1$aE! 2 ( x 2 y + !x 3 ) 2 # xy = G" xy = 2 (aE 1+! ) xy
Equations (3.6) become aE 1!" 2
(3x 2 + 2"xy ) + 1aE +" xy = 0
aE 1!" 2
y 2 + 1!aE" 2 x 2 = 0
These cannot be true for all values of x and y. Thus, Solution is not valid. ______________________________________________________________________________________ SOLUTION (3.9)
# x = ""ux = !2$cx
y
# y = ""yv = 2ax
# xy = ""uy + ""vx = !2cy + 2cy = 0 Thus
% x = 1&E# 2 ($ x + #$ y ) = 0
" xy = G! xy
$ y = 1!E" 2 (# y + "# x ) = 2 Ecx
2a
O
2Eac
x
2b 2Eac
Note that this is a state of pure bending. ______________________________________________________________________________________ SOLUTION (3.10) (a)
% y = 6 pxy
2
% x = ""y#2 = 0,
$ xy = !3 px 2
4
Note that " ! = 0 is satisfied. (b)
! y = 6 pbx y
!x = 0 b ! xy = 0
! xy = 3px 2
!x = 0 a
!y =0 ( c ) Edge x = 0 : Edge x = a :
! xy = 3pa 2 x
! xy = 3px 2
V y = Px = 0
Px = 0
(CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 3–4
______________________________________________________________________________________ 3.10 (CONT.) b
V y = " # xy tdy = 3 pa 2 bt !
Edge y = 0 :
0
Py = 0
a
V x = " # xy tdx = pa 3t ! 0
V x = pa 3t !
Edge y = b : a
Py = " # y tdx = 3 pa 2 bt ! 0
______________________________________________________________________________________ SOLUTION (3.11) 4
( a ) We have # " ! 0 is not satisfied. 2
2
% y = !!x"2 = pya 2 , 2
y
(b)
! xy = 2p (1 + 4 ax )
!x = 0
! x = p(1 + ay )
2p
! xy = 2pya 2 ( 4a + y )
a
x
" y = 0, ! xy = 0 p a
2
Vy = ! 2pya2 dy = 16 pat 0
Edge x = a :
$ xy = # p ( 42xya+2 y )
!y = p py 2 a " xy = ! 2a 2
( c ) Edge x = 0 :
2
% x = p ( xa 2+ xy ) ,
Px = 0
a
V y = " # xy tdy = 76 pat ! 0 a
Px = " # x tdy = 23 pat ! 0
Edge y = 0 :
Vx = 0
Edge y = a :
Py = 0
a
V x = " # xy tdx = 23 pat ! 0 a
Py = " # y ptdx = pat ! 0
______________________________________________________________________________________ SOLUTION (3.12) 4
( a ) We have " ! = 0 is satisfied. The stresses are
$ x = ""y#2 = ! bpx3 (6b ! 12 y ) 2
$ xy = ! ""x"#y = 6bpy3 (b ! y )
2
$ y = ""x#2 = 0
2
(CONT.)
______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 3–5
______________________________________________________________________________________ 3.12 (CONT.) (b)
y
" x = ! bpa3 (6b ! 12 y )
! xy
b
! xy
x
a ______________________________________________________________________________________ SOLUTION (3.13) We have "# "y
= ! $P [tan !1 xy + x 2xy+ y 2 ],
" 2# "y 2
= ! $P [ x 2 +x y 2 + ( x (+xy2 +) yx2!)22 y x ]
2
"# "x
2
!y = ! Py $ x2 + y2
2
The stresses are thus, 2
3
% x = !!y"2 = # 2$P ( x 2 +x y 2 )2 2
% y = !!x"2 = # 2$P ( x 2xy+ y 2 )2 2
2
% xy = # !!x!"y = # 2$P ( x 2x+ yy2 )2 2
P
!x 2 P !L
! xy
L
______________________________________________________________________________________ SOLUTION (3.14) Various derivatives of ! are: "# "x
2
" 4# "x 2"y 2
= 0,
" 2# "y 2
$0 4h
4
! " !x 4
3
= $40 ( y ! yh ! hy2 ), =
= 0,
" 2# "x"y
( !2 x ! 4
! " !y 4
6 xy h
" 2# "x 2
=0 2
= $40 (1 ! 2hy ! 3hy2 )
+ 2L +
6 Ly h2
)
(a)
=0
It is clear that Eqs. (a) satisfy Eq. (3.17). On the basis of Eq. (a) and (3.16), we obtain (CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 3–6
______________________________________________________________________________________ 3.14 (CONT.)
" x = 4# 0h ( !2 x ! 6hxy + 2 L + 6 hLy ),
"y =0
(b)
2
" xy = ! "40 (1 ! 2hy ! 3hy2 )
From Eqs. (b), we determine "y =0 Edge y = h :
! xy = ! 0
Edge y = ! h :
#y =0
" xy = 0
x = L:
# x = 0,
" xy = ! "40 (1 ! 2hy ! 3hy2 )
Edge
2
It is observed from the above that boundary conditions are satisfied at y = ± h ,
but not at x = L . ______________________________________________________________________________________ SOLUTION (3.15) 4
For # " = 0, e = !5d and a, b, c are arbitrary.
(a)
" = ax 2 + bx 2 y + cy 3 + d ( y 5 ! 5 x 2 y 3 )
Thus
(1)
( b ) The stresses:
$ x = ""y#2 = 6cy + 10d ( 2 y 3 ! 3x 2 y )
(2)
$ y = ""x#2 = 2a + 2by ! 10dy 3
(3)
$ xy = ! ""x"#y = !2bx ! 30dxy 2
(4)
2
2
2
Boundary conditions:
# y = !p
" xy = 0
(at y=h)
(5)
Equations (3), (4), and (5) give
b = !15dh 2
2a ! 40dh 3 = ! p
h
h
! $ dy = 0 "h
! y$ dy = 0
x
"h
x
Equations (2), (4), and (7) yield Similarly
h
! # dy = 0 "h
xy
(at x=0)
c = !2dh 2
"y =0
give
(6)
(8)
! xy = 0
(at y=-h)
a = 20dh 3
(9)
Solution of Eqs. (6), (8), and (9) results in
a = ! 4p
(7)
b = ! 163ph
The stresses are therefore
c = ! 40ph
d = 80ph3
e = ! 16ph3
(10)
" x = ! 320pyh + 8hp3 ( 2 y 3 ! 3x 2 y ) 3
" y = ! 2p ! 38pyh ! 8pyh3 2
" xy = 38pxh (1 ! hy2 )
______________________________________________________________________________________
Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 3–7
______________________________________________________________________________________ SOLUTION (3.16) We obtain 2
2
$ xy = ! ""x"#y = !
2 pxy a2
$ x = ""y#2 = p ( x a!22 y ) 2
2
# y = !!x"2 = pya 2 2
2
(a)
Taking higher derivatives of ! , it is seen that Eq. (3.17) is not satisfied. Stress field along the edges of the plate, as determined from Eqs. (a), is sketched bellow. y
!y = p
! xy = 2 p ax
p
2p
! xy = 2 p ay
! xy = 0
a
2
! x = 2 p ay2
2
" x = p(1 ! 2 ay2 )
a 2
a
" y = 0, ! xy = 0
p
x
______________________________________________________________________________________ SOLUTION (3.17) The first of Eqs. (3.6) with Fx = 0 !" xy !y
= pxy I
Integrating, 2
! xy = pxy 2 I + f1 ( x )
(a)
The boundary condition, 2
(! xy ) y =h = 0 = pxh 2 I + f1 ( x ) gives f 1 ( x ) = ! pxh
" xy = !
px 2I
2
2 I . Equation (a) becomes (h ! y 2 ) 2
(b)
Clearly, (" xy ) y = ! h = 0 is satisfied by Eq. (b). Then, the second of Eqs. (3.6) with Fy = 0 results in "# y "y
2
2
= p ( h2 !I y )
Integrating, 2
" y = 2pI y ( h 2 ! y3 ) + f 2 ( x )
(c)
2
Boundary condition, with t = 3I 2h , (CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 3–8
______________________________________________________________________________________ 3.17 (CONT.)
(" y ) y = ! h = ! pt = ! 2phI ( h 2 ! h3 ) + f 2 ( x ) 3
gives f 2 ( x ) = ! ph
3
3I . Equation (c) is thus " y = 6pI (3h 2 y ! y 3 ! 2h 3 )
(d)
This satisfies the condition that (! y ) y =h = 0 . Note that Eq. (3.12) is not satisfied: the solution obtained does not provide a compatible displacement field. ______________________________________________________________________________________ SOLUTION (3.18) Substituting the stresses from Eqs. (3.10) into Eqs. (3.6) and taking Fx = Fy = 0 :
or
!$
!#
E 1"% 2
( !!$xx + % !xy ) + G !yxy = 0
E 1"% 2
( !yy + % !!$yx ) + G !xxy = 0
!$
!#
2
2
2
2
2
2
2
2
E 2 (1+# )
[ 1"2# !!x#2 + 12"## !!x!#y + !!yu2 + !!x!#y ] = 0
E 2 (1+# )
[ 1!2# ""y#2 + 12!## ""x"uy ! ""x"uy + ""x#2 ] = 0
The foregoing become " 2u "x 2
+ 11+!## ""xu2 ! 11+!## ""x"vy + ""yu2 = 0
2
2
2
! 2v !y 2
+ 11+"## !!yv2 + 11+"## !!x!vy + !!yu2 = 0
2
2
2
! 2u !x 2
+ !!yu2 + 11+"## !!x ( !!ux + !!yv ) = 0
! 2v !y 2
+ !!xv2 + 11+"## !!y ( !!yv + !!ux ) = 0
or 2
2
______________________________________________________________________________________ SOLUTION (3.19) It is readily found that
And
"# xy "y
"$ x "x
= ! pxy I
= pxy I
"$ y "y
= ! pI ( !h 2 + y 2 )
"# xy "x
= ! 2pI ( h 2 ! y 2 )
Thus, Eqs. (3.6) are satisfied: stress field is possible. We have xQ = 1.5 m, yQ = 0.05 m , and 3
I = 2 th3 = 2 ( 0.043)( 0.1) = 2.67(10 !5 ) m 4 3
Substituting the given data, Eqs. (P3.19) yield at Q: "10 "10 # x = 10(!210 (5 " 105 + 2 " 0.12 )0.05 + 3( 2!.10 (1.25 " 10 !4 ) .67"10! 5 ) 67"10! 5 ) 3
3
= !21.09 MPa (CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 3–9
______________________________________________________________________________________ 3.19 (CONT.)
# xy = 2 ( 2!.1067""1010!5 ) (0.12 ! 0.052 ) = !2.106 MPa 3
# y = 6( 2!.1067""1010!5 ) ( 2 " 0.13 ! 3 " 0.0005 + 0.053 ) = !0.039 MPa 3
Applying Eq. (2.29), we have 9
(10 ) G = 200 2 (1+ 0.3) = 76.9 MPa
Hooke’s law is therefore
! x = 200(1109 ) ( "21.09 + 0.3 # 0.039)10 6 = "105 µ ! y = 200(1109 ) ( #0.039 + 0.3 " 21.09)106 = 31.4 µ 6
2.106 (10 ) ! xy = "76 = "27.4 µ .9 (109 )
Principal strains are 1
" 1, 2 = !1052+31.4 ± [( 1362 .4 ) 2 + ( !272 .4 ) 2 ] 2
! 1 = 32.8 µ ! 2 = "106 µ o !1 !27.4 1 We have " p = 2 tan !105!31.4 = 5.65
or
For this angle, Eq. (2.14a) yield ! x ' = 32.8 µ . Thus,
! p ' = 5.65o ______________________________________________________________________________________ SOLUTION (3.20) Assume " x = " y = 0,
! z = 0,
! x = ! y = constant
which satisfy Eqs. (3.6) and (3.27). Hooke’s law becomes
% x = E1 ($ x ! #$ y ) + "T1 = 0
(a)
% y = E1 ($ y ! #$ x ) + "T1 = 0
(b)
$ z = ( !# x ! # y ) + "T1 = 0
(c)
% E
From Eqs. (a) and (b), we obtain ! x = ! y . Therefore,
$ x = %Ex (1 ! # ) + "T1 = 0
This yields
$ x = $ y = E"#!T11
Then, Eq. (c) becomes
" z = 21#!$#T1 + !T1 We also have: ! xy = ! yz = ! xz = 0 and ! xy = ! yz = ! xz . ______________________________________________________________________________________ SOLUTION (3.21) The nonzero strain components are
" x = " y = " z = !T
(CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 3–10
______________________________________________________________________________________ 3.21 (CONT.) Compatibility equations reduce to ! 2# x !y 2
! 2# y
! 2#
! 2"
2
! 2"
2
2
+ !x 2y = !y!xyx
!z 2
+ !!y#2z = !y!yzz
! 2# z !x 2
+ !!z#2x = !!x"!xzz
Adding the above equations and substituting the given data: 2
2
2
2" ( !!xT2 + !!yT2 + !!zT2 ) = 0 or ! 2T !x 2
2
2
+ !!yT2 + !!zT2 = 0
This equation, for a time independent temperature field, has the solution
T = c1 ' x + c2 ' y + c3 ' z + c4 '
which may be written as
!T = c1 x + c2 y + c3 z + c4
______________________________________________________________________________________ SOLUTION (3.22) Stress is ! x = "! 0 regardless of T1 and still we have ! y = 0 . The second of Eqs. (3.26a) is thus
$ y = E1 (# y + "# 0 ) + !T1 = 0 # y = $"# 0 $ E!T1
or
(a)
The first of Eqs. (3.26a) and (a) result in
$ x = % 1%E" # 02 + (1 + " )!T1 2
(b)
Now, Hooke’s law
# z = % $E (" x % " y ) + !T1
leads to
$ z = " (1E+" ) # 0 + (1 + " )!T1
(c)
Then Equations (2.4) yield, after integration,
u = !xx
v=0
w = !zz
Here, ! x and ! z are given by Eqs. (b) and (c). ______________________________________________________________________________________ SOLUTION (3.23)
Px
Mz
Mz
Px
Equation (3.27) reduces to d2 dy 2
(" x + !ET ) = 0
(CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 3–11
______________________________________________________________________________________ 3.23 (CONT.) from which
# x = !"ET + c1 y + c2 = !"ET ( a1 y + a 2 ) + c1 y + c2 Referring to Part (b) of Example 3.2: c1 = c2 = 0 and # x = !"E ( a1 y + a 2 )
We have h
Px = $ " x tdy = #2 E!hta 2 #h
h
3
M z = " $ x tydy = ! E#t a13y + a22y !h
2
h !h
3
= " E!th a1 2 3
The Px and M z are opposite to that shown above. ______________________________________________________________________________________ SOLUTION (3.24) Assume a stress distribution:
" xy = " yz = " xz = ! y = ! z = 0
! x = constant
(a)
which satisfy Eqs. (3.6) and (3.27). Then, Hooke’s law becomes
" x = $Ex + !T ,
" y = " z = % #$E x + !T
(b,c)
! xy = ! yz = ! xz = 0
(d)
Due to constraint imposed by the walls and because of the uniformity of the temperature distribution: we take ! x = 0 . Equations (a) and (b) give
" x = #!ET Equation (c) is then
# y = # z = "T (1 + ! ) = constant
The compressive force P on the tube is
Px = " x A = # E!At
Substituting the data given
Px = !120(10 9 )(16.8 " 10 !6 ) " (800 " 10 !6 )(100) = !161.3 kN
______________________________________________________________________________________ SOLUTION (3.25) Derivatives of the given stress function are $ 2% $r 2
= 0,
1 $% r $r
= # P"!r sin ! ,
1 $ 2% r 2 $! 2
= P"!r sin ! # 2"Pr cos !
Equation (3.40) becomes
% 4 $ = ( &&r 2 + 1r &&r + r12 &&! 2 )( # 2"Pr cos ! ) 2
2
(CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 3–12
______________________________________________________________________________________ 3.25 (CONT.) 4
After performing the derivatives, we obtain " ! = 0 . Substituting the derivatives obtained above, into Eqs. (3.32):
" r = $ P#!r sin ! + P#!r sin ! $ 2#Pr cos ! = # 2"Pr cos ! Similarly, we find " ! = 0 and " r! = 0 .
______________________________________________________________________________________ SOLUTION (3.26) Refer to Fig. P3.26a. Let ABC = 1 and hence AAB = cos ! , AAC = sin ! .
!F = 0: x
# x = # r cos ! cos ! + # ! sin ! sin ! $ 2" r! sin ! cos !
!F = 0: y
" xy = # r cos ! sin ! $ # ! sin ! cos ! + " r! cos ! cos ! # " r! sin ! sin !
Similarly, from Fig. P3.26b:
!F = 0: y
# y = # r sin 2 ! + # ! cos 2 ! + 2" r! sin ! cos !
Check:
!F = 0: x
" xy = # r sin ! cos ! $ # ! sin ! cos ! + " r! (cos 2 ! $ sin 2 ! )
Thus, quoted equations are derived. ______________________________________________________________________________________ SOLUTION (3.27) Apply the chain rule (Sec. 3.9): and
"# "x
= ""#r cos ! $ 1r ""#! sin !
" 2# "x 2
! = ""r#2 cos 2 ! $ 2 ""!"#r sin! rcos! + ""#r sinr ! $ 2 ""#r sin!rcos + ""!#2 sinr 2 ! 2 2
(a)
" 2# "y 2
! = ""r#2 sin 2 ! + 2 ""!"#r sin! rcos! + ""#r cosr ! + 2 ""#! sin!rcos + ""!#2 cosr 2 ! 2
(b)
Similarly,
2
2
2
2
2
2
Adding Eqs. (a) and (b), we have " 2# "x 2
2
2
2
+ ""y#2 = ""r#2 + 1r ""#r + r12 ""!#2
2
2
2
(c)
By referring to the identity ! 4" !x 4
4
4
2
2
2
2
+ 2 !x!2!"y 2 + !!y"4 = ( !!x 2 + !!y 2 )( !!x"2 + !!y"2 )
and Eq. (c), we can readily write the equation quoted, Eq. (3.40). ______________________________________________________________________________________ SOLUTION (3.28) Equation (3.28) is written as
( drd 2 + 1r drd )( ddr!2 + 1r ddr! ) + "ET ( drd 2 + 1r drd ) = 0 2
2
2
(CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 3–13
______________________________________________________________________________________ 3.28 (CONT.) or or
d 2! dr 2
+ 1r ddr! + "ET = 0
1 d r dr
( r ddr! ) + "ET = 0
______________________________________________________________________________________ SOLUTION (3.29) ( a ) Let C = 2 (sin 2! ""2M! cos 2! ) , and
$ = C (sin 2" # 2" cos 2! ) Various derivatives of ! are:
and
! 2" !r 2
!" !r
=0
=0
$% $"
= 2C cos 2" # 2C cos 2!
# 2$ #! 2
= "4C sin 2!
2! $ 2 # = r12 %%!#2 = " 4C sin r2 2
We thus obtain
2$ 2$ # 4 " = C[ 8 sinr 42$ ! 24 sin + 16 sin ]=0 r4 r4
(b)
2
"! = 0
2! " r = r12 $$!%2 = # 4C sin r2
# r" = $ %%r ( 1r %%&" ) = 2rC2 (cos 2" $ cos 2! ) (c)
Letting " = ! 2 : C = # M 2! . It follows that
#! = 0
2! # r = 2 M"sin r2
2
" # r" = 2rC2 (cos 2" + 1) = $ 2 M!cos r2 2
where cos ! = (1 + cos 2! ) 2 ______________________________________________________________________________________ SOLUTION (3.30) Using Eq. (3.48) and Fig. P3.30: "
"
Fx = ! ($ r rd# ) sin # = ! ( 2"P cos # sin # )d# 2
0
2
0
= 2!P 12 sin 2 "
!
0
2
= !P
Similarly, #
#
Fy = ! # (% r rd$ ) cos $ = ! # ( 2#P cos 2 $ )d$ 2
" 2
2
" 2
"
= 2"P #2 + 14 sin 2# !2" = P 2
______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 3–14
______________________________________________________________________________________ SOLUTION (3.31) NOTE: (In Probs. 3.31, 3.32, and 3.33), the P, L, and ! are constants. It can readily be verified that, the maximum values of the functions in parentheses occur:
(sin ! cos 3 ! ) = 0 , or tan 2 ! = 13
when ! = ±30
d d!
(sin 2 ! cos 2 ! ) = 0 , or tan 2 ! = 1
when ! = ±45
o
d d!
o
Maximum stresses, using Eqs. (3.37) and (3.43):
(" x ) elast . = L (! + 1Psin 2! )
(a)
2
(# xy ) elast . =
P sin " cos3 " L (! + 12 sin 2! )
Elementary solution of maximum stresses are P (" x ) elem. = 2 L tan # ,
(! xy ) elem. = 0
(b)
o
( a ) For ! = 15 , (! + 12 sin 2! = 0.512) :
Thus,
o
(! x ) elast . = P 0.512 L
at ! = 0
(! xy ) elast . = P 2.195L
at ! = 15
(! x ) elem. = P 0.536 L
at any !
o
(! x ) elast . = 1.047(! x ) elem. o
( b ) For ! = 60 , (! + 12 sin 2! = 1.48) :
Thus,
o
(! x ) elast . = P 1.48L
at ! = 0
(! xy ) elast . = P 4.557 L
at ! = 30
(! x ) elem. = P 3.464 L
at any !
o
(! x ) elast . = 2.341(! x ) elem.
______________________________________________________________________________________ SOLUTION (3.32) See: NOTE, solution of Prob. 3.31. o
Substitute ! = 30 into Eqs. (a) and (b) of Solution of Prob. 3.31.
Thus,
o
(! x ) elast . = P 0.957 L
at ! = 0
(! xy ) elast . = P 2.946 L
at ! = 30
(! x ) elem. = P 1.155L
at any !
o
(! x ) elast . = 1.207(! x ) elem.
______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 3–15
______________________________________________________________________________________ SOLUTION (3.33) See: NOTE, solution of Prob. 3.31. We have r = L cos " , hmn
2 = c = L # tan ! , and I = 2c 3 3 .
Equations (3.43) give 3
cos " (# x ) elast . = LF(!sin$"1 sin 2! ) 2
(# xy ) elast . =
F sin 2 " cos2 " L (! $ 12 sin 2! )
Elementary solution:
(" x ) elem. = 3FL 2c 2 ,
(! xy ) elem. = 3F 4c
o
( a ) For ! = 15 , (! + 12 sin 2! = 0.512) :
Thus,
o
(! x ) elast . = 19.43F L
at ! = 15
(! xy ) elast . = 5.21F L
at ! = 15
(! x ) elem. = 20.89 F L
at ! = 15
(! xy ) elem. = 2.8F L
at ! = 0
o o
o
(! x ) elast . = 0.93(! x ) elem. (! xy ) elast . = 1.86(! xy ) elem. o
( b ) For " = 60 , (" ! 12 sin 2" = 0.614) :
Thus,
o
(! x ) elast . = 0.529 F L
at ! = 30
(! xy ) elast . = 0.407 F L
at ! = 45
(! x ) elem. = 0.5F L
at ! = 60
(! xy ) elem. = 0.433F L
at ! = 0
o o
o
(! x ) elast . = 1.058(! x ) elem. (! xy ) elast . = 0.94(! xy ) elem.
______________________________________________________________________________________ SOLUTION (3.34) With x = r " cos ! , Eqs. (3.50) become
" x = $( 2#Pr ) cos 3 !
" y = $( 2#Pr ) sin 2 ! cos ! " xy = $( 2#Pr ) sin ! cos 2 ! Substituting,
prd! 2p 3 2 d" x = $ #2r ( cos ! ) cos ! = $ # cos !d!
d# y = % 2$p sin 2 ! ,
d" xy = % $p sin 2!d!
(CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 3–16
______________________________________________________________________________________ 3.34 (CONT.) Integrating, !2
" x = $ 2#p % cos 2 !d! = $ 2p# [2(! 2 $ !1 ) + (sin 2! 2 $ sin 2!1 )] !1
"y =$
p 2#
[2(! 2 $ !1 ) $ (sin 2! 2 $ sin 2!1 )]
" xy = 2p# [cos 2! 2 $ cos 2!1 ] ______________________________________________________________________________________ SOLUTION (3.35) APPROACH (a): 2
( drd 2 + 1r drd )( ddr 2f1 + 1r dfdr1 ) = 0 2
We have
3
2
(d) 4
2
d dr
( ddr 2f1 ) = ddrf31 ,
d dr
( 1r dfdr1 ) = ! r !2 dfdr1 + r !1 ddr 2f1
d2 dr 2
( 1r dfdr1 ) = r23 dfdr1 ! 2r ddr 2f1 + 1r ddr f31
d2 dr 2
( ddr 2f1 ) = ddr 4f1 2
2
2
3
3
1 d r dr
( ddr 2f1 ) = 1r ddrf31
1 d r dr
( 1r dfdr1 ) = 1r ( ! r12 dfdr1 + 1r ddr 2f1 )
2
Then, Eq. (d) becomes d 4 f1
3
2
dr 4
+ 2r ddrf31 ! r12 ddr 2f1 + r13 dfdr1 = 0
1 d r dr
{r drd [ r !1 drd ( r dfdr1 )]} = 0
1 d r dr
{r drd [ r !1 dfdr1 + ddr 2f1 ]} = 0
1 d r dr
{r[ ! r !2 dfdr1 + r !1 ddr 2f1 + ddrf31 ]} = 0
1 d r dr
{! r !1 dfdr1 + ddr 2f1 + r ddr f31 } = 0
(d’)
The first equation of Problem 3.35 may be written as:
1 r
or
2
2
3
2
3
2
3
4
{r !2 dfdr1 ! r !1 ddr 2f1 + 2 ddrf31 + r ddr 4f1 } = 0
1 df1 r 3 dr
2
3
4
! r12 ddr 2f1 + 2r ddrf31 + ddr 4f1 } = 0
which is the same as Eq. (d’). Now let us integrate the expression: 1 d r dr
{r drd [ 1r drd ( r dfdr1 )]} = 0
r drd [ 1r drd ( r dfdr1 )] = c1 1 d r dr
( r dfdr1 ) = c1 ln r + c2
r dfdr1 = c1 ! r ln rdr + c2 ! rdr
r dfdr1 = c1 [ r2 ln r ! r4 ] + c2 r2 + c3 2
df1 dr
4
2
= c1r ln r + c2 r 2 + c3 ln r + c4
(CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 3–17
______________________________________________________________________________________ 3.35 (CONT.) or
f1 = c1r 2 ln r + c2 r 2 + c3 ln r + c4 Expression (e) may be treated in a like manner.
APPROACH (b): Letting t = ln r , we have df1 dr
= dfdt1 drdt = 1r dfdr1
d 2 f1 dr
2
2
= r12 ( ddt 2f1 ! dfdt1 )
d 3 f1 dr 3
= r13 ( ddt 3f1 ! 3 ddt 2f1 + 2 dfdt1 )
d 4 f1
= 1r ( ddt 4f1 ! 6 ddt 3f1 + 11 ddt 2f1 ! 6 dfdt1 )
dr
4
3
2
4
3
2
Substituting these derivatives into Eq. (d’), we obtain: d 4 f1 dt
4
3
2
! 4 ddt 3f1 + 4 ddt 2f1 = 0
This is an ordinary differential equation with constant coefficients. It has a solution
f1 = c1r 2 ln r + c2 r 2 + c3 ln r + c4
In a like manner, it can be shown that, 2
( drd 2 + 1r drd ! r42 )( ddrf22 + 1r drdf22 ! 4rf22 ) = 0 2
is solved to yield Eq. (g) of Section 3.12. ______________________________________________________________________________________ SOLUTION (3.36) (a)
!0
!0 =
!0
+
!0
!0
2! 0 2
4
2
4
2
" r1 = "20 [(1 # ar 2 ) + (1 + 3ra4 # 4ra2 ) cos 2! ]
" ! 1 = "20 [(1 + ar 2 ) # (1 + 3ra4 ) cos 2! ] 4
and
2
" r! 1 = $ #20 (1 $ 3ra4 + 2ra2 ) sin 2! # r 2 = #20 [(1 ! ar 2 ) + (1 + 3ra4 ! 4ra2 ) cos 2(" + 90o )] 2
4
2
# " 2 = #20 [(1 + ar 2 ) ! (1 + 3ra4 ) cos 2(" + 90o )] 2
4
# r" 2 = ! $20 (1 ! 3ra4 + 2ra2 ) cos 2(" + 90o ) 4
2
(CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 3–18
______________________________________________________________________________________ 3.36 (CONT.) We have, by superposition:
# r = # r1 + # r 2 # ! = # !1 + # ! 2 Hence, at r=a and " = ! 2 , ! r1 = 0 ! r2 = 0 ! " 1 = 3! 0 ! " 2 = #! 0 " r! 1 = 0 " r! 2 = 0 lead to the solution:
#r = 0
# ! = 2# 0
" r! = " r! 1 + " r! 2
" r! = 0
( b ) Referring to the results of part ( a ), we write
! r1 = 0 ! r2 = 0 ! " 1 = 3! 0 !"2 = ! 0 " r! 1 = 0 " r! 2 = 0
Thus,
#r = 0
# ! = 4# 0
" r! = 0
______________________________________________________________________________________ SOLUTION (3.37) We have
d D
= 13
Then, from Fig. D.8: K ! 2.3 . Hence 3
180(10 ) ! max = K PA = 2.3 (150 "50)20 = 207 MPa
______________________________________________________________________________________ SOLUTION (3.38)
! max 130 = = 1.625 ! nom 80 From Fig. D.1: r d = 0.25 . Then D = 2r + d K=
gives
or
40 = 2(0.25d ) + d = 1.5d d = 26.7 mm r = 6.67 mm
______________________________________________________________________________________ SOLUTION (3.39) For
r = 0.15 : d D = 2r + d ; 40 = 2(0.15d ) + d = 1.3d
(CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 3–19
______________________________________________________________________________________ 3.39 (CONT.) or d = 30.76 We thus have
D = 1.3 d Figure D.1 gives K ! 1.7. Hence,
! max = 250(106 ) = 1.7
Pall (20)(30.76)
Pall = 90.5 kN
or
______________________________________________________________________________________ SOLUTION (3.40)
TBC = 1 kN ! m
TAB = 2 kN ! m
! max = 2T " c3 yields
Then,
2(1#103 ) = 79.6 MPa ! BC = " (0.02)3
! AB =
2(2 #103 ) = 81.5 MPa " (0.025)3
Thus
! max = K! AB = (1.6)(81.5) = 130.4 MPa
______________________________________________________________________________________ SOLUTION (3.41) (a)
We have
D 40 r 2 = = 1.14 = = 0.057 d 35 d 35 Hence, by Fig. D.4, K ! 1.6 .
We have
! ! (d ) 4 = (35) 4 = 147.3(103 ) mm 4 32 32 Tc 100(0.0175) ] = 19 MPa ! yp = K = 1.6[ J 147.3(10"9 ) J=
So
______________________________________________________________________________________ SOLUTION (3.42) We have
D 40 r 8 = = 2.5 = = 0.2 d 16 d 16 From Fig. D.6 , K ! 1.31 Tc 16T 250(106 ) = 1.31[ ] ! max = ! all = K ; J " (0.016)3 or
T = 153.5 N ! m
______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 3–20
______________________________________________________________________________________ SOLUTION (3.43) 5 r = 37.5 25 = 1.5, d = 25 = 0.2 Figure D.1, K = 1.72 . ! max 1.4 = 210 Hence ! nom = 1.72 1.72 = 87.2 MPa D d
and
Pall = A! nom = (25 "10)(87.2) = 21.8 kN
______________________________________________________________________________________ SOLUTION (3.44) At a section through B
M B = 400(0.3) = 120 N ! m M c 120(0.02) ! nom = B = = 37.5 MPa 1 I 3 (0.012)(0.04) 12
(a)
r 5 = = 0.125 d 40
D 60 = = 1.5 : d 40
K ! 1.65
(Fig. D.2)
! max = 1.65(37.5) = 61.9 MPa
(b)
r 10 D 60 = = 0.25 = = 1.5 : d 40 d 40 ! max = 1.41(37.5) = 52.8 MPa
K ! 1.41 (Fig. D.2)
______________________________________________________________________________________ SOLUTION (3.45)
"! !
!a Without hole:
! " = pd 2t
! a = pd 4t
With hole:
2! a
2! a
=
+
!a
!a (1)
(2)
(CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 3–21
______________________________________________________________________________________ 3.45 (CONT.) We use Eq. (3.55b), with r=a. 2
4
" ! 1 = "2a [(1 + aa 2 ) # (1 + 3aa4 ) cos 2! ] = " a [1 # 2 cos 2! ]
# " 2 = 2# a [1 ! 2 cos 2(" + 90o )] o
For ! = 0 :
! " 2 = 6! a
! " 1 = #! a For " = ! 2 : ! " 1 = 3! a
! " 2 = #2! a o
Therefore, superposing the results at ! = 0 :
! " = 5! a = 5 pd 4t at " = ! 2 : ! " = ! a = pd 4t
______________________________________________________________________________________ SOLUTION (3.46) ( a ) We have D/d=1.1 and r/d=0.05. Then, we find from Figs. D.6, D.7, and D.5 that
K t = 1.64
K b = 2.2
K a = 2.3
Then, Eqs. (b) of Example 3.5 yield 3
3
) #10 ) " x = 2.3 !50(10 + 2.2 4(10 = 4.42 MPa (0.2)2 ! (0.2)3 3
#10 ) " xy = 1.64 2(20 = 2.61 MPa ! (0.2)3
Equation (a) of Example 3.4 is therefore 1
2 2 4.42 2 ! 1,2 = 4.42 2 ± [( 2 ) + (2.61) ]
or
! 1 = 5.63 MPa
! 2 = "1.21 MPa
(b)
! max = 12 (5.63 + 1.21) = 3.42 MPa
(c)
! oct = 13 (5.63 " 1.21) = 1.47 MPa 1
! oct = 13 [(5.63 + 1.21) 2 + ("1.21) 2 + ("5.63) 2 ] 2 = 2.98 MPa
______________________________________________________________________________________ SOLUTION (3.47) ( a ) We have D/d=2 and r/d=0.04. Then, we find from Figs. D.7 and D.6 that
K b = 2.6
K t = 1.9
Equation (b) of Example 3.5 is therefore 3
#10 ) " x = 2.6 !4(20 = 33.9 MPa (0.125)3 3
#10 ) " xy = 1.9 !2(5 = 9.73 MPa (0.125)3
(CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 3–22
______________________________________________________________________________________ 3.47 (CONT.) Equation (a) of Example 3.5: 1
2 2 33.9 2 ! 1,2 = 33.9 2 ± [( 2 ) + (9.73) ]
! 1 = 36.5 MPa
or
! 2 = "2.59 MPa
(b)
! max = 12 (36.5 + 2.59) = 16.96 MPa
(c)
! oct = 13 (36.5 " 2.59) = 11.3 MPa 1
! oct = 13 [(36.5 + 2.59) 2 + ("2.59) 2 + ("36.5) 2 ] 2 = 17.85 MPa
______________________________________________________________________________________ SOLUTION (3.48) We apply Eqs. (3.63). 1
(a)
)( 0.025!0.0375 ) 3 a = 0.88[ 2 ((500 ] = 0.635 mm 200!109 )( 0.0125 )
(b)
2 3 0.0125 " c = 0.62[500( 200 ! 109 ) 2 ( 2!0.025 !0.0375 ) ] = 596.1 MPa
(c)
# = 1.54[(500) 2 ( 2 ( 200"109 0)2.0125 )] 3 = 5.339(10 !3 ) mm ( 0.025"0.0375 )
1
1
______________________________________________________________________________________ SOLUTION (3.49) ( a ) Use Eq. (3.62): 1
9 2
!10 ) 3 " c = 0.62[ 5004((200 ] = 1233 MPa 0.025 ) 2
( b ) Apply Eqs. (3.60) and (3.59) for r1 = r2 = r and E1 = E 2 = E to obtain the formula 1
2
! c = 0.617[ PEr 2 ] 3 Thus,
9 2
1
!10 ) 3 " c = 0.617[ 500((0200 ] = 1959 MPa .025 ) 2
______________________________________________________________________________________ SOLUTION (3.50) Using Eqs. (3.73), (3.74), and the second of (3.70), we have
m = (1 0.4 )+4(1 0.25) = 0.6154 9
"10 ) n = 43((200 = 2.9304(1011 ) 1!0.32 ) ) cos " = ± ((11 00..44 ))+!((11 00..25 25 ) = 0.2308
Interpolating Table 3.3:
ca = 1.1774
or
! = 76.66o
cb = 0.8616
Apply Eqs. (3.69): 1
3
)( 0.6154 ) 3 a = 1.774[ 4 (210.9304 ] = 2.393 mm !1011 1
3
Thus,
)( 0.6154 ) 3 b = 0.8616[ 4 (210.9304 ] = 1.752 mm !1011 3
) $ c = 1.5 # ( 2.3934"(10 = 455.5 MPa 1.752 )10! 6
______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 3–23
______________________________________________________________________________________ SOLUTION (3.51) Use Eqs. (3.67): 3
1
9
)( 200!10 ) 2 " c = 0.418[ 2.5(10 ] = 418 MPa 0.1( 0.005 ) 1
3
5(10 )( 0.005 ) 2 2b = 2{1.52[ 2.200 ] } = 2(0.038) = 0.076 mm !109 ( 0.1)
______________________________________________________________________________________ SOLUTION (3.52) Equations (3.65), for ! 1 = ! 2 = 0.25, E1 = E 2 = E , r1 = r2 = r : 6
1
9
!10 )( 2 ) 2 " c = 0.412[ 2 (10 )( 200 ] = 824 MPa 0.2 1
6
(10 )( 0.2 ) 2 2b = 2{1.545[ 2200 ] } = 2(1.545) = 3.09 mm !109 ( 2 )
______________________________________________________________________________________ SOLUTION (3.53) Refer to Example 3.6.
1 r1 ' = 0 1 r2 ' = 0 " =! 2 4 m = (1 0.5)+(1 0.2 ) = 0.5714 9
"10 ) n = 43((210 = 2.9867(1011 ) 1!0.252 )
cos " = ± ((11 00..55))+!((11 00..22 )) = 0.4286 Table 3.3: ca = 1.3862
or
! = 64.62 o
cb = 0.7758 3
1
3
1
( 0.5714 ) 3 a = 1.3862[ 5!210 ] = 2.994 mm .9867!1011 ( 0.5714 ) 3 b = 0.7558[ 5!210 ] = 1.605 mm .9867!1011
Thus,
3
) $ c = 1.5 # ( 2.9945("101.605 = 505.2 MPa )10! 6
______________________________________________________________________________________ SOLUTION (3.54) Refer to Example 3.6. We now have r1 = r2 = r. Thus, Equations (3.75) and (3.76) become
m = (1 r )+4 (1 r ) = 2r = 2(0.2) = 0.4
cos " = ((11 rr ))+!((11 rr )) = 0,
" = 90o
From Table 3.3 it can be concluded that surface of contact has a circular boundary: ca = cb = 1. 9
"10 ) n = 43((210 = 2.98667(1011 ) 1!0.252 ) 1
3
Thus,
(10 )( 0.4 ) 3 a = b = 1[ 25.98667 ] = 1.885 mm !1011 3
(10 ) # c = 1.5 " (1.5885 = 671.9 MPa ) 2 10! 6
______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 3–24
______________________________________________________________________________________ SOLUTION (3.55) Case B ( 1st column ), Table 3.2 with r1 = r2 , (a)
!=
1 E
+
1 E
=
m= + =
2 E
1 r
1 r
E1 = E2 .
2 r
0.17 a = 0.88 3 F Er = 0.88 3 400 210(10 = 0.604 mm 9 )
(b)
400 p0 = 1.5 !Pa2 = 1.5 ! (0.604) = 349 MPa 2 (10"6 )
( c ) Equations (3.68) at z=0:
" x = " y = # p0 [(1 +! ) # 12 ] = # 1+22! p0 = #0.8(349) = #279 MPa
! z = " p0 = "349 MPa
! yz = ! xz = 12 (" x # " z ) = # p20 (0.8 # 1) = 34.9 MPa ______________________________________________________________________________________ SOLUTION (3.56) Refer 2nd column of C, Table 3.2.
E1 = E2 = E = 210 GPa
Hence
r1 = 8 mm
F1 = 240 kN m
1 1 n = 0.008 " 0.05 = 105
2 1 ! = E2 = 210(10 , 9 = ) 105(109 ) 3
r2 = 50 mm
1
(a)
240(10 ) a = 1.076[ 105(10 ] 2 = 0.159 mm 9 )(105)
(b)
240(10 ) F p0 = !2 aL = !2 0.159(10 "3 = 961 MPa )
3
______________________________________________________________________________________ SOLUTION (3.57) o
We have r1 = 0.48 m, r2 = 0.34 m, r1 ' = !, r2 ' = !, and ! = 90 . Thus, using Eqs.(3.72) through (3.74):
4 = 0.796 1 + 0.34 A= , B = ± 12 ( r11 ! r12 )
m=
1 0.48 2 m
0.48 "1 0.34 cos ! = BA = ± 11 0.48 +1 0.34 = 0.143,
Interpolating from Table 3.3: ca = 1.104, 3
1 3
3
1
9
!10 ) 11 n = 4(210 3(1" 0.09) = 3.0769(10 )
! = 81.78o cb = 0.911 . Hence
)(0.796) a = 1.104[ 4(10 ] = 2.4058 mm 3.0769(1011 ) )(0.796) 3 b = 0.911[ 4(10 ] = 1.9852 mm 3.0769(1011 )
Thus
3
) p0 = 1.5 !Fab = 1.5 ! (2.40584(10 = 400 MPa #1.9852#10"6 )
______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 3–25
______________________________________________________________________________________ SOLUTION (3.58) Given quantities are:
Thus,
r1 = r1 ' = 0.025 m r2 = !0.03 m E = 200 GPa r2 ' = !0.125 m " = 0.3
m=
4 1 1 1 1 + ! ! 0.025 0.025 0.3 0.125
= 0.10345
9
"10 ) 9 n = 43((200 1!0.09 ) = 293.04029(10 )
Also
2 A = m2 = 0.10345 = 19.33301 1
B = 12 [(0) 2 + ( r12 ! r1' ) + 2(0)] 2 = 12.66667 2
" = cos
= 49.06645o
!1 12.66667 19.33301
From Table 3.3, we find
ca = 1.78611
cb = 0.63409
The semiaxes are then 1
1800 ( 0.10345 ) 3 a = 1.78611[ 293 ] = 0.00154 m = 1.54 mm .04029 (109 ) 1
1800 ( 0.10345 ) 3 b = 0.67409[ 293 ] = 0.00055 m = 0.55 mm .04029 (109 )
Maximum contact pressure is therefore
$ c = 1.5 # (1.54"1800 = 1014.7 MPa 0.55 )(10! 6 )
______________________________________________________________________________________ SOLUTION (3.59) Now given data is as follows:
r1 = r1 ' = 0.02 m r2 ' = !0.125 m
r2 = !0.022 m E = 200 GPa " = 0.3
Therefore,
m=
4 1 1 1 1 + ! ! 0.02 0.02 0.022 0.125
= 0.08594
9
9 "10 ) n = 43((200 1!0.09 ) = 293.0403(10 )
We have
A = m2 = 23.2721 1 1 B = ± 12 [ ! 0.022 + 0.125 ] = 18.7273 o .7273 " = cos !1 18 23.2721 = 36.42
Using Table 3.3
ca = 2.323
cb = 0.541
(CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 3–26
______________________________________________________________________________________ 3.59 (CONT.) Then, the semiaxes are: 1
( 0.08594 ) 3 a = 2.323[ 1800 ] = 0.00188 m = 1.88 mm 293.0403!109 1
( 0.08594 ) 3 b = 0.541[ 1800 ] = 0.00044 m = 0.44 mm 293.0403!109
Maximum contact stress is now obtained as
$ c = 1.5 # (1.881800 = 1039 MPa "0.44 )10! 6 End of Chapter 3
Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 3–27
CHAPTER 4 SOLUTION (4.1)
A
M
!1 = 0
60 mm
P
P
P
A
!2
M=1.5 kN ! m 3
P Mc 4P 32(1.5 #10 ) $ =$ $ 2 A I " (0.06) " (0.06)3 = !353.7 ! 70.74 "106
!2 = $
We have 2 ! 12 " ! 1! 2 + ! 22 = ! yp
or
! 2 = ! yp
So,
353.7 + 70.74 !106 = 250 !106 ,
Pall = 707 kN
______________________________________________________________________________________ SOLUTION (4.2)
p = 7.86(9.81)(! d 2 4) = 60.6d 2 kN m p=60.6d2 T=325 N ! m
A
C
2.5 m
2.5 m
B
T
C
!x =
32 M "d3
! = 16T " d 3
32( pL2 8) 32(60.6d 2 )(25)103 1.93 #106 = = 8" d 3 d "d3 3 16(325) 1.66 #10 =$ ! =$ 3 d3 "d
!x =
2
Equation (4.9a), ! x + 3"
2
2 = ! all
1.93 !106 2 "1.66 !103 2 ( ) + 3( ) = (100 !106 ) 2 d d3
or
3.725 !106 8.267 + 6 = 100 !108 2 d d d = 32.8 mm. Solving by trial & error: Use a 33 ! mm diameter shaft. ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 4–1
______________________________________________________________________________________ SOLUTION (4.3)
! y = 100 MPa
" xy = #80 MPa
!x = 0
! yp = 250 MPa (Table D.1) Hence
! 1,2 =
!y 2
± (
#! y 2 ) + " xy2 2
= 50 ± (!50) 2 + (!80) 2 = 50 ± 94.3 or (a)
! 1 = 144.3 MPa
! 2 = "43.3 MPa
Maximum shear stress memory:
!1 " ! 2 #
! yp n
144.3 ! (!43.3) " 187.6 > 166.7
250 1.5
Failure will occur. (b)
Maximum energy of distortion theory:
! 12 " ! 1! 2 + ! 22 # (
! yp n
)
(144.3) 2 ! (144.3)(!43.3) ! (!43.3) 2
12
" 166.7
160.1 < 166.7
Failure will not occur. ______________________________________________________________________________________ SOLUTION (4.4) State of stress is given by
! 1 = ! = "32( 0.M1)3 + " (40P.1)2 ,
Refer to Table 4.1 and Eq. (2.66): 0.47! yp = 0.47! or Thus, Solving,
3
221(10 ) =
32 (17 ) ! ( 0.1)3
!2 = !3 = 0 ! yp = !
+ ! (40P.1)2
P = 375.7 kN
______________________________________________________________________________________ SOLUTION (4.5) From Table D.1: ! yp = 250 MPa We have 1
" 1, 2 = !302+90 ± [( !302!90 ) 2 + ( !40) 2 ] 2 (CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 4–2
______________________________________________________________________________________ 4.5 (CONT.)
" 1 = 102.1 MPa
or
" 2 = !42.1 MPa
( a ) Equation (4.2a) gives
102.1 + 42.1 = 250 n n = 1.73
or
( b ) Equation (4.5a) leads to
2 (102.1) 2 ! (102.1)( !42.1) + ( !42.1) 2 = ( 250 n )
from which
n = 1.95
______________________________________________________________________________________ SOLUTION (4.6) Referring to Appendix B, we obtain
" 1 = 101.3 MPa
" 3 = !51.32 MPa
! 1 " ! 3 = ! yp
(a)
! yp = 101.3 + 51.32 = 152.6 MPa
or (b)
"2 = 0
1
! oct = 13 [(101.3) 2 + (101.3 + 51.32) 2 + (51.32) 2 ] 2 = 63.41 MPa
Thus,
! yp = 63.41 0.47 = 134.9 MPa
______________________________________________________________________________________ SOLUTION (4.7) Using Eq. (4.6), we have 1
!
Here
0.47 nyp = 13 [(! 1 " ! 2 ) 2 + ! 12 + ! 22 ] 2
(a)
1
" 1, 2 = "2 ± 12 [" 2 + 4! 2 ] 2 # = 32!dM3 + !4dP2 ,
and
T " = 16 !d 3
Substituting the given data: 3
3
" 1, 2 = 12 [ 32! ((04.#1210)3) + 4!((450.#1210)2) ] 3
3
1
3
± 12 {[ 32! ((04."1210)3) + 4!((450."1210)2) ]2 + 4[ 16!(11( 0..212"10)3 ) ]2 } 2 Or " 1 = 49.55 MPa Equation (a) is then
" 2 = !21.99 MPa 1
Solving,
2 2 2 2 1.41 280 n = [( 71.54) + ( 49.55) + ( !21.99) ]
n = 4.4
______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 4–3
______________________________________________________________________________________ SOLUTION (4.8) Maximum stresses, occurring at the fixed end are:
! = McI = 4502(t04.253 t ) = 168t 3.75
! = 23 450 = 337t 2 .5 2t 2 From Eq. (4.9a), we have
2 # yp = # 2 + 3" 2 = ( 280 ! 10 6 ) 2 Therefore, at neutral axis ! = 0 : " yp = 3! gives t = 1.45 mm At the extreme fibers, ! = 0 : ! yp = ! gives t = 8.45 mm
Allowable width is thus
t all = 8.45 mm
______________________________________________________________________________________ SOLUTION (4.9) We have "
! yp = 2yp = 175 MPa , " 1 = #" 2 = ! 175 1.5
(a) or
) = 16!(d500 3
d = 27.95 mm
" 1, 2 = "2 ± 12 " 2 + 4! 2
(b) Here
2
" = 32!dM3 = 32 (!pLd 3 8) = 8"32d 3 [ 14 "d 2 (77 ! 10 3 )10 2 ]
= 77(105 ) d ) T " = 16 = 16!(d500 = 2547.77 d 3 3 !d 3 Using Eq. (4.8a): " yp n
= " 2 + 4! 2
350 (106 ) 1.5
or
1
.77 2 2 = [( 77!d10 ) 2 + 4( 2547 ) ] d3 5
13
7
5.444(1016 ) = 5.929d(210 ) + 2.594d (610 ) Solving, by trial and error:
d = 0.0368 m = 36.8 mm
______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 4–4
______________________________________________________________________________________ SOLUTION (4.10) We have ! all = 90 1.2 = 75 MPa (a)
" all = " 1 ! " 3 = 63.4 + 12.2 = 75.6 > 75 (b)
Failure occurs
2 2" all = (63.4 ! 0.53) 2 + (0.53 + 12.2) 2 + ( !12.2 ! 63.4) 2
or
! all = 70 < 75
No failure
______________________________________________________________________________________ SOLUTION (4.11) ( a ) Using the torsion formula,
" = ! T( 0(.005.05)4) 2 = 5093T
and " 1 = !" 2 = 5093T Equation (4.5a) yields then
[280(10 6 )]2 = (5093T ) 2 + (5093T )(5093T ) + ( !5093T ) 2
Solving,
T = 31.74 kN ! m
( b ) We now have 3
(10 )! " = 400 = 160 MPa ! ( 0.05 ) 2
! = 5093T
(as before)
Principal stresses are:
1
6
" 1, 2 = 160(210 ) ± 12 [(160 ! 10 6 ) 2 + 4(5093T ) 2 ] 2 123 1444442444443 a
b
=a±b With this notation, Eq. (4.5a) becomes
2 " yp = ( a + b) 2 ! ( a 2 ! b 2 ) + ( a ! b) 2 = a 2 + 3b 2
Thus,
( 280 ! 10 6 ) 2 = ( 160!210 ) 2 + 43 [(160 ! 10 6 ) 2 + 4(5093T ) 2 ] 6
Solving,
T = 26.05 kN ! m
______________________________________________________________________________________ SOLUTION (4.12) Maximum moment is 2
M = PL8 = 6(18.5) = 1.688 kN ! m 2
and hence
3
( 0.125 )10 ! = ! 1 = MyI = 1.0688 = 1.62 MPa .1( 0.25 )3 12
(CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 4–5
______________________________________________________________________________________ 4.12 (CONT.) ! yp n
= ! 12 " 0 = ! 1 28 n = 1.62
(a)
from which
n = 17.3 !
! 1 " 0 = nyp n = 17.3
(b)
or ______________________________________________________________________________________ SOLUTION (4.13) Referring to Appendix B, we compute
" 1 = 12.05 MPa
" 2 = !1.521 MPa
" 3 = !4.528 MPa
Using Eq. (4.5a),
2 2" yp = (12.05 + 1.521) 2 + ( !1.521 + 4.528) 2 + ( !4.528 ! 12.05) 2
Solving,
= 468
! yp = 15.3 MPa
Hence,
! yp = 15.3(0.577) = 8.828 MPa
Therefore
9 ! y = 2( 8.828 ) = 2.039 MPa
9 ! x = 3( 8.828 ) = 3.058 MPa
______________________________________________________________________________________ SOLUTION (4.14) y A
P T
R
1.2 m d
M
P T
x
!x
A
! We have P = 50 R, T = 0.8 R, and M = 1.2 R . Stresses are (1.2 R ) " b = 32!dM3 = 32 = 97,784.8R ! ( 0.05 )3
T # = ! 16 = !"16( 0(.005.8)R3 ) = !32,595R "d 3
" a = ! ( 050.05R)2 4 = 25,464.8R ! x = ! a + ! b = 123,249.6 R (CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 4–6
______________________________________________________________________________________ 4.14 (CONT.) ( a ) Equation (4.8a): 1
260 (106 ) 2
= R[(123,249.6) 2 + 4( !32,595) 2 ] 2 R = 932 N
or
( b ) Equation (4.9a): 1
130 " 10 6 = R[(123,249.6) 2 + 3( !32,595) 2 ] 2 R = 959 N
or ______________________________________________________________________________________ SOLUTION (4.15) Referring to Appendix B,
" 1 = 197.4 MPa
" 2 = !14.44 MPa
" 3 = !72.96 MPa
Applying Eq. (4.4b):
2 2" yp = (197.4 + 14.44) 2 + ( !14.44 + 72.96) 2 + ( !72.96 ! 197.4) 2
! yp = 246.4 MPa
or
Hence,
! yp = 346.4(0.577) = 142.2 MPa
Thus,
140 ! y = 40 142 .2 = 39.38 MPa
140 ! x = 50 142 .2 = 49.23 MPa
______________________________________________________________________________________ SOLUTION (4.16) Stresses are
.25 ) ! 1 = prt = p0(.0005 = 50 p
! 2 = 2prt = 25 p ( a ) Applying Eq. (4.5a),
(50 p ) 2 ! 1250 p 2 + ( 25 p ) 2 = ( 280) 2 p = 6.466 MPa
or ( b ) Using Eq. (4.2a),
50 p ! 0 = 280 or
p = 5.6 MPa
______________________________________________________________________________________ SOLUTION (4.17) We have (! yp ) all = 182.2 = 68.33 MPa . Referring to Appendix B:
" 1 = 63.44 MPa
" 2 = 0.533 MPa
" 3 = !12.17 MPa
(CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 4–7
______________________________________________________________________________________ 4.17 (CONT.) ( a ) Using Eq. (4.1),
! yp = 63.44 + 12.17 = 75.6 > 68.33 :
Failure occurs
( b ) Applying Eq. (4.4b)
2 2" yp = (63.44 ! 0.533) 2 + (0.533 + 12.17) 2 + ( !12.17 ! 63.44) 2
or
! yp = 70.13 > 68.33 :
Failure occurs
______________________________________________________________________________________ SOLUTION (4.18) Referring to Appendix B:
! 1 = 162.4 MPa
! 2 = 46.15 MPa
! 3 = 1.468 MPa
( a ) Equation (4.1) yields
n = 162.4300 !1.468 = 1.86
( b ) Equation (4.4b) gives
2" 2
2
) n 2 = (" !" )2 +(" !"yp )2 +(" !" )2 = (116.25)2 +( 442 (.300 682 ) 2 + (160.932 ) 2 1
2
2
3
3
1
or n = 2.09 ______________________________________________________________________________________ SOLUTION (4.19) Referring to Appendix B:
! 1 = 156.2 MPa
! 2 = 42.13 MPa
! 3 = 11.7 MPa
( a ) Equation (4.1) gives
n = 156.220 2 !11.7 = 1.52
( b ) Equation (4.4b) yields
2" 2
2
) n 2 = (" !" )2 +(" !"yp )2 +(" !" )2 = (114.07 )2 +(230( 220 .43) 2 + ( !144.5 ) 2 1
or
2
2
3
3
1
n = 1.67
______________________________________________________________________________________ SOLUTION (4.20)
"!
!
!a
J " 2! r 3t pr 5(106 )(105) "! = = t 10 = 52.5 MPa pr !a = = 26.25 MPa 2t
! =$
Tc 50 #103 (0.21) =$ = $144.4 MPa J 2" (0.105)3 (0.01)
! 1,2 =
26.25 + 52.5 26.25 " 52.5 2 ± ( ) + ("144.4) 2 = 39.4 ± 145 2 2
(CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 4–8
______________________________________________________________________________________ 4.20 (CONT.)
! 1 = 184.4 MPa ! Thus, ! 1 = u ; n !u ' ; and !2 = n
! 2 = "105.6 MPa 250 184.4 = , n = 1.4 n "520 , " 105.6 = n = 4.9 n
______________________________________________________________________________________ SOLUTION (4.21)
RB = 250 kN
" M = 0 : 150(2)(1) ! R (1.2) = 0 , ! F = 0 : R = 50 kN A
B
y
A
y
150 kN/m z
A
1.2 m
50 kN
0.8 m
B
2b
C b
250 kN 120
V, kN 50
x -130
3V 3 130 "103 97.5 "103 = = 2 A 2 2b 2 b2 ! max = " 1 = #" 2
! max = And Thus,
97.5 #103 = 120 #106 , ! max = " all ; 2 b
b = 28.5 mm
Use a 30 mm by 60 mm rectangular beam. ______________________________________________________________________________________ SOLUTION (4.22)
!
A
B
-420
! 2 = "4! 1
0
!1
260
!
(CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 4–9
______________________________________________________________________________________ 4.22 (CONT.) ( a ) Upon following the procedure described in Sec. 4.11, Mohr’s circle is constructed as shown in the sketch above. The circle representing the given loading is then drawn by a trial and error procedure, as is indicated by the dashed lines. From the diagram, we measure the following values:
" 1 = 77 MPa
" 2 = !308 MPa
( b ) Applying Eq. (4.12a), or Solving,
"1 "u
! ""u2' = 1
"1 260
4" 1 ! !420 =1
" 1 = 75 MPa
" 2 = !300 MPa
______________________________________________________________________________________ SOLUTION (4.23) Principal stresses are 1
2 2 180 2 " 1, 2 = !180 2 ± [( 2 ) + 200 ]
" 1 = 129.3 MPa,
Or
" 2 = !309.3 MPa
( a ) Equation (4.11a):
! 1 < 290 MPa But since
! 2 > 290 MPa :
failure occurs
( b ) Equation (4.12a):
.3 ! !309 650 = 1 gives 0.446 + 0.476 = 0.922 < 1 129.3 290
Thus, no fracture Note that Coulomb-Mohr theory is the most reliable when ! u ' >> ! u , as in this example. ______________________________________________________________________________________ SOLUTION (4.24)
" x = 2prt + 2!Prt 6
3
(10 ) = 2.8(210( 5))125 + 2! ( 045 .125 )( 0.005 ) = 46.46 MPa 6
! y = prt = 2.8(105 )125 = 70 MPa 3
.36 (10 ) " = 2!Trr 3t = 2! ( 31 = 63.89 MPa 0.1252 )( 0.005 )
Thus, 1
" 1, 2 = 12 ( 46.46 + 70) ± [ 14 ( 46.46 ! 70) 2 + (63.89) 2 ] 2 (CONT.) ______________________________________________________________________________________
Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 4–10
______________________________________________________________________________________ 4.24 (CONT.)
" 1 = 123.2 MPa
or
" 2 = !6.74 MPa
( a ) Equation (4.12a),
6.74 ! !500 =1 gives 0.587 + 0.013 = 0.6 < 1 123.2 210
Thus,
no fracture
( b ) Equations (4.11a) shows
123.2 < 210, 6.14 < 210,
no fracture
no fracture ______________________________________________________________________________________ SOLUTION (4.25) State of stress is represented by Mohr’s circle shown below.
! !
3 8
!u ( 43 " u , ! )
O 3 4
C
!u
2! p '
5 8
!
!u
!u From the circle, we obtain
" = ! u ( 85 ) 2 # ( 83 ) 2 = 12 ! u " p ' = 12 tan !1 13 28 = 26.57 o
and
Orientation of the fracture plane is shown below. Fracture surface T
T !p' P P ______________________________________________________________________________________ SOLUTION (4.26) Principal stresses are 1
! 1, 2 = 12 ( 200 + 20) ± [(90) 2 + (150 2 )] 2 or
(a)
" 1 = 284.9 MPa
" 2 = !64.9 MPa
284.9 = 420 n ,
n = 1.47
64.9 =
n = 6.47
420 n
,
(CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 4–11
______________________________________________________________________________________ 4.26 (CONT.) !64.9 .9 1 ( b ) Equation (4.12a): 284 420 ! 900 = n
Solving, n = 1.33 ______________________________________________________________________________________ SOLUTION (4.27) Uniform shear stress ! acts on a typical element as shown.
" = P !dt " 1 = #" 3 = ! !1 = ! u
(a) (b)
or
P "td
= !u,
!1 !u
# !!u3' = 1;
!3 = !u
or
P = "td! u
" (1 + !!uu ' ) = ! u
P = (1+!tdu! u! u ')
______________________________________________________________________________________ SOLUTION (4.28) Table 4.3: K c = 23 1000 MPa
mm
! yp = 444 MPa
Note that the values of crack length a and plate thickness t satisfy Table 4.3. 25 = 0.2 ! = 1.37 Table 4.2: wa = 125 Equation (4.18), with n=1:
1000 # all = " K!c a = (1.23 = 59.91 MPa 37 ) ! ( 25 )
Therefore
Pall = " all ( wt ) = 59.91(125 ! 25) = 187.2 kN
Note, the nominal stress at fracture: 3
.2 (10 ) " = t ( wP!a ) = 20187(125 ! 25 ) = 93.6 MPa < 444 MPa
______________________________________________________________________________________ SOLUTION (4.29) We have a w = 0.005 5 = 0.001 and ! = 1 by Table 4.2. From Table 4.3:
K c = 59 MPa m (a)
! yp = 1503 ksi
K = "# !a = (1)(100) ! (0.03) = 30.7 MPa m n = KKc = 3059.7 = 1.92
( b ) Using Eq. (4.18) with n = 1 :
# = " K!c a = (1) !59( 0.03) = 192.2 MPa This is well below the yield strength. ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 4–12
______________________________________________________________________________________ SOLUTION (4.30) By Table 4.3: K c = 66 We have
a w
=
10 65
1000 MPa mm and ! yp = 1149 MPa. Table 4.2:
= 0.15
! = 1.02
1000 # = "nKc!a = (1.0266 = 165.9 MPa )( 2.2 ) ! (10 )
Thus 3
(10 ) t req = 2 wP! = 2 (200 65 )(165.9 ) = 9.27 mm
A thickness of 9.3 mm should be used. Note that both values of a and t satisfy Table 4.3. ______________________________________________________________________________________ SOLUTION (4.31) 8 = 0.2 . Refer to Example 4.5. We now have wa = 40
!a = 1.37
Table 4.2:
!b = 1.06
K c = 59 1000 MPa mm ! yp = 1503 MPa Equation (a) of Example 4.5, with M = 0.17 P : P) !" = (1.37) ( 0.04 )(P 0.01) + 1.06 ( 06.01( 0)(.170.04 = 71,000 P )2
Table 4.3:
By Eq. (4.18):
"# = n K!c a ;
6
1000 (10 ) 71,000 P = 59 1.8 ! ( 0.008 )
from which
P = 92.09 kN
The nominal stress at fracture: 3
" = t ( wP!a ) = ( 0.0192)(.009.04(10!0.)008) = 287.8 MPa < 1503 MPa ______________________________________________________________________________________ SOLUTION (4.32) From Table 4.3: K c = 23 1000 MPa
. , Case B of Table 4.2: a w = 016
mm and ! yp = 444 MPa
! = 112 .
By Eq.(4.18), with n = 1 : 23 1000 # = ! K"c a = 1.12 = 74.79 MPa " (24)
It follows that
P = ! ( wt ) = 74.79(150 " 30) = 337 kN
Then 3
) ! = ( w"Pa )t = (0.15337(10 " 0.024)(0.03) = 89.15 MPa
= 89.15 MPa < ! yp ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 4–13
______________________________________________________________________________________ SOLUTION (4.33) Case A of Table 4.2 and Table 4.3:
! yp = 1503 MPa
K c = 59 1000 MPa mm ! = 1.01 (assumed) By Eq.(4.18):
59 1000 # = n!Kc" a = (2)(1.01) = 213 MPa < # yp " (6)
p r
p f = !rt = 213(10) = 71 MPa 30
p r
p f = 12 (71) = 35.5 MPa
(a)
! = tf ,
(b)
! = 2ft ,
______________________________________________________________________________________ SOLUTION (4.34) Table 4.3: K c = 31 MPa
m
! yp = 392 MPa
Case D of Table 4.2: wa = 0.4
" ! = 1.32 2
Using Eq.(4.18) with n = 1 and ! = 6 M tw : 6M 31(106 ) = 1.32 0.03(0.12) " (0.048) 2
K c = ! 6twM2 " a ; Solving
M = 4.35 kN ! m
______________________________________________________________________________________ SOLUTION (4.35) 3
(10 ) " m = 120 = 48 MPa 25(10! 4 )
and
!a ! cr
+ !! mf = 1;
1200 FA
6
48 (10 ) + 700 =1 240 (10 ) (106 ) 6
or FA = 186.3 kN ______________________________________________________________________________________ SOLUTION (4.36)
! 1a " ! 3a = 15 p " 0 = ! ea ! 1m " ! 3m = 9 p " 0 = ! em Then, or
15 p 250 (106 )
p + 3009(10 =1 6 )
p = 11.11 MPa
______________________________________________________________________________________
Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 4–14
______________________________________________________________________________________ SOLUTION (4.37) We have
! cr = 1"(!!ma ! u )
(a)
where,
" m = Fmax2+AFmin ,
" a = Fmax2!AFmin
(b)
Substituting Eqs. (b) into (a): Solving,
max " Fmin ) 2 A ! cr = 1"[ ((FFmax + Fmin ) 2 A! u ]
A = !1cr [ Fmax " 12 ( Fmax + Fmin )(1 " !!cru )] ______________________________________________________________________________________ SOLUTION (4.38) We have ! m = ! a . Using Table 4.4: !m 510 1.5
!m + 1050 1.5 = 1
from which ! m = 228.8 MPa. At the fixed end:
M max = PL = 10(0.05) = 0.5 N ! m
Hence,
M a ,m = ( M max 2± M min ) = 0.25 N ! m and Solving,
0.25 ) ! a = ! m = 6btM2m = 06.(005 = 300 = 228.8(10 6 ) t2 t2
t = 1.145 mm
______________________________________________________________________________________ SOLUTION (4.39) We have ! a = ! m . From Table 4.4: !m 740 2.5
or
!m + 1500 2.5 = 1
! m = 198.2 MPa.
At the center of the beam:
M max = PL 4 = (0.25)( 20)(0.125) = 0.625 N ! m
Hence,
M a ,m = ( M max 2± M min ) = 0.3125 N ! m
and Solving,
) ! a = ! m = 6btM2m = 6(00..013125 = 187t 2.5 = 198.2(10 6 ) t2
t = 0.973 mm
______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 4–15
______________________________________________________________________________________ SOLUTION (4.40)
! max = ! min = McI , and
! m = 4"Mr 3 ,
" max = TrJ ,
" min = 0,
"x =",
! xy = ! ,
!a = 0
" m = " a = !Trr 3 " y = " z = ! xz = ! yz = 0
Equations (4.21) yield
0 + 3" a2 = ! ea ,
! m2 + 3" m2 = ! em
Then, Soderberg relation becomes
! cr = or
3" a
! m2 + 3" m2 1# ! yp
" cr = "" cryp " m2 + 3! m2 + 3 ! a
or 1
" cr = "" cryp [( 4!Mr 3 ) 2 + 3( !Tr 3 ) 2 ] 2 + !3rT3 Solving this expression for r, we obtain Eq. (P4.40). ______________________________________________________________________________________ SOLUTION (4.41) " xa +" ya 2
" 1a , 2 a =
"
1
#"
2 ± [( xa 2 ya ) 2 + ! xya ]2 2
2 = "2xa ± [ "4xa + ! xya ] 4
or
" 1a = 942.44 MPa,
Similarly,
" 1m = 161.8 MPa ,
Thus,
1
81(10 ) = 900 + 4(10 4 )] 2 2 ±[ 4
" 2 a = !42.44 MPa " 2 m = !61.8 MPa
" ea = " 1a ! " 2 a = 984.88 MPa ! em = ! 1m + ! 2 m = 233.6 MPa
( a ) Modified Goodman relation:
984.88 " cr = 1!( 223 .6 2400 ) = 1086 MPa
"2400 800 ) b = ln( 0ln(.910 = !0.0863 3 108 ) !11.587 N cr = 103 ( 0.91086 = 2.89(106 ) cycles "2400 )
( b ) Soderberg criterion:
948.88 " cr = 1!( 223 .6 1600 ) = 1145 MPa !11.587 N cr = 103 ( 0.91145 = 1.57(106 ) cycles "2400 )
(CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 4–16
______________________________________________________________________________________ 4.41 (CONT.) ( c ) The SAE criterion:
" cr = 1086 MPa , N cr = 1(
1086 !16.778 2400
)
b = !0.0596 = 0.59(106 ) cycles
( d ) Gerber criterion:
" cr = 1!( 223948.6.882400 )2 = 993.51 MPa .51 !11.587 N cr = 103 ( 0.993 = 8.12(106 ) cycles 9"2400 )
______________________________________________________________________________________ SOLUTION (4.42)
! xa = (800 + 600) 2 = 700 MPa " xm = (800 ! 600) 2 = 100 MPa ! ya = (500 + 300) 2 = 400 MPa " ym = (500 ! 300) 2 = 100 MPa ! xya = ( 200 + 150) 2 = 175 MPa
" xym = ( 200 ! 150) 2 = 25 MPa Equations (4.21) give then
2" ea2 = (700 ! 400) 2 + 400 2 + 700 2 + 6(175) 2 2 2" em = ( 200 ! 100) 2 + 100 2 + 100 2 + 6( 25) 2
or
! ea = 679.61 MPa,
! em = 108.97 MPa
( a ) Modified Goodman criterion:
" cr = 1!(108679.97.611600 ) = 729.27 MPa "1600 0.5"1600 ) b = ln( 0.9ln( = !0.08509 103 108 ) .27 !11.752 N cr = 103 ( 0729 = 2.97(106 ) cycles .9"1600 )
( b ) Soderberg criterion:
" cr = 1!(108679.97.611000 ) = 762.72 MPa .72 !11.752 N cr = 103 ( 0762 = 1.75(106 ) cycles .9"1600 )
______________________________________________________________________________________ SOLUTION (4.43)
" a = ( M max 2!IM min ) c ! m = ( M max 2+IM min ) c ,
M = PL
Substituting these into Soderberg relation, we obtain
M max = (21"+ !cr)Ic + 11+#!! M min (CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 4–17
______________________________________________________________________________________ 4.43 (CONT.) where
" = !! cryp = 23
Thus,
13 200!10 )( 0.05!0.1 ) Pmax = c (21"+cr! I) L + 11+#!! Pmin = 2 (12 ( 5 3)( 0.05 )(1.2 ) + 5 3 (10,000)
6
3
= 16,667 + 2000 = 18.7 kN ______________________________________________________________________________________ SOLUTION (4.44) We have W = mg = 80 ! 9.81 = 784.8 N From Eq. (4.29);
" max = (1 + 1 + !2sth ) WA Solving, with ! st = WL AE , we obtain max h = L2"EW ( A" max ! 2W )
(a)
Substituting the given data: 6
( 2 )( 350"10 ) h = 2 (105 ( 250 " 350 ! 1569.6) = 0.365 m "109 )( 784.8 )
______________________________________________________________________________________ SOLUTION (4.45) Through the use of Eq. (4.29): A [ " max # 1]2 = 1 + 2h! st W
" max = WA [1 + 1 + !2sth ], from which 2 A2 " max W2
hAE ! 2"Wmax A + 1 = 1 + 2WL
Solving for W, we obtain Eq. (P4.45). ______________________________________________________________________________________ SOLUTION (4.46) The kinetic energy is 2 2
2
E k = 12 T!
where T =
2
E k = W$2 gr = 1090( 240"22( 9#.8160)) ( 0.35) = 4300 N ! m But Thus,
GJ! L
! = 2 LEk JG
(a)
Substituting the data given: 1
)2 # = [ 80.52(!101.95)("4300 ] 2 = 0.08309 rad = 4.76o ( 0.0625 ) 4
Introducing !L TL " = GJ = !rJ GJL = rG
into Eq. (a), we obtain
! = 4GE k AL
where A = !c
2
Substituting the numerical values, 9
1
5!10 ) 4300 2 # = [ 4"((800..0625 ] = 274.3 MPa ) 4 (1.5 )
______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 4–18
______________________________________________________________________________________ SOLUTION (4.47) W 0.75 m 1.2 m We have ! yp = Mc I = PLc I from which ! I
6
4
.05 12 ) P = Lcyp = 280(110.2 ()(0.0025 = 4.86 kN )
End deflection is 3
(1.2 ) (12 ) " max = 3(4860 = 26.86 mm 200!109 )( 0.05 ) 4
But Solving,
W (0.75 + 0.02686) = 12 ( 4860)(0.02686)
W = 84.02 N End of Chapter 4
Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 4–19
CHAPTER 5 SOLUTION (5.1) Y 15 mm
A1 z
N.A. 150 mm
!
C
z
y A2
y
15 mm Z A
135 mm .5+ (135!15 )[15+ (135 2 ) z = A1Az11++ AA22z2 = (150!15) 7150 !15+135!15
or Then,
z = y = 43 mm
I y = 121 (150)(15) 3 + (150 ! 15)(35.5) 2 + 121 (15)(135) 3
+ (135 ! 15)(39.5) 2 I y = I z = 9.11(10 6 ) mm 4
or
I yz = (150 ! 15)( "32)( "35.5) + (135 ! 15)(35.5)(39.5)
= 5.4(10 6 ) mm 4 We have the moment components:
M y = 0,
Thus,
M z = "11.25(0.9) = "10.125 kN ! m
) +10125( 9.11)( 0.043) (" x ) A = !10125( 5[(.49)(.110.)107 = !35 MPa 2 !( 5.4 ) 2 ](10! 6 )
Equation (5.15) gives or
tan ! = 95..114 = 0.593
! = 30.66o
______________________________________________________________________________________ SOLUTION (5.2) 80 mm
N.A 150 mm
C
A z
! = 63.8o 1 kN 30o y
I y = 121 hb 3 = 121 (150)(80) 3 = 6.4 ! 10 6 mm 4 (CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 5–1
______________________________________________________________________________________ 5.2 (CONT.)
I z = 121 bh 3 = 121 (80)(150) 3 = 22.5 ! 10 6 mm 4 M y = ( P sin " ) L = 600 N ! m
M z = ( P cos " ) L = 1,039.2 N ! m y d = !75 mm z d = 40 mm ( a ) Equation (5.15) with I yz = 0 : M
tan " = II zy M yz = II zy tan #
! " = 63.8o
( b ) Thus, maximum tensile stress is at point A. Equation (5.16) gives
( 0.04 ) # max = 600 ! 1,0396..42"(10!0!.6075) = 13.25 MPa 22.5"10! 6
______________________________________________________________________________________ SOLUTION (5.3)
I y = 121 hb 3 = 121 ( 40)(100) 3 = 3.33 ! 10 6 mm 4
I z = 121 bh 3 = 121 (100)( 40) 3 = 0.533 ! 10 6 mm 4 M y = M o cos " = 800(cos 25o ) = 725 N ! m
M z = M o sin " = 800(sin 25o ) = 338.1 N ! m ( a ) Equation (5.15) with I yz = 0 : M
tan " = II zy M yz = II zy cot #
! " = 18.9 o
( b ) There, maximum compressive stress is at A. 100 mm 40 mm
N.A A
Equation (5.16) results in
C
25o y
z
! = 18.9 o 800 N ! m
( !0.05 ) .1( 0.02 ) " max = 725 ! 0338 = !23.57 MPa 3.33(10! 6 ) .533(10! 6 )
______________________________________________________________________________________ SOLUTION (5.4)
I y = 2[ 3012!8 + 240 ! 34 2 ] + 8!1276 = 85(10 4 ) mm 4 3
3
I z = 2[ 3012!8 + 240 ! 19 2 ] + 7612!8 = 21.2(10 4 ) mm 4 3
3
I yz = [0 + 240(19)( !34)] + [0 + 240( !19)(34) + 0 = !31(10 4 ) mm 4 Using Eq. (5.14):
M o [21.2 + 1.5( "31)]z = M o [ "31 + 1.5 ! 85] y
(CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 5–2
______________________________________________________________________________________ 5.4 (CONT.)
z = !3.81 y or Thus, point A is the farthest from the N.A., as shown. A
N.A.
C
z
y Hence, Eq. (5.13) gives
31)]0.03 (# x ) A = 80(10 6 ) = [ 21.2+1.5( ![85 Mo "21.2 !( !31) 2 ]10!8
from which
M o = 266.8 N ! m
______________________________________________________________________________________ SOLUTION (5.5) Bending moment at the midspan is
M z = "24( 4) " 24( 2) = "48 kN ! m
From Fig. 5.4 and Example 5.1:
z E = 0.105 m zD = 0 y E = !0.045 m y D = !0.045 m I y = I z = 11.596(10 !6 ) m 4
I yz = !6.79(10 !6 ) m 4 Then, Eq. (5.13) with M = 0 :
)(11.596 )( !0.045 ) (" x ) D = 0![(( !1148000 = !283.4 MPa .596 ) 2 !( 6.79 ) 2 ]10! 6
Similarly,
( 0.105 ) !11.596 ( !0.045 )] (" x ) E = !48000[([ !116..79 = 103.8 MPa 596 ) 2 !( 6.79 ) 2 ]10! 6
______________________________________________________________________________________ SOLUTION (5.6)
z
Y 60 mm 80 mm
z 20 mm
C
A
y
N . A. for ! = 15o N . A. for ! = 30o
20 mm
Y (CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 5–3
______________________________________________________________________________________ 5.6 (CONT.) !20 ( 50 ) z = 80!2080(!1020)++60 = 27.14 mm 60!20 !20 !60 I y = 8012 + 20 ! 80(17.14) 2 + 2012 + 20 ! 60( 22.86) 2 3
3
= 15.1048(105 ) mm 4 !20 !30 I z = 8012 + 2[ 2012 + 20 ! 30( 25) 2 ] = 8.933(105 ) mm 4 3
3
Due to the symmetry I yz = 0. ( a ) We have
! = 0o
My = 0
M z = 1.5P
Equation (5.13) is thus, 290 (106 ) 1.2
5 P ( 0.04 ) = 1.5I zPy = 81..933 (10! 7 )
P = 3.6 kN
or
o
( b ) Now we have ! = 15 and
M z = 1.5P cos 15o = 1.4489 P M y = 1.5P sin 15o = 0.3882 P
Equation (5.14):
0.3882 P(8.933) z = 1.4489 P(15.1048) y
from which
z = 6.3105 y
The farthest point from the N.A. is A. Equation (5.13): 6
) 0.02714 ) !1.4889 P (15.1048 ) 0.04 (" x ) A = 2901(.10 = 0.3882 P (8.933)(8.!933 2 (15.1048 )10! 7
Solving, P = 3.36 kN ______________________________________________________________________________________ SOLUTION (5.7) o
Given ! = 30 and
M z = 1.5P cos 30o = 1.299 P M y = 1.5P sin 30o = 0.75P
The area properties are already found in Solution of Prob. 5.6. Equation (5.14) gives
0.75P(8.933) z = 1.299 P(15.1048) y z = 2.9287 y
or
As before, the maximum stress occurs at A. Equation (5.13): 6
) 0.02714 ) !1.299 P (15.1048 ) 0.04 (" x ) A = 2901(.10 = 0.75 P (8.933)(8!.933 2 (15.1048 )10! 7
Solving,
P = 3.37 kN
______________________________________________________________________________________
Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 5–4
______________________________________________________________________________________ SOLUTION (5.8) N.A A z
C
y We have M y = 0
and
M z = PL
Equation (5.14) becomes
I yz z = I y y or
! th 3 z = 23 th 3 y
or
y = ! 3z2
Point A is the farthest from the N.A. Thus, with y A = !h ! 2t and z A = ! 2t Equation (5.13) yields 3
3
3
(" x ) A = PL[ ! (th2 th( !3 t32)()8!th( 23th3)!3()!hth(3!)h2 !t 2 ) or
(! x ) A = 3 PL (72th.53t + 2 h ) = ! max
______________________________________________________________________________________ SOLUTION (5.9)
My
A 80 mm
C y
3
N.A
Mz
3
I y = bh36 = 80(3690 ) = 1.62(10 6 ) mm 4
!
3
z
30 mm 90 mm
3
I z = hb48 = 90(4880 ) = 0.96(10 6 ) mm 4 M y = "3(10 3 ) sin 20o = "1.026 kN ! m
M z = 3(10 3 ) cos 20o = 2.819 kN ! m
( a ) Equation (5.15):
96 " = tan !1 [ 10..62 tan( !20o )] = !12.17 o
( b ) Point A is the farthest from the N.A. Equation (5.16):
( !0.03) ( !0.04 ) " A = !1026 ! 2819 = 136.5 MPa 1.62 (10! 6 ) 0.96 (10! 6 )
______________________________________________________________________________________ SOLUTION (5.10) (a)
$ x = ""y#2 = !c4 xy ! 23 c5 x 3 y ! c6 xy 3 2
$ y = ""x#2 = c2 x ! c3 xy ! 23 c5 xy 3 2
$ xy = ! ""x"#y = c1 + c23 x 2 + c24 y 2 + c5 x 2 y 2 + c46 y 4 2
(CONT.) ______________________________________________________________________________________
Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 5–5
______________________________________________________________________________________ 5.10 (CONT.) " 4# "x 4
Thus,
" 4 ! = 6c6 xy + 8c5 xy = 0
or
" 4# "y 4
= !6c6 xy ,
and
= 0,
" 4# "x 2"y 2
= !4c5 xy
6c6 + 8c5 = 0
At y = h 2 :
(a)
!y = 0: 3
5h c2 ! c23h ! c12 =0 At y = ! h 2 : " y = ! px Lt :
(b)
3
or
( c2 + c3 y ! 2 c35 y ) x = ! px Lt 3
5h c2 + c23h + c12 = ! Ltp
(c)
Adding Eqs. (b) and (c),
c2 = ! 2pLt
Substituting this into Eq. (b): 3
c3h 2
5h + c12 = ! 2pLt On y = ± h2 , ! xy = 0 :
or
(d)
c6 ! c1 ! c23 x 2 ! c84 h 2 ! c45 h 2 x 2 ! 64 h4 = 0 2
4
2
6h ( c23 + c54h ) x 2 + ( c1 + c48h + c64 )=0 This is of form A ! B + C = 0, where A, B, C are independent. Thus,
c3 2
2
+ c54h = 0
(f) 2
2
(e)
6h c1 + c48h + c64 =0
(g)
Multiply Eq. (f) by h and subtract it from Eq. (d) to find
c5 = ! 3Ltp
Then, Eqs. (g) and (a) give p c3 = 23htL ,
On x = 0 : h
c6 = th43pL
V = 0: h
2
4
c y c y " h # xy tdy = " h ( !c1 ! 42 ! 64 )tdy = 0 2
! 2
or
2
! 2
h c1 + c4 ( ) + c6 ( 320 )=0 h2 24
4
(h)
Subtracting Eq. (h) from (g), together with the value of c6 already obtained, we have p c4 = ! 53htL
Finally, substitute c4 and c6 into Eq. (g) to determine
c1 = 80phtL (CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 5–6
______________________________________________________________________________________ 5.10 (CONT.) The stress function is thus, 3
3
3 3
5
x " = Ltp [ 80h xy ! 12 ! x4 hy + 10xyh + xhy3 ! 5xyh3 ] 3
and the stresses are
" x = Ltp [ 53h xy + h23 x 3 y ! h43 xy 3 ]
" y = Ltp [ ! 2x ! 23h xy + h23 xy 3 ] 2
2 3
4
3y 3x y y " xy = Ltp [ 80h ! 34xh + 10 h + h3 ! h3 ] 2
2
2
px ! x = McI = ( px th63L12)( h 2 ) = Lth 2
(b)
( c ) The maximum stresses are 3
(" x ) elast . = 10pth [6 y + 2000 y ! 40h 2y ] 3
(! x ) elem. = p10(10hh3t) = 100( pt ) Thus,
(! x ) elast . = 99.8( pt )
at y = ± h2
(! x ) elast . = 0.998(! x ) elem.
______________________________________________________________________________________ SOLUTION (5.11) 4
( a ) We can show that given ! satisfies " ! = 0. From Eqs. (3.13):
" x = 0.p43 {2[0.78 ! tan !1 xy ] ! x 22+xyy 2 }
(a)
" y = 0.p43 {2[0.78 ! tan !1 xy ] ! 2 + x 22+xyy 2 }
(b)
2
" xy = ! 0.p43 x22 +y y 2
(c)
To test which stress is maximum we rewrite ! y in the form: 2
2
" y = 0.p43 {2[0.78 ! tan !1 xy ] ! 2 (xx2 ++yy2 ) + x 22+xyy 2 } 2
= 0.p43 {2[0.78 ! tan !1 xy ] ! x 22+xyy 2 ! 2x( 2x+! yy2) } Comparing this with Eq. (a), noting 2( x ! y )
2
( x 2 + y 2 ) > 0, we conclude that ! x > ! y .
When y = 0, Eqs. (a) to (c) yield # x = 3.63 p, # y = ! p 0.43 , " xy = ! p 0.43 Maximum stress occurs at y = 0 :
! x ,max = 3.63( 2) = 7.26 MPa (b)
1
px 2 ( x )
(! x ) elem. = McI = 2 x 3 32 = 3 p = 6 MPa Thus,
(! x ) elast . = 1.21(! x ) elem.
______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 5–7
______________________________________________________________________________________ SOLUTION (5.12) ! bottom ! top
and Thus
c1 c2
=
b
=3
c1 = 22.5 mm c2 = 67.5 mm
C
15 mm
z
y Ay y = c1 = ! Ai i !i (15 )( 90 )( 45 ) + ( b !15 )(15 )( 7.5 ) = (15)( 90 )+( b!15)(15) = 22.5 mm
y = c1 c2
90 mm
15 mm
+ ( b !15 )(112.5 ) = 601,750 = 22.5 mm , 350+ ( b !15 )(15 )
Solving,
b = 150 mm
______________________________________________________________________________________ SOLUTION (5.13) pL ( th 2 )( h 4 ) 3 pL ! max = VQ Ib = 2 ( th 3 12 ) t = 4 ht 2
2
! max = McI = pL8 thh3 212 = 43 pL th 2 p
t h
L Thus, " max ! max
= Lh
from which h L = "!max = 8.4 (00.7.15) = 1.8 m max
Then,
p = 43 " maxL( th ) = 43 700( 0.105.8!0.15) = 3.88 kN ! m ______________________________________________________________________________________ SOLUTION (5.14) P 4500
R A = P2 ! 2250
RB = P2 + 6750
V(N)
M
( N ! m)
4500
0.75P-3375
P 2
x
+ 2250
6750
x
(CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 5–8
______________________________________________________________________________________ 5.14 (CONT.) We have 3
3
0.25 ) I = 0.2 (12 ! 0.1512( 0.2 ) = 160.417(10 !6 ) m 4
Then,
6 ! = VQ Ib = 0.7(10 )
P 2 ) + 2250 ) = 160(.417 (0.2 ! 0.025 ! 0.1125 + 0.1 ! 0.05 ! 0.05)( 2) !10" 6 ( 0.05 )
Solving,
P = 9.32 kN
Similarly, or Thus,
3375 )( 0.125 ) # = McI = 7(10 6 ) = ( 0.75160P !.417 "10! 6 P = 16.478 kN Pall = 9.32 kN
______________________________________________________________________________________ SOLUTION (5.15) y
! all = 150 MPa
t
and
bh3 1 ! (b ! 2t )(h ! 2t )3 12 12 1 1 = (120)(170)3 ! (100)(150)3 12 12 6 4 = 21.005(10 ) mm
Iz =
(a)
t
M z
C t
Therefore
Mc ! all = , Iz
h
t b
I 21.005(10"6 ) M = ! all = 150(106 ) = 37.1 kN # m c 0.085 1 M 37,100 = = = 0.0252 9 rx EI (70 "10 )(21.005)(10!6 ) rx = 39.68 m
or (b)
______________________________________________________________________________________ SOLUTION (5.16)
I= (a)
1 ! ( D 4 " d 4 ) = (604 " 404 ) = 510.509(103 ) mm 4 64 64
y A = 30 mm = 0.03 m My A (600)(0.03) !A = = = 35.3 MPa 510.509(10"9 ) I
(CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 5–9
______________________________________________________________________________________ 5.16 (CONT.) (b)
(c)
yB = 20 mm = 0.02 m MyB (600)(0.02) !B = = = 23.5 MPa 510.509(10"9 ) I
1 M = rx EI
600 70(10 )(510.509 "10!9 ) = 0.0168 =
9
rx = 59.56 m
z
y
M C B A d D
Hence,
r 59.56 = "205.48 m rz = " x = " 0.29 !
______________________________________________________________________________________ SOLUTION (5.17)
y=
! A y = 2A y + A y 2A + A !A i
i
i
1
2
1
2
2
25
y
A2
2(150 ! 25)(75) + (350 ! 25)(137.5) = c2 2(150 ! 25) + (350 ! 25) z C c1 25 = 108.65 mm 25 So c1 = 108.65 mm and c2 = 41.35 mm 350 mm 1 3 2 I z = 2[ (25)(150) + (25 !150)(33.65) ] + 12 1 (350)(25)3 + (350 ! 25)(28.85) 2 = 30.29(106 ) mm 4 12 1 1 M z = M = PL = P(2.4) = 1.2 P 2 2
A1
y
150 mm
Therefore
Mc1 1.2 P(0.10865) ; 60(106 ) = , P = 14.4 MPa 30.29(10"6 ) Iz Mc2 1.2 P(0.04153) 60(106 ) = , P = 36.6 kN !c = 30.29(10"6 ) Iz
!t =
Hence Pall = 14.4 kN ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 5–10
______________________________________________________________________________________ SOLUTION (5.18)
M max =
1 2 1 pL = (12)(3) 2 = 13.5 kN ! m 8 8
1 (80)(120)3 = 11.52 !106 mm 4 12 Mc 13.5 #103 (45 #10"3 ) = = 52.7 MPa ! nom = I 11.52 #10"6 ! 95 K = all = = 1.8 ! nom 52.7 D 120 = = 1.33 : Use Fig. D.3. For K = 1.8, d 90 r = 0.14 d I=
Thus,
rmin = 0.14(90) = 12.6 mm
______________________________________________________________________________________ SOLUTION (5.19) p (a) h L pL/2 pL/2 b V, kN
pL/2 x
M kN ! m
Mmax= pL2/8
-pL/2 x
3 V 3 pL 2 3 pL = = 2 A 2 bh 4 bh 2 Mc pL 8(h 2) 3 pL2 ! max = = = I bh3 12 4 bh 2
! max =
Thus,
" max ! max = h L
(1) (2)
(3)
For example, if L = 10h , the above ratio is 1 10 . (b)
From Eq. (3), we have:
L=h
! all 9 = 0.16( ) = 1.029 m 1.4 " all
(CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 5–11
______________________________________________________________________________________ 5.19 (CONT.) Equation (1) gives then
pall =
4 bh 4 0.05 " 0.16 (1.4 "106 ) = 10.34 kN m ! all = 3 L 3 1.029
______________________________________________________________________________________ SOLUTION (5.20) P
3m
300 mm 60
M = 3P n = E s Et = 20
60
20
3
I t = ( 520 )(12300 ) = 1170(10 6 ) mm 4 400
y =150
C
z y
60
60
The allowable stress in the transformed section is 12 20
= 6 MPa < 7 MPa
Thus, the stress in the steel is the controlling stress. Hence,
M max = 3Pmax = ! maxc I t 6
!6
(10 ) = 6(10 )(1170 0.15 )
or
Pmax = 15.6 kN
______________________________________________________________________________________ SOLUTION (5.21) 180 mm 25 kN/m 10
4m 2
3
C
z 300 mm
10
y
2
M max = pL8 = 25"108 ( 4 ) = 50 kN ! m 3
I t = 121 (180)(300) 3 + 2[ 126012(10 ) + (1260)(10)(155) 2 ] = 1010.64(10 6 ) mm 4 180 mm
C y
z
180x7=1260 mm 3
50"10 ( 0.15 ) # w,max = Mc I t = 1010.64 (10! 6 ) = 7.4 MPa 3
7"50"10 ( 0.16 ) # a ,max = 7 Mc I t = 1010.64 (10! 6 ) = 55.4 MPa
______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 5–12
______________________________________________________________________________________ SOLUTION (5.22) Equation (5.54) becomes
20 20 ( kd ) 2 + ( kd )( 300 )(1200) ! ( 300 )(500)(1200) = 0
or ( kd ) Solving,
2
+ 180kd ! 40(10 3 ) = 0
kd = 164 mm
Hence,
500 ! kd = 336 mm
From Eqs. (e) of Example 5.5:
M c = 12 " c (bkd )( d ! kd3 ) = 12 (12 " 10 6 )(0.3 " 0.164)(0.5 ! 0.164 3 ) = 89.5 kN ! m M s = " s As ( d ! kd3 )
and
= 150(10 6 )(1200 " 10 !6 )(0.445) = 81.9 kN ! m Thus,
M all = 81.9 MPa
______________________________________________________________________________________ SOLUTION (5.23) 5 C
d A
E c1=kd D B
80/8 The stresses in concrete and the equivalent of the steel (Fig. 514b) have the values shown in the preceding figure. From the similarity of !ECD and !EAB we find c1 d
or
= (80 58)+5 = 155
c1 = 515d = 155
Equation (d) of Example 5.5: 1 2 1 2
or
! c ( c1b) = ! s As (5)( 500 3 )300 = 80 As
As = 1563 mm 2
Then, we have from Eq. (e) of Example 5.5,
M = " s As ( d ! c31 )
= 80(10 6 )(1563 " 10 !6 )(0.5 ! 09.5 ) = 55.6 kN ! m ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 5–13
______________________________________________________________________________________ SOLUTION (5.24) The shearing stress at a distance s is given by V Q
V
"
$ = Iyz bz = I zy ! R cos # (tRd# ) 0
=
2V y "Rt
sin !
This shows that ! = 0 at the free ends and ! max at the neutral axis, same as for a rectangular section. The shearing stress produces the following twisting moment about O:
T = ! $RdA = !
" 2V sin # y
"Rt
0
=
R(Rtd# )
4 RV y !
By applying the principle of moment at O: V y e = M .
e=
Thus,
4R !
______________________________________________________________________________________ SOLUTION (5.25) Shearing stress in the web is neglected. Moment of the forces about S: e1 e2
V1e1 = V2 e2 ;
= VV12
(a)
Let M 1 and M 2 be bending moments on flanges 1 and 2, respectively. Curvature-moment are related by 1 r1
M1 = EI , 1
M2 = EI 2
1 r2
(b)
By assuming r1 = r2 , we have M1 EI1
M2 = EI ; 2
dM 1 I1
= dMI 2 2
Introducing dM dx = !V , Eq. (c) gives V1 V2
= II12
e1 e2
= II12
Equation (a) now becomes
Since Thus, where
e1 + e2 = h;
[ ( h !e1e1 ) ] = II12
e1 = ( I1I+2hI 2 ) 3
I 1 = b121 t1
3
I 2 = b122 t2
______________________________________________________________________________________
Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 5–14
______________________________________________________________________________________ SOLUTION (5.26) A 1
A2
z
C
y Y
z
A3
Fig. (a) Location of centroid C (Fig. a):
+ 9.5!125( 62.5 ) z = 15.515!75.5!( "7537+.95.)5+!0250 = 6.481 mm + 9.5!125 ) + 0+ 9.5"125( !125 ) y = 15.515"75.5"( !75250 = !124.339 mm + 9.5"250+ 9.5"125
Moment of inertia:
I y = 121 (15.5)(75) 3 + (15.5 ! 75)( 43.98) 2
+ 121 ( 250)(9.5) 3 + 250(9.5)(6.48) 2 + 121 (9.5)(125) 3 + 9.5(125)(56.01) 2
= 8.18(10 6 ) mm 4 I z = 121 (75)(15.5) 3 + (75 ! 15.5)(125.6) 2 + 121 (9.5)( 250) 3 + (9.5 ! 250)(0.65) 2 + 121 (125)(9.5) 3 + (125 ! 9.5)(124.3) 2
= 49.10(106 ) mm 4 I yz = (15.5 " 75)( !125)( !43.98)
+ (9.5 " 250)( !0.65)( !6.48) + (9.5 ! 125)(124.3)(56) = 14.70(106 ) mm 4 .7 ) o " p = 12 tan !1 [ ! 8.218(14!49 .1 ] = 17.85
Then,
I y ' = 10 6 [ 8.18+2 49.1 + 8.18!2 49.1 cos 35.7 o ! 14.7 sin 35.7 o ] = 3.45(10 6 ) mm 4
Similarly, we compute
I 1 = I z ' = 53.85(10 6 ) mm 4 I 2 = I y ' = 3.45(10 6 ) mm 4
From geometry of section (Fig. b):
HB = 144.57 mm
BC = 39.05 mm
Thus, V
" xz = I zy't' = [ st (0.1445 ! 2s sin 17.85o ]
(CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 5–15
______________________________________________________________________________________ 5.26 (CONT.) Shear force due to V y ' (Fig. b): s
We write
V ( 0.0155 )
F1 = ! $ xz tds = 54y ' .1#10"6 ! 0
0.075
0
[0.1445s " s2 sin 17.85o ]ds = 0.1108V y ' 2
V y ' ! ez ' = 0.25F1 = 0.25(0.1108V y ' )
e z ' = 0.0277 m = 27.7 mm
or
Shear force due to V z ' . Now assume that the
direction of F1 shown in the figure is reversed. Then,
F1 = VIzy''t !
0.075
0
[0.03905s " s2 cos 17.85o ]ds 2
= 0.1928Vz '
We write
s F1
H
144.57
Vy’ Vz’ ey’
Vz ' ! e y ' = 0.25(0.1928Vz ' )
or
s 2
C B
S
A
17.85
z’ z o
y y’ ez’
Figure (b)
e y ' = 0.0482 m = 48.2 mm
______________________________________________________________________________________ SOLUTION (5.27) 1 2
x 3
( p0 Lx ) x
p0 Lx
2
M A = p03L
R A = p20 L '
M
x
We have EIv = M = 16 p0 x
3
Integrating
! 12 p0 Lx + 13 p0 L2 2
EIv ' = 24p0L x 4 ! p40 L x 2 + po3L x + c1 v ' (0) = 0; c1 = 0. 2
EIv ' = 24p0L x 4 ! p40 L x 2 + po3L x
(a)
Integrating
2
0 EIv = 120pEIL x 5 ! p120 L x 3 + po6L x 2 + c2 v (0) = 0; c2 = 0.
(a)
0 v = 120pEIL ( x 5 ! 10 L2 x 3 + 20 L3 x 2 )
11 p L4
( b ) Let x=L in this equation: v B = 1200EI p L3
( c ) Let x=L in Eq. ( a ): ! B = 80EI
______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 5–16
______________________________________________________________________________________ SOLUTION (5.28)
EIv ' ' ' ' = p EIv ' ' ' = px + c1 2 EIv ' ' = 12 px + c1 x + c2 EIv ' = 16 px 3 + 12 c1 x 2 + c2 x + c3 EIv = 241 px 4 + 16 c1 x 3 + 12 c2 x 2 + c3 x + c4 Boundary conditions:
EIv (0) = 0; EIv ' ' (0) = 0;
c4 = 0 c2 = 0
EIv ( L) = 0;
pL3 24 3
or
2
+ c16L + c3 = 0 3
EIv ' ( L) = ! EI 96pLEI = pL6 +
c1L2 2
(a)
+ c3
2
3
c3 = ! 1796pL ! c12L
(b)
Substituting Eq. (b) into (a), we obtain reaction at right end:
c1 = ! 1332pL = R
______________________________________________________________________________________ SOLUTION (5.29) c
MA RA
A
P
b=L-c L
MB B
x
RB
y Segment AD:
EIv1 ' ' = M A ! R A x
EIv1 ' = M A x ! 12 R A x 2 + c1
EIv1 = 12 M A x 2 ! 16 R A x 3 + c1 x + c2
(a)
Segment BD:
EIv 2 ' ' = M A ! R A x + P( x ! c ) EIv 2 ' = M A x ! 12 R A x 2 + 12 P ( x ! c ) 2 + c3 EIv 2 = 12 M A x 2 ! 16 R A x 3 + 16 P( x ! c ) 3 + c3 x + c4
Boundary conditions:
v1 (0) = 0; v1 ' (0) = 0;
(b)
c2 = 0 c1 = 0
(CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 5–17
______________________________________________________________________________________ 5.29 (CONT.)
and
v1 ( c ) = v2 ( c );
c3 c + c 4 = 0
v1 ' ( c ) = v2 ' ( c );
c3 = 0,
c4 = 0
v 2 ' ( L) = 0 = M A L ! 12 R A L2 + 12 Pb 2
(c)
v 2 ( L) = 0 = 12 M A L2 ! 16 R A L3 + 16 Pb 3
(d)
Solving Eqs.(c) and (d), 2
R A = PbL3 (3c + b) = P ( LL!3 c ) ( 2c + L) 3
Substituting of this into Eq. (c) gives
M A = Pcb = Pc ( LL2!c ) L2 2
2
Thus, introducing the values of M A , R A , and c1 = c2 = c3 = c4 = 0 into Eqs. (a) and (b) we obtain the deflections. For 0 ! x ! c : 2
2
2
2
c) x v1 = P ( L6 !EIL (3cL ! 2cx ! Lx ) 3
For c ! x ! L : c) x v2 = P ( L6 !EIL (3cL ! 2cx ! Lx ) + 6PEI ( x ! c ) 3 3
______________________________________________________________________________________ SOLUTION (5.30)
M0
M
A
L-x
y
B
x
RB
The reactions are statically indeterminate. We have
EIv ' ' = M = RB x ! RB L + M 0
EIv ' = 12 RB x 2 ! RB Lx + M 0 x + c1
v ' (0) = 0;
c1 = 0.
EIv = 16 RB x 3 ! 12 RB Lx 2 + 12 M 0 x 2 + c2
v (0) = 0;
c2 = 0
v ( L) = 0;
RB = 32ML0
The preceding equation gives 2
( x!L) v = M 0 x4 EIL
______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 5–18
______________________________________________________________________________________ SOLUTION (5.31) r
P1
M1 M2
1 2
P2
( a ) Static equilibrium gives
P1 = P2 = P
2h
M 1 + M 2 = Ph
Equation (5.9):
M 1 = E1rI1
M 2 = E2rI 2
Interface strains must be the same:
#1"T + 123 due to temp . increase
Fig. (a) Bent beam
P1
= # 2 "T ! EP22h ! hr2
h2
+
E1h {
r {
due to bending ( from Eq . 5.9 )
due to axial force
This yields an expression for the interface curvature: 1 r
= 12h ((14# 2+"n#+11) !nT)
where n = E1 E 2 .
( b ) At the interface
! 1 = Ph + E21rh = (! yp )1
! 2 = " Ph " E22rh = "(! yp ) 2 ( c ) Summing these equations.
(" yp )1 ! (" yp ) 2 = ! h ( E21 !r E2 )
It follows that ($ yp )1 "($ yp ) 2 E1 " E2
= h2 24h ((14#2+"n#+11) !nT)
from which
+ n +1 n "T = 14 6 ($ 2 !$1 )
(# yp )1 !(# yp ) 2 E1 ! E2
______________________________________________________________________________________ SOLUTION (5.32) Case B h
b t
C
y1
h y
z
A*
Q = Qoutside ! Qinside = b2 ( h 2 ! y12 ) ! b!22 t [( h ! t ) 2 ! y12 ] = bht ! 12 bt 2 + th 2 + t 3 ! ty12
(CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 5–19
______________________________________________________________________________________ 5.32 (CONT.) Q " = IA2 ! ( width dA )2 2
A I2
= or where
2
bt '! h )t ( bht +th 2 ) bt )2 ht 2 +t 3 )ty12 )2 $! + th 2 ) 2 ht 2 + t 3 )ty12 ) 2 h ( bht ) 2 2 2 [ 2 tdy bdy ] + & (0 1 1 # (h)t b2 b2 !% !" A " = Aweb = 1 + 2 ( hb!t )
A = 2bh ! (b ! 2t )( 2h ! 2t ) = 2bt + 4th ! 4t 2 Aweb = 2( 2h ! 2t )t = 4ht ! 4t 2 I = 23 bh 3 ! 23 (b ! 2t )( h ! t ) 3 b
Case B
t
t
h
z
y1
h
A*
y
Q = ( h ! t ! y1 )t[ y1 + 12 ( h ! t ! y1 )] = th2 ! ht 2 + t2 + bht ! bt2 ! 2t y12 2
3
2
2
*=
A I2
or where
2
2
3
2
2
2
3
bh bt ty1 t 2 '! h )t ( bht + ht 2 ) bh ) bt ) by1 + t )2 $! ) ) + ) h ( bht + ht 2 + 2 2 2 2 2 2 2 2 2 [ tdy bdy ] + 2 2 & (0 # 1 1 ( b t h )t !% !" A " = Aweb = 1 + hb!t
A = 2bt + ( 2h ! 2t )t = 2bt + 2th ! 2t 2 Aweb = ( 2h ! 2t )t = 2ht ! 2t 2 I = 121 t ( 2h ! 2t ) 3 + 2[ 121 bt 3 + bt ( h ! 2t ) 2 ]
Note: For thin-walled sections flange and web thicknesses are small with compared with to unity and their products are neglected. Case C O !/2 r
r sin !2
z
y = r cos !2 A*
y (CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 5–20
______________________________________________________________________________________ 5.32 (CONT.) We write A = r2 (! " sin ! ) =area of segment 2
dA = r2 (1 " cos ! )d! = r 2 (1 " cos 2 !2 )d! 2
Q = ! * ydA = ! * ( r cos #2 ) r 2 (1 " cos 2 #2 )d# A
A
#
= r 3 ! (cos #2 " cos 3 #2 )d# = r 3 [2 sin "2 ! 23 sin "2 (cos 2 "2 + 2)] 0
= 23 r 3 [sin !2 " sin !2 cos 2 !2 ] 2
Q " = IA2 ! ( width dA )2
= Since,
A I2
!
2# [
0
A = !r 2
2 #r 3 $ $ $ (sin "sin cos2 )] 3 2 2 2 $ ( 2 r sin ) 2 2 2 ! 2 r8 16
r 2 (1 " cos 2 $2 )d$
I =
We have, after simplification: 2#
% = #16r 6 " ( r9 )(1 ! cos 2 $2 ) 3 d$ = 109 6
0
Case D
r2
O
z
r1
!/2
"/2 y
Q = Q2 ! Q1 = 23 r22 [sin "2 # sin "2 cos 2 "2 ] # 23 r12` [sin !2 # sin !2 cos 2 !2 ]
& = IA2 [ !
2#
% ( 2 r2 sin ) 2 2
0
Letting
Q22
r22 (1 " cos 2 %2 )d% " !
2#
0
A = " ( r22 ! r12 ),
after integration, we obtain
Q12
2 1 $ ( 2 r1 sin ) 2 2
r (1 " cos 2 $2 )d$ ]
I 2 = "16 ( r24 ! r14 ) 2
! =2
______________________________________________________________________________________ SOLUTION (5.33) Since stress is symmetrical, Eq. (3.40) reduces to 2
2
4
3
2
( ""r 2 + 1r ""r )( ""r#2 + 1r ""#r ) = ""r#4 + 2r ""r#3 ! r12 ""r#2 + r13 ""#r = 0 The given ! satisfies this equation. Equations (3.32) lead to $ r = 1r ""#r = rA2 + B(1 + 2 ! ln r ) + 2C
& % = ##r$2 = ( " rA2 ) + B (3 + 2 ! ln r ) + 2C 2
The constants A, B, and C are determined from the boundary conditions (b) and (d) of Sec. 5.13. In so doing, we arrive at the solution given by Eq. (5.67). ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 5–21
______________________________________________________________________________________ SOLUTION (5.34) 46 mm 6 mm
z z 30 mm
6 mm
A1
y A2
We have
z = ( A(1Az11++ AA22z)2 ) = 16.14 mm
r = 136.14 mm ri = 120 mm ro = 166 mm A 420 R= = 126 = 134.7045 mm, e = r ! R = 1.4355 mm 166 " # dAr # 30rdr + # 6rdr 120
126
We have M = !(30 + 120 + 16.14) P = !166.14 P Outer Edge. Applying Eq. (5.73),
P (134.7045 !166) P !80 mmN 2 = 420 + 166.14 420(1.4355)(166)
or
P = 1.614 kN = Pall
Inner Edge. Using Eq. (5.73),
P (134.7045 !126) P 80 mmN 2 = 420 + 166.14 420(1.4355)(126)
Solving,
P = 3.73 kN
______________________________________________________________________________________ SOLUTION (5.35) P M B A
Figure (a) ( a ) Equation (5.66) yields
N = (1 ! 00..212 ) 2 ! 4 00..212 ln 2 00..21 = 0.082 2
2
M = PR = 70(10 3 ) " 0.15 = 10.5 kN ! m Thus, from Eq. (5.67):
, 500 ) (# " ) A = 0.054( 0(10 [(1 ! 00..212 )(1 + ln 1) ! (1 + 1) ln 00..21 ] .2 ) 2 ( 0.082 ) 2
= 163 MPa 2 2 , 500 ) (# " ) B = 0.054( 0(10 [(1 ! 00..212 )(1 + ln 2) ! (1 + 00..212 ) ln 2] .2 ) 2 ( 0.082 ) = 103 MPa (CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 5–22
______________________________________________________________________________________ 5.35 (CONT.) Referring to Fig. (a),
( b ) We have
# max = (# " ) A ! PA = !163 ! 705 = !177 MPa # min = (# " ) B ! PA = 103 ! 14 = 89 MPa
ri = 100 mm, ro = 200 mm, R = 100 ln 2 = 144.2695 A = 5000 mm 2 , e = 5.7305
Thus,
(" ! ) A = # PA [1 + r ( Rer#i ri ) ] = #176.2 MPa (" ! ) B = # PA [1 + r ( Rer#o ro ) ] = 88.1 MPa
______________________________________________________________________________________ SOLUTION (5.36)
A = 20b + 2(60 !10) = 20b + 2400 We have rA = 60 mm and rB = 140 mm . Applying Eq. (5.70): (" M )( R " rA ) (" M )( R " rB ) "! A = ! B = =" AerA AerB from which or Then
or
rB ( R ! rA ) = !rA ( R ! rB ) , 140( R ! 60) = !60( R ! 140) R = 134 mm A R= dA !" r 8 14 " ! 80 bdr 140 2(10)dr " ! A = 84 # ' +' = 84 b ln + 20 ln #% 80 r $& 6 8 $& % 60 r = 24.1653b + 1880.3091 20b + 2400 = 24.1653b + 1880.3091 b = 124.8 mm
Hence or ______________________________________________________________________________________ SOLUTION (5.37)
1 r = b + c = 25 mm We have c = d = 10 mm 2 1 R = [r + r 2 ! c 2 ] (by Table 5.2) 2 1 = [25 + 252 ! 102 ] = 23.9564 mm 2
e = r ! R = 1.0436 mm A = ! c 2 = ! (10) 2 = 314.16 mm 2
r O
a
A
P M=-P(a+ r ) B
b
P
(CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 5–23
______________________________________________________________________________________ 5.37 (CONT.) (a)
From Eq.(5.74):
(a + r )( R " rA ) P M ( R " rA ) P " = [1 + ] A AerA A erA 800 (50)(23.9564 ! 15) = [1 + ] = 75.4 MPa 314.16 (1.0436)(15)
!A =
(b)
Using Eq.(5.74):
(a + r )( R " rB ) P M ( R " rB ) P " = [1 + A AerB A erB 800 50(29.1421 ! 35) = [1 + ] = !34.2 MPa 314.16 1.0436(35)
!B =
______________________________________________________________________________________ SOLUTION (5.38) Locate centroid : 150 mm 50 mm
A2
C A1
75 mm
O
100 mm
r
A1r1 + A2 r2 A1 + A2 (5625)(150) + (3750)(200) = = 170 mm 5625 + 3750 1 A = (50 + 75)(150) = 9375 mm 2 2
r=
1 2 h (b1 + b2 ) 2 R= r (b1ro ! b2 ri ) ln o ! h(b1 ! b2 ) ri (0.5)(150) 2 (75 + 50) = 158.9165 mm 25 [(75)(250) ! (50)(100)]ln ! (150)(75 ! 50) 10 e = r ! R = 11.0825 mm =
(a)
P
Use Eq.(5.75a),
(" ! ) A = #
r ( R # rA ) P M ( R # rA ) P # = # [1 + ] A AerA A erA
50(103 ) ! (170)(158.9175 # 100) " =# 1+ % 9375 &$ (11.0825)(100) ' = !53.5 MPa
A
B M=P r
P
O
r
(CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 5–24
______________________________________________________________________________________ 5.38 (CONT.) (b)
From Eq.(5.75b):
(" ! ) B = #
r ( R # rB ) P [1 + ] A erB
50(103 ) ! (170)(158.9175 # 250) " =# 1+ % = #24.5 ksi 9375 $& 11.0825(250) '
______________________________________________________________________________________ SOLUTION (5.39)
1 A = bh 2
The section width w varies linearly with r. Thus w = c0 + c1r (1) Since
w = b (at r = ri ) w = 0 (at r = ro )
Substituting Eq.(1) into Eq.(2);
Then
br c0 = o h
b c1 = ! h
dr
(2) w
ro w c +c r dA !A r = !ri r dr = 0 r 1 dr Inserting c1 and c0 into this, after integrating and rearranging,
we have
dA
ro
r O
b h
ri r
"
ro
" r = b( h ln r ! 1) Therefore
R=
i
1 h A 2 = dA ro ro " r h ln ri ! 1
______________________________________________________________________________________ r SOLUTION (5.40) r
A = ! c2
Through use of the polar coordinates we write:
w = 2c sin ! r = r " c cos ! dr = c sin ! d! dA = wdr = 2c 2 sin 2 ! d!
dA ! 2c 2 sin 2 " $ r =$0 r # c cos " d"
C
w
!
O
c ccos!
dr
(CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 5–25
______________________________________________________________________________________ 5.40 (CONT.) 2 2 2 2 2 ! r $ c cos " $ ( r $ c ) c 2 (1 $ cos 2 " ) = 2% 0 0 r $ c cos " r $ c cos # ! ! d" = 2 $ (r + c cos " )d" # 2(r 2 # c 2 ) $ 0 0 r # c cos "
= 2%
!
!
This gives
2
!
= 2r " 0 + 2c sin " 0 # 2(r 2 # c 2 )
2
r #c
2
r 2 # c 2 tan
tan #1
r +c
" 2
!
0
dA
2
2
# r = 2! (r " r " c )
Hence, it can be shown that
R=
A 1 = (r + r 2 + c 2 ) dA 2 !r
______________________________________________________________________________________ SOLUTION (5.41)
1 A = (b1 + b2 )h 2
The section width w varies linearly with r as
b2
w = c0 + c1r
We have
ri
h
w
b1
(1)
r
dr
w = b1 (at r = ri )
r
(2)
w = b2 (at r = ro )
O
"
Introduce Eq.(1) into Eq.(2), then solve for c0 and c1
r b ! rb c0 = o 1 i 2 h
Then, we write
dA
b !b c1 = ! 1 2 h
ro
w
c0 + c1r r dr = c0 ln o + c1 (ro ! ri ) ri r ri
" r = " r dr = " ri
This gives, substituting Eqs.(3):
dA
"r = Hence
(3)
ro
rob1 ! rb r i 2 ln o ! (b1 ! b2 ) h ri
1 2 h (b1 + b2 ) A 2 R= = dA r " r (rob1 ! rbi 2 ) ln roi ! (b1 ! b2 )
______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 5–26
______________________________________________________________________________________ SOLUTION (5.42) P z M A2 A B A1
C
z A2
P We have
z = ( A(1Az11++ AA22z)2 ) = 12.5 mm
A = 0.0008 m 2
r = 52.5 mm
R=
A
"#
dA r
=
800 50
50 dr 40 r
#
80
2(5) dr r 50
+#
ri = 40 mm
ro = 80 mm
= 50.4502 mm, e = r ! R = 2.0498 mm
M = (0.06 + 0.04 + 0.0125) P = 337.5 N ! m Inner Edge. Using Eq. (5.73), #3
337.5(50.4502 # 40)10 3000 (" ! ) A = # 0.0008 # 0.0008(2.0498)(40)10 #6
= !57.5 MPa
Outer Edge. Applying Eq. (5.73), #3
337.5(50.4502 #80)10 3000 (" ! ) B = # 0.0008 # 0.0008(2.0498)(80)10 #6
= 74.6 MPa ______________________________________________________________________________________ SOLUTION (5.43) Using Eq. (P5.44), at section A-B of Fig. P5.43:
M = !0.182 Pr = !0.182(0.75b) P = !0.136 Pb
( a ) Equation (5.66) yields,
N = (1 ! 14 ) 2 ! 4( 14 )(ln 2) 2 = 0.082
Point A. Applying Eq. (5.67),
($ # ) A = tb4 2MN [(1 " 14 )(1 + ln 1) " 2 ! ln 2] + btP Pb ) 3 = 4tb( !20(.0136 [ 4 ! 1.3863] + btP .082 )
= 5.22 P bt Point B. Using Eq. (5.67),
Pb ) 3 (# " ) B = 4tb( !20(.0136 [ 4 (1 + ln 2) ! 45 ln 2] + btP .082 )
= ! 1.68P bt (CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 5–27
______________________________________________________________________________________ 5.43 (CONT.) ( b ) We have r = 0.75b, ri = 0.5b, and ro = b . Thus, R = ( b 2 ) ln 2 = 0.7213b Points A and B. Apply Eq. (5.74) with P = P 2 and M = !0.136 Pb :
(" ! ) A = btP + 4.2 btP = 5.2 P bt (" ! ) B = btP # 2.64 btP = #1.64 P bt (" ! ) A,B = ( 2PA ) ± ( McI )
(c) Here
c = b4
I = tb96
Thus,
(b 4) (" ! ) A = btP + 0.136tbPb = btP + 3.26 btP = 4.26 P bt 2 96
and
(# " ) B = btP ! 3.26 btP = ! 2.26 P bt
3
Comparing the result, we observe the following differences: At the point A: Elasticity vs. hyperbolic 0.4 % Elasticity vs. linear 18 % At the point B: Elasticity vs. hyperbolic 2.4 % Elasticity vs. Linear 34.5 % ______________________________________________________________________________________ SOLUTION (5.44) From the condition of symmetry, the distribution of stress in any quadrant is known to be the same as the other.
r O
P 2
cos !
!
Ma
P/2 At any angle ! , the bending moment referring to this figure is expressed as follows
M ! = M a " 12 Pr (1 " cos ! )
(a)
The problem is statically indeterminate and value of M a is found first. Note that shear component of the load will be omitted in our solution. Applying Castigliano’s theorem, we have: "U "M a
= 4!
0 = EI4 $
# 2
0 ! 2
0 ! 2
1 EI
M $ ""MM$a ds
[ M a # Pr2 (1 # cos " )]rd"
0 = EI4 [ M a " Pr2 ( !2 " 1)]
(CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 5–28
______________________________________________________________________________________ 5.44 (CONT.) solving,
M a = Pr ( 12 " !1 ) = 0.182 Pr
Then, Eq. (a) becomes
M ! = 0.182 Pr " 12 Pr (1 " cos ! )
(b)
Therefore stress at any point of a section, using Eq. (5.74), is expressed in the form
" ! = # P2 cosA! + MA! ( Rer# r ) Here, the moment M ! is given by Eq. (b). ______________________________________________________________________________________ SOLUTION (5.45) ( a ) Using Eq. (P5.44) at " = ! 4 (Fig. P5.44): We have
M $ = 0.182(1.5) P " 12 P(1.5)(1 " cos #4 ) = 0.00533P N ! m
A = 0.05(0.1) = 0.005 m 2
R=
and
h 100 = 2 = 144.2695 ro ln ri ln 1
e = r ! R = 150 ! 144.2695 = 5.7355 mm At inner fiber, ri = !0.1 m : ! 4) P 144.2695 $100 (# " )! 4 = $ ( P 2)cos( $ 0.00533 0.005 0.005 [ 5.7355(0.1) ] = $182.3P Pa
(b) M V
N
!
!
!
! O
At ! = 0
(M ) =0 P/2 !
!
o
: M " = 0.182 PR
N" = ! P 2
At any angle:
M ! = 0.182 Pr " 0.5 Pr (1 " cos ! ) = "0.318 Pr + 0.5Pr cos ! "M ! " ( P 2)
= #0.636r + r cos !
N ! = " P2 cos ! , V! = " P2 sin ! ,
#N! #( P 2) #V! #( P 2)
= " cos !
= " sin !
(CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 5–29
______________________________________________________________________________________ 5.46 (CONT.) Based on the symmetry of the ring, we have
$ = 2&
" 2 N
%N! ! AE % ( P 2)
0
M
%M
#V
%V
+ EI! % ( P !2) + AG! % ( P!2) ]rd!
Substituting the values of M ! , N ! , and V! , this expression becomes
# P = 2&
! 2
0
2 " P P [ AE cos 2 $ + 2PrEI (%0.636 + cos $ ) 2 + AG 2 sin $ ]rd$ 2
! 2
3
! 2
= 2[ 2PrAE "2 + 14 sin 2" 0 + 2PrEI 0.904" # 1.27 sin " + sin42" 0 ! 2
from which
Pr # 1 + 2"AG 2 $ 4 sin 2# 0 ] 3
" Pr ! # P = 2[ 2PrAE ( !4 ) + 2PrEI (0.15) + AG 2 ( 2 )]
For the given rectangular cross section:
r = 0.15 m ! = 65 = 1.2
A = 0.005 m 2 G = 25 E = 0.4 E
I = 121 (0.05)(0.1) 3 = 4.17(10 !6 ) m 4 The deflection is therefore 3
( 0.15 )! P ( 0.15 ) ( 0.15 ) P ( 0.15 )! 1.2 " P = 2[ 0P.005 ] 8 E ( 8 ) + 2 E ( 4.17$10# 6 ) + 0.4 E ( 0.005 )
This results in
! P = 215.65P E m End of Chapter 5
Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 5–30
CHAPTER 6 SOLUTION (6.1)
! all = c
b. or 6
or 100(10 )[1.5(10 Solving,
!6
Tc
" 4 4 (c # b ) 2 100(106 ) =
2(3 "103 )(0.035) ! [(0.035) 4 # b 4 ]
) ! b 4 ] = 66.845
b = 0.0302 m = 30.2 mm
______________________________________________________________________________________ SOLUTION (6.2) D t = 25
d=40 mm
! max = or
T (d 2) T ( D 2) = 4 " d 32 " ( D 4 # Di4 ) 32
23 Di = 25 D
D
23 4 ) ] 25 (40)3 = D 3 (0.2836) D = 60.9 mm d 3 = D 3 [1 ! (
______________________________________________________________________________________ SOLUTION (6.3)
Di = D2 d
! max =
or Thus
D
16T T ( D 2) 16T = = 3 1 " "d ( D 4 # Di4 ) " D 3 (1 # ) 32 16 15 d 3 = D 3 ( ), D = 1.0217 d 16 d=
D 60 = = 58.7 mm 1.0217 1.0217
______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 6–1
______________________________________________________________________________________ SOLUTION (6.4) Apply the method of sections between the change of load points:
TCD = 0.5 kN ! m
TBC = 1.5 kN ! m
TAB = 2 kN ! m 3
Therefore, ! max = 2T " c :
2(2 #103 ) = 81.5 MPa " (0.025)3 2(1.5 #103 ) = 119.4 MPa ! BC = " (0.02)3
! AB =
! CD =
2(0.5 #103 ) = 94.3 MPa " (0.015)3
______________________________________________________________________________________ SOLUTION (6.5) We have, applying the method of sections:
TCD = 0.5 kN ! m
TBC = 1.5 kN ! m
TAB = 2 kN ! m Hence,
! max =
2Tc " (c 4 # b 4 )
gives,
2(2 #103 )(0.025) = 82.4 MPa ! AB = " [(0.025) 4 $ (0.008) 4 ]
! BC =
2(1.5 #103 )(0.02) = 122.5 MPa " [(0.02) 4 $ (0.008) 4 ]
! CD =
2(0.5 #103 )(0.015) = 102.6 MPa " [(0.015) 4 $ (0.008) 4 ]
______________________________________________________________________________________ SOLUTION (6.6)
TBC = 1 kN ! m Then,
TAB = 2 kN ! m
! max = 2T " c3 yields
2(1#103 ) = 79.58 MPa " (0.02)3 2(2 #103 ) = 81.49 MPa ! AB = " (0.025)3
! BC =
Therefore,
(! max ) B = K! AB = 1.6(81.49) = 130.4 MPa
______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 6–2
______________________________________________________________________________________ SOLUTION (6.7) We have
TBC = 4 kN ! m
TAB = 4 kN ! m
Then
!C = " (TL GJ ) yields 4(103 )
0.35 0.7 1 0.35 0.7 ]= ( ) # # 4 3 " 3.5" 6.25 150 (28 $109 ) (0.05) (0.1) 4 2 2 !3 o = 4.67 "10 rad = 0.27
!C =
[
______________________________________________________________________________________ SOLUTION (6.8)
! = 50 + 90 = 140o ! J = [(0.05) 4 " (0.045) 4 ] = 3.376 #10"6 m 4 2 o From Eq. (6.5a) at ! = 140 : ! x ' = " sin 280o = #0.985" Tc T (0.05) 120 "106 = 0.985 = 0.985 J 3.376 "10!6 T = 8.23 kN ! m or Similarly, Eq. (6.5b):
! x ' y ' = ! cos 280o = 0.174!
gives
50 "106 = 0.174 Thus,
T (0.05) , 3.376 " 10!6
T = 19.4 kN # m
Tall = 8.23 kN ! m
______________________________________________________________________________________ SOLUTION (6.9) From solution of Prob. 6.8:
J = 3.376 "10!6 m 4 o
From Equations (6.5) at ! = 35 + 90 = 125 ,
or and
! x ' = " sin 250o = #0.94" Tc T (0.05) 120 " (106 ) = 0.94 = 0.94 J 3.376 " 10!6 T = 8.62 kN ! m
! x ' y ' = ! cos 250o = "0.342!
(CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 6–3
______________________________________________________________________________________ 6.9 (CONT.)
T (0.05) , 3.376 "10!6
50 "106 = 0.342 Thus,
T = 9.87 kN # m
Tall = 8.62 kN ! m
______________________________________________________________________________________ SOLUTION (6.10) 3 kN ! m
2 kN ! m
d1
30 mm
1 kN ! m
C
B
A
1m
2m
Apply the method of sections:
TAB = 2 kN ! m
TBC = 1 kN ! m
Then,
2 #103 J ! d13 T = = = 16 " all 50 #106 c d1 = 0.05884 m = 58.84 mm Also,
! = " (TL GJ ) :
or
103
1(1) 2(2) " 4 ] 4 ! (0.04) d1 (39 #109 ) 32 4 76576.32 = 390625 ! 4 d1 0.02 =
Solving
[
d1 = 59.74 "10!3 m = 59.74 mm We therefore use
d1 = 60 mm
______________________________________________________________________________________ SOLUTION (6.11) 40 mm
2 kN m
1.5 kN ! m
d1
A 3m
Apply the method of sections:
TAB = 1.5 kN ! m
C
B
0.5 kN ! m
1m
TBC = 0.5 kN ! m
(CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 6–4
______________________________________________________________________________________ 6.11 (CONT.) We have
J ! d13 T 1.5 #103 = = = 16 " all 50 #106 c d1 = 53.46 "10!3 m = 53.5 mm Also,
! = " (TL GJ ) : or
Solving
103
0.5(1) 1.5(3) ] " 4 4 (0.04) d 9 ! 1 (40 #10 ) 32 4.5 78539.82 = 195,312.5 ! 4 d1
0.02 =
[
d1 = 78.79 "10!3 m = 78.8 mm Use
d1 = 78.8 mm
______________________________________________________________________________________ SOLUTION (6.12) (a)
D 60 = = 1.2 d 50
r 1 = = 0.02 d 50
Figure D.4: K = 2.1 .
2T 2(2 #103 ) = = 81.5 MPa " c3 " (0.025)3 ! max = 2.1(81.5) = 171.2 MPa
! nom =
(b)
r 5 D = = 0.1, = 1.2; K = 1.33 d 50 d ! max = 1.33(81.5) = 108.4 MPa
(Fig. D.4)
______________________________________________________________________________________ SOLUTION (6.13)
r 10 = = 0.2 d 50
D 100 = = 2.0; K = 1.25 (from Fig. D.4) d 50 For smaller part of the shaft, c = d 2 = 25 mm : 16T 16T ] ! max = ! all = K ( 3 ) ; 80(106 ) = 1.25[ ! (0.05)3 "d Solving
T = 1.571 kN ! m
Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 6–5
______________________________________________________________________________________ SOLUTION (6.14) b
b a
( a ) For circular bar:
" c = #2bT3 = G! c b
! c = G2#Tb4 For elliptical bar: 2
2
! e = T"(aa3b+3bG ) ,
T = "aa2 +bbG2 ! e 3 3
3
# e = "2abT2 = 20a!2e+bab2G
We have "e "c
2
= ( a 22+!beba2 )!GbG c
Setting ! e = ! c : !e !c
2
= ( a22 +a b2 )
Since a > b, ( a
2
+ b 2 ) < 2a 2 , and ! e ! c > 1, or
!e >!c 4
Tc = " c#2b G ;
(b)
G" c b = ! c
" c !b G " c!b Tc = Gb 2 = 2 4
3 3
2
Te = ! ea"2a+bb2G ,
# e = 2a!2eba+b2G
Rearranging,
2
3
2
" e = ! e 2( aba+2Gb ) Thus,
Te = " e!2ab
2
We obtain
Tc Te
3
= (("" c!!abb2 22)) e
Setting ! e = ! c :
Tc Te = b a , or
Te > Tc ______________________________________________________________________________________ SOLUTION (6.15) We have " ( c (a)
2
! b 2 ) = "a 2 ; 4
a 2 = c 2 ! b2 .
4
Th = J#c a = "# a ( 2c c!b ) Ts = J"aa = !"2a a
3
(CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 6–6
______________________________________________________________________________________ 6.15 (CONT.) T
4
Hence, Th = c ca!b3
4
s
=
c 4 !b4 c ( c 2 !b2 )
32
For c = 1.4a : Th Ts
(b)
8416 = 12..3168 = 2.16 4
4
4
4
Th = JGL#a = ( GL#a )[ " ( c 2!b ) ] Ts = ( GL"a )( !a2 ) 4
T
4
Hence, Th = c !2b
4
a
s
2
2
= ( cc2 !!bb2 )2 = cc2 +!bb2
For c = 1.4b : Th Ts
96 = 02..96 = 3.08
______________________________________________________________________________________ SOLUTION (6.16) Use Eqs. (f) of Example 6.2:
TA = 1+( aJTb bJ a ) =
1+
T 0.4 (15 ) 4 (! 32 )
= (1+0.T6328) = 0.6124T
0.2 ( 20 ) 4 (! 32 )
TB = T ! TA = 0.3876T Based on shear in segment AC:
T) " a = 16!dT3A = 16!( 0( .06124 = 150(10 6 ) .02 )3 a
or
T = 384.7 N ! m
Based on shear in segment CB: 16TB !d b3
or
T) = 16!((00.3876 = 150(106 ) .015 )3
T = 256.5 N ! m = Tall
______________________________________________________________________________________ SOLUTION (6.17) Use Eqs. (f) of Example 6.2:
TA =
1+
T 0.8 (15 ) 4 (! 32 )
= 1+0.T2074 = 0.8283T
0.5( 25 ) 4 (! 32 )
TB = T ! TA = 0.1717T Based on shear in segment AC: 16TA !d a3
or
T) = 16!((00.8283 = 70(106 ) .025 )3
T = 259.3 N ! m = Tall
Based on shear in segment CB: 16TB
!d b3
or
T) = 16!((00.1717 = 70(10 6 ) .015 )3
T = 270.2 N ! m
______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 6–7
______________________________________________________________________________________ SOLUTION (6.18) " 2# "x 2
= k [2( a 2 b ! a 2 ) + 2 y 2 (b 2 + 1) ! 12bx 2 ]
" 2# "y 2
= k [2( a 2 b ! a 2 ) + 2 x 2 (b 2 + 1) ! 12by 2 ]
Substituting these in Eq. (6.9):
k = 2 a 2 ( b!1)+( b2G!"6b+1)( x 2 + y 2 )
In order k be a constant: b
k=
G" 2 a 2 ( b !1)
2
! 6b + 1 = 0 . Thus,
______________________________________________________________________________________ SOLUTION (6.19)
u = !"z ( y ! b), # x = # y = # z = 0,
v = "z ( x ! z ), w = w( x , y ) " xy = !!vx + !!uy = 0
$ xz = ""wx ! # ( y ! b), Thus
$ yz = ""wy + # ( x ! a )
% xz = G[ !!wx # $ ( y # b)] = !!"y % yz = G[ !!wy # $ ( x # a )] = # !!"x
Substituting these in Eqs. (6.6), (6.7), and (6.11), we obtain $" xz $y
$"
# $xyz = #2G! ,
$ 2% $x 2
+ $$y%2 = #2G! 2
T = !! [( x " a )# yz " ( y " b)# xz ]dxdy
and
= [ $ !! ( x $ a ) ""#x $ !! ( y $ b) ""#y ]dxdy = 2 !! " dxdy
We observe that characteristic equations remain unchanged. ______________________________________________________________________________________ SOLUTION (6.20)
Here
T = !! ( x% yz $ y% xz )dxdy = $ !! ( x ""#x $ y ""#y )dxdy x2
# ! dy ! x $$"x dx = # ! xd" dy # [ # !! " dxdy ] x1
= #c ! ( x2 # x1 )dy + !! " dxdy = # c !! dxdy + !! " dxdy Note that ( x 2 ! x1 )dy is area and equals
Thus,
!! dxdy . Similarly,
# ! dx ! y $$"y dy = #c !! dxdy + !! " dxdy T = 2 !! (# " c )dxdy
______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 6–8
______________________________________________________________________________________ SOLUTION (6.21)
T! = T cos 2 ! Hence, " dz " = ! TGJ = GJ1 ! T cos 2 "ad"
This gives, at sections A and B: Ta # A = GJ !
" 2
0 "
( 12 + cos22# )d# = 2Ta r 4G
2 Ta # B = GJ ! cos #d# = rTa4G 0
______________________________________________________________________________________ SOLUTION (6.22) b=a c 2a
From Table 6.2: " = 0.246, ! = 0.229 T T " r = !ab 2 = 0.492 a 3
" c = TcJ = !2cT3 Thus,
T 0.492 a 3
= !2cT3 ;
c = 0.684a
Similarly,
! r = 0.229 (T2 a ) a 3G = 0.458T a 4G Then,
T " c = JG = !2cT4G T 0.458 a 4G
= !2c 4TG ;
c = 0.736a = call
______________________________________________________________________________________ SOLUTION (6.23) " 2# "y 2
= k [( x + h3 ) + ( x + 3 y ! 23 h ) + ( x + h3 ) + ( x ! 3 y ! 23 h ) + 2( x ! 23 h )]
" 2# "y 2
= k [!3( x + h3 ) ! 3( x + h3 )]
Substituting these in Eq. (6.9),
" 4kh = "2G! ;
Thus,
k = G2 !h
" = !G# [ 12 ( x 2 + y 2 ) ! 21h ( x 3 ! 3xy 2 ) ! 272 h 2 ]
Along the x axis ! xz = 0, due the symmetry. Equation (6.8) is therefore,
for y = 0 :
% yz = ! ""#x = 32Gh$ ( 23hx ! x 2 ) (CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 6–9
______________________________________________________________________________________ 6.23 (CONT.) When
x = 0:
! yz = 0
x = 23h :
! yz = 0
x = # h3 :
" yz = " max = G2!h
Next, substitute the preceding value of ! into Eq. (6.11) to obtain
T = 2 !! " dxdy
= "4G# !
h
3
0
!
" 3 y + 23 h
0
[ 12 ( x 2 + y 2 ) " 21h ( x 3 " 3xy 2 ) " 272 h 2 ]dxdy
4
G!h = 15 3
! = 15h4G3T
This gives The shear stress is thus
! max = ( 2 h20T3 )3 = 152 h33T ______________________________________________________________________________________ SOLUTION (6.24) For a circular bar:
T = G!J = C c!
where
C c = !r2G 4
(a)
For an elliptical bar (from Example 6.3): 2
2
H = # 2T "( aa 3b+3b ) = #2G! T = a"2a+bb2 G! = C e! 3 3
or
C e = a!2a+bb2 G 3 3
(b)
For an equilateral bar (from Prob. 6.23): G!h T = 15 = !C t 3 4
or
Ct = 15h G3 4
(c)
Bars have equal areas:
Ac = !r 2 ,
Ae = !ab,
At = h 3 2
Setting Ac = Ae = At :
r 4 = a 2 b 2 = 3h! 2 4
Then, Eqs. (a), (b), and (c) give Ce 2 a 3b3 Cc r 4 ( a 2 + b 2 )
= a22 +abb2
and Ct Cc
4
= 15h G3 !r24G = 2!15 3
______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 6–10
______________________________________________________________________________________ SOLUTION (6.25) do
di
di t
t
For the seamless tube, from ! 1 = T GJ
#1 = "d 4 (1!32d T4 d 4 )G o
i
o
For the split tube, referring to Eq. (6.17):
# 2 = 3GT
"(
We have "1 "2
1 do + di do !di 3 )( ) 2 2
= 32((dd2o+!ddi2)) o
(a)
i
2
2
For very thin tubes d o + d i !1 !2
! 2d o2 , and Eq. (a) becomes
= 43 ( dto )
______________________________________________________________________________________ SOLUTION (6.26) Apply Eqs. (6.17) and (6.19):
) ! max = bt3T2 = 0.1253((80 = 76.8 MPa 0.005 ) 2 3( 80 ) " = bt33TG = 0.125( 0.005 = 0.192 rad m )3 ( 80!109 )
______________________________________________________________________________________ SOLUTION (6.27) Referring to Table 6.1, we have
% = $L = "abTL2G
T # max = !ab 2
Thus $ #
= bGL "!
(1)
For a b = 24 16 = 1.5 : ! = 0.231 and ! = 0.196 Introducing given data into Eq. (1): 1.5(# 180 ) " max
Solving,
4 ( 0.231) = ( 0.024 )(0.80 !109 )( 0.196 )
! max = 106.6 MPa
______________________________________________________________________________________ SOLUTION (6.28) From Eq. (1) of solution of Prob. 6.27: L " b = $ max G # !
(a)
By Table 6.1: ! = 0.208 and ! = 0.141. Substituting the numerical values into Eq. (a), we obtain 6
(10 ) 0.204 2 b = 120 = 10.1 mm 79 (109 ) 25(! 180 ) 0.141
______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 6–11
______________________________________________________________________________________ SOLUTION (6.29) Equation (6.20) yields
J e = ! 13 bt 3 = 13 (100)(10) 3 + 13 (115)( 4) 3
= 3.5787(10 4 ) mm 4
Maximum shear stress occurs on the lower leg:
500 ( 0.1) " max = TtJ e1 = 3.5787 = 139.7 MPa (10!8 )
Angle of twist per unit length is
# = JTeG = 3.5787 (10500 "8 )( 200!109 ) = 69.86(10 !3 ) rad m = 4.00o per meter ______________________________________________________________________________________ SOLUTION (6.30) Refer to Table 6.2. (a)
3
3
6
T = a2#20max = ( 0.045) 20( 50"10 ) = 228 N ! m
Also
4
4
9
T = a246G".2all = ( 0.045) (80#4610.2 )(1.5! 180 ) = 186 N ! m = Tall (b)
.5 " = 46.2GTmax [ aL14 + aL24 ] = 4680.2!(101869 ) [ ( 0.206.5)4 + ( 0.1045 ] )4 1
2
!7
= 1.0742(10 )[192,901.235 + 364,797.897] = 0.06 rad = 3.44 o ______________________________________________________________________________________ SOLUTION (6.31) Referring to Fig. P6.31, an expression for t is written as
t = t0 (1 ! by )
Substitute this into the given stress function to obtain, 2
We have
" = G# [ t40 (1 ! by ) 2 ! x 2 ] T = 2 !! # dxdy = 4 !
t0 2
0
= 4G# !
t0 2
0
Let
u=
(1! 2 x ) t0
b (1" 2t x ) t 2 0 0 4 0
!
[ (1 " by ) 2 " x 2 ]dxdy
2
{ t40 [b(1 " 2t0x ) " b(1 " 2tox ) 2 + b3 (1 " 2t0x ) 3 ] " bx 3 (1 " 2t0x )}dx
x = (1!2u ) to
,
dx = ! t02du
du = ! 2tdx0 ,
Then, the preceding expression for the torque becomes 3
1
T = 4G t08b ! (u 2 " 23 u 3 )du
Integrating,
0
T = G!t03 12
______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 6–12
______________________________________________________________________________________ SOLUTION (6.32) 3
( a ) From Table 6.2: T = ( 2"r tG )! = C! or
C = 2!r 3tG = 2! (0.02375) 3 (0.0025)G = 2.1(10 !7 )G " max = 2!Tr 2t = 2! ( 0.02375T )2 ( 0.0025) = 112.860T
( b ) Equation (6.16): 3
C = bt3G = ( 0.02375)(30.0025) G = 1.24(10 !10 )G 3
Equation (6.18):
! max = bt3T2 = ( 0.023753)(T0.0025)2 = 20,210,526T
( c ) From Table 6.2: for a = b, t = t1 :
T = (0.02375) 3 tG! = 1.34(10 "5 )0.0025G! = 3.35(10 "8 )G! = C! ! max = 2 Ta 2t = 2 ( 0.02375T)2 ( 0.0025) = 354,571T ______________________________________________________________________________________ SOLUTION (6.33) Referring to Table 6.2:
! A = 20a 3T ;
420 ( 2 ) 3
= ( 020.05T)3
Solving, T = 1.75 kN ! m Also 3
46.2 (1.75!10 ) # = 46a 4.2GT = ( 6.25 = 0.1617 rad m !10" 6 )( 80!109 )
______________________________________________________________________________________ SOLUTION (6.34) For a thin-walled tube, letting
ro ! ri ! ravg . = r 4
4
J = ! ( ro2" ri ) = !2 ( ro2 + ri 2 )( ro + ri )( ro " ri ) = 2!rt
Equation (6.2):
! # = TJ! = 2T"!r 3t = 2TArt
Since r = ! , we obtain Eq. (6.22): ! = T 2 At . ______________________________________________________________________________________ SOLUTION (6.35) For a regular hexagon, we can write
A = 3 23 a 3
ds = 6a
Equation (6.22), substituting the value of A, results in the shear stress
! = 2TAt = T9 a 23t
Angle of twist per unit length, using Eq. (6.23):
(CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 6–13
______________________________________________________________________________________ 6.35 (CONT.)
or
6a ) " = !2(GA = 23ATa2Gt
2T ! = 9Ga 3 t
______________________________________________________________________________________ SOLUTION (6.36) 0.25
0.25 t3
t2 A1 t1
t4
0.25
t3
t2 Given:
A2
t5
t1 = 0.012 m,
t 2 = t3 = 0.006 m,
t 4 = t5 = 0.01 m,
G = 28 GPa
T = 56.5 kN ! m, A1 = A2 = A = 0.0625 m 2 s1 = s2 = s3 = s4 = s5 = 0.25 m. We write or
T = 2 A1h1 + 2 A2 h2 = 2 A1t1! 1 + 2 A2 t3! 3 2! 1 + ! 3 = 75.3(10 6 )
(1)
The shear flow yields
! 1t1 = ! 2 t 2 ! 2 t 2 = ! 3t 3 + ! 5 t5 ! 3t 3 = ! 4 t 4
Also,
(2) (3) (4)
" 1 s1 + 2" 2 s2 + " 5 s5 = 2G!A1 # " 5 s5 + 2" 3 s3 + " 4 s4 = 2G!A2
(5) (6)
Simultaneous solution of Eqs. (1) through (6), after substitution of the given numerical values yields:
! 1 = 19.1 MPa ! 3 = 37.2 MPa
and
! 2 = 38.2 MPa ! 4 = 22.3 MPa
! 5 = 0.62 MPa
" = 6.86(10 !3 ) rad m
______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 6–14
______________________________________________________________________________________ SOLUTION (6.37) a
a
t=3.5 mm
a=50 mm We have o
Then,
sin 60 ) A = ( 0.05)( 0.05 = 1.0825(10 !3 ) m 2 . 2 40 h = 2TA = 2 ( 0.0010825 ) = 18,475.209 N m , 209 ! = ht = 180, 475 = 5.279 MPa .0035 6
5.279 (10 ) # $ = 2GA " ds = 2( 28!109 )(0.0010825) [0.05 + 0.05 + 0.05]
= 13.063(10 !3 ) rad m
______________________________________________________________________________________ SOLUTION (6.38) t
c 1
a
2
t
a
For circular tube: Area enclosed by c, Am1 = !c
2
Area of the section, A1 = 2!ct 3
Polar moment of inertia, J 1 = 2!c t For square tube: Enclosed area by a, Am 2 = a
2
Area of the section, A2 = 4at
Polar moment of inertia (from Table 6.2 with t = t1 and a = b ): 2 2
J 2 = (2attt1+abtb1 ) = a 3t Then, A1 = A2 gives: a = !c 2 and hence, from Eq. (6.22) we obtain "1 "2
= AAmm12 = !ac2 = 0.785 2
Similarly, from ! = T GJ : "1 "2
= JJ12 = 2a!c3 = 0.617 3
______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 6–15
______________________________________________________________________________________ SOLUTION (6.39) t1
t2 A2
A1
t5
t3 t2
t1 We have 1
s1 = [0.252 + 0.03752 ] 2 = 0.2528 m 1
s2 = [0.52 + 0.052 ] 2 = 0.5025 m s3 = 0.15 m, s4 = 0.05 m, and
s5 = 0.075 m
! 1t1 = ! 3t3 + ! 2 t 2 ! 5t5 = ! 1t1 , ! 2 t2 = ! 4 t4 T = 2 A1t1! 1 + 2 A2 t 2! 2
(1) (2,3) (4)
Using Eq. (6.23),
" 5 s5 + 2" 1 s1 + " 3 s3 = 2G!A1 2" 2 s2 + " 4 s4 # " 3 s3 = 2G!A2
(5) (6)
Given: t1 = t 2 = t 4 = t5 = 0.0005 m, t3 = 0.00075 m, G = 28 GPa , and
T = 4 kN ! m.
The cell areas are calculated as
A1 = 0.028125 m 2
A2 = 0.05 m 2
Substituting the numerical values and solving Eqs. (1) through (6):
! 1 = ! 5 = 50.6 MPa, " 2 = " 4 = 50.88 MPa,
! 3 = 0.593 MPa ! = 0.0194 rad m
______________________________________________________________________________________ SOLUTION (6.40) ( a ) We have ! s = ! c and Eq. (6.37) becomes Ps Rs3 Gs
Solving,
3
= PGc Rcc ;
Ps ( 0.062 )3 9
79 (10 )
3
c ( 0.05 ) = P41 (109 )
Ps = 1.011Pc
Assume that copper controls
" c = 16!Pdc3Rc ;
0.05 ) 300(10 6 ) = 16! P(c0(.01 )3
from which
Pc = 1178.1 N
Then,
Ps = 1188.4 N
(CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 6–16
______________________________________________________________________________________ 6.40 (CONT.) Check the assumption:
.4 )( 0.062 ) " s = 16(1188 = 375.25 MPa ! ( 0.01)3
Since ! s < 500 MPa , the assumption is correct. Thus, the total force is
Pt = Pc + Ps = 2366.5 N
( b ) For the condition specified, Ps ks
= kPcc
from which ks kc
= PPcs 1.011 End of Chapter 6
Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 6–17
CHAPTER 7 SOLUTION (7.1) Refer to Fig. 7.2 and Eq. (7.10): "4w "x 4
= h14 ( w9 ! 4 w1 + 6w0 + w11 )
"4w "y 4
= h14 ( w10 ! 4 w2 + 6w0 ! 4 w4 + w12 )
"4w "x 2"y 2
= h14 [ w5 ! w6 + w7 + w8 ! 2( w1 ! w2 ! w3 ! w4 + 2 w0 )] 4
Substituting these into ! w :
h 4 " 4 w = 20w0 ! 8( w1 + w2 + w3 + w4 ) ! 2( w5 + w6 + w7 + w8 )
+ w9 ! w10 ! w11 ! w12 ______________________________________________________________________________________ SOLUTION (7.2) y
2a
2
4
6
8
1
3
5
7
x h=a/2
4a Only a quarter of the section need be considered. Using the symmetry the nodal points are labeled as shown in the preceding figure, and ! = 0 at the boundary. The finite difference equations for the nodes 1 through 8 are, respectively:
" 4# 1 + 2# 2 + 2# 3 = "2G!h 2
(1)
2
(2)
2
(3)
# 2 + # 3 " 4# 4 + # 6 = "2G!h 2
(4)
# 3 " 4# 5 + 2# 6 + # 7 = "2G!h
2
(5)
# 4 + # 5 " 4# 6 + # 8 = "2G!h
2
(6)
# 5 " 4# 7 + 2# 8 = "2G!h 2
(7)
# 6 + # 7 " 4# 8 = "2G!h 2
(8)
# 1 " 4# 2 + 2# 4 = "2G!h
# 1 " 4# 3 + 2# 4 + # 5 = "2G!h
Solving,
" 1 = 3.587G!h 2
" 2 = 2.708G!h 2
" 3 = 3.467G!h 2
" 4 = 2.622G!h 2
" 5 = 3.037G!h 2
" 6 = 2.313G!h 2
" 7 = 2.055G!h 2
" 8 = 1.592G!h 2
(CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 7–1
______________________________________________________________________________________ 7.2 (CONT.) Tables of differences are in P7.2a and P7.2b. Table P7.2a (when y=b, ! = ! 1 ; y=h,
y 0
# G! h 3.587
h
2.708
2h
0
2
! = ! 2 , etc.)
" G! h 2 ! 0.380
"2 G!h 2 ! 1.828
! 2.708
Table P7.2b (when x=0, ! = ! 1 ; x=h,
! = ! 3 , etc.)
x 0
# G!h 2 3.587
" G!h 2 ! 0.120
"2 G!h 2 ! 0.310
"3 G!h 2 ! 0.242
h 2h 3h 4h
3.467 3.037 2.055 0
! 0.430 ! 0.982 ! 2.055
! 0.552 ! 1.074
! 0.522
"4 G!h 2 ! 0.28
We have $" $x
2
3
= #"h 0 + #2 h"20 [2 x ! h ] + #6 h"30 [3x ! 6 xh + 2h 2 ] 4
+ #24"h 40 [4 x 3 ! 18 x 2 h + 22 xh 2 ! 6h 3 ] 2
3
4
( ##!x ) x =4 h = "!h 0 + "2 h!20 (7h ) + "6 h!30 ( 26h 2 ) + "24!h 40 (50h 3 ) Using Table P7.2b, we obtain ( ##$x ) x =4 h = "1.418G!a. That is
(" ) x = ±2 a = #1.418G!a Similarly, using Table P7.2a: 2
( %%#y ) y =2 h = $#h 0 + $2 h#20 ( 2 y " h ) = "1.811G!a
(" ) y = ±2 h = #1.811G!a
Hence, the error using this method is [(1.86 ! 1.811) 1.86]100 = 2.63 % ______________________________________________________________________________________ SOLUTION (7.3) Equation (7.19) is applied at points b, c, d, respectively:
2# c + 1.178# g " 4.857# b = "2G!h 2
# b + 1.178# f + # d " 4.857# c = "2G!h 2
1.178# c + 1.178# e " 5.714# d = "2G!h 2 (CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 7–2
______________________________________________________________________________________ 7.3 (CONT.) Similarly, Eq. (7.16) is applied at points e, f, and g, respectively:
2# d + # f " 4# e = "2G!h 2 2# c + # g + # e " 4# f = "2G!h 2 2# b + 2# f " 4# g = "2G!h 2 In matrix form these equations are written as:
0 0 0 2 / 4 +'( b $ . 2 ! ! , 0 2 0 1 1 )!( c ! /4 ) , 0 2 1 0 ) !!( d !! /4 , 0 )& # , 1.178 / 5.714 1.178 0 0 )! ( e ! , 0 , 1 1 0 1.178 0 ) !( f ! / 4.857 )! ! , 2 0 0 0 1.178* !%( g !" - / 4.857 = "2G!h 2 {1, 1, 1, 1, 1, 1} Solution is
" b = 1.612G!h 2
" c = 1.487G!h 2
" d = 0.975G!h 2
" e = 1.547G!h 2
" f = 2.236G!h 2
" g = 2.424G!h 2
The finite differences are then o
$ = " e # " B = 1.547G!h 2 o
$2 = # f " 2# e + # B = "0.858G!h 2 o
$3 = " g # 3" f + 3" e # " B = 0.357G!h 2 o
o
$4 = # f " 4# g + 6# f " 4# B + # B = "0.232G!h 2 o
$5 = # e " 5# f + 10# g " 10# f + 5# e " # B = "0.018G!h 2 o
o
$6 = " B # 6" e + 15" f # 20" g + 15" f # 6" e + " B = 0.036G!h 2 Hence,
" B = ( $$%x ) B = h1 ( # & #2 + #3 & #4 + #5 & #6 )G!h 2 0.357 0.232 0.018 0.036 = (1.547 + 0.858 2 + 3 + 4 " 5 " 6 )G!h 2
or
3
4
5
6
" B = 2.144G!h = 0.0107G!
______________________________________________________________________________________
Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 7–3
______________________________________________________________________________________ SOLUTION (7.4) Applying Eq. (7.16) at points b, c, e, f, and g, we obtain
# g + 2# c " 4# b = "2G!h 2
# b + # d + # f " 4# c = "2G!h 2
2# d + # f " 4# e = "2G!h 2
# g + # e + 2# c " 4# f = "2G!h 2
2# f + 2# b " 4# g = "2G!h 2 At point d, we apply Eq. (7.19):
1.308# c + # e " 5.77# d = "2G!h 2
Solving these equations, we have
" b = 2.238G!h 2
" c = 2.000G!h 2
" d = 1.096G!h 2
" e = 1.715G!h 2
" f = 2.667G!h 2
" g = 2.953G!h 2
The finite differences are the computed as shown in Table P7.4a. Thus,
" A = ( $$%x ) A = h1 ( # & #2 + #3 & #4 )G!h 2 0.093 0.0186 = ( 2.238 + 1.523 2 + 3 + 4 )G!h = 3.035G!h = 0.0129G! 2
Table P7.4a
3
4
y 0
# G!h 2 0
" G!h 2 2.238
"2 G!h 2 ! 1.523
"3 G!h 2 0.093
h 2h 3h 4h
2.238 2.953 2.238 0
0.715 ! 0.715 ! 2.238
! 1.430 ! 1.523
! 0.003
"4 G!h 2 ! 0.019
Alternatively, we construct the table as shown in Fig. P7.4b: Table P7.4b
y 0
# G! h 2 2.953
" G! h 2 ! 0.715
h 2h
2.238 0
! 2.238
"2 G!h 2 ! 1.523
Then we obtain, 2
" A = ( &&$y ) y =2 h = %$h 0 + 23 % h$ 0 = [ #0.715 # 23 (1.523)]G!h = 3.0G!h This result is approximately the same as calculated before. Clearly now computation involved are reduced considerably. ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 7–4
______________________________________________________________________________________ SOLUTION (7.5) y
1.5a A
b=a 1
4
2
5
3
6
h=a/4 x
Applying Eq. (7.16) at nodes in to 6, we obtain
0 1 0 0 , ')1 $ '1$ /( 4 1 ! ! !1! * - 1 (4 1 0 1 0 )2 !! *! ! 2 (4 0 0 1 * !) 3 ! - 0 2 !1! * & # = (2G0h & # 0 0 (4 1 0 * !) 4 ! !1! - 2 !1! - 0 2 0 1 ( 4 1 * !) 5 ! !! *! ! 0 2 0 2 ( 4 + %) 6 " %1" . 0 Solving,
" 1 = 1.551G!h 2
" 2 = 2.206G!h 2
" 3 = 2.387G!h 2
" 4 = 1.997G!h 2
" 5 = 2.887G!h 2
" 6 = 3.137G!h 2
Then, the differences are as shown in Table P7.5. Table P7.5
x 0
# G!h 2 0
" G!h 2 2.387
"2 G!h 2 ! 1.637
"3 G!h 2 0.137
h 2h 3h 4h
2.387 3.137 2.387 0
0.75 ! 0.75 ! 2.387
! 1.50 ! 1.637
! 0.137
"4 G!h 2 ! 0.274
At point A, we have 2
3
4
( $$"x ) x =0 = h1 ( #" 0 % # 2" 0 + # 3" 0 % # 4" 0 )G!h 2
Substituting the first row of Table P7.5: or
0.137 0.274 ( ""#x ) A = ( 2.387 + 1.637 2 + 3 + 4 )G!h
( ##$x ) A = 0.83G"a = ! max
This differs 2.12 % from the exact solution 0.848G!a (Table 6.2) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 7–5
______________________________________________________________________________________ SOLUTION (7.6) L/2
P v-1
x
v1
O y
PL
P
L/2 v2
v3
Boundary conditions yield,
v (0) = 0; v0 = 0
v ' (0) = 0; v1 = v !1
and
Apply Eq. (7.22) at nodes 0, 1, and 2, respectively: 2
v !1 ! 2v0 + v0 = h 2(EIPL ) ;
v1 = 4hEI PL 2
2
v 2 ! 2v1 + v0 = h (22EIPL 3) ;
v2 = 65hEI PL 2
2
3) v3 ! 2v2 + v1 = h (2PL EI
(a)
Substituting v1 and v 2 into Eq. (a) we obtain
v3 = 327 PL EI
3
______________________________________________________________________________________ SOLUTION (7.7) L/2
Mo A
3EI
O y
1
h=L/4 2C
EI
L/2 3
B 4
RB
RA M
Mo 3Mo/4 M
Let C = ! EI0 h
2
Mo/2
Mo/4
x
v0 = v 4 = 0
Applying Eq. (7.22) at 1, 2, 3: o
Solving,
v2 ! 2v1 + v0 = C4 v1 = ! 83 C
v3 ! 2v2 + v1 = C4
v2 = ! 12 C
(a)
" C = " 3 = 21h ( v3 ! v1 ) = 0
(b)
vC = v 2 = 361 MEI0 L
o
v 4 ! 2v3 + v2 = C4
v3 = ! 83 C
2
Results are the same as the exact solutions. ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 7–6
______________________________________________________________________________________ SOLUTION (7.8) 4
Let C = ( p EI )h . We have h = a 4 = L 8 and v0 = v8 = 0. p -1
EI 1
2
3
h
O y
4
2EI
C L=2a
8 5
6
7
-7
Apply Eq. (7.23) at 1 through 7:
v3 ! 4v2 + 5v1 = C
(1)
v 4 ! 4v3 + 6v 2 ! 4v1 = C
(2)
v5 ! 4v4 + 6v3 ! 4v2 + v1 = C
(3)
v 6 ! 4 v 5 + 6v 4 ! 4 v 3 + v 2 =
C 1.5
(4)
v7 ! 4v6 + 6v5 ! 4v4 + v3 = C2
(5)
! 4 v 7 + 6v 6 ! 4 v 5 + v 4 =
C 2
(6)
5v7 ! 4v6 + v5 = C2
(7)
Solving, 4
Note:
4
pa vC = v 4 = 0.00966 pL EI = 0.1546 EI
( vC ) exact = 5 pa 4 32 EI
______________________________________________________________________________________ SOLUTION (7.9) po po/4 4
Let N = p0 L
EI
-2
-1
A 0
1
po/2
B
h=L/4
y
3po/4
2
3
4
5
6
x
L
Boundary conditions at A:
v ' (0) = 0; v (0) = 0;
v1 = v !1 v0 = 0
v ' ' ' ' (0) = 0;
v2 ! 8v1 + v !2 = 0
Apply Eq. (7.23) at 1 through 4:
7v1 ! 4v 2 + v3 = (0.25) 5 N
! 4v1 + 6v 2 ! 4v3 + v 4 = (0.5) 9 N v1 ! 4v2 + 6v3 ! 4v4 + v5 = 3(0.5)10 N v 2 ! 4v3 + 6v 4 ! 4v5 + v6 = (0.25) 4 N (CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 7–7
______________________________________________________________________________________ 7.9 (CONT.) Boundary conditions at B:
v ' ' ' ( L) = 0;
! v 2 + 2v 3 ! 2v5 + v 6 = 0
v ' ' ( L) = 0;
v 3 ! 2v 4 + v5 = 0
The foregoing six equations are solved to yield
v1 = 0.010742 N v3 = 0.066406 N v5 = 0.132812 N
The error is therefore 0.099609 "0.091667 0.091667
v2 = 0.035156 N v4 = 0.099609 N v2 = 0.167969 N
! 100 = 8.7 % .
______________________________________________________________________________________ SOLUTION (7.10) 0
A
L/3
P
1
2
3
v3
4
h=L/6
2P/3
L
y
6
5
x
B P/3
Figure (a)
Application of Eq. (7.22) at points 1 through 5 gives, respectively:
v 2 ! 2v1 + v0 = ! 9PLEI h 2
2 v3 ! 2v2 + v1 = ! 29 PL EI h 2 v 4 ! 2v3 + v 2 = ! PL EI h
v5 ! 2v4 + v3 = ! PL EI h
(a)
2
2 v6 ! 2v5 + v 4 = ! PL EI h
The boundary conditions are v0 = v6 = 0. Then Eqs. (a) may be represented in matrix form as
0 0 0 * ' v1 $ '2 $ -. 2 1 + 1 .2 1 0 0 ( !v 2 ! !4 ! ( !! !! !! !! + 1 .2 1 0 ( & v3 # = & 3# C + 0 ( + 0 1 . 2 1 ( !v 4 ! !2 ! + 0 ! ! ! ! +, 0 0 0 1 . 2() !%v5 !" !%1 !" 3
648EI . Solving the foregoing; v1 = !6.67C , v 2 = !11.33, v 4 = !9.67C , v5 = !5.33C , and v3 = !12C , or
where C = ! PL
v3 = 0.01852 PL EI
3
3
Note: The exact value of the deflection at the center (see Table D.4) is 0.01775PL EI . ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 7–8
______________________________________________________________________________________ SOLUTION (7.11) p 1
-1
3
x
2
n=0
n=4
h=L/4
y
Figure (a)
We observe that because of symmetry only half of the beam span need be considered "
as shown in Fig. (a). From the boundary conditions v (0) = v (0) = 0 (Fig. 7.6) and symmetry:
v0 = v 4 = 0
v1 = ! v !1
v1 = v3
(a)
By Eq. (7.23) at points 1 and 2,
v3 ! 4v2 + 6v1 ! 4v0 + v !1 = 0
(b)
4
v 4 ! 4v3 + 6v 2 ! 4v1 + v0 = phEI
Substituting Eqs. (a) into Eqs. (b), we obtain
6v1 ! 4v 2 = 0
4
! 4v1 + 3v2 = phEI
4
Solving the above and setting h = L 4 yields v1 = 0.0039 pL
EI and
4
v2 = v max = 0.0059 pL EI
______________________________________________________________________________________ SOLUTION (7.12)
A y
B
0
P 2
1
P 4 3
5
x
6
h=a/2
V
P P
M
x
Pa x
Equation (7.22) is applied at nodes 1, 2, 3, respectively:
0 ! 2v1 + v 2 = 0; v1 ! 2v2 + v3 = 0;
v1 = v2 2 v 2 = 2v 3 3
v 2 ! 2v3 + 0 = ( h 2 EI )( Pa 2) or
v3 = ! 3Pah 2 8EI
(CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 7–9
______________________________________________________________________________________ 7.12 (CONT.) Thus,
v B = v 2 = ! 161 PaEI = !0.0625 PaEI 3
and
3
v1 = ! Pa 3 32 EI
Slop at A is then
" A = v12!hv!1 = vh1 = ! 16PaEI 2
We have v B = 0.08333 Pa 0.08333"0.0625 0.08333
3
EI as exact solution. Error is thus ! 100 = 25 %
______________________________________________________________________________________ SOLUTION (7.13) Boundary conditions yield
and or
v (0) = 0;
v0 = 0
v ' (0) = 0;
v1 = v !1
v ' ' ( L ) = 0 = v 4 ! 2v 3 + v 2 v 4 = 2v 3 ! v 2
(1)
v ' ' ' ( L) = 0 = v5 ! 2v4 + 2v2 ! v1 or
v5 = 4v3 ! 4v2 + v1
(2)
Apply Eq. (7.23) at points 1, 2, and 3, with v0 = 0 and v1 = v !1 : 4
v3 ! 4v 2 + 7v1 = 162pLEI
(3)
4
v 4 ! 4v3 ! 6v 2 ! 4v1 = 81pLEI
(4)
4
v5 ! 4v4 + 6v3 ! 4v2 + v1 = 81pLEI
(5)
Solving Eqs. (1) to (6),
v3 = 7 pL4 54 EI
and
v1 = 4v3 21
v 2 = 4v 3 7
______________________________________________________________________________________ SOLUTION (7.14)
C = ph 4 EI
h=L 4
v1 = v !1 p
-1
A y
1
2
3
B
-3
(CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 7–10
______________________________________________________________________________________ 7.14 (CONT.) Apply Eq. (7.22) at 1, 2, 3:
v3 ! 4v 2 + 7v1 = C
! 4v3 + v 2 ! 4v1 = C
5v3 ! 4v2 + v1 = C ph 4
4
v3 = 1.36364 phEI
Solving, v1 = 0.90909 EI
4
v2 = v max = 1.68182 phEI
4
= 0.00657 pL EI !
" B = " max = 21h ( v5 ! v3 ) = ! vh3 3
= !0.02131 pL EI
______________________________________________________________________________________ SOLUTION (7.15) P A B MA=M M 0 3 4 1 2 RA=P/2 RB=P/2 L/2 L/2 y PL/2 P PL/4 Mp x MR
x
RA
-PL/8
MM
-PL/4
-3PL/8
M
-PL/2
x
v1 = v !1 , v1 = v3 (due to symmetry), v3 = v5 v0 = v4 = 0, C = L3 16 EI . Apply Eq.(7.22) at 1through 4: o
v 2 ! 2v1 + v0 = ( ! PL 8 + M )C
(1)
v3 ! 2v2 + v1 = ( ! PL4 + M )C
(2)
o
v 4 ! 2v3 + v2 = ( PL4 ! 3 PL 8 + M )C o
v5 ! 2v4 + v3 = ( PL4 ! PL2 + M )C
(3) (4)
Equations (4), (3), (2) lead to
2v3 = MC
v2 = ( 2 M ! PL 8 )C v1 = ( 92M ! PL2 )C
Then, Eq. (1) gives
M = 81 PL
Note:
M exact = 81 PL
______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 7–11
______________________________________________________________________________________ SOLUTION (7.16) p L h=L/4 0
1
x
3
2
y Boundary conditions are v0 = v 4 = 0 and from symmetry v1 = v3 . Then, using Eq. (7.23) at nodes 1 and 2: 4
v1 + 6v1 ! 4v2 + v3 = phEI 4
Solving,
! 4v1 + 6v 2 ! 4v3 = phEI 4
4
v 2 = phEI = EIP ( L4 ) 4 = 0.00391 pL EI
The exact solution is
4
v2 = 0.002604 pL EI
The slope is zero at nodes 0, 2, and 4. Thus, 4
) 4 pL "1 = " 3 = v22!hv0 = ( 0.0039 2L EI 3
= 0.078 pL EI
______________________________________________________________________________________ SOLUTION (7.17) F41
1
AE 13.5(10!4 )(69 "109 ) = L 1.7 = 54.79 !106 N m
1 150o L=1.7 m 4
c = cos150o = ! 3 2 (a)
F41
x
s = sin150o = 1 2
Equation (7.38):
! 34 3 4" # 3 4 #3 4 $ % 14 3 4 #1 4 % 6 $# 3 4 [k ]e = 54.79 &10 $ % 34 # 3 4% $ #3 4 # 3 4 $ % #1 4 # 3 4 14 ( ' 3 4
(CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 7–12
______________________________________________________________________________________ 7.17 (CONT.) or
(b)
Equation (7.39) with i=4 and j=1:
or (c)
" 0.75 !0.433 !0.75 0.433 # $ !0.433 0.25 0.433 !0.25 %% $ [k ]e = 54.79 MN m $ !0.75 !0.433 0.75 !0.433% $ % & 0.433 !0.25 !0.433 0.75 '
" 3 F41 = 54.79(106 ) ( ! , 2 F1 = F41 = !73.14 kN
1 # $ 2 + 1.1 % !3 ' (10 ) )& 2 - *!1.5 + 1.2 +
Then {! }e = [T ]{! }e , give
0.5 0 0 % " !1.1# " 0.35 # "u4 # $ !0.866 & v & ' !0.5 !0.866 0 0 (( &&!1.2 && && 1.59 && & 4& ' = ) * ) *=) * mm ' ( u 0 0 0.866 0.5 2 0.98 ! ! 1 & & & & & & ( &- v1 .& +' 0 0 !0.5 !0.866 , &- 1.5 &. &- !0.3 &. ______________________________________________________________________________________ SOLUTION (7.18) We have
(
AE AE )1 = L L
(
AE 2 AE )2 = L L
Equation (7.25a):
[k ]1 =
(a)
AE " 1 !1# L &$ !1 1 '%
[k ]2 =
(
AE 3 AE )3 = L L
AE " 2 !2 # L &$ !2 2 '%
[k ]3 =
AE " 3 !3# L &$ !3 3 '%
System stiffness matrix, [ k ] = [ k ]1 + [ k ]2 + [ k ]3 is order of 4 ! 4 . Thus
u1
u2
u3
u4
" 1 !1 0 0 # $ % AE $ !1 3 !2 0 % [K ] = L $ 0 !2 5 !3% $ % & 0 0 !3 3 ' (CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 7–13
______________________________________________________________________________________ 7.18 (CONT.) (b)
" F1x # $ 1 !1 0 0 % " u1 # &F & ' !1 3 !2 0 ( &u & & 2 x & AE ' ( &) 2 &* ) *= & F3 x & L ' 0 !2 5 !3( &u3 & ' ( + 0 0 !3 3 , &-u4 &. -& F4 x .&
(1)
Boundary conditions are u1 = u4 = 0 . We have F3x = ! P . Thus
Solving
" 0 # AE $ 3 !2 % "u2 # & '= ( )& ' *! P + L , !2 5 - *u3 +
u2 = ! (c)
2 PL 11AE
u3 = !
3PL 11AE
Equations (1) :
" F1x # $ 1 !1 0 0 % " 0 # "2 P 11# &F & ' !1 3 !2 0 ( &! 2 P 11& & & & 2 x & AE ' & & L & 0 & ( =) ) *= ) * * & F3 x & L ' 0 !2 5 !3( & ! 3P 11& AE & ! P & ' ( &-9 P 11&. + 0 0 !3 3 , &- 0 &. -& F4 x .& The reactions are
R1 =
2 P! 11
R4 =
9 P! 11
______________________________________________________________________________________ SOLUTION (7.19) We have
AE A(2 E ) 6 AE )1,2 = = L L3 L AE 2 A( E ) 6 AE ( )3 = = L L3 L (
There are four displacement components ( u1 , u2 , u3 , u4 ) and so the order of the system matrix is 4x4. Using Eq. (7.25a):
[k ]1 = [k ]2 = [k ]3 =
6 AE " 1 !1# L $& !1 1 %'
(CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 7–14
______________________________________________________________________________________ 7.19 (CONT.)
u1
(a)
u2
u3
u4
u1
u2
u3
u4
!1 0 0# "1 " 1 !1 0 0 # $ !1 (1 + 1) % !1 0 % 6 AE $$ !1 2 !1 0 %% 6 AE $ [K ] = = !1 (1 + 1) !1% L $0 L $ 0 !1 2 !1% $ % $ % 0 1' !1 &0 & 0 0 !1 1 '
(b)
" F1x # $ 1 !1 0 0 % " u1 # &F & ' (& & & 2 x & AE ' !1 2 !1 0 ( &u2 & ) *= ) * & F3 x & L ' 0 !1 2 !1( &u3 & ' ( &- F4 x &. + 0 0 !1 1 , &-u4 &.
(1)
Boundary conditions are u1 = u4 = 0 and Fx 3 = P . Equation (1) is then
Solving
" 0 # AE $ 2 !1% "u2 # & '= ( )& ' * P + L , !1 2 - *u3 +
u2 = (c)
PL 9 AE
u3 =
PL 18 AE
Equations (1) result in
0 " F1x # $ 1 !1 0 0 % " # " !2 P 3# &F & ' !1 2 !1 0 ( & PL 9 AE & & & & 2 x & 6 AE ' & & L & P & ( = = ) * ) * ) * L ' 0 !1 2 !1( & PL 18 AE & AE & 0 & & F3 x & ' ( 0 + 0 0 !1 1 , -& .& -& ! P 3 .& -& F4 x .& The reactions are
R1 =
2 P! 3
1 R4 = P ! 3
______________________________________________________________________________________ SOLUTION (7.20)
(
AE AE )1 = L L
Equation (7.25a):
[k ]1 = [k ]2 =
(
AE AE )2 = L L
AE " 1 !1# L $& !1 1 %'
(
AE 4 AE AE )3 = = 0.8 L 5L L
[k ]3 =
AE " 0.8 !0.8# L $& !0.8 0.8 %'
(CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 7–15
______________________________________________________________________________________ 7.20 (CONT.) (a) System matrix, [ k ] = [ k ]1 + [ k ]2 + [ k ]3 , is then
!1 0 0 # "1 $ !1 (1 + 1) !1 0 %% AE $ [K ] = !1 (1 + 0.8) !0.8% L $0 $ % 0 0.8 ' !0.8 &0 u1
(b)
u2
u3
u4
0 % " u1 # " F1x # $ 1 !1 0 &F & ' 0 (( &&u2 && !1 & 2 x & AE ' !1 2 = ) * ) * & F3 x & L ' 0 !1 1.8 !0.8( &u3 & ' ( &- F4 x &. + 0 0 !0.8 0.8 , &-u4 &.
(1)
Boundary conditions are u1 = u4 = 0 , We have Fx 3 = P . Thus
Solving
" 0 # AE $ 2 !1 % "u2 # & '= ( )& ' * P + L , !1 1.8- *u3 +
u2 = ! (c)
PL 2.6 AE
u3 =
PL 1.3 AE
Equations (1) yield
0 %" 0 # " F1x # $ 1 !1 0 " ! P 2.6 # &F & ' !1 2 ( & & & 0 ( & P 2.6 & L && 0 !1 & 2 x & AE ' & =) ) *= ) * * P & F3 x & L ' 0 !1 1.8 !0.8( & P 1.3 & AE & & ' ( &- F4 x &. + 0 0 !0.8 0.8 , -& 0 &. -&!1.6 P 2.6 .& The reactions are
R1 =
1 P! 2.6
R4 =
0.8 P! 1.3
______________________________________________________________________________________ SOLUTION (7.21) Table P7.21 Data for the truss of Fig P7.21 Element Length(m) ! c s
1 2 3 4
7.5 6 4.5 4.5
36.9o 0o 90o 0o
5
4.5 2
135o
0.8 1 0 1
0.6 0 1 0
"0.707 0.707
c2 cs s2 0.639 0.48 0.36 1 0 0 0 0 1 1 0 0 0.5
"0.5
0.5
(CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 7–16
______________________________________________________________________________________ 7.21 (CONT.)
u1
v1
u2
v2
" 0.639 0.48 !0.639 !0.48 # $ 0.361 !0.48 !0.361%% AE $ 0.48 [k ]1 = 0.639 0.48 % 7.5 $ !0.639 !0.48 $ % 0.361' & !0.48 !0.361 0.48 u1 v1 u3 v3 & 1 0 '1 0 # $ 0 0 !! AE $ 0 0 [k ]2 = 1 0! 6.0 $' 1 0 $ ! 0 0" % 0 0 u2 v2 u3 v3 0 &0 $0 1 AE $ [ k ]3 = 0 4.5 $0 $ %0 ' 1 u3 v3 & 1 0 $ AE $ 0 0 [k ]4 = 4.5 $' 1 0 $ % 0 0
0 0# 0 ' 1 !! 0 0! ! 0 1" u4 v 4 '1 0 # 0 0 !! 1 0! ! 0 0"
u2 v2 u4 v4 " 0.5 !0.5 !0.5 0.5# $ % AE $ !0.5 0.5 0.5 !0.5% [k ]5 = 4.5 2 $ !0.5 0.5 0.5 !0.5% $ % & 0.5 !0.5 !0.5 0.5'
______________________________________________________________________________________ SOLUTION (7.22) Table P7.22 Data for the truss of Fig.P7.22
Element 1
Length (m) 2.4
2 3 4
2.6 1.0 2.4
5
2.6
! 0o 22.62o "90o 0o 22.62o
c 1
s 0
c2 1
cs 0
s2 0
0.923 0.385 0.852 0.355 0.148 0 1 0 0 1 1 0 1 0 0 0.923 0.385 0.852 0.355 0.148
(CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 7–17
______________________________________________________________________________________ 7.22 (CONT.) (a)
Use Eq.(7.38);
u A v A uC v C " 1 0 !1 0 # $ 0 0 %% AE $ 0 0 [k ]1 = 1 0% 2.4 $ !1 0 $ % 0 0' & 0 0 uA vA uB vB " 0.852 0.355 !0.852 !0.355# $ % AE $ 0.355 0.148 !0.355 !0.148% [k ]2 = 2.6 $ !0.852 !0.355 0.852 0.355% $ % & !0.355 !0.148 0.355 0.148' uB v B 0 !0 #0 1 AE # [k ]3 = 0 1.0 #0 # &0 %1
uC v C 0 0" 0 %1 $$ 0 0$ $ 0 1'
uB v B " 1 0 $ AE $ 0 0 [k ]4 = 2.4 $ !1 0 $ & 0 0
uD v D !1 0 # 0 0 %% 1 0% % 0 0'
uC vC uD vD " 0.852 0.355 !0.852 !0.355# $ % AE $ 0.355 0.148 !0.355 !0.148% [k ]5 = 2.6 $ !0.852 !0.355 0.852 0.355% $ % & !0.355 !0.148 0.355 0.148'
(CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 7–18
______________________________________________________________________________________ 7.22 (CONT.) (b)
Global Stiffness Matrix [ K ] =
uA vA uB vB uC vC uD vD 0 0 " 0.745 0.137 !0.328 !0.137 !0.417 0 # $ 0.137 !0.057 !0.137 !0.057 0 % 0 0 0 $ % $ !0.328 !0.137 0.745 0.137 0 % 0 !0.833 0 $ % !0.137 !0.057 0.137 1.057 0 !2 0 0 $ % AE $ !0.417 0 0 0 0.745 0.137 !0.328 !0.137 % $ % 0 0 !2 0.137 1.057 !0.137 !0.057 % $ 0 $ 0 0 !0.833 0 !0.655 !0.273 0.745 0.137 % $ % !0.137 !0.057 0.137 0.057 '% 0 0 0 &$ 0 ! RAx % !0% #R # #0# # Ay # # # # 0 # # uB # # # # # #v B # # 0 # & = [K ] " & " #uC # # 0 # #vC # # 0 # # # # # #uD # # P # #$ 0 #' # RDy # ' $
{F } = [ K ]{! };
______________________________________________________________________________________ SOLUTION (7.23) (a)
Element 1
! = 135o
Equation (7.38):
u1
c 2 = 0.5 v1
cs = "0.5 u2 v2
s 2 = 0.5
" 0.5 !0.5 !0.5 0.5# $ % AE $ !0.5 0.5 0.5 !0.5% [k ]1 = L $ !0.5 0.5 0.5 !0.5% $ % & 0.5 !0.5 !0.5 0.5'
! = 180o c 2 = 1.0 cs = 0 u1 v1 u 3 v3 " 1 0 !1 0 # $ 0 0 %% AE $ 0 0 [k ]2 = 1 0% L $ !1 0 $ % 0 0' & 0 0
Element 2
s2 = 0
(CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 7–19
______________________________________________________________________________________ 7.23 (CONT.)
! = 270o c2 = 0 cs = 0 u1 v1 u4 v4 0 0 0 " !0 #0 1.0 0 %1.0 $$ # [k ]3 = k ' #0 0 0 0 $ # $ 1.0 ' &0 %1.0 0 where k ' = kL AE
s 2 = 1.0
Element 3
(b)
System matrix is 8x8. Superposition. [ K ] =
u1
v1
u2
v2
! [k ] results in u 3 v3 u 4
" 1.5 !0.5 !0.5 0.5 !1 $ !0.5 0.5 0.5 !0.5 0 $ $ !0.5 0.5 0.5 !0.5 0 $ AE $ 0.5 !0.5 !0.5 0.5 0 [K ] = 0 0 0 1 L $ !1 $ 0 0 0 0 $ 0 $ 0 0 0 0 0 $ 0 0 0 &$ 0 !k '
0 0 0 0 0 0 0 0
v4
0 0# 0 !k '%% 0 0% % 0 0% 0 0% % 0 0% 0 0% % k '%' 0
where k ' = kL AE . (c)
Boundary conditions are
u2 = v2 = u3 = v3 = u4 = v4 = 0
Therefore
! 0 " ! u1 " #$P # #u # # # # 2# # F2 x # #0# # # # # # F2 y # #0# % & = [K ]% & # F3 x # #0# # F3 y # #0# # # # # # F4 x # #0# # F4 y # #0# ' ( ' (
The total 7 ! 7 stiffness matrix can be reduced to a 7 ! 4 matrix by using the following antisymmetrical conditions: u1 = !u5 , u2 = !u4 , and v2 = v1 ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 7–20
______________________________________________________________________________________ SOLUTION (7.24) Table P7.24 Data for the truss of Fig.P7.24
Element 1
Length(m) ! 5 53.13o
2 4 ( a ) Use Eq.(7.38):
180o
c s c2 cs s2 0.6 0.8 0.36 0.48 0.64 "1 0 1 0 0
u1 v1 u2 v2 0.48 ' 0.36 ' 0.48# & 0.36 $ 0.48 0.64 ' 0.48 ' 0.64!! AE $ [k ]1 = 0.36 0.48! 5 $' 0.36 ' 0.48 $ ! 0.48 0.64" %' 0.48 ' 0.64 u2 v 2 u3 v3 & 1 0 '1 0 # $ 0 0 !! AE $ 0 0 [k ]2 = 1 0! 4 $' 1 0 $ ! 0 0" % 0 0
(b)
Global Stiffness Matrix
u1 v1 u2 v2 u3 v3 0.096 ' 0.072 ' 0.096 0 0# & 0.072 $ 0.096 0.128 ' 0.096 ' 0.128 0 0 !! $ $' 0.072 ' 0.096 0.322 0.096 ' 0.25 0 ! [ K ] = AE $ ! 0.096 0.128 0 0! $' 0.096 ' 0.128 $ 0 0 ' 0.25 0 0.25 0 ! ! $ 0 0 0 0 0 !" $% 0
(c)
! 0 " #0.322 0.096 $ !u2 " % & = AE ' (% & *)6000 + , 0.093 0.128- * v2 + "u2 # 1 $ 4 & '= 6 ( , v2 - 10(10 ) * !3
!3 % " 0 # " 0.9 # !3 & '=& ' (10 ) m ) 10.063+ ,!6000 - ,!3.02 -
(d)
" R1x # $ !0.072 !0.096 % " 4.5024 # "u2 # & & & & ' ( ) R1 y * = AE ' !0.096 !0.128 ( ) * = ) 6.0032 * kN + v2 , &!4.5 &R & & 0 + 3x , -' !0.25 .( + ,
(CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 7–21
______________________________________________________________________________________ 7.24 (CONT.) ( e ) Use Eq.(7.39)
!u " ! 0.0018 " F12 = AE [0.6 0.8]$ 2 % = 20(106) [0.6 0.8]$ % = #75 kN (C ) &#0.00604 ' & v2 ' "!u # " !0.0018 # F23 = AE [!1 0]$ 2 % = 20(106) [!1 0]$ % = 36 kN (T ) & 0.00604 ' & !v2 ' ______________________________________________________________________________________ SOLUTION (7.25) We have E = 105 GPa
A = 10 "10!4 m 2
Table P7.25 Data for the truss of Fig.P7.25 Element Length(m) ! c s
1 2
53.13 o 90 o
5 4
c2 cs s2 0.6 0.8 0.36 0.48 0.64 0 1 0 0 1
( a ) Apply Eq.(7.38):
u1 v1 u2 v2 0.48 ' 0.36 ' 0.48# & 0.36 $ 0.48 0.64 ' 0.48 ' 0.64!! AE $ [k ]1 = 0.36 0.48! 5 $' 0.36 ' 0.48 $ ! 0.48 0.64" %' 0.48 ' 0.64 u1 &0 $ AE $0 [k ]2 = 4 $0 $ %0
v1 0 1 0 '1
( b ) Global Stiffness Matrix
u3 v3 0 0# 0 ' 1 !! 0 0! ! 0 1"
u1 v1 u2 v2 u3 1.008 ' 0.756 ' 1.008 0 & 0.756 $ 1.008 3.969 ' 1.008 ' 1.344 0 $ $' 0.756 ' 1.008 0.756 1.008 0 [ K ] = 10 7 $ 1.008 1.344 0 $ ' 1.008 ' 1.344 $ 0 0 0 0 0 $ ' 2.625 0 0 0 $% 0
v3 0 # ' 2.625!! ! 0 ! 0 ! ! 0 ! 2.625!"
(CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 7–22
______________________________________________________________________________________ 7.25 (CONT.) (c)
1.008 % "!0.015# " F1x # 7 $ 0.756 & ' = 10 ( ' )& *10, 000 + ,1.008 3.969 - * v1 + 10 ! 103 = (1.008 ! 107 )("0.015) + 3.696 !107 v1 7
7
F1x = (0.756 !10 )("0.015) + 1.008 !10 v1 (d)
or or
v1 = 0.0044 m
F1x = !69.4 kN
Support reactions:
" F2 x # $ !0.756 !1.008 % " 69 # &F & ' !1.008 !1.344 ( !0.015 & & " # & 92.1& & 2y & 7 ' ( ) * = 10 ) *=) * kN ' 0 ( + 0.0044 , & 0 0 & & F3 x & ' ( &+ F3 y &, &+!115.5&, !2.625 . - 0
______________________________________________________________________________________ SOLUTION (7.26) Equation (7.38):
" 12 6 L !12 6 L # $ 2 2% EI 6 L 4 L !6 L 2 L % [k ] = [ K ] = 3 $ 12 !6 L % L $ !12 !6 L $ 2 2% & 6 L 2 L !6 L 4 L '
(a)
(b)
Boundary conditions are v2 = ! 2 = 0 . Equation (7.45a) becomes
#" P $ EI % 12 6 L & # v1 $ ' (= 2 ) 2*' ( + 0 , L -6 L 4 L . +!1 , PL2 PL3 v1 = " Solving, !1 = 2 EI 3EI
Equation (7.45a):
Solving
where
" F1 y # $ 12 6 L !12 6 L % "! PL3 3EI # & &M & ' 2 2(& 2 & 1 & EI ' 6 L 4 L !6 L 2 L ( & PL 2 EI & ) *= 3 ) * 12 !6 L ( & 0 & F2 y & L ' !12 !6 L & ' 2 2( 0 + 6 L 2 L !6 L 4 L , -& -& M 2 .& .& " F1 y # " ! P # $M $ $ 0 $ $ 1$ $ $ % &=% & $ F2 y $ $ P $ '$ M 2 ($ $'! PL $( F2 y = R2 = P .
______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 7–23
______________________________________________________________________________________ SOLUTION (7.27) Due to the symmetry only one-half of the beam need be considered. Referring to Case 3 of Table D.5, equivalent nodal forces obtained (see Fig. a). pL/4
Boundary conditions are v1 = ! 2 = 0
pL/4
1
2
We have M 1 = ! pL
2
pL /48 1
2
L 2 Figure (a) Equivalent nodal forces
pL2/48
L1 =
Inverting
$ pL2 48% EI " 4 L12 ' (= 3 ) & pL 4 + , L1 - &6 L1 $!1 % L3 "12 L2 & '= ( +v2 , 24 EI - 3 L
or
48 and
F2 y = ! pL 4 Equation (7.45a), with element of length L1 = L 2 .
&6 L1 # $!1 % 8 EI " L12 *' ( = 3 ) L - $3L1 12 . +v2 ,
$3L # %!1 & *' ( 12 . +v2 ,
3 L # $ pL2 48% ' )& 1 . + * pL 4 ,
"!1 # " $ pL3 24 EI # % &=% & 4 'v2 ( '$5 pL 384 EI (
This is the exact solution (See Table D.4) ______________________________________________________________________________________ SOLUTION (7.28) Due to symmetry, only one-half of the beam need be considered.
" 12 6 L !12 6 L # $ 2 2% EI 6 L 4 L !6 L 2 L % [k ]1 = 3 $ 12 !6 L % L $ !12 !6 L $ 2 2% & 6 L 2 L !6 L 4 L '
P/2
L
2
1 1
Therefore
2
k/2
! 0 # 3 EI kL EI [k ]2 = 3 # L # 0 # % 0
0 0 0 0
0 0 0 0
0" 0 $$ 0$ $ 0&
!12 6 L # " 12 6 L $ 6 L 4 L2 !6 L 2 L2 %% EI $ [K ] = 3 $ % kL3 L $ !12 !6 L 12 + !6 L % EI $ % 2 !6 L 4 L2 %' $& 6 L 2 L
(CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 7–24
______________________________________________________________________________________ 7.28 (CONT.) (a)
Boundary conditions are v1 = 0 and ! 2 = 0. Equation (7.45a) with F2 y = ! P 2 and M 1 = 0 :
" 4 L2 $6 L # %!1 & % 0 & EI ' 3( ) *= 3 ' kL ( )+v2 *, +$ P 2 , L $6 L 12 + 'EI (.
Introduce the data and solve:
v2 = "7.9338 mm
(b)
or
!1 = "2.9752 rad
!12 6 L # " 12 6 L $ F1 y % $ 0 % & 6 L 4 L2 2' ! 6 L 2 L ( 0 ( ( ' (!2.9752 (( !3 ( ( EI & 3 ') ) *= 3 & * (10 ) kL !6 L ' ( !7.9338( ( F2 y ( L & !12 !6 L 12 + EI & '( 0 ( (+ M 2 (, 2 , !6 L 4 L2 .' + -& 6 L 2 L ! F1 y " ! 5.20 kN " # # # # % F2 y & = % $3.80 kN & # # # # ( M 2 ) ($20.8 kN ' m )
Fspring = 200(7.9338) = 1.587 kN (C ) From symmetry: F1 y = F3 y = 5.20 kN ! ______________________________________________________________________________________ SOLUTION (7.29) P/2 PL/8
P/4
1
1
L
2
Figure (a). Equivalent Nodal forces.
PL/8
Boundary conditions are
v1 = 0
!1 = 0
We have
PL 8 P F1 y = F2 y = ! 2
M 2 = !M1 =
Equation (7.45a) reduces to
#" P 2 $ EI % 12 "6 L & # v1 $ ' (= 3 ) ( 2*' + PL 8 , L - "6 L 4 L . +! 2 , Inverting
% v2 & L # L2 3L $ %" P 2 & !#5 PL3 48 EI " ' (= (=$ % ) *' 2 +! 2 , 6 EI -3L 6 . + PL 8 , & # PL 8 EI ' ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 7–25
______________________________________________________________________________________ SOLUTION (7.30)
EI EI 4 EI )2 = 3 = 3 L L 4L So, the stiffness materices [ k ]1 + [ k ]2 and [ K ] are the same as obtained in
We have (
EI EI )1 = 3 L L
(
and
Example 7.10. Boundary conditions are v1 = 0, !1 = 0, and v3 = 0. Equation (f) of Example 7.10 becomes
18 "30 & # " P $ # v2 $ % 28 L L2 ( ' ' ' ' 18 51 L " 39 L )) *3PL + *! 2 + = ( '! ' 276 EI ( "30 " 39 L 111 L ) ' 0 ' , 3. /, " 8 # " !2 # 3 PL3 $ $ PL $ $ = % 84 L & = % 21 L & 276 EI $ $ 69 EI $!12 L $ '! 48 L ( ' ( Substituting the given data:
# v2 $ # "8 $ # "1.936 mm $ (30 %103 )(1.2)3 & & & & & & '! 2 ( = '168 ( = ' 0.041 rad ( 3 &! & 69(207 % 10 )(15) &"96 & &"0.023 rad & ) 3* ) * ) *
______________________________________________________________________________________ SOLUTION (7.31) (a)
The three element stiffness are identical. Equation (7.46):
" 12 6 L !12 6 L # $ 2 2% EI $ 6 L 4 L !6 L 2 L % [k ]1 = [k ]2 = [k ]3 = 3 12 !6 L % L $ !12 !6 L $ 2 2% & 6 L 2 L !6 L 4 L '
(b) The beam stiffness matrix, [ K ] = [ k ]1 + [ k ]2 + [ k ]3 , is assembled as
v1
!1 6L " 12 $ 6L 4 L2 $ $ !12 !6 L $ 6L 2 L2 EI [K ] = 3 $ 0 L $ 0 $ 0 $ 0 $ 0 0 $ 0 $& 0
v2
!2 !12 6L !6 L 2 L2 24 0 0 8L2 !12 L !6 L 6L 2 L2 0 0 0 0
v3
!3 0 0 0 0 !12 L 6L !6 L 2 L2 24 0 0 8L2 !12 !6 L 6L 2 L2
v4
!4 0 0 # 0 0 %% 0 0 % % 0 0 % 6L % !12 % 2 L2 % !6 L 12 !6 L % % 4 L2 %' !6 L
(CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 7–26
______________________________________________________________________________________ 7.31 (CONT.) Boundary conditions are :
v2 = v3 = v4 = ! 4 = 0
System governing relations, from . (7.40):
# "P$ # v1 $ % 0% % % % % %!1 % % Fy 2 % %0% % % % % %M 2 % %! 2 % & ' = [K ] & ' % Fy 3 % %0% %M3 % %!3 % % % % % % Fy 4 % %0% %M % %0% ( ) ( 4)
______________________________________________________________________________________ SOLUTION (7.32) (a)
Use Eq.(7.45a):
v1 !1 v2 !2 " 12 6 L !12 6 L # $ 2 2% EI 6 L 4 L !6 L 2 L % [k ]1 = 3 $ 12 !6 L % L $ !12 !6 L $ 2 2% & 6 L 2 L !6 L 4 L ' v2
" 12 $ EI $ 6 L [k ]2 = 3 L $ !12 $ & 6L (b)
!2 v3 !3 6 L !12 6 L # 4 L2 !6 L 2 L2 %% 12 !6 L % !6 L % 2 2 L !6 L 4 L2 '
Assemble the global stiffness matrix of the beam: [ K ] = [ k ]1 + [ k ]2 . Then,
6 L "12 6 L 0 0 & # v1 $ # R1 $ % 12 'M ' ( 2 2 0 0 )) ''!1 '' ' 1' ( 6 L 4 L "6 L 2 L 0 "12 6 L ) '' v2 '' '' R2 '' EI ( "12 "6 L 24 * += 3 ( )* + 2 0 8L2 "6 L 2 L2 ) '! 2 ' 'M 2 ' L ( 6L 2L ' F3 y ' ( 0 0 "12 "6 L 12 "6 L ) ' v2 ' ' ' ( )' ' 0 6 L 2 L2 "6 L 4 L2 - .'!3 /' , 0 .' M 3 /'
(1)
(CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 7–27
______________________________________________________________________________________ 7.32 (CONT.) (c)
The boundary conditions are v1 = 0, !1 = 0, and v2 = 0 , Hence
#" P $ % 12 6 L ' ' EI ( 2 * 0 + = 3 (6 L 4 L ' 0 ' L (6 L 2 L2 , .
6 L & # v3 $ ' ' 2 L2 )) *!3 + 8 L2 )/ ',! 2 '-
Solving
v3 = " (d)
7 PL3 , 12 EI
!3 =
3PL2 , 4 EI
!2 =
PL2 4 EI
Introducing these equations into Eq. (1), after multiplying :
F3 y = ! P,
M 3 = 0,
R2 =
M 2 = ! PL,
3 R1 = ! P, 2
5 P 2
M1 =
(e)
1 PL 2 P ki
1
L
2
L
y
+
3 P
x
-3P/2 M PL/2
+
x PL
______________________________________________________________________________________ SOLUTION (7.33) Table P7.33 Data for the truss of Fig P7.33 Element Length( m) ! c s
1 2 3 4 5
7.5 6 4.5 4.5 4.5 2
36.9 o 0o 90 o 0o 135o
c2 cs s2 0.8 0.6 0.639 0.48 0.36 1 0 1 0 0 0 1 0 0 1 1 0 1 0 0 " 0.707 0.707 0.5 " 0.5 0.5
(CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 7–28
______________________________________________________________________________________ 7.33 (CONT.) Apply Eq.(7.38):
u1 v1 u2 v2 0.48 ' 0.639 ' 0.48 # u1 & 0.639 $ 0.48 0.361 ' 0.48 ' 0.361! v1 AE $ ! [k ]1 = 0.639 0.48 ! u2 7.5 $' 0.639 ' 0.48 $ ! 0.48 0.361" v 2 % ' 0.48 ' 0.361
u1 " 1 $ AE $ 0 [k ]2 = 6.0 $! 1 $ # 0
v1 u3 0 !1 0 0 0 1 0 0
u2 v 2 0 "0 $0 1 AE $ [k ]3 = 0 4.5 $0 $ #0 ! 1 u3 " 1 $ AE $ 0 [k ]4 = 4.5 $! 1 $ # 0
v3 0 % u1 0 ' v1 ' 0 ' u3 ' 0 & v3
u3 v3 0 0 % u2 0 ! 1 ' v2 ' 0 0 ' u3 ' 0 1 & v3
v3 u4 v 4 0 ! 1 0 % u3 0 0 0 ' v3 ' 0 1 0 ' u4 ' 0 0 0 & v4
u2 v2 u4 v4 0.5# u2 & 0.5 ' 0.5 ' 0.5 $ ' 0.5 0.5 0.5 ' 0.5! v2 AE $ ! [k ]5 = 0.5 0.5 ' 0.5! u4 4.5 2 $ ' 0.5 $ ! 0.5" v4 % 0.5 ' 0.5 ' 0.5
______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 7–29
______________________________________________________________________________________ SOLUTION (7.34) Table P7.34 Data for the truss of Fig.P7.34
Element 1 2 3 4 5
! 0o 60 o 120 o 0o 60 o
c 1 0.5
c2
cs
s2
0 1 0.866 0.25
0 0.433
0 0.75
s
" 0.5 0.866 0.25 " 0.433 0.75 1 0 1 0 0 0.5 0.866 0.25 0.433 0.75
( a ) Use Eq.(7.38):
u1 " 1 $ AE $ 0 [k ]1 = L $! 1 $ # 0
v1 u4 0 !1 0 0 0 1 0 0
v4 0 % u1 0 ' v1 ' 0 ' u4 ' 0 & v4
u1 v1 u2 v2 0.433 ! 0.25 ! 0.433% u1 " 0.25 $ 0.433 0.75 ! 0.433 ! 0.75 ' v1 AE $ ' [k ]2 = 0.25 0.433' u2 L $! 0.25 ! 0.433 $ ' 0.433 0.75 & v 2 #! 0.433 ! 0.75 u2 v2 u4 v4 0.433% u2 " 0.25 ! 0.433 ! 0.25 $! 0.433 0.75 0.433 ! 0.75 ' v 2 AE $ ' [k ]3 = 0.433 0.25 ! 0.433' u4 L $! 0.25 $ ' 0.75 & v 4 # 0.433 ! 0.75 ! 0.433 u2 " 1 $ AE $ 0 [k ]4 = L $! 1 $ # 0
v 2 u3 0 !1 0 0 0 1 0 0
v3 0 % u2 0 ' v2 ' 0 ' u3 ' 0 & v3
(CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 7–30
______________________________________________________________________________________ 7.34 (CONT.)
u3 v3 u4 v4 0.433 ! 0.25 ! 0.433% u3 " 0.25 $ 0.433 0.75 ! 0.433 ! 0.75 ' v3 AE $ ' [k ]5 = 0.25 0.433' u4 L $! 0.25 ! 0.433 $ ' 0.433 0.75 & v 4 #! 0.433 ! 0.75 ( b ) Global Stiffness Matrix [ K ] =
u1 v1 . 0.433 " 125 $ 0.433 0.75 $ $! 0.25 ! 0.433 $ AE $! 0.433 ! 0.75 0 L $ 0 $ 0 $ 0 $! 1 0 $ 0 $# 0
{F } = [ K ]{! };
u2 v2 u3 v3 ! 0.25 ! 0.433 0 0 ! 0.433 ! 0.75 0 0 15 . 0 !1 0 0 15 . 0 0 !1 0 125 . 0.433 0 0 0.433 0.75 ! 0.25 0.433 ! 0.25 ! 0.433 0.433 ! 0.75 ! 0.433 ! 0.75
u4 v4 !1 0 % u1 ' v 0 0 ' 1 ! 0.25 0.433' u2 ' 0.433 ! 0.75 ' v 2 ! 0.25 ! 0.433' u3 ' ! 0.433 ! 0.75 ' v3 'u 15 . 0 ' 4 . '& v 4 0 15
! R1x % !0% #R # #0# # 1y # # # # 0 # #u2 # # # # # #v 2 # # P # " & = [K ]" & # u3 # #Q# # v3 # # 0 # # # # # #0# # R4 x # #$ 0 #' # R4 y # $ '
______________________________________________________________________________________ SOLUTION (7.35) We have AE=30 MN. Table P7.35 Data for the truss of Fig.P7.35
Element 1 2
Length ! 5 5313 . o 4 0o
c s c2 cs s2 0.6 0.8 0.36 0.48 0.64 1 0 1 0 0
(CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 7–31
______________________________________________________________________________________ 7.35 (CONT.) ( a ) Use Eq.(7.38):
u1 v1 u2 v2 0.48 ! 0.36 ! 0.48% u1 " 0.36 $ 0.48 0.64 ! 0.48 ! 0.64' v1 AE $ ' [k ]1 = 0.36 0.48' u2 5 $! 0.36 ! 0.48 ' $ 0.48 0.64& v 2 #! 0.48 ! 0.64 u2 v 2 u3 v3 " 1 0 ! 1 0 % u2 $ 0 0 ' v2 AE $ 0 0 ' [k ]2 = 1 0 ' u3 4 $! 1 0 $ ' 0 0 & v3 # 0 0
( b ) Global Stiffness Matrix
u1 v1 u2 v2 u3 v3 0.096 ! 0.072 ! 0.096 0 0 % u1 " 0.072 $ 0.096 0128 . . 0 0 ' v1 ! 0.096 ! 0128 $ ' $! 0.072 ! 0.096 0.322 0.096 ! 0.25 0 ' u2 [ K ] = AE $ ' . 0.096 0128 . 0 0 ' v2 $! 0.096 ! 0128 $ 0 0 ! 0.250 0 0.25 0 ' u3 $ ' 0 0 0 0 0 & v3 # 0
( c ) Boundary Conditions: u1 = v1 = u3 = v3 = 0.
! F2 x $ '0.322 0.096* !u2 $ " % = AE ) " % . ,+ #v 2 & (0.096 0128 # F2 y &
' 3 + ! 0 $ ! 0.0010 $ !u2 $ 1 (4 " %= %=" %m * -" #v 2 & AE )' 3 10.063, #' 10,000& #' 0.0039& (d)
' F1 x $ ' 7632 $ . ( 0.072 ( 0.096+ !F ! ! ! , ( 0.096 ( 0.128) 0.0010 ' $ ! 10176 ! ! 1y ! , ) & #=& & # = AE #N 0 ) %( 0.0039 " !( 7500 ! , ( 0.250 ! F3 x ! , ) !% F3 y !" !% 0 !" 0 * - 0
(CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 7–32
______________________________________________________________________________________ 7.35 (CONT.) ( e ) Use Eq.(7.39)
F12 =
! 0.001 " AE [0.6 0.8]$#0.0039% = #15.12 kN (C ) 5 & '
F23 =
" !0.001# AE [1 0]$0.0039% = !7.5 kN (C ) 4 & '
______________________________________________________________________________________ SOLUTIONS (7.36 through 7.39) It is important to take into account any condition of symmetry which may exist. Use a twodimensional finite element program or ANSYS. ______________________________________________________________________________________ SOLUTION (7.40) ( a ) Refer to Fig. 7.25a: p !p
( 2 p j + pm ) 6
p !p
( 2 pm + p j ) 6
Q j = 12 p j h1t + 13 m 2 j h1t = h1t Qm = 12 p j h1t + 23 m 2 j h1t = h1t ( b ) Refer to Fig. 7.25b: 2 2 3P " xy = PQ It = 4 th 3 ( h ! y )
(a)
Substituting Eq. (a) into the given expression for Qm :
Qm = ym 1" y j !
ym
3P 3 y j 4h
( h 2 " y 2 )( y " y j )dy 3
= ym 1! y j 34Ph [ ! y j ( y ! 3yh 2 )
ym yj
2
4
+ ( y2 ! 4yh 2 )
ym yj
]
This leads to the first of Eqs. (7.79). Similarly, ym
Q j = " # xy tdy ! Qm yj
(b)
Substituting Eq. (a) and Qm (from the first of Eqs. 7.79), Eq. (b) leads to the second of Eqs. (7.79).
______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 7–33
______________________________________________________________________________________ SOLUTION (7.41) Qy3 3 1 cm
Qy4 4
(b)
1 cm
(a)
1
4 cm
x P=5 kN 2
Body force effects:
{Q}ba = 13 At{Q x1 , Q x 2 , Q x 3 , Q y1 , Q y 2 , Q y 3 }
or
= 13 ( 4 " 0.3){0, 0, 0, ! 0.077, ! 0.077, ! 0.077} N {Q}ba = {0, 0, 0, 0, ! 0.0308, ! 0.0308, ! 0.0308, ! 0.0308, 0} N
Similarly,
{Q}bb = {0, 0, 0, 0, 0, ! 0.0308, ! 0.0308, ! 0.0308} N
Hence, or
{Q}b = {Q}ba + {Q}bb
{Q}b = {0, 0, 0, 0, ! 0.0308, ! 0.0616, ! 0.0616, ! 0.0308} N
Effect of shear force, P: From Case Study 7.1,
{Q}P = {0, 0, 0, 0, ! 2500, ! 2500} N
Surface traction effects, p: Total load ( 4 ! 0.3)700 = 840 N is equally divided between nodes 3 and 4. Thus,
{Q}P = {0, 0, 0, 0, 0, 0, ! 420, ! 420} N Thermal strain effects: We have ! 0 = 12(10
Hence,
"6
)50 = 600 µ and
& b1 1 $ [ B ]a = 0 2A $ $%a1
b2 0
b3 0
0 a1
0 a2
a2
a3
b1
b2
0# a3 ! ! b3 !"
&' 2 1$ = 0 8$ %$ ' 4
2 0 0
0 0 4
0 '4 '2
0 0 2
0# 4! ! 0 "!
{Q}ta = [ B ]Ta [ D ]{! 0 }( At )
(CONT.) ______________________________________________________________________________________
Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 7–34
______________________________________________________________________________________ 7.41 (CONT.)
-. 2 + 2 + 1+ 0 = + 8+ 0 + 0 + , 0
0 0 0 .4 0 4
.4* 0( ( 0.3 0 * '600 µ $ -1 4 ( 2(10 7 ) + ! ! 0.3 1 0 ( &600 µ #(1.2) ( + ( . 2 ( 0.91 0 0.35() !% 0 !" +,0 2( ( 0)
After multiplication, this gives
{Q}ta = {!5142.85, 5142.85, 0, ! 10285.7, 0, 10285.7} N
or
{Q}ta = {!5142.85, 5142.85, 0, 0, ! 10285.7, 0, 10285.7, 0} N Similarly,
Thus,
or Hence, or
& b2 1 $ [ B ]b = 0 2A $ $%a 2
b4 0 a4
b3 0 a3
0 a2 b2
0 a4 b4
& 0 1$ = 0 8$ $% ' 4
2 0 4
'2 0 0
0 '4 0
0 4 2
0# a3 ! ! b3 !" 0# 0! ! ' 2 !"
{Q}t = [ B ]Ta [ D ]{! 0 }( At ) = {0, 5142.85, ! 5142.85, ! 10285.7, 10285.7, 0} N {Q}tb = {0, 0, ! 5142.85, 5142.85, 0, ! 10285.7, 0, 10285.7} N {Q}t = {Q}ta + {Q}tb
{Q}t = {!5142.85, 5142.85, ! 5142.85, 5142.85, ! 10285.7, ! 10285.7, 10285.7, 10285.7} N
The system nodal force matrix:
{Q} = {Q}b + {Q}P + {Q} p + {Q}t = {!5142.85, 5142.85, ! 5142.85, 5142.85, ! 10285.7, ! 12785.76, 986.64, 7365.67} N
System equation: where
{Q} = [ K ]{0, u2 , 0, u4 , 0, v 2 , 0, v4 }
[K ] is given by Eq. (n) of Case Study 7.1.
(CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 7–35
______________________________________________________________________________________ 7.41 (CONT.) Since we have only 4 unknown quantities u2 , u4 , v 2 , v 4 (and 8 equations are available), there are redundant equations. Examination of these system of equations shows that: [K ] is reduced by crossing out; row 1 and column 1 for u1 = 0, row 3 and column 3 for u3 = 0, row 5 and column 5 for v1 = 0, row 7 and column 7 for v3 = 0.
{Q} is reduced by crossing out Q x1 , Q x 3 , Q y1 , Q y 3 . for
u1 = u3 = v1 = v3 = 0 Thus, from the reduced equations, we obtain
or
0.180 0.252 0.247+ ' 5142.85 $ 'u2 $ .0.429 !u ! ,0.180 0.483 ( 0.256 ( 0.351) !! 5142.85 !! ! 4! (6 , )& & # = 10 # v ( 0 . 252 0 . 256 1 . 366 1 . 373 , ) !( 12785.76 ! ! 2! , ) !%v 4 !" 1.373 1.546* !% 7365.67 !" -0.247 ( 0.351 (u2 % ( 1728 % "u " " 4098 " " 4" " " !6 ' $=' $ 10 cm v ! 7302 2 " " " " "&v 4 "# "&! 6702 "#
______________________________________________________________________________________ SOLUTION (7.42) 3 1000 N/cm 1 1 cm (a) (b)
1 cm
4 cm
2
x P=4 kN 4 500 N/cm
We have 7
(10 ) n = 27.1(10 =3 6 ) 7
(10 ) m = 27.8(10 = 0.4 6 )
Then
0.3 0 # &3 7(10 6 ) $ [ D] = 0.3 1 0 ! 2 $ ! 1 ' 3(0.1) 0 0.39!" $%0 [ D * ] = t 4[ DA] = ( 2 716)[ D ]
0.3 0 # &3 = 0.13(10 6 ) $0.3 1 0 ! $ ! 0 0.39!" $%0
(a)
(CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 7–36
______________________________________________________________________________________ 7.42 (CONT.) Element a: Equations (7.68), with reference to the preceding figure yield
a i = a 2 = !4
bi = b2 = 0
a j = a3 = 0
b j = b3 = 2
a m = a1 = 4
bm = b1 = !2
(b)
6
Substituting Eqs. (a) and (b) into Eqs. (7.54), we obtain (in 10 ):
k uu ,11 = 0.13[3( 4) + 0.39(16) + 0] = 2.37 k uu ,12 = 0.13[0 + 0.39( !16) + 0] = !0.81 k uu ,13 = 0.13[3( !4) + 0 + 0] = !1.56 k uu , 21 = 0.13[0 + 0.39( !16) + 0] = !0.81 k uu , 22 = 0.13[0 + 0.39( !16) + 0] = 0.81 k uu , 23 = 0.13[0 + 0 + 0] = 0 k uu ,31 = 0.13[3( !4) + 0 + 0] = !1.56 k uu ,32 = 0.13[0 + 0 + 0] = 0 k uu ,33 = 0.13[3( 4) + 0 + 0] = 1.56 6
Similarly, remaining matrices are determined. Stiffness matrix for the element a (in 10 ) is:
0.31 0.41# & 2.37 ' 0.81 ' 1.56 ' 0.72 $ ' 0.81 0.81 0 0.41 0 ' 0.41! ! $ 0 1.56 0.31 ' 0.31 0 ! $ ' 1.56 [ k ]a = $ ! 0.41 0.31 2.28 ' 2.08 ' 0.20! $ ' 0.72 $ 0.31 0 ' 0.31 ' 2.08 2.08 0 ! ! $ 0 ' 0.20 0 0.20" % 0.41 ' 0.41
or
& 2.37 ' 0.81 ' 1.56 $ ' 0.81 0.81 0 $ 0 1.56 $ ' 1.56 $ 0 0 0 [k ]a = $ $ ' 0.72 0.41 0.31 $ 0 ' 0.31 $ 0.31 $ 0.41 ' 0.41 0 $ 0 0 % 0
0 0
0.72 0.41
0 0
0.31 0
0 0
2.28 ' 2.08
0 0
' 0.20 0
0.31 0.41 0 # 0 ' 0.41 0 ! ! ' 0.31 0 0! ! 0 0 0! ' 2.08 ' 0.20 0 ! ! 2.08 0 0! 0 0.20 0 ! ! 0 0 0"
(CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 7–37
______________________________________________________________________________________ 7.42 (CONT.) Element b: Equations (7.68), referring to the preceding figure, now give
a j = a2 = 0
bi = b2 = !2
a j = a 4 = !4
b j = b4 = 2
am = a3 = 4
bm = b3 = 0
(c)
6
Introducing Eqs. (a) and (c) into Eqs. (7.54), we obtain (in 10 ):
k uu , 22 = 0.13[3( 4) + 0 + 0] = 1.56 k uu , 23 = 0.13[0 + 0 + 0] = 0 k uu , 24 = 0.13[3( !4) + 0 + 0] = !1.56 The remaining terms are obtained in a like manner. The stiffness matrix for the 6
element b (in 10 ):
' 1.56 ' 0.31 0 0 0.31# & 1.56 $ 0 0.81 ' 0.81 ' 0.41 0 0.41! ! $ 2.37 0.41 0.31 ' 0.72! $ ' 1.56 ' 0.81 [k ]b = $ ! ' 0.41 0.41 0.2 0 ' 0.2 ! $ 0 $ ' 0.31 0 0.31 0 2.08 ' 2.08! ! $ 0.41 ' 0.72 ' 0.2 ' 2.08 2.28" % 0.31 or
&0 $0 $ $0 $ 0 [k ]b = $ $0 $ $0 $0 $ %0
0 1.56 0
0 0 0 0 ' 1.56 0 0.81 ' 0.81 0
' 1.56 ' 0.81 0 0 0 ' 0.41 ' 0.31 0.31
2.37 0 0 0 0.41 0
0 0.31 0 0.41 ' 0.72 0
0 0 0 ' 0.31 ' 0.41 0
0 # 0.31! ! 0.41! ! 0.41 0.31 ' 0.72! 0 0 0 ! ! 0.20 0 ' 0.20! 0 2.08 ' 2.08! ! ' 0.20 ' 2.08 2.28"
The system matrix is found by addition of the matrices of the elements a and b:
[ K ] = [ k ] a + [ k ]b 6
That is (in 10 ), (CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 7–38
______________________________________________________________________________________ 7.42 (CONT.)
0 ' 0.72 0.31 0.41 0 # & 2.37 ' 0.81 ' 1.56 $' 0.81 2.37 0 ' 1.56 0.41 0 0.72 0.31! ! $ 0 2.37 ' 0.81 0.31 ' 0.72 0 0.41! $ ' 1.56 ! $ 0 ' 1.56 ' 0.81 2.37 0 0.41 0.31 ' 0.72! $ [K ] = $' 0.72 0.41 0.31 0 2.28 ' 2.08 ' 0.20 0 ! ! $ 0 ' 0.72 0.41 ' 2.08 2.28 0 ' 0.20! $ 0.31 $ 0.41 ' 0.72 0 0.31 ' 0.20 0 2.28 ' 2.08! ! $ 0.31 0.41 ' 0.72 0 ' 0.20 ' 2.08 2.28" % 0 Nodal force matrix: Equations (7.78) lead to
Q j = Q x 4 = ! 2[ 2 ( 5006)+1000 ] = !667 N
Qm = Q x 3 = ! 2[ 2 (10006 )+500 ] = !833 N Due to the shear, we also have
Q y 3 = !2000 N ,
Thus,
Q y 4 = !2000 N
{Q} = {0, 0, ! 833, ! 667, 0, 0, ! 2000, ! 2000} N
Nodal displacement equation:
{! } = {0, 0, u3 , u4 , 0, 0, v3 , v 4 }
The system equation: The redundant equations are eliminated by crossing out the 1 st, 2nd , 5th , and 6th rows and columns. This leaves
0 0.41* 'u3 $ ' . 833 $ - 2.37 . 0.81 ! . 667 ! + . 0.81 2.37 0.31 . 0.72( !!u4 !! ! ! 6+ (& # 10 = & # . 2000 0 0 . 31 2 . 28 2 . 08 . + ( ! v3 ! ! ! + ( !%. 2000 !" 2.28) !% v4 !" , 0.41 . 0.72 . 2.08 Solving,
u3 = 0.001226 cm
u4 = !0.002324 cm
v3 = !0.013092 cm
v4 = !0.013742 cm
Stress in element a: The strain matrix is (CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 7–39
______________________________________________________________________________________ 7.42 (CONT.)
'/x $ - bi ! ! 1 + &/ y # = +0 !. ! 2 A +a % xy " , i
bj 0 aj
. 0 10 (6 , 0 = 8 , ,- ( 4
Then,
bm 0 am
2 0 0
0 ai bi
(2 0 4
' ui $ !u ! 0 *! j ! ( !u ! am ( & m # v bm () ! i ! !v j ! ! ! %vm "
0 aj bj
0 (4 0
0 0 2
' 0 $ ! 1226 ! ! 0 +! ! 0 ! ) 4 & # ) 0 ! ! ( 2 )* !( 13,092 ! ! ! % 0 "
' 307 $ ! ! = & 0 #µ !( 3273! % "
)" x & # # ( " y % = [ D ]{! }a #" # ' xy $ a
0.3 0 + ( 307 % .3 70(10 9 ) , " " = 0.3 1 0 ) ' 0 $10 !6 , ) 0.97 0 0.39)* "&! 3273"# ,-0 = {66.46, 6.65, ! 92.12} MPa Stress in element b: The strain matrix is
'0x $ .( 2 10 (6 , ! ! 0 &0 y # = 8 , !/ ! ,- 0 % xy " b
2 0
0 0
0 0
0 (4
(4
4
(2
2
= {!581, 325, ! 1661} µ
' 0 $ ! 2324 ! ! 0 +! 1226 ( ! ! 4 )& # ) 0 ! ! 0 *) !( 13,742 ! ! ! % 13,092 "
(CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 7–40
______________________________________________________________________________________ 7.42 (CONT.)
Thus,
'0 x $ 0.3 ( 581 + ' ( 581 $ .3 70(10 3 ) , ! ! ! ! 0.3 1 325 ) & 325 # &0 y # = ) 0.97 , !/ ! ! ! 0 0 1661 ( , xy *) %( 1661 " % " b
= {!118.75, 10.88, ! 46.75} MPa
______________________________________________________________________________________ SOLUTION (7.43) y 3
4 (a)
0
1 cm
(b) 4 cm
1
1 cm
x
2
Stiffness matrix of element a: Let i = 1, j = 4, m = 3. Then,
x1 = 0
x4 = 4
x3 = 0
y1 = !1
y4 = 4
y3 = 1
Equations (7.68) give
a1 = 0 ! 4 = !4 a4 = 0 ! 0 = 0 a3 = 4 ! 0 = 4
b1 = 1 ! 1 = 0 b4 = 1 + 1 = 2 b3 = !1 ! 1 = !2
We have
&3.33 0.99 0 # 10 6 $ [D ] = 0.99 3.3 0 ! $ ! 8 0 1.16!" $%0 *
6
Equations (7.76) in 10 are thus,
k uu ,11 = [0 + 1.16(16)] 8 = 2.32
k uu ,14 = [0 + 0 + 0] 8 = 0
k uu ,13 = [0 + 1.16( !16) + 0] 8 = !2.32 k uu , 43 = [3.3( !4) + 0 + 0] 8 = !1.65
k uu , 44 = [3.3( 4) + 0 + 0] 8 = 1.65 k uu ,33 = [3.3( 4) + 0 + 0] 8 = 3.97
These can be written as follows:
0 # & 2.32 ' 2.32 $ k uu = ' 2.32 3.97 ' 1.65!(106 ) $ ! 1.65!" ' 1.65 $% 0
(CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 7–41
______________________________________________________________________________________ 7.43 (CONT.) Similarly, we find submatrices k vv and k uv . In so doing and after assembling these matrices, 6
we obtain the stiffness matrix for the element a (in 10 ):
0 0 1.16 ' 1.16# & 2.32 ' 2.32 $' 2.32 3.97 ' 1.65 0.99 ' 2.15 1.16! $ ! ' 1.65 1.65 ' 0.99 0.99 0 ! $ 0 [k ]a = $ ! 0.99 ' 0.99 6.6 ' 6.6 0 ! $ 0 $ 1.16 ' 2.15 0.99 ' 6.6 7.18 ' 0.58! $ ! 1.16 0 0 ' 0.58 0.58" % ' 1.16
Stiffness matrix for element b: Let i = 1, j = 2, m = 4. Then,
a1 = 4 ! 4 = 0 a 2 = 0 ! 4 = !4 a4 = 4 ! 0 = 4
b1 = !1 ! 1 = !2 b2 = 1 + 1 = 2 b4 = !1 + 1 = 0 6
Then, Eqs. (7.54) yield (in 10 ):
k uu ,11 = [3.3( 4) + 0 + 0] 8 = 1.65 k uu ,12 = [3.3( !4) + 0 + 0] 8 = !1.65 k uu ,14 = [0 + 0 + 0] 8 = 0 k uu , 22 = [3.3( 4) + 1.16(16) + 0] 8 = 3.97 k uu , 24 = [0 + 1.16( !16) + 0] 8 = !2.32 k uu , 44 = [0 + 1.16(16) + 0] 8 = 2.32
or
0 # & 1.65 ' 1.65 $ k uu = ' 1.65 3.97 ' 2.32!(10 6 ) $ ! 2.32!" ' 2.32 $% 0
Similarly, we obtain submatrices k vv and k uv . In so doing and after assembling these matrices, 6
we determine the stiffness matrix for the element b (in 10 ):
0 0 0.99 ' 0.99# & 1.65 ' 1.65 $ ' 1.65 3.97 ' 2.32 1.16 ' 2.15 0.99! $ ! ' 2.32 2.32 ' 1.16 1.16 0 ! $ 0 [k ]b = $ ! 1.16 ' 1.16 0.58 ' 0.58 0 ! $ 0 $ 0.99 ' 2.15 1.16 ' 0.58 7.18 ' 6.6 ! $ ! 0.99 0 0 ' 6.6 6.6 " % ' 0.99
(CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 7–42
______________________________________________________________________________________ 7.43 (CONT.) Prior to addition: the 2nd and 6th rows and columns of zeros are added to the matrix [k ]a ; the 3rd and 7th rows and columns of zeros are added to the matrix [k ]b . The system matrix:
[ K ] = [ k ] a + [ k ]b 6
is then (in 10 ):
0 0 0.99 1.16 ' 2.15# & 3.97 ' 1.65 ' 2.32 $ ' 1.65 3.97 0 ' 2.32 1.16 ' 2.15 0 0.99! ! $ 0 3.97 ' 1.65 0.99 0 ' 2.15 1.16! $' 2.32 ! $ 0 ' 2.32 ' 1.65 3.97 ' 2.15 1.16 0.99 0 ! $ [K ] = $ 0 1.16 0.99 ' 2.15 7.18 ' 0.58 ' 6.6 0 ! ! $ 0 1.16 ' 0.58 7.18 0 ' 6.6 ! $ 0.99 ' 2.15 $ 1.66 0 ' 2.15 0.99 ' 6.6 0 7.18 ' 0.58! ! $ 0.99 1.16 0 0 ' 6.6 ' 0.58 7.18" % ' 2.15 The force-displacement relation, Eq. (q) of Case Study 7.1 becomes
0.99* 'u2 $ ' 0 $ - 3.97 . 2.32 . 2.15 ! 0 ! + . 2.32 3.97 1.16 0 ( !!u4 !! ! ! + (& # & #= . 1 . 2 2 . 15 1 . 16 7 . 18 6 . 6 . . + ( !v2 ! ! ! + ( !%. 2.5 !" , 0.99 0 7.18) !% v4 !" . 6.6 This yields
179.9 357.9 225.8+ ' 0 $ 'u2 $ .483.2 !u ! ,178.6 ( 246.8 429 251.7) !! 0 !! ! 4! (6 , )& & # = 10 # v ( ( 357 . 9 247 1546 1373 , ) !( 2.5! ! 2! , ) !%v 4 !" ( 1366 * !%( 2.5!" -255.8 ( 251.7 ( 1373
(! 1534.35 % " 1246.325" " " !6 =' $(10 ) cm ! 433 " " "& 17.125"# (CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 7–43
______________________________________________________________________________________ 7.43 (CONT.) Stresses in element b:
' u1 $ !u ! 2 '/x $ - b1 b2 b4 0 0 0 * ! ! u ! ! 1 + ! ! 0 0 0 a1 a 2 a 4 ( & 4 # &/ y # = ( v1 2A + !. ! ! ! a a a b b b + 2 4 1 2 4( , 1 ) !v ! % xy " b 2 ! ! %v4 " 0 $ ' !( 1534.35! ! 2 0 0 0 0 +! .( 2 ! 1246.325 ! 10 (6 , ) 0 0 0 0 (4 4 & = # ) 0 8 , ! ! 2 0 )* ,- 0 ( 4 4 ( 2 ! ( 433 ! ! ! % 17.125 " = {!383.6, 225, 1282} µ Thus,
'0 x $ 0.3 0 + ' ( 581 $ .1 200(103 ) , ! ! ! ! 0.3 1 0 ) & 325 # &0 y # = , ) 0.91 !/ ! 0 0.35)* !%( 1661 !" ,-0 % xy " b = {!118.75, 10.88, ! 46.75} MPa Stresses in element a:
'0x $ - 0 10 .6 + ! ! 0 &0 y # = + 8 !/ ! +, . 4 % xy " a
.2 0
2 0
0 .4
0 4
4
0
0
.2
= {311.5, 0, 4.28} µ
0 ' $ ! ! 0 ! ! 0* 1246 . 325 ! ! 0 (& # ( 0 ! ! 2 )( ! ! 0 ! ! % 17.125 "
'/ x $ 0.3 0 * '311.5 $ -1 200(10 3 ) + ! ! ! ! 0.3 1 0 (& 0 # &/ y # = + ( 0.91 !. ! 0 0.35() !% 4.28!" +,0 % xy " a = {68.46, 20.54, 0.33} MPa End of Chapter 7
Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 7–44
CHAPTER 8 SOLUTION (8.1) ( a ) From Eq. (8.13), we have 2
2
2
2
# " ,min = ba2 !pai2 (1 + bb2 ) = pi b22 !aa 2 Hence,
2
# " ,max = ba2 !pai2 (1 + ab2 ) = pi ba2 !+ab2 " ! , max " ! , min
2
2
2
2
= a2+a b2 = a +2(1a.21a ) = 1.105 2
2
( b ) Using Eq. (8.16),
# " ,max = !2 p0 b2b!a 2 2
# " ,min = ! p0 ba2 !+ab2 2
Thus,
# " , max # " , min
2
2
= b22!ba 2 = 2 (21..2121aa2) = 1.1 2
______________________________________________________________________________________ SOLUTION (8.2) Equation (8.20): 2
or
2
" z = bp2 i!aa 2 = 102.!60.p6i2 = 0.5625 pi = 140 pi = 248.9 MPa
Equation (8.13):
# " ,max = bb2 +!aa 2 pi = 112 +!00..662 pi = 2.12 pi = 140 2
or
2
2
2
pi = 65.9 MPa
Equation (8.10): 2
or
" max = bp2 i!ba 2 = 12 !10.62 pi = 1.5625 pi = 80 2
pi = 51.2 MPa = pall
______________________________________________________________________________________ SOLUTION (8.3) ( a ) Initial maximum tangential stress, from Eq. (8.13),
# " = pi bb2 +!aa 2 = nn 2 +!11 pi 2
or
2
2
pi = # " nn 2 +!11 2
After boring, denoting the inner radius by rx , we have 2 2
2
2 2
2
"$ # + $ # = pi nn 2aa 2 +! rrx2 = nn 2 +!11 $ # nn 2aa 2 +! rrx2 x
or
2
x
( "$ # + $ # )( n 2 + 1)( n 2 a 2 ! rx2 ) = ( n 2 ! 1)$ # ( n 2 a 2 + rx2 )
(CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 8–1
______________________________________________________________________________________ 8.3 (CONT.) or
( $" ! + " ! )( n 2 + 1)n 2 a 2 # ( n 2 # 1)" ! n 2 a 2 = rx2 [( $" ! + " ! )( n 2 + 1) + ( n 2 # 1)" ! ]
This gives the new inner radius in the form 2 2
2
2 2
1
rx = [ 2 n a#"" !(+n#2 +"1!)(+n2"+1n) n2 a ] 2 !
!
(b) 2
2
1
rx = [ 2 ( 4 )( 0.0250.1) ""!!( 5+)0+.12""!!((54))4 ( 0.025) ] 2
= 0.02712 m = 27.12 mm ______________________________________________________________________________________ SOLUTION (8.4) Using Eq. (8.13)
# " ,max = pi ba2 !+ab2 2
280 2
2
2
2
= 7 (b02.!6()0.+6b)2
Solving, b = 0.6308 m. Therefore,
t = b ! a = 630.8 ! 600 = 30.8 mm ______________________________________________________________________________________ SOLUTION (8.5)
pi
po
a
4a
2
1
( a ) Equation (8.13) and (8.16) give at r=a:
# " 1 = pi bb2 +!aa 2 , 2
Then,
# " 2 = !2 po b2b!a 2
2
2
" !1 = " ! 2 ;
pi bb2 +!aa 2 = 2 po b2b!a 2
pi po
2
or
2
2
2
= a 22 +bb2 = a22(+44aa )2 = 1.6 2
( b ) By neglecting the strain ! L in the longitudinal direction, Then,
# $ 1 = E1 (" $ 1 + !pi ),
# $ 2 = E1 (" $ 2 + !po )
"! 1 = "! 2 gives
" # 1 + !p i = " # 2 $ !p o
(a)
But
(CONT.) ______________________________________________________________________________________
Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 8–2
______________________________________________________________________________________ 8.5(CONT.) 2
Hence,
2
2
2
= ba2 !+ab2 = a4 a+2 !4 aa 2 = 1.66
#" 1 pi
" ! 1 = 1.66 pi
(b)
We also have #" 2 po
or
2
= b22!ba 2 = 42a( 42 !aa )2 = 2.66 2
" ! 2 = 2.66 po
(c)
Substituting Eqs. (b) and (c) into (a) and letting ! = 1 3 : pi po
= 1.16
______________________________________________________________________________________ SOLUTION (8.6) Equation (8.14), substituting the given data yields
u = apEi ( ba2 "+ab2 + ! ) 2
2
6
6 ( 7"10 ) 0.6 + 0.6308 = 0.200 ( 0.63082 !0.62 + 0.3) "109 2
2
= 0.426 mm
______________________________________________________________________________________ SOLUTION (8.7) ( a ) We have " ! = u r , where u is defined by Eq. (8.14). Thus, at r=a:
" # ,max = pEi [ bb2 +$aa 2 + ! ] 2
2
(a)
( b ) Introducing ! " , ! r , and ! z from Eqs. (8.12), (8.13) and (8.20) into Hooke’s law we have
# $ = E1 [! $ % " (! r + ! z )] 2
2
" # ,max = pEi [ b +b(21$$a!2) a + ! ]
(b)
Substituting the data, Eq. (a): 6
60 (10 ) 4 + a 0.001 = 200 [ + 13 ] (109 ) 4 ! a 2 2
Solving, a = 1.41 m. Then,
t = 2 ! 1.41 = 0.59 m = t req. Similarly, Eq. (b) yields 2
6
60 (10 ) 4 + 2 a 3 0.001 = 200 [ 4!a 2 + 13 ] (109 )
a = 1.48 m; t = 0.52 m or ______________________________________________________________________________________ SOLUTION (8.8) Equation (8.13) at r=a: + 0.05 # " ,max = 00..25 (60) = 65 MPa 252 !0.052 2
2
(CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 8–3
______________________________________________________________________________________ 8.8 (CONT.) Equation (8.12) at r=a:
" r ,max = ! pi = !60 MPa
Equation (8.10): 2
( 0.25 ) " max = 060 = 62.5 MPa .252 !0.052
Equation (8.20) with po = 0 :
" z = 00.25.05!(060.05)2 = 2.5 MPa
Stress-strain relationship is given by
$ % = E1 [" % ! # (" r + " z )] = ur
(a)
Substituting Eqs. (8.12), (8.13), and (8.20), this expression results in at r=a:
u = E ( bap2 "i a 2 ) [(1 " 2! )a 2 + (1 + ! )b 2 ]
(P8.8)
Introducing the given numerical values, we obtain 6
( 60"10 ) u = 72"100.05 [0.4(0.05) 2 + 1.3(0.25) 2 ] 6 ( 0.252 !0.052 )
= 0.0571 mm The change in the internal diameter is therefore,
!d = 2u = 0.1142 mm
______________________________________________________________________________________ SOLUTION (8.9) Equation (8.19): 2
60 ) # " ,max = ! 20( .025.252 !) 0(.05 = !125 MPa
Equation (8.15) at r=b:
" r ,max = ! po = !60 MPa
Equation (8.20) for pi = 0 : 2
" z = ! 00.25.252 !(060.05)2 = !62.5 MPa
Equation (8.9) at r=a and pi = 0 : 2
2
( 0.25 ) " max = ! bp2 o!ba 2 = ! 060 = !62.5 MPa .252 !0.052
Substitution of Eqs. (8.15), (8.16), and (8.20), into Eq. (a) of Solution of Prob. 8.8 leads to for r=a: 2
b u = " E (apb2o"a 2 (2 " ! ) )
(P8.9)
2
)( 0.25 ) = ! 720."0510(960( 0".10 ( 2 ! 0.3) = !0.0738 mm 252 !0.052 )
"d = 2u = !0.1476 mm Thus, ______________________________________________________________________________________ SOLUTION (8.10) Given:
b = 0.1 m c = 0.3 m ! = 0.001(0.1) = 0.0001 m
a=0
Using Eq. (8.23):
(CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 8–4
______________________________________________________________________________________ 8.10 (CONT.) 9
p = Eb# c 2!cb2 = 200"100.(10.0001) 02.09( 0!.090.01 ) 2
2
= 88.89 MPa Then, letting p = pi = 88.89 MPa , Eq. (8.8) gives at r=b: 2
2
# " = 0 = b cp2!!cb2po + (cp2!!pbo2 )
After substituting the numerical values, this equation results in
po = 49.38 MPa
______________________________________________________________________________________ SOLUTION (8.11) ( a ) Using Eq. (8.18), # " , max pi
or Then, Hence,
2
2
= ba2 !+ab2 = 43
b = 2.65a b a +t a = a 2.65; t 2a
t = 1.65a
= 12.6aa = 0.825
( b ) Neglect longitudinal strain and consider
" r = ! pi = 6.3 MPa
" ! = 4 ( 63.3) = 8.4 MPa Therefore, for a = 0.075 m and b = 2.65a : 6
"10 )( 0.075 ) 4 !d = % d ( 2a ) = 2 Epi a [ ba2 #+ab2 + $ ] = 2 ( 6.3210 [ 3 + 13 ] (109 ) 2
2
= 7.4(10 !3 ) mm Alternatively, use Eq. (8.14) and let !d = 2u. ______________________________________________________________________________________ SOLUTION (8.12) Introducing various values of P, as given in Fig. 8.4, into Eqs. (a) and (8.21) of Sec. 8.3, it is seen that " ! and S values as shown in the figure are found. For example, let P = 1 or pi = po . Then,
# " = pi 1R!2R!1 + pi b 2 ( R12!!11) r ; 2
And
# " = ! pi
S = ""!!oi = 11++00 = 1
or
" !i = " !o
or
S =1
______________________________________________________________________________________ SOLUTION (8.13) ( a ) For % z = 0; [# z ! $ (# r + # " ) E = 0, using Eqs. (8.8), (CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 8–5
______________________________________________________________________________________ 8.13 (CONT.) 2
2
$ z = " ($ r + $ # ) = 2" ( ab2p!i !a b2 po ) ( b ) Similarly, for ! z = 0 : 2
2
% z = ! "E ($ r + $ # ) = ! 2" (Ea( bp2i!!ab2 )po ) ______________________________________________________________________________________ SOLUTION (8.14) At r=a: from Eq. (8.18),
# " ,max = 44 aa 2 +!aa 2 pi = 53 pi 2
2
and from Eq. (8.12),
" r ,max = ! pi .
Energy of distortion theory: 1
pi [( 53 ) 2 " ( 53 )( "1) + ( "1) 2 ] 2 = ! yp or
pi = 0.429! yp
Maximum shearing stress theory: 5 3
or
pi " ( " pi ) = ! yp
pi = 0.375! yp
______________________________________________________________________________________ SOLUTION (8.15) We have, at r=a:
# " ,max = bb2 +!aa 2 pi = 99 aa 2 +!aa 2 pi = 45 pi 2
2
2
2
" r ,max = ! pi ! u = 45 pi
(a) or And
pi = 0.8(350) = 280 MPa
! u = pi ,
pi = 350 MPa
( b ) Using Eq. (4.12a), 5 pi 4 ( 350 )
Solving,
! !630pi = 1
pi = 193.8 MPa
______________________________________________________________________________________ SOLUTION (8.16) From Eq. (8.18) for r=a: 2
2
25 ) !( 0.05 ) pi = 35 (( 00..25 = 32.31 MPa ) 2 + ( 0.05 ) 2
Total radial force on the contact surface is 2!aLp and total frictional force equals 2!apLµ . (CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 8–6
______________________________________________________________________________________ 8.16 (CONT.) Hence, Torque = 2!apLµ ( a )
= 2" (0.053 )(32.31 ! 10 6 )(0.2) = 5.073 kN ! m ______________________________________________________________________________________ SOLUTION (8.17) Let ! s1 , ! c1 , and ! s 2 , ! c 2 be initial and final compressive and tensile strains in the shaft and in the cylinder, respectively. Also, let " ! 1 , p1 and " ! 2 , p2 denote the initial and final maximum stresses and contact pressures, respectively. Then,
! s 1 + ! c1 = ! s 2 + ! c 2 Here,
(a)
# s1 = E1 ( p1 ! "p1 ) = 32E p1 # c1 = E1 (" $ 1 + !p1 ) = pE1 ( 2 + 13 ) = 37E p1 # s 2 = E1 [( p2 $ "p2 ) + "!paL2 ]
= E1 [ p2 (1 " 13 ) + 13 ! ( 04..055 )2 ] = E1 [ 23 p2 + 19093 .86 ]
From the condition of linearity, "! 2 "! 1
and
= pp12 ;
" ! 2 = p2 "p!11 = p2 2pp11 = 2 p2
# c 2 = E1 (" $ 2 + !p2 ) = E1 ( 2 p2 + !p2 ) = 73pE2
Equation (a) is thus, 2 p1 3E
from which Hence,
+ 73pE1 = E1 ( 23 p2 + 19093 .86 ) + 73pE2
p1 = p2 + 636.62
"p = p2 ! p1 = !636.62 kPa
______________________________________________________________________________________ SOLUTION (8.18) From Eq. (8.22),
a +b " = Ebpb ( bc2 #+bc2 + ! b ) + bp Es ( b2 #a 2 # ! s )
or
p=
2
b[ ( 1 Eb
2
c 2 +b2 c 2 #b2
2
2
" 2 2 + ! b ) + E1s ( ba2 #+ab2 # ! s )]
Substituting the given data, this gives p = 9.01 MPa Stresses in the steel cylinder, using Eq. (8.16), 6
2
"10 )( 0.08 ) ($ # ) r =a = ! 2 ((90..01 = !24.03 MPa 08 ) 2 !( 0.04 ) 2
(CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 8–7
______________________________________________________________________________________ 8.18 (CONT.) 2
2
) + ( 0.04 ) (# " ) r =0.08 = !9.01(10 6 ) (( 00..08 08 ) 2 !( 0.04 ) 2
= !15.02 MPa Stresses in the brass cylinder, from Eq. (8.13): 2
2
) + ( 0.08 ) (# " ) r =0.08 = 9.01(106 ) (( 00..14 14 ) 2 !( 0.08 ) 2
= 17.75 MPa 6
2
"10 )( 0.08 ) ($ # ) r =0.14 = 2 ((90..01 = 8.74 MPa 14 ) 2 !( 0.08 ) 2
______________________________________________________________________________________ SOLUTION (8.19) ( a ) Using Eq. (P8.18),
p=
( 0.5 2 )(10'3 ) & * 1'0.29 # 1 - 0.152 + 0.12 + 0.1$ + 0.33 (( + 9 + 2 2 9 ! ) 200 (10 ) "! %$ 72 (10 ) , 0.15 '0.1
= 56.49 MPa ( b ) From Eq. (8.14), for r=b: 2
2
6
"10 ) u = E 2( ba2 !bpai2 ) = 2 ( 072.1") 10( 09.(150.)(15562 !.49 0.12 )
= 0.1883 mm ! = 2u = 0.3766 mm ______________________________________________________________________________________ SOLUTION (8.20) ( a ) Using Eq. (8.14), we have at r=a: "0 a
= E ( bpa [(1 # ! )a 2 + (1 + ! )b 2 ] 2 #a 2 )
from which 2
2
p = a 2 [(1"#0!E)(ab2 +#(a1+!) ) b2 ]
(P8.20)
( b ) Substitution of Eq. (P8.20) into Eqs. (8.12) result in
$ r = (1!" ) a#2 0+E(1+" ) b2 (1 ! br 2 ) 2
% $ = (1!" ) a#2 0+E(1+" ) b2 (1 + br 2 ) 2
______________________________________________________________________________________ SOLUTION (8.21) Equation (8.14) at r=b:
u = #20 = bpE ( bc2 !+bc2 + " ) = bpE ( b2.25+ 2b.225!bb2 + 13 ) 2
2
2
2
E!
Solving, p = 5.860b
Then, Eq. (8.17) yields at r=b:
u = bpE (1 # " ) = 3(25!.860 ) = 0.114! 0 Hence,
"d = 2u = 0.23! 0
______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 8–8
______________________________________________________________________________________ SOLUTION (8.22) ( a ) Intial difference in diameter: where,
Thus,
" = 2b(! 1 + ! 2 )
! 1 =tangential (comp.) strain in the shaft ! 2 =tangential (tens.) strain in the cylinder % = 2Eb [( p $ !p ) + (" # ,max + !p )] = 2Eb [(" ! ,max + p ) = 2Eb ( 2 p + p ) = 6Epb
( b ) Compressive (uniform) strain ! L , due to axial load P, is
" L = !bP2 E
We now have
# 1 = E1 ( p1 $ "p1 $ !"bP2 ) # 2 = E1 (" $ 1,max + !p1 )
(comp.) (tens.)
where " ! 1,max is the increased tangential stress. Thus,
'1 = 2b(% 1 + % 2 ) = 2Eb ($ # 1,max + p1 & !"bP2 ) Based on the linearity condition: or
" ! 1, max p1
=
" ! , max P
=2
" ! 1,max = 2 p1
Setting ! = ! 1 6 pb E
or
= 2Eb ( 2 p1 + p1 " 3!Pb2 )
P = 9"b 2 ( p1 ! p )
______________________________________________________________________________________ SOLUTION (8.23) Radial strain is
! = ! b,comp + ! s ,tens. = E1b ( p $ !p ) + E1s (" # ,max + !p ) We also have
" = (T2 # T1 )(! b # ! s ) = !T (19.5 " 11.7)10 "6 = 7.8(10 "6 ) !T
Note that from Eq. (8.18) at r=a: # " , max p
2
2
= 44bb2 +!bb2 = 53
(CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 8–9
______________________________________________________________________________________ 8.23 (CONT.) Thus,
7.8(10 !6 ) "T = E1b ( p ! 3p ) + E1s ( 53p + 3p )
or
p = 11( E.7 (+!3TE) E)10b E6s s
b
Hence, Eb E s ( T2 !T1 ) # " ,max = 1.95 ( E + 3 E )105 s
b
______________________________________________________________________________________ SOLUTION (8.24) Axial Stress, Eq. (8.20):
!z =
pi a 2 0.82 pi = = 0.8 pi = 80 , b 2 " a 2 1.22 " 0.82
pi = 100 MPa
Tangential stress, Eq. (8.13):
(" ! ) max =
b2 + a 2 1.22 + 0.82 p = pi = 2.6 pi = 80 , i b2 # a 2 1.22 # 0.82
pi = 30.8 MPa
Shear Stress, Eq. (8.10):
Solving
pi b 2 1.22 ! max = 2 = pi = 1.8 pi = 50 b " a 2 1.22 " 0.82 pi = 27.8 MPa = pall
______________________________________________________________________________________ SOLUTION (8.25) The maximum radial displacement umax occurs at the inner edge of the tank.
So, Eq. (8.14) for r=a, results in
umax =
api a 2 + b2 =( 2 +! ) E b " a2
Introducing the given data
umax =
0.5(60 !106 ) 0.52 + 0.82 ( 2 + 0.3) = 1.107(10!3 ) m = 1.12 mm 9 2 70(10 ) 0.8 " 0.5
______________________________________________________________________________________ SOLUTION (8.26) Equation (8.18) and Eq.(8.12) at r=a:
" 1 = " # ,max = pi ba2 !+ab2 = 45 pi 2
2
pi " (" pi ) = 350,
(a)
! 1 " ! 2 = ! yp ;
(b)
2 ! 12 " ! 1! 2 + ! 22 = ! yp
5 4
" 2 = " r ,max = ! pi
1
pi [( 54 ) 2 ! ( 54 )(!1) + (!1) 2 ] 2 = 350,
pi = 155.6 MPa
pi = 179.3 MPa
______________________________________________________________________________________
Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 8–10
______________________________________________________________________________________ SOLUTION (8.27) 2
2
!" ,max = pi bb2 +#aa 2 = 53 pi = !1 , ! r ,max = # pi = ! 2 (a)
! u = 53 pi , and
(b)
!1 !u
or
pi = 53 (320) = 192 MPa
! u = pi ,
pi = 320 MPa
5 pi 3(320)
" !!u2' = 1;
(governs)
" "620pi = 1
pi = 146.8 MPa
______________________________________________________________________________________ SOLUTION (8.28) We have a=20 mm, b=30 mm, c=60 mm. Equation (8.22): p 60 + 30 + 20 0.05 = 21030!10 + 0.3] + 10530!10p 9 [ 30 " 0.3], 9 [ 602 "302 302 " 202 2
2
2
2
p = 53.3 MPa
Steel, Eq.(8.18): 2
2
2
2
+ 30 " ! ,max = p cc2 +#bb2 = 53.3 60 = 88.8 MPa 602 #302
Bronze, Eq.(8.19): 2
2
" ! ,max = #2 p b2b# a2 = #2(53.3) 30230# 202 = #191.9 MPa ______________________________________________________________________________________ SOLUTION (8.29) ( a ) Use Eq.(8.18) with pi = p, 2
a = b, b = c:
2
2
" ! ,max = p cc2 +#bb2 = 80 MPa, By Eq.(8.22), with a = 0,
2
c +b c 2 #b2
b = 50,
=
(Fig. 8.6) 80(106 ) p
(a)
! = 0.06 mm :
p p 80!10 0.06 = 10050!10 + 0.3] + 20050!10 9 [ 9 [1 " 0.3] p 6
or
60 !106 = 40 !106 + 0.15 p + 0.175 p,
p = 61.5 MPa
( b ) Equation (a) becomes 80 61.5
2
2
0.005 = cc2 +!0.005 2 ,
c = 138 mm
2c = 276 mm
______________________________________________________________________________________ SOLUTION (8.30) Equation (8.22) with a=0, b=50 mm, c=140 mm. bp
2
2
bp
! = Ec [ bc2 #+bc2 + " c ] + E s [1 # " s ]
(CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 8–11
______________________________________________________________________________________ 8.30 (CONT.) p p 140 + 50 0.04 = 12050!10 + 0.25] + 21050!10 9 [ 9 (0.7) 1402 "502 2
2
Solving p = 49.4 MPa
Shaft: " ! = " r = # p = #49.4 MPa Cylinder: 2
2
2
2
+ 50 " ! ,max = p cc2 +#bb2 = 49.4[ 140 ] = 63.8 MPa 1402 #502
! r ,max = " p = "49.4 MPa ______________________________________________________________________________________ SOLUTION (8.31)
! o from Equation (8.22): ! 2
bp = (ud ) r =b = bpE [ bc2 #+bc2 +" ] = bpE ( 17 15 + 0.3) = 1.433 E 2
2
E! p = 2.866 b
or
Then, ! i from Eq.(8.22) with a=0, 0.7 ! us = bpE (1 #" ) = 2.866 = 0.244!
Therefore,
"d s = 0.489!
______________________________________________________________________________________ SOLUTION (8.32) We have (Fig. 8.6):
a = 0.05 m
b = 0.1 m
c = 0.15 m
Maximum tangential stress occurs at r=0.1 m in gear wheel:
" max = p cc2 +!bb2 2
2
where, p is the internal pressure exerted by the contact surfaces. Substituting the given data into this equation, we have + 0.1 0.21 = p 00..15 152 !0.12 2
Solving,
2
p = 0.081 MPa = 81 kPa
This interface pressure produces the torque at the contact surface. Area of contact is
2!bL = 2! (0.1)(0.1) = 0.02!
The torque transmitted is thus,
T = [(0.2)(81 " 10 3 )(0.02! )](0.1) = 101.79 N ! m
______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 8–12
______________________________________________________________________________________ SOLUTION (8.33) From the torsion, formula, ! = Tb (" b 3
3
2) :
3
b T = ! "2b = ! (120) = 188.5b3 2
Also, Eq.(8.35b):
T = 2!b 2 fpl = 2!b 2 fp(3b) = 6!fb 3 p
And
6! fb3 p = 188.5b3 , We have E h = E s = E , 2 bpc
2
p = 6188.5 ! (0.2) = 50 MPa
! h = ! s = ! , and a=0. Equation (8.22) becomes 2
2 bp ( 4 b )
8 pb
! = E ( c 2 "b 2 ) = E ( 4 b 2 "b 2 ) = 3 E Hence
8(50) b ! = 3(200 = 0.6667(10"3 )b #103 )
______________________________________________________________________________________ SOLUTION (8.34) ( a ) a=10 mm, b=40 mm
120 F! = Ta = 0.01 = 12 kN
Thus or
12(103 ) = 2! afpt = 2! (0.01)(0.16)(0.04) p p = 29.84 MPa
(Eq.8.35a)
Equation (8.22) gives then
! = 10(20.84) [ 50 +10 + 0.3] + 10(29.84) (1 " 0.3) = (4.128 + 1.044)10"3 = 0.005 mm 100(103 ) 502 "102 200#103 2
(b)
2
2
2
2
2
+10 " ! ,max = p bb2 +# aa2 = 29.84[ 50 ] = 32.3 MPa 502 #102
______________________________________________________________________________________ SOLUTION (8.35) From Eq. (8.28a), "& r "r
or
= 3+8% #$ 2 [b 2 + a 2 ! ""r ( r 2 ) ! a 2 b 2 ""r ( r12 )] = 0
2 a 2b2 r3
! 2r = 0;
r = ab
This value of r is substituted into Eq. (8.28a) to yield
$ r ,max = "# 2 (b ! a ) 2
We also find from Eq. (8.28b), for r=a:
% " ,max = 2 3+8! #$ 2 (b 2 + 13&+!! )
Thus, # $ , max # r , max
=
1!" 2 a ) 3+" 2 ( b!a )
2 ( b2 +
______________________________________________________________________________________
Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 8–13
______________________________________________________________________________________ SOLUTION (8.36) At r=0: $ % = $ r = (3 + # )b 2
2
!" 2 8 . Thus,
0
0
2 ! " # ! r! " + ! r2 = ! yp
or
$ all = b1
8# yp ( 3+" ) !
(P8.36) 1 2
6
!10 ) 1 = 0.125 [ 108((2260 ] = 3845.9 rad sec .7!103 ) 3
= 36,726 rpm ______________________________________________________________________________________ SOLUTION (8.37) We have at inner edge:
$ max = # "2!0
" ! = 2" ! = 2(90) = 180 MPa Equation (8.28b) with r = 0.03 m is thus 180(106 ) = 108 3 [(0.03) 2 + (0.1) " 101+13 (0.03) 2 + (0.1) 2 ](7800)! 2 or
from which
! = 525.8 rad s = 5021 rpm
______________________________________________________________________________________ SOLUTION (8.38) ( a ) When p = 0, at interface,
ud ! u s = 0.05(10 !3 )
(a)
Use Eq. (8.28b) with r=a: 2
(" % ) d = #$4 [(3 + ! )b 2 + (1 & ! )a 2 ] 3
2
= 7.8(104 )! [3.3(0.1252 ) + 0.7(0.0252 )] = 101.473! 2 Radial displacement of disk (with ! r = 0 ): ! a (ud ) r =a = (" #E)d a = 101200.473 (109 ) 2
For shaft, using Eq. (8.30b) with r=a: 2
(" # ) s = 3.3( 08.025) (1 $ 13..93 )7.8(103 )! 2 = 0.8531! 2 Radial displacement of shaft (with ! r = 0 ): 2
! ( 0.025 ) (u s ) r =a = (" #E) s a = 0.8531 200 (106 )
Thus, Eq. (a) gives 101.473" 2 ( 0.025 ) 200 (106 )
or
2
" ( 0.025 ) ! 0.8531 = 0.05 200 (106 )
! = 1,933.884 rad sec = 19,040 rpm
( b ) Maximum stress occurs in disk
(" ! ) max = 101.473(1,993.884) 2 = 403 MPa
______________________________________________________________________________________
Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 8–14
______________________________________________________________________________________ SOLUTION (8.39) We have
a = 0.5c
b = 2c
r = ab = c
( a ) Equation (8.28a):
50(10 6 ) = 3.38c (0.25 + 4 " 1 " 12 )7.8(10 3 )(5000 260! ) 2 2
or Thus,
c = 0.1587 m t r = 1.5c = 238.1 mm
( b ) Equation (8.28b) at r=a:
# " ,max = 3.38c [0.25 + 4 $ 13..93 (0.25) + 4]7.8(10 3 )(5000 260! ) 2 = 180.1 MPa 2
______________________________________________________________________________________ SOLUTION (8.40) ( a ) Equation (8.23), with a=0: 9
0.000075 ) 0.16!0.005625 p = 210(102 ( 0)(.075 = 101.31 MPa ) 0.16
Then, Eq. (8.18) gives
+ 0.005625 # " ,max = 101.31(10 6 ) 00..16 16!0.005625 = 108.68 MPa
( b ) Applying Eq. (8.28c),
.3( 0.7 ) 0.000075 = 8(3210 [0.005625 + 0.16 ! 13..33 (0.005625) "109 )
Solving,
+ 10..37 (0.16)](7.8 " 10 3 )(0.075)! 2
! = 450 rad sec = 4300 rpm
______________________________________________________________________________________ SOLUTION (8.41) From Eqs. (8.30a) and (8.30b), for r=0 and ! = 1 3 :
# max = 3+8$ ! ("b) 2 = 125 !v 2 ______________________________________________________________________________________ SOLUTION (8.42) Apply Eq. (8.28c) with u = 0.04 mm at r = 25 mm . Substituting the given data:
.3( 0.7 ) 0.04(10 !3 ) = 8(3210 [(0.025) 2 + (0.25) 2 ! 13..33 (0.025) 2 "109 )
Solving,
1.3 0.7
(0.25) 2 ](7800)! 2 (0.025)
! = 913.1 rad s = 8719 rpm
______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 8–15
______________________________________________________________________________________ SOLUTION (8.43) We have ti to
= ( ab ) s ;
0.125 0.0625
s = ( 00..625 125 )
Solving, s=0.431. Then, 1
0.431 2 2 m1, 2 = " 0.431 2 ± [( 2 ) + (1 + 0.3 ! 0.431)]
or
m1 = 0.869
m2 = !1.3
Equation (8.39) gives
# r = ct11 r 0.3 + ct12 r $1.869 $ 0.50169 " (!r ) 2
Given conditions are:
(! r ) r =0.625 = 0,
(a)
(! r ) r =0.125 = 0
Thus, substituting the given data into Eq. (a) and solving: c1 t1
= 0.2322 !" 2 ,
c2 t1
= #0.0024 !" 2
The second of Eqs. (8.39), at the bore r=0.125 m, leads to
140(10 6 ) = 0.2322(0.1250.3 )(0.869) !" 2
2
) 2 + ( #0.0024)( #1.3)(0.125#1.869 ) !" 2 # (81#+(03.9.3)()(00.125 .431) !"
or
!" 2 = 549(10 6 )
It follows, from the second of Eqs. (8.39), that
(" ! ) r =0.625 = [0.2322(0.6250.3 )(0.869) 2
) 6 " 0.0024( "1.3)(0.625"1.869 ) " 81".93(.30(.625 0.431) ](549 ! 10 )
= 37.5 MPa Circumferential force is thus
37,500(0.0625) = 2344 kN m
______________________________________________________________________________________ SOLUTION (8.44) ( a ) Uniform thickness
2
Centrifugal force due to the blades, m! r , is 540 9.81
000! 2 ( 10,60 ) (0.575) = 8.677(10 6 ) N
The pressure at b is then 6
(10 ) po = 2!8.(667 0.5 )( 0.05 ) = 55.24 MPa
We have
000" 2 #$ 2 = 7.8(10 !3 )( 10,60 ) = 2.1384(10 3 )
The condition of zero pressure at the bore is satisfied by, using Eq. (8.27b): 2
2 2
(" r ) r =a = 0 = 1%E! 2 [ % ( 3+! )(1%8!E ) #$ a + (1 + ! )c1 % (1 % ! ) ac22 ]
(CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 8–16
______________________________________________________________________________________ 8.44 (CONT.) 2
2
0 = $ ( 3+! )8a "# + [ E1($1!+!2 ) c1 ] + [ $ E1($1!$!2 ) c2 ] a12 1 424 3 14243
or
A1
0 = A1 + A2 a12 $
A2
( 3+# ) a 2 !" 2 8
Substituting the data, we have
0 = A1 + 256 A2 ! 3.4456
(a )
The condition at the outer circumference is satisfied by: 2
(" r ) r =b = 55.24 = A1 + ( 0A.52)2 ! 3.3( 0.5) 8( 2138.4 ) or
55.24 = A1 + 4 A2 ! 220.52
(b)
A1 = 280.08
(c)
Solution of Eqs. (a) and (b) gives
A2 = !1.08
Equation (8.27c) is also written as follows 2 2
% $ = A1 & A2 r12 & (1+3# )8!" r
(d)
where A1 and A2 are given by (c). At r=a, we have from Eq. (d):
(# " ) r =a = 280.08 + 276.48 ! 1.98 = 554.58 MPa = ! max
Similarly, Eq. (d) gives r=b:
(# " ) r =b = 280.08 + 4.32 ! 126.97 = 157.43 MPa
Note that ! r ,max occurs at r =
ab = 0.1768 m. Thus Eq. (8.27):
(" r ) r =0.1768 = !27.67 + 280 ! 34.55 = 217.88 MPa ( b ) Hyperbolic section We have Then,
0.4 0.05
.5 = ( 0.00625 )s ;
s =1 1
m1, 2 = ! 12 ± [0.25 + 1.3] 2 or Letting
m1 = 0.745 c1 t1
= B1
m2 = 1.745 c2 t1
= B2
Eq. (8.39) becomes then 2
2 $ r = B1r m1 + s %1 + B2 r m2 + s %1 % (83%+(!3)+"# ! )s r
(CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 8–17
______________________________________________________________________________________ 8.44 (CONT.)
(! r ) r =a = 0
and
= B1 (0.0625) 0.745 + B2 (0.0625) #1.745 # 0.7021(0.0625) 2 !" 2 or Also
0 = B1 + 996.35B2 # 0.0216 !" 2
(e)
(# r ) r =b = 55.24 $ B1 (0.5) 0.745 + B2 (0.5) $1.745 $ 0.702(0.5) 2 !" 2
55.24 = 0.55967 B1 + 3.352 B2 # 0.1755!" 2
or
(f)
Substituting the given data and solving Eqs. (e) and (f):
B1 = 725.4
B2 = !0.6814
(g)
The second of Eqs. (8.33), 2
% $ = B1m1r m1 + s &1 + B2 m2 r m2 + s &1 & (18+&3(!3+)!"#) s r 2 gives at r=a:
(" ! ) r =a = 725.14(0.745)(0.0625) 0.745
# 0.6814( #1.745)(0.0625) #1.745 # 0.4043(0.0625) 2 !" 2 or
(! " ) r =a = 215.2 MPa = ! max
Also similarly we obtain that
(" ! ) r =b = 110.2 MPa
( c ) Uniform stress Using Eq. (8.41), where,
to t1
2
= e $ ( "# 2! ) b
2
3
Thus,
2
.59 ) ( 0.5 ) " ( $% 2 2# )b 2 = "7.8!10 (2523 ( 84 ) = !3.182
2
to = 0.02425e !3.182 = 0.001 m = 1 mm
and
t = 0.02425e !12.728 r
2
______________________________________________________________________________________ SOLUTION (8.45) Because u=0 at r=b, set c2 = 0 in Eq. (8.43). Thus, Eq. (8.43) with c2 = 0, T =constant, and u=0 at r=b: b
0 = c1b + (1+b# ) "T ! rdr 0
or
c1 = # (1+"2)!T
(CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 8–18
______________________________________________________________________________________ 8.45 (CONT.) Substituting this into Eq. (d) and (e) of Sec. 8.10, we obtain 2 #ET " r = $ #ET 2 $ 2 (1$! 2 ) (1 + ! )
2 "ET # $ = "ET 2 % "ET % 2 (1%! 2 ) (1 + ! )
Letting 1 " !
2
= (1 + ! )(1 " ! ) and simplifying we obtain $ r = $ # = % "1ET %!
______________________________________________________________________________________ SOLUTION (8.46) We substitute the given T into Eqs. (8.44) to obtain 2
2
2
E (Ta #Tb ) a ( r #b ) b b " r = !2ln( b a ) [ # ln a # r 2 ( b 2 # a 2 ) ln a ]
Then, $" r $r
! (Ta #Tb ) d b a d b b = 0 = E2ln( b a ) { dr (ln a ) # b 2 # a 2 [1 # dr ( r 2 )]ln a } 2
2
yields, after differentiation: 1
r = ab( b2 !2a 2 ln ab ) 2
It is noted that, Eq. (8.53) gives the same result. ______________________________________________________________________________________ SOLUTION (8.47) Using Eq. P8.46, we have 1
1.5 ) r = 0.01(0.015)[ ( 0.0152 ln( ] 2 = 12.1 mm ) 2 !( 0.01) 2
Equation (8.53) are therefore !6
9
2
2
(12.1 !15 ) (# r ) r =12.1 = 10.4 (102 ( 0.7)()90ln("110.5))( !8) [ ! ln 1215.1 ! 100 ln(1.5)] 12.12 (152 !102 )
= 1.319(10 7 )[0.041] = 0.541 MPa 2
2
(10 +15 ) (" r ) r =10 = 1.319(10 7 )[1 ! ln(1.5) ! 100 ln(1.5)] 100 (152 !102 )
= 6.045 MPa 2
2
100 (15 +15 ) (# " ) r =15 = 1.319(10 7 )[1 ! ln(1) ! 100 ln(1.5)] (152 !102 )
= !4.64 MPa 2
2
100 (12.1 +15 ) (# " ) r =12.1 = 1.319(10 7 )[1 ! ln( 1215.1 ) ! 12 ln(1.5)] .52 (152 !102 )
= 0.488 MPa Similarly, 2
(" z ) r =10 = !1.319(10 7 )[1 ! 2 ln(1.5) ! 152 (210!10)2 ln(1.5)] = 6.055 MPa = ! max
2
(" z ) r =15 = !1.319(107 )[1 ! 2 ln(1) ! 152 (210!10)2 ln(1.5)]
= !4.64 MPa
______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 8–19
______________________________________________________________________________________ SOLUTION (8.48) Introducing
T ( r ) = T0 (b ! r ) b
into Eqs. (8.45), after integration, we obtain the following expressions for stresses
" r = 13 T0 ( br # 1)!E " # = 13 T0 ( 2br $ 1)!E
From these we observe that, at r=b: the radial stress vanishes while tangential stress assumes its maximum value. ______________________________________________________________________________________ SOLUTION (8.49) z 3
p=1.4 kN/cm
1 cm 0 1 cm
r
20 cm
1
4 cm
2
Equivalent nodal force matrix We have
r1 = 0 r2 = 4 r3 = 0
z1 = !1 z 2 = !1 z3 = 1
r =4 3 z = !1 3
Weight of the element is
2!r A(0.077) = 2! ( 4 3)( 4)(0.077) = 2.58 N
Body forces:
{Q}e = {Qr1 , Qr 2 , Qr 3 , Q z1 , Q z 2 , Q z 3 }
Therefore,
{Q}be = {0, 0, 0, ! 0.86, ! 0.86, ! 0.86} N
Surface forces:
q2 = q3 = 14002 20 = 3130.4 N cm qr 2 = qr 3 = !3130.4( 220 ) = !1400 N cm q z 2 = q z 3 = !3130.4( 420 ) = !2800 N cm Since Then,
Qr = 2!r qr
Q z = 2!r q z
Qr 2 = Qr 3 = !11.729 kN Q z 2 = Q z 3 = !23.457 kN
(CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 8–20
______________________________________________________________________________________ 8.49 (CONT.) Therefore,
{Q}ep = {0, ! 11.729, ! 11.729, 0, ! 23.457, ! 23.457} kN
Thermal forces:
{Q}te = 2"r A[ B ]T [ D ][ B ]{! 0 }
Here,
&0.3 $ 6 $0.7 [ D ] = 38.46(10 ) $0.3 $ %0
We also have
ai = a1 = 4
b1 = !2
a j = a2 = 0
b2 = 2
am = a3 = 4
b3 = 0
0.7 0.3 0 # 0.3 0.3 0 ! ! 0.3 0.7 0 ! ! 0 0 0.2"
c1 = !4
d 1 = ar1 + b1 + c1rz = 2
c2 = 0 c3 = 4
d2 = 2 d3 = 2
Therefore,
&' 2 $ 1$ 0 [B ] = 8$ 2 $ %' 4
2 0 2 0
0 0 2 4
0 '4 0 '2
0 0 0 2
0# 4! ! 0! ! 0"
It follows that
'0.0006$ !0.0006! ! ! {Q}te = 2( ( 43 )4[ B ]T [ D ][ B ]& # !0.0006! !% 0 !"
= {0, 502.3, 251.2, ! 502.3, 0, 502.3} kN
Equivalent nodal force matrix is thus,
{Q}e = {Q}be + {Q}ep + {Q}te b
p
t
where {Q}e , {Q}e , {Q}e are already obtained. Element stiffness matrix:
[k ]e = 2!r A[ B ]T [ D ][ B ] = 2! ( 43 )4[ B ]T [ D ][ B ]
(CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 8–21
______________________________________________________________________________________ 8.49 (CONT.) Substituting the values of [D ] and [B ], after carrying out the matrix matrix multiplications, we obtain:
1.6 ( 1.6 ' 4.8 % 1.6 6.4 4 % 4 6 % ( 1.6 [ k ]e = % (4 % 4.8 ( 8 % ( 1.6 0 1.6 % 8 2.4 & ( 3.2
4.8
( 1.6 ( 3.2$ 0 8 " (8 " 1.6 2.4" (4 6 " ( 20.14 ! 10 ) 5.6 ( 0.8 ( 4.8" 0.8 0 " ( 0.8 " 0 4.8# ( 4.8
Element governing equation
{Q}e = [k ]e {! }e Here,
(a)
(! ) e = {u1 , u2 , u3 , w1 , w2 , w3 }
When boundary conditions are given, (! ) e is computed from Eq. (a), as illustrated in Chap. 7. ______________________________________________________________________________________ SOLUTION (8.50 through 8.53) Owing to the symmetry, only any one-quarter of the cylinder need be analyzed. Use a finite element computer program, such as ANSYS.
End of Chapter 8
Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 8–22
CHAPTER 9 SOLUTION (9.1) Using Eq. (9.3), 1
1
6
# = ( 4 kEI ) 4 = [ 4 ( 200"101.49 ()(105.04) "10!6 ) ] 4 = 0.7676 m !1 Equation (9.8) yields, for x = 0 : M max = "4 !P f 3 ( !x ) = " 4P! f 3 (0) = " 4P! Thus, 6
!6
10 ) 4 ( 0.7676 ) P = $ max Ic( 4 # ) = 210"10 ( 5.040."0635 = 51.18 kN
______________________________________________________________________________________ SOLUTION (9.2) b
I = b ( 2.5b) 3 12 = 1.302b 4 6
2.5b
4
I M max = " max = 250!101.25(1.b302 b ) = 260.4(10 6 )b 3 c
(a)
1 4
6
" = [ 4 ( 200!2010(910)(1.)302 b4 ) ] = 0.0662 b Equation (9.8):
M max = 4P!
(b)
From Eqs. (a) and (b), 3
260.4(10 6 )b 3 = 440( 0(.100662) b) or
b = 0.0241 m = 24.1 mm
______________________________________________________________________________________ SOLUTION (9.3) Select a particular solution of the form v p = a sin 2L!x a = const. Introduce this into Eq. (9.1),
( 2L! ) 4 a + EIk a = EIp1
or
a=
p1
k+
Thus,
v=
k+
= k [1+ 4 (p"1 !L )4 ]
16" 4 EI L4
p1 16! 4 EI
sin 2L!x
(a)
4
L
General solution is
v = e "x [ A cos "x + B sin "x ] + e ! "x [c cos "x + D sin "x ] + v p
(CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 9–1
______________________________________________________________________________________ 9.3 (CONT.) Boundary conditions are:
v ( !) = 0;
A= B=0 Loading repeats itself periodically, p1 sin( 2!x L). But v = e " !x [C cos !x + D sin !x ]
cannot repeat periodically and represents a damped wave. Thus, in order deflection to repeat itself with the same wave length as loading it is required that C = D = 0. Accordingly, solution is
v = vc + v p = 0 + v p = v p
given by Eq. (a). ______________________________________________________________________________________ SOLUTION (9.4) p Q
x
a b
y
From Example 9.1: b
a
" !x " !x vQ = # pdx [cos !x + sin !x ] " # pdx [cos !x + sin !x ] 2 k !e 2 k !e
=
0 p 2k
0
[e
" !x
cos !a " e
" !b
cos !x ]
Note that, if a=0 and b=L (large):
vQ ! 2pk
When a and b increase (large):
vQ ! 0
(a)
While according to the result of Example 9.1, when a=0 and b=L (large):
vQ ! 2pk
When a and b increase (large);
vQ ! 2pk
(b)
the answers differ, as observed by comparing Eqs. (a) and (b). ______________________________________________________________________________________ SOLUTION (9.5) Applying Eqs. (9.3) and (9.8) we obtain 1
1
!1 .8 4 " = [ 4 kEI ] 4 = [ 4 (16 8.437 ) ] = 0.84 m
v (0) = v max = P2!k ( 0.84 ) = 0.135 = 3.375(10 !3 ) m 2 (16.8 )
and
M (0) = M max = 4P" = 4 (135 0.84 ) = 40.179 kN ! m
Maximum stress is therefore 3
(10 ) " max = MSmax = 403..9179 = 103.02 MPa (10! 4 )
______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 9–2
______________________________________________________________________________________ SOLUTION (9.6) Refer to Solution of Prob. 9.1: 1 k 14 12(106 ) ) =[ ]4 9 "6 4 EI 4(200 #10 )(5.04 #10 ) !1 = 1.3135 m Equation (9.8) gives, for x = 0 : P M max = " 4!
! =(
Therefore
! max I (4 " ) (210 2.5)106 (5.04 $10#6 )4(1.3135) = c 0.0635 = 35 kN
P=
______________________________________________________________________________________ SOLUTION (9.7)
I = b 4 12
M max =
! max I (260 1.8)106 (b 4 12) = c b2
(a)
= 24.074(106 )b3
! =[
1 7(106 ) ] 4 = 0.1316 b 9 4 4(70 "10 )(b 12)
Equation (9.8):
M max =
P 4!
(b)
From Eqs. (a) and (b),
24.074(106 )b3 = Solving,
50(10)3 b 4(0.1316)
b = 0.0628 m = 62.8 mm
______________________________________________________________________________________ SOLUTION (9.8) We have
1 k 14 15 ] =[ ] 4 = 0.8165 m "1 4 EI 4(8.437) P! v(0) = vmax = 2k 0.25(0.8165) = = 6.8(10!3 ) m = 6.8 mm 2(15)
! =[
(CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 9–3
______________________________________________________________________________________ 9.8 (CONT.) And
M (0) = M max =
P 250 = = 76.55 kN " m 4 ! 4(0.8165)
Maximum stress is thus
! max =
M max 76.55(103 ) = = 196.3 MPa S 3.9
______________________________________________________________________________________ SOLUTION (9.9) Equations (9.3) and (9.8): 1
! = [ 4 kEI ] 4 , (a)
v max = P2!k ,
M max = 4P!
k is 1.25 times the actual value.
! changes by 4 1.25 = 1.057. v max changes by 1.057 1.25 = 0.846. ! max (or M max ) changes by 1 1.057 = 0.946. (b)
k is 1.4 times the actual value.
! changes by 4 1.4 = 1.088. v max changes by 1.088 1.4 = 0.777. ! max (or M max ) changes by 1 1.088 = 0.919. Note that stress calculation is not affected appreciably in both cases. ______________________________________________________________________________________ SOLUTION (9.10) P1 P2 O 0.83 m
x 0.83 m
y By using the principle of superposition, deflection of any point, say O, of rail is expressed as the algebraic sum of v1 and v 2 caused by P1 and P2 , respectively. Thus, from Eq. (9.8), we have
v0 = P21k! f1 ( !x1 ) + P22k! f1 ( !x 2 )
(a)
!1
. Then, f1 ( !x1 ) and f1 ( !x 2 ) are found from Table 9.1 for x1 = 0.83 m and x 2 = !0.83 m. We have !x1 = 0.697 and "x2 = !0.697. Thus f1 ( !x1 ) = 0.702. where, P1 = P2 = P, " = 0.84 m
(CONT.) ______________________________________________________________________________________
Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 9–4
______________________________________________________________________________________ 9.10 (CONT.) Since, from symmetry f 1 ( !x1 ) has the same value for a (+) or (-) value of !x , Eq. (a) may be written as
v0 = P2!k (0.702 + 0.702) = 1.404 P2!k
Resultant bending moment at O, from Eq. (9.8), is
M 0 = 4P! f 3 ( !x1 ) + 4P! f 3 ( !x 2 )
= 4P! [2 f 3 (0.697)] = 0.125 4P! It may be verified by comparing the results of Problems 9.5 and 9.7 that addition of one or more load (reduces appreciably value of maximum moment) causes a large increase in the maximum deflection of the rail. ______________________________________________________________________________________ SOLUTION (9.11) x px
po x
B
a
Q y
b
L
C
Expression for loading are:
p x = pL0 ( a ! x ) Px =
p0 L
(a + x )
(segment BQ) (segment QC)
Deflection at Q is obtained by substituting ( p x dx ) for P in Eq. (9.6). That is a
vQ = 2p0kL# {! ( a " x )e " #x [cos #x + sin #x ]dx 0
b
Integrating, we have
+ ! ( a + x )e "x [cos "x + sin "x ]dx} 0
vQ = 4p!0k [ f 3 ( !a ) " f 3 ( !b) " 2 !Lf 4 ( !b) + 4 !a ] ______________________________________________________________________________________ SOLUTION (9.12) p A
x y p
Mo
Figure (a)
A R
p/k x
Figure (b)
x
Figure (c)
(CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 9–5
______________________________________________________________________________________ 9.12 (CONT.) Referring to Fig. (b):
v A1 = ! kp
" A1 = 0
Referring to Fig. (c) and using Eq. (9.12),
v A2 = 2k! [ " Rf 4 (0) + !M 0 f 3 (0)] 2
" A2 = # 2 !k [ # Rf1 (0) + 2 !M 0 f 4 (0)] The problem may be separated into two different cases both semi-infinite beams (as is seen in the figure above) provided that deflection at A is zero. Thus,
solving,
v A1 " v A2 = 0;
" kp = 2k! [ " R + !M 0 ]
" A1 # " A2 = 0;
2! 2 k
M 0 = 2 ! 2 EI kp ,
[ # R + 2 !M 0 ]
R = 4 ! 2 EI kp = !p
______________________________________________________________________________________ SOLUTION (9.13) ( a ) Using Eq. (9.12), v = 2
v max = 2 ! kM A
2! 2 k
M A f 3 ( !x )
at x = 0
Scan Table 9.1,
(down)
f 3 ( "x ) = !0.2079 at "x = !2 , and 2
v min = 2 "k M A ( !0.2079)
(up)
Therefore
vmax vmin
1 = !0.2079 = !4.81
( b ) Applying Eq. (9.12), M = M A f 1 ( !x )
v max = M A
at x = 0
f1 ( "x ) = !0.0432 at "x = ! , and M min = !0.0432 M A
Scan Table 9.1, Thus
M max M min
1 = !0.0432 = !23.15
______________________________________________________________________________________ SOLUTION (9.14) ML A
x y
Equation (9.11) with v (0) = 0 gives
0 = 2 ! ( " R A + !M L ) k
(CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 9–6
______________________________________________________________________________________ 9.14 (CONT.) from which R A = M L . When R A is substituted for ! P into Eq. (9.12):
v = " 2 !M2LEI e " ! sin !x = " 2 !M2LEI f 2 ( !x )
Successive differentiations of this expression give:
v ' = " 2M!EIL f 3 ( !x )
M = 2MEIL f 4 ( !x ) V = " 2MEIL f1 ( !x )
______________________________________________________________________________________ SOLUTION (9.15) K
We have k = as = 0180 .625 = 288 kPa 1
3
(10 ) = [ 4 ( 200!288 ] 4 = 0.51697 m !1 109 )( 5.04!106 )
Using Eq. (9.8),
.5697 ) v (0) = v max = P2!k = 6.752((0288 = 5.61 mm )
.75 M (0) = M max = 4P" = 4 ( 06.51697 ) = 3.26421 kN ! m
Thus,
0.0625 ) # max = McI = 32645..0421"(10 = 41.13 MPa !6
______________________________________________________________________________________ SOLUTION (9.16) From Eq. (9.3), 1
3
18 (10 ) # = [ 4 ( 0.375"200 ] 4 = 0.824 m !1 "109 )( 5.2"10! 7 )
Since
"L = 0.824(0.74) = 0.618 < ! 4 the beam can be considered rigid.
( a ) Uniform deflection is
v = 3FK = 3540 (18 ) = 10 mm P K
K
K
( b ) We may replace the given beam by the beams shown in Figs. (a) and (b). 0.25
P
P
0.125
0.375 Figure (a)
P F+PB1
v1
F+PB2
F+PB3
v2
Figure (b)
(CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 9–7
______________________________________________________________________________________ 9.16 (CONT.) Note that F is the direct load on each spring and PBi is the bending loads with the values:
F = P 3 = 540 3 = 180 N and Here
PBi = M Brr2i !i
(i = 1, 2, 3)
)( 0.375 ) PB1 = 5402((015.125 = 90 N , PB 2 = 0, !0.125 ) 2
PB 3 = ! PB1
End deflections are thus,
v1 = (180 + 90) 18 = 15 mm v 2 = (180 ! 90) 18 = 5 mm
______________________________________________________________________________________ SOLUTION (9.17) Using Eq. (9.3), 1
" = [ 4 (148.4 ) ] 4 = 0.8034 m !1 !L = 0.8034(0.6) = 0.482 rad = 27.62 o Hence, from Eq. (9.13):
( 0.8034 ) 2 + cos 27.62 + cosh 27.62 vc = 4500 2 (14!106 ) sin 27.62o +sinh 27.62o o
o
= 186(10 !6 ) m = 0.186 mm Note: Slope may be found as in Prob. 9.15, with p=0. ______________________________________________________________________________________ SOLUTION (9.18) P
!L < 1
p
E
E C L/2
L/2
Referring to Sec. 9.8 and Table D.4 4
4
5[( P + pL ) L ] L 5 pL vc = 48PLEI + 384 EI ! 384 EI 3
3
(0.15) = 48(4.8 [9000 + 5(75008"0.15) ! 5(90008+1125) ] "10!6 )
= 2.81(10 !8 ) m Similarly, 3
0.15](0.15) ! E = 16PLEI + 24pLEI " [(9000+1125) 24 EI 2
3
Substituting the given data,
" E = 5(10 !7 ) rad
______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 9–8
______________________________________________________________________________________ SOLUTION (9.19) Equation (9.3),
k 14 8 14 ] =[ ] = 0.6687 m "1 4 EI 4(10) ! L = 0.6687(0.8) = 0.535 rad = 30.65o
! =[
From Eq. (9.13):
15(103 )(0.6687) 2 + cos 30.65o + cosh 0.535 2(8 !106 ) sin 30.65o + sinh 0.535 = 629.9[18.4208](10!6 ) = 5, 279(10!6 ) m = 5.28 mm
vc =
______________________________________________________________________________________ SOLUTION (9.20) Refer to Sec. 9.8 and Table D.4, we have I = bh
3
12 = 46.8(10!6 ) m 4 ,
EI = 3.4 MN ! m 2 , and ! L < 1 .
PL3 5 pL4 5[( P + pL) L]L4 + ! 48EI 384 EI 384 EI 3 (0.4) 5(7000 ! 0.4) 5(8000 + 2800) = [8000 + " ] 6 48(3.4 !10 ) 8 8 = 0.00276(10!3 ) m = 2.8 mm
vc =
Likewise,
PL2 pL3 [(8000 + 2800) 0.4](0.4)3 + " !E = 16 EI 24 EI 24 EI 2 (0.4) 7000(0.4) 10,800 [8000 + ] = ! !6 16(3.4 "10 ) 32 32 = 0.29(10!3 ) rad ______________________________________________________________________________________ SOLUTION (9.21) L p x Figure (a) y -v1 -v1 z 0 v1 Figure (b) -v2 -v1 v1=v2 z Figure (c) 0 v1 v2 -v1 -v3 v1=v3 z Figure (d) 0 v1 v2 v3 Boundary conditions are:
v (0) = v ( L) = 0,
v ' ' ( 0) = v ' ' ( L ) = 0
(a) (CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 9–9
______________________________________________________________________________________ 9.21 (CONT.) These are transformed into the following central difference conditions by using Eq. (7.4) and (7.7):
v0 = 0,
! v !1 = v1 ,
v n = 0,
v n !1 = !vn +1
(b)
For m=2 (Fig. b):
v n !2 ! 4v n !1 + 6( mm4+1 )vn ! 4v n +1 + v n + 2 = 1m.64 4
or
! v1 + 6 224+1 v1 ! v1 = 12.46 ;
v1 = 21.4 mm
4
For m=3 (Fig. c):
! 4v1 + 6 334+1 v2 ! v 2 = 13.46 4
! v1 + 6 334+1 v1 ! 4v 2 = 13.46 4
Solving,
v1 = v2 = 17.2 mm
For m=4 (Fig. d):
! v1 + 6 444+1 v1 ! 4v1 + v1 = 14.46 4
! 4v1 + 6 444+1 v 2 ! 4v1 = 14.46 4
Solving,
v 3 = v1 = 10.2 mm v2 = 13.9 mm
______________________________________________________________________________________ SOLUTION (9.22) From Example 9.1:
v p = 2pk ( 2 " e " !a cos !a " e " !a cos !b)
where
k = 48aLEI3
Thus,
" !a t v p = 2 (paL cos !a " e " !b cos !b) 48 ) EI [ 2 " e
t
3
3
= 96paLEIt [2 " f 4 ( !a ) " f 4 ( !b)] We have " = 3.936 6 = 0.656 m At midspan, we have !a = !b
and
f 4 ( "a ) ! 0
paL3t
Thus,
v p = 48 EI
Since,
v m = 48paLEIt = R48ccEILt
Solving,
!1
3
3
Rcc = ap = 0.3 p End of Chapter 9
Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 9–10
CHAPTER 10 SOLUTION (10.1) P
b
B x
D x
C
R
a A Defections at point D: We write
M DB = Px
M BA = Pb + Rx
Using Eq. (10.5), b
2
U DB = ! [ ( 2PxEI) + 2RAE ]dx = P6 EIb + 2RAEb 0 a
2 3
2
2
2
U BA = ! [ ( Pb2+EIRx ) + 2PAE ]dx 2
0
= 2 1EI [ p 2 ab 2 + PRa 2 b + 13 R 2 a 3 ] + 2PAEa 2
Total strain energy U = U BD + U BA . Vertical deflection at D is thus Pa " v = !!UP = EI1 [ Ra2 b + P( ab 2 + b3 )] + AE 2
3
Horizontal deflection at D:
2
3
Rb " h = !!UR = EI1 [ Ra2 b + Ra3 ] + AE
Angular rotation of D: Introduce a couple moment C at D as shown in the figure. Then, and
M DB = Px + C b
M BA = Pb + Rx + C
2
U DB = ! [ ( Px2+EIC ) + 2RAE ]dx 2
0
= 2 1EI [ P 3b + C 2 b + PCb 2 ] + 2RAEb 2 3
2
a
U BA = 2 1EI ! [ Pb + Rx + C ]2 dx + 2RAEb 2
0
= 2 1EI [ P 2 ab 2 + R 3a + Ca 2 + PRa 2 b + 2 PCab + CRa 2 ] + 2PAEa 2 3
Hence,
2
" D = !!UC C =0 = 2 1EI [ Pb 2 + 2 Pab + Ra 2 ]
Note that displacements of a simple (straight) cantilever beam may be readily found by setting b=0 in the foregoing results. ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 10–1
______________________________________________________________________________________ SOLUTION (10.2) Equations of statics are applied to obtain the reactions:
! F =0 : ! M =0 : ! M =0 :
R Ax = 0
x
x
RC = 14 P1 + 12 P2 + 43 P3
C
R Ay = 43 P1 + 12 P2 + 14 P3
The axial force in each member is obtained by applying the method sections, as required. The results are as follows:
N DC =
P1 + 22 P2 + 3 4 2 P3
2 4
N AE = 3 4 2 P1 + 22 P2 + 42 P3
N DE =
1 2
P1 +
P2 +
1 2
P3
N BE = ! 42 P1 + 22 P2 + 42 P3 N BD =
2 4
P1 + 22 P2 ! 42 P3
N AB =
3 4
P1 + 12 P2 +
1 4
P3
N BC =
1 4
P1 +
3 4
P3
1 2
P2 +
Numerical results are determined for P1 = P2 = P3 = 45 kN and L = 3 m. These are tabulated bellow.
Bar Axial force ( kN )
!N !P2
Length ( m )
DC AE DE BE BD AB BC
2 2 2 2 1 2 2 2 2 12 12
2.125 2.125 3.000 2.125 2.125 3.000 3.000
N DC = 99.5 N AE = 99.5 N DE = 90 N BE = 31.8 N BD = 31.8 N AB = 67.5 N BC = 67.5
Thus, the vertical deflection at B: 7
"N
1 # B = AE ! N j "P2j L j j =1
103 AE
[2(67.5)(0.5)(3) + 2(31.8)(0.707)( 2.125) + 90(1)(3) + 2(99.5)(0.707)2.125] = 686,773.675 AE m
=
______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 10–2
______________________________________________________________________________________ SOLUTION (10.3) The moment is expressed by
M = P( 2a ! x );
"M "P = 2a ! x
Castigliano’s theorem gives then
or
a
2a
0
0
2 M #M P v P = ! EI #P dx = ! E ( 2a " x ) ( c1 x + c 2 ) dx + ! 4
3
P EI 2
( 2a " x ) 2 dx
v P = 1112PcE1a + 7 Pc3 E2a + 3PaEI 2 3
______________________________________________________________________________________ SOLUTION (10.4) P C
A
L
x
B
y Deflection at A
(with M = Px ): L
v A = EI1 ! M ""MP dx = EI1 ! Px ( x )dx 0
vA =
PL3 3 EI
(with M = Px + C ):
Slope at A
L
# A = EI1 ! M ""MC dx = EI1 ! ( Px + C )(1)dx
Setting C = 0 and integrating
0
2
! A = 2PLEI
______________________________________________________________________________________ SOLUTION (10.5) p
P C
A
L
x
B
y Deflection at A
2
(with M = Px + 12 px ): L
# A = EI1 ! M ""MP dx = EI1 ! ( Px + 12 px 2 )( x )dx 0
= Slope at A
PL3 3 EI
+
pL4 8 EI
(with M = Px + 12 px
2
+ C ):
L
# A = EI1 ! M ""MC dx = EI1 ! ( Px + 12 px 2 + C )dx
Setting C = 0 and integrating
0
3
! A = 2PLEI + 6pLEI 2
______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 10–3
______________________________________________________________________________________ SOLUTION (10.6) P C
A y
Deflection at A
2I
I B L/2
L/2
x
D
(with M = Px ):
# A = EI1 ! M ""MP dx = EI1 !
L2
L
( Px )( x )dx + 2 1EI ! ( Px )( x )dx L2
0
Integrating, 3
3
3
7 PL 3 PL ! A = 24PLEI + 48 EI = 16 EI Slope at A (with M = Px + C ):
# A = EI1 ! M ""MC dx = EI1 !
L2
L
( Px + C )(1)dx + 2 1EI ! ( Px + C )dx L2
0
Setting C = 0 and integrating 2
2
3 PL ! A = 8PLEI + 16 EI
or
2
5 PL ! A = 16 EI
______________________________________________________________________________________ SOLUTION (10.7)
R ds=Rd!
!
Q Mo
P
O
( a ) Horizontal deflection
M " = PR(1 ! cos " ) + QR sin " + M 0
and
$ h = EI1 ! M # ""MQ# ds = EI1 !
# 2
0
=
R2 2 EI
0
[ PR 3 (1 " cos $ ) sin $ + QR 3 sin 2 $ + M 0 R 2 sin $ ]d$
( 12 PR + M 0 )
Vertical deflection (Q=0)
$ v = EI1 ! M # ""MP# ds = EI1 !
# 2
0
[ PR 3 (1 " cos $ ) 2 + MR 2 (1 " cos $ )]d$
= 4REI [ PR(3" ! 8) + 2 M 0 (" ! 2)] 2
( b ) Rotation of the free end (Q=0)
% = EI1 ! M % ##MM%0 ds = EI1 !
$ 2
0
[ PR(1 " cos % ) + M 0 ]d%
= 2REI [ PR(! " 2) + !M 0 ]
______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 10–4
______________________________________________________________________________________ SOLUTION (10.8) We now have
M = " FR sin ! , N = F sin ! , Applying Eq. (10.6), with ! = 6 5 and T = 0 :
V = " F cos !
"
"
"
0
0
0
2 2 R $ h = REI ! F sin 2 #d# + AE ! F sin #d# + 56AGR ! F cos #d# 3
Integrating,
3
3!FR " h = !2FREI + !2FR EA + 5 AG
Substituting the given data: 3
)( 0.05 ) 4000 )( 0.05 ) )( 0.05 ) # h = " ( 4000 + " (400 + 3"5((4000 400 ( 6.67 ) (105 ) 2 80!105 ) 2
= (0.59 + 0.008 + 0.02)10 !3 = 0.62 mm The error, if N and V are omitted, is 4.5 %. ______________________________________________________________________________________ SOLUTION (10.9) Introducing a rightward horizontal force Q at point D, we write
M 1 = !Qx M 2 = ! 12 Fx ! Qa M 3 = ! 12 Fx ! Qa + F ( x ! b2 ) M 4 = ! 12 Fb + 12 Fb ! Q ( a ! x )
0! x!a 0 ! x ! b2 b 2
!x!b
0! x!a
Applying Castigliano’s theorem, after setting Q=0, we have
# h = EI1 !
b2
0
1 2
!h =
Integrating,
b
Faxdx + EI1 ! ( " 12 Fax + 12 Fab)dx b2
Fab 2 8 EI
______________________________________________________________________________________ SOLUTION (10.10) a x
! R
O
From symmetry,
M 1 = ! Px M 2 = " Pa " PR sin !
Hence, or
$ 2
P
0! x!a 0 # " # !2
a
# 2
0
0
= EI1 ! M 1 ""MP1 dx + EI1 ! a
" 2
0
0 2
$ = EI2 [ ! Px 2 dx + !
M 2 ""MP2 Rd%
P( a + R sin # ) 2 Rd# ]
= 6PEI ( 4a 3 + 6!Ra + 24 R 2 a + 3!R 3 )
______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 10–5
______________________________________________________________________________________ SOLUTION (10.11) Referring to Fig. P10.11, we write
M = PR sin ! m = R sin !
T = PR(1 " cos ! ) t = R(1 " cos ! )
Here t denotes torque caused by a unit load. Applying Eq. (10.13), deflection at the free end (perpendicular to the plane of the ring):
% = EI1 !
# 2
0
( PR 2 sin 2 $ ) Rd$ + JG1 !
# 2
0
! 2
3
[ PR 2 (1 " cos $ ) 2 ]Rd$
3
! 2
" sin 2" " sin 2" = PR + PR EI 2 # 4 0 JG " # 2 sin " + 2 + 4 0 3
= PR4 ( EI" + 3"JG!8 ) Letting J = 2 I = !r
! =
PR 3 r4
4
2 , we have ( + ) 0.226 G
1 E
______________________________________________________________________________________ SOLUTION (10.12) Referring to Fig. P10.12:
M = " PR sin ! T = PR(1 " cos ! )
m = " R sin ! t = R(1 " cos ! )
where t denotes torque caused by a unit load. We have sin(2" # ! ) = # sin ! cos(2" # ! ) = cos ! and Applying Eq. (10.13), deflection at the free end (perpendicular to the plane of the ring): 2#
2#
% = PR sin 2 $d$ + PR (1 " cos $ ) 2 d$ EI ! JG ! 3
3
0
Integrating,
0
" = PR 3! [ EI1 + JG3 ]
______________________________________________________________________________________ SOLUTION (10.13) Q A
p a
Segment AC
M 1 = !Qx
Segment BC
M 2 = "Qx " Thus,
C
2a
B
"M 1 "Q = ! x
p ( x " a)2 2
!M 2 = "x !Q
3 a M !M M 1 !M 1 2 2 dx + " dx 0 EI !Q a EI !Q
vA = "
a
Let Q=0. Hence
(CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 10–6
______________________________________________________________________________________ 10.13 (CONT.)
vA =
p 3a p 3a 3 ( x ! a ) 2 xdx = ( x ! 2ax 2 + a 2 x)dx " 2 EI a 2 EI "a 3a
p x 4 2ax 3 a 2 x 2 = ! + 2 EI 4 3 2 a
10 pa 4 ! 3 EI
=
______________________________________________________________________________________ SOLUTION (10.14) B
L
L
LAB = LCD = 2 L
W
L A
D
LBC = LAC = LBD = L
C
The method of joints(or sections) is applied:
N AB = 2W Thus,
N BC = !W
N CD = ! 2W
N BD = W
N AC = !W
"N j 1 Nj Lj # AE "W WL WL = [ 2( 2) 2 + 1 + 1 + 1 + 2( 2) 2] = 8.657 ! AE AE
!V =
______________________________________________________________________________________ SOLUTION (10.15) P x x’ A
Pa L
+
L
C L
Segment AB
M1 = ! P Segment BC
B
a
C
C
a C x! x L L
M 2 = ! Px '! C
(a)
For this case C=0:
vC =
1 L Pax ax 1 a (! )(! )dx + ! Px '(! x ')dx ' " EI 0 L L EI "0 L
a
Pa 2 Pa 2 x 3 P x '3 = ( L + a) ! = + EIL2 3 0 EI 3 0 3EI
(CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 10–7
______________________________________________________________________________________ 10.15 (CONT.) (b)
!M 1 x =" , !C L
For C=0, we have :
!C =
!M 2 = "1. !C
1 L Pax x 1 a ( )( ) dx " " + " Px '(" x ')dx ' EI #0 L L EI #0 L
a
Pa x 3 P x '2 = + EIL2 3 0 EI 2 0 =
Pa (2 L + 3a ) 6 EI
______________________________________________________________________________________ SOLUTION (10.16) x” Q p A RA=Q/2 Segment AC
x’
x
1 M 1 = Qx 2
Let Q=0:
C a
a
B
a
D
RB=2pa+Q/2
!M 1 x = !Q 2
!M 1 1 a M1 dx = 0 " 0 EI !Q
Segment CB
1 1 M 2 = Q(a + x ') ! Qx '! px '2 2 2 Q 1 = (a ! x ') ! px '2 2 2 !M 2 1 = (a " x ') !Q 2
Let Q=0:
!M 2 1 1 a px '2 1 pa 4 ' ( ) ( ') ' M dx = " a " x dx = ! 2 2 2 EI # !Q EI #0 48 EI Segment BD
M3 = "
1 px ''2 2
!M 3 =0 !Q
Therefore
!M i pa 4 vC = # M i dx = " !Q 48 EI ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 10–8
______________________________________________________________________________________ SOLUTION (10.17) Q p L/2
A
pL 8
C
+ Q2
L/2 x’
x
Segment AC
3 pL 8
+ Q2
!M 1 x = !Q 2
pL Q + )x 8 2
M1 = (
B
Segment CB
3 pL Q px '2 M2 = ( + ) x '" 8 2 2
!M 2 x ' = !Q 2
Let Q=0: L 2 3 pLx ' pLx x px '2 x ' dx + " ( ! ) dx ' 0 0 8 2 8 2 2 2 2 L 2 pLx L 2 3 pLx ' px '3 pL4 = p" dx + p " ( ! )dx ' = 0 0 16 16 4 96 4 pL vC = ! 96 EI
EIvC = "
or
L2
______________________________________________________________________________________ SOLUTION (10.18) Consider RD as redundant. C 4
D
A 2.25 m
"F = 0: N x
where
AB
4
1.5 m
3
B
NAB
P
AE! D = # N j L j
!N BD =1 !RD
3
!F = 0: y
B
N BC = 1.25 P ! 1.25 RD
P
= !0.75 P + 0.75 RD
!N BC !RD = "1.25
Thus,
NBD =RD
NBC
!N AB !RD = 0.75
"N j
=0 "RD = (1.25 P ! 1.25 RD )(7.5)(!1.25) +(!0.75 P + 0.75 RD )(4.5)(0.75) + RD (3)1 = 0
= !14.25 P + 17.25 RD = 0 or
RD = 0.826 P
Then
N BD = 0.826 P
N AB = !0.131P
N BC = 0.22 P
______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 10–9
______________________________________________________________________________________ SOLUTION (10.19) Let RA and M A be redundant. P
a
MA
b
C L RA
RB
P
1 lb
B C
!P
MB
B
1 lb ! in.
x
Mm dx EI
!A = "
x
m = !1(a + x)
M = ! Px
vA = "
C
B
m ' = !1
Mm ' dx EI
1 b Pb 2 a b ( ! Px )[ ! ( a + x )] dx = ( + ) EI "0 EI 2 3 1 b Pb 2 ( Px )( 1) dx ! AP = " " = EI #0 2 EI Let now RA and M A are applied. v AP =
x MA
B
A RA
M = RA x ! M A
1 lb ! in.
1 lb
B
x
m=x
m' =1
( RA x ! M A ) x 1 RA L3 M A L2 v AR = " dx = ( ! ) 0 EI EI 3 2 L ( R x " M )1 1 RA L2 A A ! AR = # dx = ( " M A L) 0 EI EI 2 v AP = v AR ! AP = ! AR Since L
or
Solving,
1 RA L3 M A L2 Pb 2 a b ( + )= ( ) ! 2 EI 2 3 EI 3 1 RA L2 Pb 2 ( = ! M A L) 2 EI EI 3 Pb 2 RA = 3 (3a + b) ! L
Pab 2 MA = 2 L
______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 10–10
______________________________________________________________________________________ SOLUTION (10.20) x
p
x
A
A
B
R = k! A
B
1
Refer to the above figures, we write:
M = Rx !
1 2 px 2
m = !1x
Hence, deflection spring at A:
Mm R dx = EI k 1 L 1 R = ( Rx ! px 2 )(! x)dx = " EI 0 2 k
!A = "
Solving
R=
3 pL 8 1 + (3EI kL3 )
Reactions at B may then be found from statics. ______________________________________________________________________________________ SOLUTION (10.21) Consider RB as redundant. P
x A
MA
2a
a
B
RA
Segment BC:
M 1 = ! Px
C
RB
!M 1 !RB = 0
Segment AB:
M 2 = ! Px + RB ( x ! a )
"M 2 "RB = x ! a
Thus, a
3a
0
a
EIvB = 0 = " (! Px)(0)dx + " [! Px + RB ( x ! a )]( x ! a )dx 3a
= " [! Px 2 + RB x 2 ! 2 RB ax + Pax + RB a 2 ]dx a
3a
Px 3 RB x3 Pax 2 =! + ! RB ax 2 + + RB xa 2 3 3 2 a =!
14 3 P + RB 3 8
(CONT.) ______________________________________________________________________________________
Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 10–11
______________________________________________________________________________________ 10.21 (CONT.) from which
7 P! 4
RB = Statics:
MA =
1 Pa 2
RA =
3 P! 4
______________________________________________________________________________________ SOLUTION (10.22) Consider RA and M A as redundants. y MA
A
a
P
b
C L
B
x
!M 1 =x !RA
!M 1 = "1 !M A
RA Segment AC:
M 1 = RA x " M A Segment BC:
M 2 = RA x ! M A ! P ( x ! a )
!M 2 !RA = x
!M 2 !M A = "1
a
L
Thus,
EIv A = 0 = " ( RA x ! M A ) xdx + " [ RA x ! M A ! P ( x ! a )]xdx a
0
= RA
Simplifying,
Similarly
3
2
3
a a L ! a3 L2 ! a 2 L3 ! a 3 ! M A + RA !MA !P 3 2 3 2 3 L2 ! a 2 + Pa =0 2
1 1 P RA L3 ! M A L2 ! (3a + 2b)b 2 = 0 3 2 6 a
(1)
L
EI! A = 0 = # ( RA x " M A )("1)dx + # [( RA x " M A " P ( x " a )]("1)dx a
0
= ! RA
2
2
2
a L !a L2 ! a 2 + M A a ! RA + M A ( L ! a) + P 2 2 2 ! Pa ( L ! a ) = 0
This reduces to
1 1 RA L2 ! M A L ! Pb 2 = 0 2 2
(2)
(CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 10–12
______________________________________________________________________________________ 10.22 (CONT.) Solving Eqs.(1) and (2):
MA = Statics:
RB =
Pab 2 L2
RA =
Pb 2 (3a + b) ! L3
Pa 2 (a + 3b) ! L3
MB =
Pa 2b L2
______________________________________________________________________________________ SOLUTION (10.23) Consider RB as redundant. M0 MA
L
A
x
RA
M = ! RB x + M 0 !M !RB = " x
B RB
Therefore
Solving
L 1 1 EIvB = 0 = " ( RB x 2 ! M 0 x)dx = RB L3 ! M 0 L2 0 3 2
RB =
3 M0 ! 2 L
RA =
3 M0 ! 2 L
Statics:
MA =
1 M0 2
______________________________________________________________________________________ SOLUTION (10.24) We introduce a couple moment C at point B. The expression for the moments are then,
M 1 = ! RD x M 2 = ! RD x + P( x ! L2 ) + C
0 ! x ! L2 L 2
!x!L
Applying Eq. (10.6), " B = !U !P : L
# B = EI1 {! [" RD x + P( x " L2 ) + C ]( x " L2 )dx} L2
Setting C=0 and integrating,
" B = ! 48PLEI [ 1!( 325EI16kL3 ) ! 2] 3
Similarly, applying Eq. (10.7), " B = !U !C : L
# B = EI1 {! [" RD x + P( x " L2 ) + C ]dx} L2
Setting C=0 and integrating, 2
15 PL 1 " B = ! 128 EI 1!( 3 EI kL3 )
______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 10–13
______________________________________________________________________________________ SOLUTION (10.25) Apply Eq. (10.7) to write a
b
0
0
$ A = JG1 [ " TA ##TTAA dx + " (TA ! T ) # (T#AT!A T ) ] = 0 Integrating and simplifying:
TA a + (TA ! T )b = 0
TA = Lb T
or
Condition of equilibrium gives
TB = T ! TA = aL T
______________________________________________________________________________________ SOLUTION (10.26) We write
M 1 = Qx M 2 = Q ( a + R sin ! ) + PR(1 " cos ! ) Applying Eq. (10.6), with ! Q = 0 : "U "Q
Integrating,
a
#
0
0
0! x!a 0 #" #!
= 0 = EI1 ! Qx 2 dx + ! [Q ( a + R sin $ ) + PR(1 " cos $ )]( a + R sin $ ) Rd$ 3
QR 2 2 ! PR 0 = QL 3 EI + EI (!a + 4 Ra + 2 R ) + EI (!a + 2 R ) 2
This may be written in the following form: 3
(!a + 2 R ) Q = 3 1 "!PR R R 2 ! R 3
a [ + +4( ) + ( ) ] a 3 a 2 a
______________________________________________________________________________________ SOLUTION (10.27) po
x
RA MA
A
B L
RB
We have Then,
M = ! RB x + pL0 x 2x 3x = ! RB x + p06x L
3
3
$ B = 0 = EI1 ! M ##RMB dx = EI1 ! ( RB x " p60Lx ) xdx 0
This yields, after integrating,
RB = p100 L Then, from equations of statics: p0 L R A = 410
2
M A = p150 L
______________________________________________________________________________________
Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 10–14
______________________________________________________________________________________ SOLUTION (10.28) Moments are expressed by
M 1 = ! Rx M 2 = ! Rx + M 0
0 ! x ! L2 L 2
!x!L
Applying Eq. (10.6), with ! R = 0 :
= 0 = EI1 !
#U #R
L2
L
Rx 2 dx + EI1 ! ( " Rx + M 0 )( " x )dx L2
0
from which
R = 98ML0
Using Eq. (10.7), slope at C: L
$ C = ##MU = 0 + EI1 ! ( " Rx + M 0 )dx L2
5M 0L 64 EI
=
______________________________________________________________________________________ SOLUTION (10.29) p E1I1
x
L2
E2I2
x A
HA
L1
B
VA
L1 VB
M1 = H Ax M 2 = !V A x + H A L2 + 12 px 2
C
HC VC
0 ! x ! L2 0 ! x ! L1
Applying Eq. (10.6), with ! Av = 0 and ! Ah = 0, respectively:
Letting
L1
2
#U #V A
= E11I1 " ( !V A x + H A L2 + px2 )( ! x )dx = 0
#U #H A
= E21I 2 " H A x ( x )dx + E11I1 " ( !V A x + H A L2 + 12 px 2 ) L2 dx = 0
0
L2
L1
0
0
(a) (b)
! = EE12II12LL21
Equations (a) and (b) become
8V A ! 12 H A L2 = 3 pL12
or
3!V A L1 " 2(3! + 1) H A L2 = !pL12 V A = 23((3!!++14)) pL1 = R Av 2
1 H A = 4 ( 3!! +4 ) pL L2 = R Ah
The remaining reactions may then be found by using the equations of equilibrium. ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 10–15
______________________________________________________________________________________ SOLUTION (10.30) MC
B x
! R
A
O
C
P/2
a/2
Clearly, the problem is statically in determined. We have
M x = !M C
0 ! x ! a2
M x = " M C + 12 PR(1 " cos ! )
0 # " # !2
Slope at C is zero: #U #M C
Integrating,
= EI1 !
$ 2
0
( " M C R + PR2 " PR2 cos % )d% + EI1 ! 2
2
a 2
0
" M C dx = 0
2
(! " 2 ) M C = PR 2 ( a +!R )
Hence, for 0 # " # !2 : 2
(" # 2 ) PR PR M = # PR 2 ( a +"R ) + 2 # 2 cos !
For 0 ! x ! a : 2
(! " 2 ) M = PR 2 ( a +!R )
Therefore, M is maximum along a, for ! = 0. ______________________________________________________________________________________ SOLUTION (10.31) ( a ) Introduce Q at point E, as shown. (disregard C/L’s). A
B L
C
L D
P
P
E
L
2L C L
Q C L
Joint E
N EB N ED
N ED = ! 2 P (C )
P
1
E 1
Q
N EB = 2 P + Q (T )
Similarly we obtain the remaining member forces. Joint B
Joint D
N BD = ! P (C )
N DA = 2P 2
N BA = 2 P + Q (T )
N DC = !3P (C )
#E = !
N j L j "N j AE "Q
1 = AE [( 2 P )(5)(1) + ( 2 P )(5)(1) + 0 + 0 + 0 + 0] = 10AE2P
(CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 10–16
______________________________________________________________________________________ 10.31 (CONT.) ( b ) Introduce couple C/L applied perpendicular to line DE at points D and E as shown in the figure ( now disregard Q ). Joint E
N ED = !( P + C2L ) 2 (C )
P E
N EB
1
N ED
1
1
N EB = P + 22CL (T )
1 C L
Similarly, Joint D
N DA = 2 2 P
N DC = !3P ! 22CL (C )
Thus
"N
1 # DE = AE ! N j "Cj = AEP ( 22 + 22 + 2 + 62 ) = AEP ( 102 + 2 )
______________________________________________________________________________________ SOLUTION (10.32) The complementary energy for the ith member of length Li , from Eq. (2.49) is "i " 3
U 0*i = !
0
i
K3
4
d" = 4"Ki 3 = 4 K1 3 ( NAii ) 4
The complementary energy of the truss is thus 6
AL
N
U * = ! 4 Kj 3j ( A jj ) 4 j =1
Equation (10.16) is then 6
L
N
"N
# E = ! K j3 ( A jj ) 3 "Pj
(P10.32)
j =1
Applying the method of joints, as needed, we obtain
N 1 = 32P
N 2 = ! 54P
N 4 = 54P
N 5 = N 6 = ! 34P
N3 = 0
We have L1 = L5 = L6 = 3 m, L3 = 4 m, L2 = L4 = 5 m and Ai = A. Equation (P10.32) becomes 1 3 # E = ( AK ) {L1 N 13 ( !!NP1 ) + L2 N 23 ( !!NP2 ) + " " " " " + L6 N 63 ( !!NP6 )}
or
P 3 " E = ( AK ) {3( 23 ) 3 ( 23 ) + 5( ! 45 ) 3 ( 45 ) + 0
+ ( 45 ) 3 ( 45 ) + 3( 43 ) 3 ( 43 ) + 3( ! 43 ) 3 ( ! 43 )} or
P 3 48!81+5!625!2 + 3!81!2 = ( AK ) 256 P 3 ! E = 41.5( AK )
______________________________________________________________________________________
Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 10–17
______________________________________________________________________________________ SOLUTION (10.33) C
41
4
5
A P
L AC = 6.403 m, LAB = 8 m
P 5
4
4
3
A
P
3
5
LCB = 5 m
N AB
P/2
B P/2
P/2
4
5
N AC
Joint A
!N = 0: !N = 0: y
N AC =
x
N AB = 83 P
41 8
P
N BC = ! 85 P
Joint B
A horizontal unit load is applied a C: Thus
n AB = 83
n BC = ! 85
n AC =
41 8
1 " C = AE ! n j N jLj P = AE [( 841 )( 841 )( 6.403) + ( ! 85 )( 85 )(5) + ( 83 )( 83 )(8)]
P = 718 . AE !
______________________________________________________________________________________ SOLUTION (10.34) ( a ) Refer to Fig. (a) with no unit load:
M AB = 0 M BE = Rx M EC = Rx ! P ( x ! L) M CD = R ( 2 L) ! PL
C L x
2L
The vertical deflection at A is zero. Thus
# v = EI1 ! M i ""MRi dx = 0
x
P
E L
B x
A R
D
L
L
2L
2L
0
0
L
0
1 Figure (a)
= ! 0dx + ! Rx ( x )dx + ! [ Rx " P ( x " L)] xdx + ! ( 2 LR " PL)( 2 L)dx = 0
Integrating, we have 29 R = 64 P
( b ) Introducing a horizontal unit load at A, Fig. (a), we write
m AB = x
m BE = L
m EC = L
mCD = L ! x
Hence
" h = EI1 ! M i mi dx
(CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 10–18
______________________________________________________________________________________ 10.34 (CONT.) L
L
2L
0
0
L 2L
= EI1 {! 0dx + ! Rx ( L)dx + ! [ Rx " P ( x " L)]Ldx + ! ( 2 LR " PL)( L " x )dx} 0
Integrating, after substituting R = 29P 64 , results in 3
PL ! h = 13 32 EI
______________________________________________________________________________________ SOLUTION (10.35) x
M0
C B
x
1N
b
Introduce a vertical upward unit force 1 N at point C. Then Segment CB:
R
a
M1 = Rx
m1 = x
Segment BA:
A
M 2 = Rb = M 0
Thus
b
m2 = b
a
EI!C = 0 = " M1 m1 dx + " M 2 m2 dx 0 b
2
0 b
= " Rx dx + " ( Rb ! M 0 )( b)dx 0
0
3
= Rb + Rab 2 ! M 0 ba 1 3
or
3M a
R = b( 3a +0 b ) ! ______________________________________________________________________________________ SOLUTION (10.36) We have ! = 6 5 (Table 5.1), dx = ds = Rd! Let a downward unit load of 1 N in addition to load P is applied at the free end in Fig. P17.25. We write
N = P cos ! V = P sin ! M = PR(1 ! cos " )
n = cos ! v = sin ! m = R(1 ! cos " )
(a)
Thus, 3"
3"
1 % v = EI1 ! MmRd$ + AG ! #Vvdx + AE1 ! 2
0
2
0
3"
0
2
Nnds
Substitution of Eqs.(a) gives 3
3#
3#
2
2
3#
2
PR !v = PR (1 $ cos " ) 2 d" + 56AG EI % % sin "d" + AEPR % cos 2 "d"
Integrating
0
0
0
3
3"PR 3.6 PR !v = ( 94" + 2) PR EI + 4 AG + 4 AE #
______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 10–19
______________________________________________________________________________________ SOLUTION (10.37) P/2 1N A A A NA MA ! 1N m R C P/2 Actual loading
Dummy loading
Because of symmetry about the vertical axis, only one half of the circle need be analyzed. Referring to the figure above, we have the following moments: For 0 # " # !2 :
M 1 = M A + N A R(1 " cos ! ) " 12 PR sin !
(a)
m1' = 1
m1 = R(1 ! cos " ), For !2 # " # ! :
M 2 = M A + N A R(1 ! cos " ) ! 12 PR
(b)
' 2
m2 = R (1 ! cos " ),
m =1
Horizontal deflection and slope are zero at A. Thus, from Eqs. (10.13) and (10.14): #
or
% Ah = EI1 " MR(1 ! cos $ ) Rd$ = 0 0
#
" M (1 ! cos $ )d$ = 0 # = ! Mm dx = ! M (1)dx = 0
(c)
0
1 EI
A
or
"
'
"
1 EI
0
0
"
! M = 0 , where M represents M and M . 1
0
(d)
2
Substituting Eq. (d) into Eq. (c), the latter reduces to "
! M cos #d# = 0
(e)
0
Introducing Eqs. (a) and (b) into Eqs. (d) and (e), we have #
#
0
0 # 2
M A ! d$ + N A R ! (1 " cos $ )d$
! 12 PR "
0
and
#
sin $d$ ! 12 PR " d$ = 0 # 2
#
#
0
0
M A ! cos $d$ + N A R ! (1 " cos $ ) cos $d$
" 12 PR !
# 2
0
Integrating and solving,
N A = 2P!
#
sin $ cos $d$ " 12 PR ! cos $d$ = 0 # 2
M A = PR 4
______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 10–20
______________________________________________________________________________________ SOLUTION (10.38) From Eq. (P10.38), we have
U = GJ2 [( !aC ) 2 a + ( !bC ) 2 b]
Using Eq. (10.22): !U !" C
= T;
GJ" C ( a1 + 1b ) = T
Solving, Then and
Tab ! C = GJL
TA = GJa ! C = Lb T TB = GJb ! C = aL T
______________________________________________________________________________________ SOLUTION (10.39)
LAD = LDC = 4.24 m U = 12 ALE# 2 = 12 ALE (" v cosL! ) 2 Vertical load of the joint, using Eq. (10.22), "U "$ v
3
= P = ! ELi Ai i $ v cos 2 # i =1
or
P = EA! v [ cosLAD45 + cosLDC45 + L1BD ] = 0.5689 AE! V 2
o
o
2
Substituting the numerical values,
P = 373.34 kN
______________________________________________________________________________________ SOLUTION (10.40) p x L y The deflection curve may be expressed by Eq. (10.23) and the bending strain energy is given by Eq. (10.25). The strain energy of deformation of the foundation is (Chap. 9): #
L
U 2 = 12 k " v 2 dx = 14 kL ! a n2 0
n =1
Work done by the uniform load: #
L
L
W = 12 " pvdx = p( $L )! n1 a n cos n$Lx 0 0
n =1
"
or
W = 2$pL ! ann n =1, 3,###
(CONT.) ______________________________________________________________________________________
Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 10–21
______________________________________________________________________________________ 10.40 (CONT.) Then, principle of virtual work yields ! 4 EI 2 L3
or
n 4 a n + kL2 a n = 2npL ! 4
a n = n! ( n 44! pL 4 EI + kL4 ) Substituting this into Eq. (10.23) we obtain the required deflection curve. ______________________________________________________________________________________ SOLUTION (10.41) P L x A y We obtain
v ' ' = 3 aL13 ( L ! x )
and
L
2
L
1 U = EI2 ! ( v ' ' ) 2 dx = 92EIa ( L " x ) 2 dx L6 !
0
= Also
3 EI 2 L3
0
2 1
a
(a)
!W = P " !v A
(b)
Thus, !W = !U gives,
P " !a1 = 32EIL3 ( 2a1!a1 )
or
v A = a1 = 3PLEI
3
______________________________________________________________________________________ SOLUTION (10.42) Strain energy, by Eq. (c) of Sec. 10.10:
U = !64EI a2 L3 4
Work done by the load P is L
L
L
0
0
W = ! pvdx = pa ! dx " pa ! cos 2#xL dx 0
= pa ( L "
2L !
)
Applying the Ritz method, we obtain d" da
Solving
= dad (U ! W ) = #64EI ! pL(1 ! 2#L ) = 0 L3 4
4
a = 0.1194 pL EI
Substitution of this into Eq. (P10.31) and letting x=L result in the deflection v A at the free end of the beam. ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 10–22
______________________________________________________________________________________ SOLUTION (10.43)
W = P ! v A = P ( a1 L2 + a 2 L3 ) = PL2 ( a1 + a 2 L) L
Thus,
Solving,
U = EI2 ! ( v ' ' ) 2 dx = 2 EIL( a12 + 3a1a 2 L + 3a 23 L2 ) 0
!" !a1
= 0:
PL2 = 2 EIL( 2a1 + 3a 2 L)
!" !a2
= 0:
PL3 = 6 EIL2 ( a1 + 2a 2 L)
a1 = 2PLEI
a 2 = ! 6PEI
Substituting back into Eq. (P10.32):
v = 6PxEI (3L ! x ) 2
______________________________________________________________________________________ SOLUTION (10.44) c P B L
x
y We have L
Here
# = EI2 $ ( v ' ' ) 2 dx " P ! v B
(a)
0
v = ax ( L ! x ) = axL ! ax 2 v ' = aL ! 2ax, v ' ' = !2 a
Substituting these into Eq. (a), after integration, we obtain and or
" = 2a 2 EIL ! PacL + Pac 2 d" da
= 4aEIL ! PcL + Pc 2 = 0
L!c ) a = Pc4(EIL
The deflection of the beam at point B is therefore 2
L!c ) v B = Pc 4(EIL
2
______________________________________________________________________________________ SOLUTION (10.45) The assumed deflection is of the general cubic form:
v = a1 x 3 + a 2 x 2 + a3 x + a 4
For the left hand portion of the beam: (at x = 0 ); v=0
v' = 0
(at x = L 2 );
(a)
v' = 0 v=!
(at x = 0 )
(at x = L 2 );
(1, 2) (3, 4)
Here ! is, deflection at midspan, to be determined. Eqs. (1) and (2) give a 3 = a 4 = 0 (CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 10–23
______________________________________________________________________________________ 10.45 (CONT.) Eq. (3) yields
a 2 = ! 3a41L
Eq. (4) gives
a1 = " 16L3!
Introducing these into Eq. (a):
v = 4 #L3x (3L " 4 x )
0 ! x ! L2
2
(b)
Strain energy is
U = 2( EI2 2 ) !
L4
0
L2
( v ' ' ) 2 dx + 2( EI2 ) ! ( v " ) 2 dx
(c)
L4
! Inserting Eq. (b) into Eq. (c) and integrating, we obtain: U = 72 EI L3
2
We have
! # = 72 EI " P! L3 2
The midspan deflection, from "# "! = 0, is thus PL ! = 144 EI = v max 3
______________________________________________________________________________________ SOLUTION (10.46) We obtain "
v ' ' = ! a n ( nL# ) 2 cos n#Lx n =1
#
L
U = EI2 " ( v ' ' ) 2 dx = EI2 ! a n2 ( nL$ ) 4 L2 0
n =1
#
W = P ( v ) x = L = P " 2a n 2
( n = 2, 4, 6, ! ! ! )
n
From the minimizing condition, !" !a n = 0, we obtain or
EIa n ( nL" ) 4 L2 ! 2 P = 0 #
a n = " n44$PL4 EI Therefore,
( n = 2, 4, 6, ! ! ! )
3
n
#
1 v max = v ( L2 ) = $8 PL 4 EI " n 4 3
( n = 2, 4, 6, ! ! ! )
n
End of Chapter 10
Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 10–24
CHAPTER 11 SOLUTION (11.1) Pcr 1
F
I=
1
2
F 2
2
1
Pcr
F 2 = Pcr 1
! 4 4 ! (c " b ) = (254 " 204 ) = 18.11!104 mm 4 4 4
Pcr ! 2 EI ! 2 (200 #109 )(0.1811#10"6 ) = = = 143 kN n nL2 2.5(1) 2 F = 2.5(143) = 357.5 kN Justification of the formula used:
A = ! (c 2 " b 2 ) = ! (252 " 202 ) = 706.86 mm 2
r= and
I 181,100 = = 5.06 mm A 706.86
L 1000 = = 197.6 O.K. r 5.06
______________________________________________________________________________________ SOLUTION (11.2) (a)
Same area:
or
! 2 (d o " di2 ) = bo2 " bi2 4 ! ! bi2 = bo2 " (d o2 " di2 ) = 502 " (502 " 402 ) 4 4 bi = 42.35 mm
(b)
Circular bar
I=
1 t = (bo ! bi ) = 3.83 mm 2
! 4 ! (d o " di4 ) = (504 " 404 ) = 181#10"9 in.4 64 64 2 ! EI ! 2 (72 #109 )(181#10"9 ) Pcr = 2 = = 14.29 kN Le (3) 2
(CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 11–1
______________________________________________________________________________________ 11.2 (CONT.) Square bar
I=
1 4 4 1 (bo ! bi ) = (504 ! 42.354 ) = 252.8 "10!9 m 4 12 12 2 ! EI ! 2 (72 #106 )(252.8 #10"9 ) Pcr = 2 = = 19.96 kN Le (3) 2
______________________________________________________________________________________ SOLUTION (11.3)
LBC = 22 + 12 = 2.236 m I=
r=
d 50 = = 12.5 mm 4 4
! 4 ! d = (40) 4 = 125.7(10"9 ) m 4 , 64 64
LAB = 12 + 12 = 1.414 m
Bar BC ( L r = 2, 236 12.5) = 178 . Thus
( FBC ) all =
Pcr ! 2 (70)(125.7) = = 9.65 kN 1.8(2.236) 2 n
( FAB ) all =
Pcr ! 2 (70)(125.7) = = 24.1 kN 1.8(1.414) 2 n
Bar AB
Joint B F
1
FAB
1
1
2
" F = 0 : 2 F ! 5 F = 0, F = 0.791F x
B 1 2
1
BC
BC
AB
" F = 0 : 2 F + 5 F ! F = 0, F = 1.061F y
FBC
1
AB
Solving
AB
F = 1.061FAB
BC
AB
F = 1.341FBC
The allowable value for F:
F < 1.341(9.65) = 12.93 kN F < 1.061(24.1) = 25.6 kN
Thus
Fall = 12.93 kN
______________________________________________________________________________________ SOLUTION (11.4) Differential equation for a free-body of a segment of x is given by Eq.(11.1):
d 2v EI 2 + Pv = 0 dx
(CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 11–2
______________________________________________________________________________________ 11.4 (CONT.) or
d 2v + p 2v = 0 2 dx
p=
P EI
General solution is
v = A sin px + B cos px
(1)
Boundary conditions :
v(0) = 0 : 0 + 0 + B = 0, B=0 v '( L) = 0 : AP cos pL = 0, Ap = 0
Since A ! 0 :
cos For n = 1, Therefore
Pcr =
P L = 0 or EI !2 P = 2 EI 4 L
! P L = n( ) EI 2
! 2 EI 4 L2
______________________________________________________________________________________ SOLUTION (11.5)
1 (240 !1203 " 190 ! 703 ) = 29.13 !106 mm 4 12 A = 240 !120 " 190 ! 70 = 15.5 ! 103 mm 2
I min =
rmin = I min A = 43.35 mm
Le = 0.5 L = 4.5 m
Le r = 4500 43.35 = 103.8 Hence,
" cr =
! 2E ! 2 (200 #109 ) = = 183.2 MPa ( Le r ) 2 (103.8) 2
______________________________________________________________________________________ SOLUTION (11.6)
Le = 0.7 L = 6.3 m . From solution of Prob.11.5: rmin = 43.35 mm . We now have
Le r = 6300 43.35 = 145.3
Hence,
! 2E ! 2 (200 #109 ) " cr = = = 93.5 MPa ( Le r ) (145.3) 2
______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 11–3
______________________________________________________________________________________ SOLUTION (11.7) 30 kN
B 1.8 m
A
1
FBD
x
1.3 m 1
1
" M = 0 : ! 30(3.1) + 2 F (1.8) = 0 , A
I = b 4 12 = 504 12 = 520.8 ! 103 mm 4 ,
r= So,
I = 14.4 mm A
" cr =
FBD = 73.1 kN
BD
A = 50 ! 50 = 2.5 ! 103 mm 2
L 1800 = = 125 r 14.4
! 2E ! 2 (210 #109 ) = = 132.6 MPa ( L r )2 (125) 2
We have
! cr < ! yp
(solution is valid)
( FBD )cr = 132.6 "106 (2.5 "10!3 ) = 331.5 kN and
n=
( FBD )cr 331.5 = = 4.5 73.1 FBD
______________________________________________________________________________________ SOLUTION (11.8) A solid circular section of diameter d:
A=
! 2 d 4
I=
Using Eq. (11.13a), we have
Solving,
! 4 d 64
r=
I d = A 4
4 Pcr 1 ! yp 4 Le 2 ( ) = # ! yp "d2 E 2" d 2 2 ! yp Le Pcr + 2 )1 2 d = 2( "! yp " E
Q.E.D.
A rectangular section of height h and width b:
A = bh
I=
By Eq. (11.13a), we obtain
1 3 bh 12
r2 =
h2 12
Pcr 12 Le 2 1 ! ) = ! yp # ( yp bh E 2" h
(CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 11–4
______________________________________________________________________________________ 11.8 (CONT.) from which
Pcr 3L2! h! yp (1 # 2e yp2 ) " Eh It is assumed that h ! b . b=
Q.E.D.
______________________________________________________________________________________ SOLUTION (11.9)
P 90 #103 = 30 MPa ! all = = A 3 #10"3 Cc =
(1)
2! 2 (200 "109 ) = 125.7 250 " 106
Assuming L r ! Cc , use Eq. (11.8) and (1):
" all =
! 2 (200 #109 ) = 30 #106 , 2 1.92( L r )
L = 185 r
Our assumption was correct. Hence,
L = (185)r = (185)(25) = 4, 625 mm
or
L = 4, 625 m
______________________________________________________________________________________ SOLUTION (11.10) P
2! 2 (210 "109 ) = 121.7 280 "106 Le 4.2 = = 42 r 0.1
Cc = 6m
6m
P
=
Le=0.7L
Since L ry < Cc , use Eq. (11.9) and (11.8):
5 3 42 1 42 3 n= + ( )! ( ) = 1.75 3 8 121.7 8 121.7 1 " (42) 2 [2(121.7) 2 ] (280 #106 ) = 150.5 MPa ! all = 1.75
So,
Pall = 150.5(27 !103 ) = 4063 kN ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 11–5
______________________________________________________________________________________ SOLUTION (11.11) P
P
!"1
k 1
!"2
L L
2
k
!"3
L k 3
The moment expression about joints 1 and 2:
" M = 0; " M = 0; or, in general,
1
PL#$1 ! k (#$1 ! #$ 2 ) = 0
2
PL(#$1 ! #$ 2 ) ! k (#$ 2 ! #$ 3 ) = 0
n
PL( " #$ i ) ! k#$ n = 0
(P11.11)
i =1
In matrix form, we have
. PL / k , PL , , ( , , ( ,- PL
k PL / k ( ( PL
0 k
0 0 ( ( ( ( PL PL
( ( ( ( (
( 0 + '011 $ '0$ ( 0 ) !01 2 ! !0! !! !! !! ) !! ( ( )& ( # = & ( # ) ( ( )! ( ! ! ( ! ! ! ! ! ( PL / k )* !%01 n !" !%0!"
That is
[ A]{!" } = {0} Determinant A = 0, yields Pcr . In our case, n = 3. ______________________________________________________________________________________ SOLUTION (11.12) (a)
Pcr is proportional to I . We have I s = !4r
4
15 "r 15 I h = "4 [ r 4 ! ( 2r ) 4 ] = 16 4 = 16 I s 4
Thus, reduction in Pcr is 6.25 % ( b ) Substituting the given data: 4
I h = 15" ( 064.015) = 37.276(10 !9 ) m 4 2
2
9
!9
Pcr = # LEI2 h = # (110"10(1)(.537)2.276"10 ) = 17.99 kN e
______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 11–6
______________________________________________________________________________________ SOLUTION (11.13) (a)
Pcr = 2(100) = 200 kN 2
3
2
(10 )( 2 ) I = P"cr2LE = 200 = 7.369(10 6 ) mm 4 " 2 (11!109 ) a4 12
= 7.369(10 6 );
a = 96.97 mm
We have 3
(10 ) ! = PA = (100 = 10.63 MPa < 15 MPa 0.09697 ) 2
Thus, a cross section of 97 ! 97 mm is acceptable. (b)
Pcr = 2( 200) = 400 kN 3
2
(10 )( 2 ) I = 400 = 14.738(10 6 ) mm 4 ; " 2 (11!109 )
a = 115.32 mm
We obtain 3
(10 ) ! = PA = ( 0200 = 15.04 MPa > 15 MPa .11532 ) 2
Dimension is not acceptable. Therefore, 3
(10 ) a 2 = A = 200 ; 15(106 )
a = 115.5 mm
Use a cross section of
116 ! 116 mm
______________________________________________________________________________________ SOLUTION (11.14) We have 4
Hence
) 6 4 I = 1( 50 12 = 0.521 ! 10 mm . 2
3
Pcr = " LEI = " ( 200!(103)2 )( 0.521) = 114.3 kN 2 2
Thus
.3 Pall = Pncr = 114 2.2 = 52 kN
F = P2all.5 = 252.5 = 20.8 kN
______________________________________________________________________________________ SOLUTION (11.15) ( a ) Using Eq. (11.5), 2
9
3
!0.05 12 ) Pcr = " ( 210!010.49)(( 30.6.075 = 127.5 kN )2 ( 2 ) 3
.5(10 ) " cr = 127 = 34 MPa 3.79 (10! 3 )
( b ) We have and
I min = 0.07512( 0.05)
3
!4 r 2 = I min A = 2.08(10 )
(CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 11–7
______________________________________________________________________________________ 11.15 (CONT.) Thus, Le r
( 3.6 ) = 0.7r L = 00.7.0144 = 175 1
C c = [ 2!" ypE ] 2 = 121.673 2
Also,
As 121.673 < 175, use Eq. (11.13): 2
9
( 210!10 ) # all = "1.92 = 35.25 MPa (175 ) 2
Note that 3
(10 ) ! = PA = ( 0.450 05 )( 0.075 ) = 120 MPa
and yielding does not occur. But member fails as a column, since Pcr < P. ______________________________________________________________________________________ SOLUTION (11.16) y P A
B P
P C
#
Me
L
Me
L
D
#
P
x
Symmetrical buckling shown in the figure, creates relative bending moments M e which resist free rotation of the ends of the member AB and CD. Thus, for member AB:
EI ddx 2v = ! Pv + M e 2
with the general solution
v = C1 cos !x + C 2 sin !x + MP2
where,
(a)
!2 = EIP
Boundary conditions are
v ( 0) = 0
v ' ( L2 ) = 0
v ' (0) = ! = M2 EIe L Introducing v from Eq. (a) into these: C1 + MPe = 0, ! C1" sin "2L + C 2 " cos "2L = 0 C 2 ! = M2 EIe L
The foregoing lead to the following trancendental equation or
tan !2L + 2PL !EI = 0 tan !2L + !2L = 0
from which !L 2 = 2.029. Thus, EI Pcr = 16.47 = ( 0.!774EIL )2 L2 2
The effective length in the situation described is therefore equal to 0.774L. ______________________________________________________________________________________
Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 11–8
______________________________________________________________________________________ SOLUTION (11.17) P
Let P EI
!1 = M !2 = EI
The governing differential equation is
x
or
M
EIv ' ' = M ! Pv
v ' '+ !1v = !22
M
y L
P=W
Solution is
v = A cos !1 x + B sin !2 x + ( !!12 ) 2
Boundary conditions give:
v ' ( 0) = 0 = B v (0) = A + ( !!12 ) 2 = 0;
A1 = "( !!12 ) 2
v ' ( L) = ( !!12 ) 2 sin !1 L = 0
sin #1 L = 0; Choose "1 L = ! . Then,
#1 L = 0, " , 2" , ! ! !
or
1
"1 = !L = ( EIP ) 2 ; Thus,
Le = L
P = ! LEI 2 2
______________________________________________________________________________________ SOLUTION (11.18) For the vertical bar, from Eq. (11.5):
Pcr = !4 EI L 2
The midspan deflection of the beam is thus 3
Pcr L 5 PL " = 384 EI ! 48 EI 4
or
2 5 PL 5 PL ! L L " = 384 EI # 192 = 192 ( 2 EI # ! ) 4
2
3
______________________________________________________________________________________ SOLUTION (11.19) ( a ) We have " ( #T ) L = ! 2 or (b) where
#T = 2"!L PL " ( $T ) L # AE = !2
P = !4 LEI2 2
Thus,
# " I L 1 $T = 2#!L + "4 LEI2 AE !L = 2!L + 4 L2 A! 2
2
______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 11–9
______________________________________________________________________________________ SOLUTION (11.20) L/4 L/2 L/4
For a fixed ended column Le may be determined as follows. Inflection points and midpoint divide the bar into 4 equal portions. Each portion is the same as the fundamental case (Fig. 11.2a). Thus Le = L 4 . For the dimension given, we obtain L r
932 = 01..0294 = 65.99
Equation (11.6) gives then
" cr = (4L! r E)2 = 0.0091E 2
9
Substituting E = 174(10 ),
" cr = 0.0091(175 ! 109 ) = 1592.5 MPa Since, from Fig. P11.20, E is valid only up to 175 MPa, the 1592,5 MPa cannot be
critical stress.
Similarly, for inelastic range, from Eq. (11.7):
! cr = 0.0091Et1
= 0.0091( 46.7 ! 10 9 ) = 425 MPa Applying the same reasoning as before, this value is also not a critical stress. For E t 2 :
" cr = 0.0091( 28 ! 10 9 ) = 254.8 MPa We now observe from the sketch that 254.8 falls in the stress range for which E t 2 is valid. Thus, the buckling load:
Pt = ! cr A = 254.8(0.0323) = 823 kN
______________________________________________________________________________________ SOLUTION (11.21) A P C
45
o
B
For bar AB:
1.41P = 4200(5.4 ! 10 "5 ) = 2268
(CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 11–10
______________________________________________________________________________________ 11.21 (CONT.)
P = 1604 N or For bar BC: 2
9
!9
= # ( 210"106.25)( 3.9"10 ) P = Pcr = ! LEI 2 2
And
= 1297 N " cr = 5.41297 = 24 MPa (10! 5 )
Conclusion:
Bar BC fails as a column, Pcr = 1297 N .
______________________________________________________________________________________ SOLUTION (11.22) Referring to Fig. P11.22, we write
I y = 2 Arc2 + 2 Ad 2
= 2(0.0225) 2 + 2(1.719 ! 10 "3 )(0.0125 + 0.2325) 2 = 6.13(10 !6 ) m 4 and 1
I
1
ry = ( 2 Ay ) 2 = ( rc2 + d 2 ) 2 1
= (0.02252 + 0.035752 ) 2 = 42.24 mm We see that ry for two channels is the same as for one channel. But rz = rc = 0.0225 m. Thus, rz < ry . Columns tends to buckle with respect to z axis. The slenderness ratios: Le rz
Le rz
.10 = 02.0225 ! 94,
From Sec. 11.7: 2
.20 = 04.0225 ! 187
9
( 210!10 ) C c2 = 2#" ypE = 2" 203 = 20,420; (106 ) 2
( a ) In this case 0 < ( Le
C c = 143
r ) < C c . Then, substituting the given data,
the first of Eqs. (11.8) yields
! all = 97.685 MPa
( b ) Now we have: C c ! ( Le
r ) ! 200 and the second of Eqs. (11.13) gives
! all = 30.87 MPa ______________________________________________________________________________________ SOLUTION (11.23) From Fig. P11.22, we observe that
I y > Iz .
Therefore the column buckles with respect to the z axis. Since, L r
We obtain
.2 = 0.40225 = 186.7 2
9
210!10 ) " cr = ( L! Er )2 = " ((186 = 59.46 MPa .7 ) 2 2
e
______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 11–11
______________________________________________________________________________________ SOLUTION (11.24) From Eq. (11.6), 2
We have
9
1
(140!10 ) 2 ( Lr ) lim it = [ " 280 ] = 70.2 !106
I = bh12 = Ar 2 3
3
I = ( 0.05)(120.025) = 1.25 " 10 !3 r 2 Solving, r = 7.216 mm 1.2 Hence, ( Lr ) actual = = 166.3 7.216 (10! 3 ) or
Thus, elastic buckling occurs, since ( L r ) lim it < ( L r ) actual . We have ! = " (!T ) L and # = !L = " ( !T ) .
The condition that
% = $ ( "T ) ! ( L# r )2 = 0 2
results in
"T = $ (#L r )2 = 10(10!6#)(166.3)2 = 35.7 o C 2
2
______________________________________________________________________________________ SOLUTION (11.25) 3
(10 ) " all = PA = 3125 = 40.85 MPa .06 (10! 3 ) 2
9
1
( 200!10 ) 2 C c = [ 2" 250 ] = 125.7 (106 )
Also
Assuming ( L r ) ! C c : # all = Solving, Lr = 158.6
" 2 ( 200!109 ) 1.92 ( L r ) 2
9
) = 1028( L.08r ()10 2
O.K.
Choosing the smallest radii of gyration: L ry
L = 0.0246 = 158.6
from which
L = 3.9 m
______________________________________________________________________________________ SOLUTION (11.26) P A 40 mm
vmax 0.7 m B e
P
Figure (a)
A = ! (20) 2 = 1256.64 mm 2 ! I = (20) 4 = 125.66 "103 mm 4 4 ! 2 EI Pcr = 2 L 2 ! (200 #109 )(125.66 #10"9 ) = (0.7) 2 = 506.2 kN
(CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 11–12
______________________________________________________________________________________ 11.26 (CONT.) (a)
Using Eq. (11.18):
# %! 60 & $ o 1'10"3 = e (sec ** ++ " 1) = e #,sec(31 ) " 1$- , 2 506.2 (, . / )(b)
e = 6 mm
Referring to Fig. (a):
M = P (vmax + e) = 80(1 + 6) = 560 N ! m
Hence,
80 "103 560(20)10!3 P Mc = + + 1256.64 "10!6 125.66 "10!9 A I = 63.66 + 89.13 = 152.8 MPa
! max =
______________________________________________________________________________________ SOLUTION (11.27)
Le = 2 L = 1.4 m . Refer to solution of Prob. 11.26
Pcr = (a)
! 2 EI ! 2 (200 #109 )(125.66 #10"9 ) = 126.6 kN = L2e (1.4) 2
Equation (11.18):
# %! 60 & $ o 1'10"3 = e (sec ** ++ " 1) = e[sec(62 ) " 1] , 2 126.6 - /) .( , (b)
e = 0.88 mm
M = P (vmax + e) = 80(1 + 0.88) = 150.4 N ! m . Therefore,
! max =
150.4(20 "10!3 ) P Mc = 63.66 + = 63.66 + 23.9 = 87.6 MPa + 125.66 "10!9 A I
______________________________________________________________________________________ SOLUTION (11.28) A
100 mmC 20 mm
P
B
Le = 2 L = 3.6 m A = 200 !100 " 160 ! 60 = 10.4 !103 mm 2
200 mm D
I=
L
r = I A = 36.4 mm e = c = 50 mm
P
1 (200 !1003 " 160 ! 603 ) 12 = 13.79 !106 mm 4
Thus,
ec 50 ! 50 = = 1.89 r 2 (36.4) 2
Le = 49.45 2r
(CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 11–13
______________________________________________________________________________________ 11.28 (CONT.) Use Eq.(11.19) with L = Le :
! max =
% &$ 250 '103 # 250 '103 ( + 1 1.89sec 49.45 * + ) = 98.7 MPa * 10.4 '10"3 ( 70 '109 (10.4 '10"3 ) -+ ) , . /
______________________________________________________________________________________ SOLUTION (11.29)
C
200 mm
P
A P
20 mm
Le = 2 L = 3.6 m A = 200 !100 " 160 ! 60 = 10.4 !103 mm 2
D 100 mm B
1 (100 ! 2003 " 60 !1603 ) 12 = 46.19 !106 mm 4
I=
e = c = 100 mm r = I A = 66.6 mm Therefore,
ec 100 !100 = = 2.25 r2 (66.6) 2
Le = 27.03 2r
Apply Eq.(11.19) with L = Le :
! max =
% &$ 250 '103 # 250 '103 ( + 1 2.25sec 27.03 * + ) = 85.7 MPa "3 + 9 * ' ' 10.4 '10"3 ( 70 10 (10.4 10 ) , - )/ .
______________________________________________________________________________________ SOLUTION (11.30)
I = 121 (50)( 25) 3 = 65.1 ! 10 3 mm 4 2
)( 65.1) Pcr = ! LEI = ! ( 210 = 59.97 kN 2 (1.5 ) 2 2
e = h2 = 252 = 12.5 mm,
P = 10 kN
Equation (11.13) gives
v max = 0.0125[sec( "2 Thus
10 59.97
) ! 1] = 3.10 mm
M max = P( e + v max ) = 10(12.5 + 3.10) = 156 N ! m
______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 11–14
______________________________________________________________________________________ SOLUTION (11.31)
p = 77(10 3 )(0.05 ! 0.05) = 192.5 N m 4
I = ( 0.1205) = 5.2(10 !7 ) m 4 (a)
2
" max = McI = 192.58( 9 ) 5.20(.025 = 93.705 MPa 10! 7 ) 4
5 pL v max = 384 EI 4
5(192.5 )( 9 ) = 384 ( 210 = 0.1506 m = 150.6 mm "109 )( 5.2"10! 7 )
( b ) Taking 4
5 pL a0 = 384 EI = 150.6 mm
We obtain, using Eq. (11.15):
v max =
1!
= 227.5 mm
0.1506 4500 ( 9 ) 2 9
!7
( 210"10 )( 5.2"10 )
Applying Eq. (11.16):
0.025 " max = 04500 .025 [1 + 2275 5.2(10! 7 ) 0.025 ]
= 51.019 MPa ______________________________________________________________________________________ SOLUTION (11.32) Given e=0.05 m, c=0.1016 m
rz2 = IAz
and
!3 .66 = 45 5880 = 7.765(10 ) mm
Then,
Pcr =
" 2 EI y L2
2
3
= " ( 210( 4!.510)2 )15.4 = 1575 kN
Also, 2
3
Pcr = " ( 210( 4!.105)2) 45.66 = 4669 kN Thus, Eq. (11.19) becomes 1016 ) # 210(10 6 ) = 588(P10"6 ) [1 + 07..05765( 0(.10 " 3 sec( 2 )
P 4669!103
)]
from which, by trial and error,
P ! 700 kN = Pmax
______________________________________________________________________________________ SOLUTION (11.33) Governing equation is
EIv1 ' ' = !( v0 + v1 )
where,
v0 = a1 sin !Lx + 5a1 sin 2L!x
This may be written
v1 ' '+ "2 v1 = #"2 a1 sin !Lx # 5"2 a1 sin 2L!x
(a)
(CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 11–15
______________________________________________________________________________________ 11.33 (CONT.) We have
v1 = c1 cos !x + c2 sin !x + v p
(b)
Particular solution is
v p = A sin !Lx + B cos !Lx + D sin 2L!x + E cos 2L!x
(c)
Substituting Eq. (c) into Eq. (a): 2
A = #"2 a1 (
B=0
! "2 )
2
L
2
D = 45#"2 a1 (
2
L
E =0
! "2 )
2
2
v p = (! "L )a21#"2 sin !Lx + 4 (!5"L )a21#"2 sin 2L!x
Thus,
Boundary conditions
v1 (0) = 0 yield c1 = c2 = 0.
v1 ( L) = 0
General solution is
v = v1 + v p = v0 + v p
Letting
b = "!2 L2 = !PL2 EI 2
2
we obtain
v = 1a"1b sin !Lx + 204"ab1 sin 2L!x
Solution of the b is found from a1 1"b
Thus,
v( ) = 0 = b = 0.89 2 b = !PL2 EI ,
and
P = 0.89 ! LEI 2
3L 4
or
sin
!(
3L ) 4 L
+ 20
a1 1"b
sin
3L ) 4 L
2! (
P = b!L2EI 2
2
______________________________________________________________________________________ SOLUTION (11.34) x ds dv dx v p(x) V
P M
y
A
V+dV P
dv
M+dM dv dx
+ !!!
An element isolated from the beam is shown in a deformed state in the figure above. Assume sin " ! " , cos " ! 1, and ds ! dx. Then
"F = 0: y
or
p = ! dV dx
! V + pbx + (V + dV ) = 0 (a)
(CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 11–16
______________________________________________________________________________________ 11.34 (CONT.)
"M = 0:
M ! Pdv ! Vdx + pdx dx2 ! ( M + dM ) = 0
A
Neglecting terms of second order, this becomes dv V = ! dM dx ! p dx
(b)
M = EI ddx 2v
(c)
If the shear and axial deformations are neglected, the moment at any point is 2
Substituting of Eqs. (c) and (b) into Eq. (a) gives
( EI ddx 2v ) + P ddx 2v = p For EI = constant, 2 d 2v + EIP ddx 2v = EIp dx 2 d2 dx 2
2
2
(d) (e)
Homogeneous solution of this equation is
v = c1 sin
P EI
x + c2 cos
x + c3 + c 4
P EI
where, c1 through c4 will require for evaluation, four boundary conditions. ______________________________________________________________________________________ SOLUTION (11.35) Given
v = a0 [1 ! ( 4Lx2 )] 2
and hence,
v ' = ! 8 Lxa2 0
v ' ' = ! 8La20
Potential energy function is
# = 2!
L2
0
=
1 2
EI ( v ' ' ) 2 dx " 2 !
0
64 EIa0 64 Pa0 12 L L3
Thus,
"! "a 0
or
Pcr = 12LEI 2
L2
1 2
P ( v ' ) 2 dx =
32 EIa02 3
L
2
32 Pa0 ! 12 L
=0
______________________________________________________________________________________ SOLUTION (11.36) Assume v = v0 sin( !Lx ). Then,
U = 2!
L2
0
EI 1 (1 + Lx2 )( v ' ' ) 2 dx
= 2 EI 1v0 ' ' "L4 [ ! 4
L2
0
sin 2 "Lx dx + L2 !
L2
0
= 2 EI 1v02 !L4 [ L4 + !2 L2 ( !16 + 14 )] 4
2
x sin 2 "Lx dx ] (a)
We also have L
Thus,
yields
2
" (v' ) dx = v 0
2 !2 0 L2
L
" cos 0
L
L
0
0
2 !x L
2 2
dx = v20!L
2 2 ! EI (v' ' ) dx = P ! (v' ) dx 2
Pcr = ! LEI2 1 ( 23 + !22 ) = 1.7 ! LEI 2 2
______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 11–17
______________________________________________________________________________________ SOLUTION (11.37)
v ' ' = 2 Lv12
We have v ' = 2v1 Lx2
Potential energy function is L
L
2
2
2
2
# = EI21 ! (1 " 2xL ) 4Lv41 dx " P2 ! 4Lv41 x 2 dx = 23 EIL13v1 ! 23 v1LP Hence, gives
#" #v1
=
0 3 EI1v1 L3
0
!
4 v1P 3L
=0
Pcr = 94EIL21
______________________________________________________________________________________ SOLUTION (11.38) Assume v =
"
! a sin( ). Then, U= !n a W = ! P ( v ) dx + ! pvdx = !n a + !a n#x L
n
1
4
" 4 EI 4 L3
L 1 2 0
and
2 n
L
' 2
0
2
" 2P 4L
2
2 PL "
1 n n
Hence, from !U = !W , by letting
b = PPcr = !PL2 EI 2
we obtain "
1 a n = %4 PL 5 EI ! n 3 ( n 2 $b ) 4
1, 3, # # #
Thus, #
1 v = !4 PL sin n!Lx 5 EI " n 3 ( n 2 %b ) 4
1, 3, $ $ $
______________________________________________________________________________________ SOLUTION (11.39) x
2F
P L/2
F
P
L/4
L
y
Let c1 = L4 and c2 = L2 . Deflection curve is expressed by "
v = ! a n sin n#Lx
(a)
1
and
L
U = EI2 ! ( v ' ' ) 2 dx 0
L
= F ! a n sin n#Lc1 + 2 F ! a n sin n#Lc2 + P2 " ( v ' ) 2 dx 0
(CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 11–18
______________________________________________________________________________________ 11.39 (CONT.) Therefore,
! (U "W ) !an
gives ! 4 EI 2 L3
or
=0
n 4 a n"a n = F"a n sin n!Lc1 + 2 F"a n sin n!Lc2 + P2!L a n n 2 2
a n = F sin("n2"EIn4 )2+2 F sin(P n" 2 ) 2 L3
( n2 !
Pcr
)
Solution is found by substituting this into Eq. (a). ______________________________________________________________________________________ SOLUTION (11.40) P x L
y
Boundary conditions are: v (0) = v ( L) = 0 We have Thus,
Hence,
v = aLx 2 + bLx 3 ! ax 3 ! bx 4
v ' = 2aLx + 3bLx 2 ! 3ax 2 ! 4bx 3 v ' ' = 2aL + 6 BLx ! 6ax ! 12bx 2 L
L
0
0
# = EI2 ! ( v ' ' ) 2 dx " P2 ! ( v ' ) 2 dx
= EI2 [4a 2 L3 + 8abL4 + 245 b 2 L5 ] ! P2 [ 152 a 2 L5 + 15 abL6 + 353 b 2 L7 ]
It is required that "# "a
= EI2 (8aL3 + 8abL4 ) ! P2 ( 154 aL5 + bL5 ) = 0
"# "b
= EI2 (8aL4 + 485 bL5 ) ! P2 ( 15 aL6 + bL35 ) = 0
6
7
2
Letting ! = PL EI , these become
( 4 ! 235" )a + ( 4 ! 10" )bL = 0 ( 4 ! 10" )a + ( 245 ! 335" )bL = 0 Since a ! 0 and b ! 0 : ! ( 4 ! 10" ) 2 + ( 4 ! 215" )( 245 ! 335" ) = 0 or
Solving, Hence,
"2 ! 128" + 2240 = 0 !1 = 20.9
!2 = 107.1
Pcr = 20.L9 EI = 2.12 ! LEI 2 2
______________________________________________________________________________________
Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 11–19
______________________________________________________________________________________ SOLUTION (11.41)
P
L/2
L/2
EI1
EI2
1
2
0 L/3
y
L/3
3
P
x
L/3
From Eq. (11.29):
vm +1 + ( "1h 2 ! 2)vm + vm !1 = 0
Here
!12 = EIP1
(a)
!22 = EIP2
Applying Eq. (a) at 1 and 2:
,.1h 2 - 2 1 ) & v1 # &0# * '% " = % " .2 h 2 - 2( $v2 ! $0! + 1 Thus, or
( "1h 2 ! 2)( "2 h 2 ! 2) ! 1 = 0
"1"2 h 4 ! 2"1h 2 ! 2"2 h 2 + 3 = 0 This is written as
P 2 [ 81EL2 I I ] ! P[ 92EIL1 + 92EIL 2 ] + 3 = 0 4
2
2
1 2
Solution is 1
( P1, 2 ) cr = 9LE2 ( I 1 + I 2 ) ± 9LE2 [ I 12 ! I 1 I 2 + I 22 ] 2 When I 1 = I 2 :
Pcr = 9LEI2
______________________________________________________________________________________ SOLUTION (11.42) L/2 0
L/2 1
2
P
x
y Boundary conditions yield
v ' (0) = 0; v (0) = 0; v ' ' ( L) = 0; v ' ' ' ( L) = 0;
v0 = 0 v1 = v !1 v3 ! 2v 2 + 2v1 = 0
(1)
v 4 ! 2v3 + 2v1 = 0
(2)
(CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 11–20
______________________________________________________________________________________ 11.42 (CONT.) Then, applying Eq. (l) of Example 11.8 at points 1, 2, 0, respectively:
(7 ! 2"2 h 2 )v1 + ( "2 h 2 ! 4)v2 + v3 = 0
(3)
( "2 h 2 ! 4)v1 + (6 ! 2"2 h 2 )v 2 + ( "2 h 2 ! 4)v3 + v 4 = 0
(4)
2
2
( " h ! 4)v1 + v 2 = 0
(5)
From Eq. (5):
v2 = ! v1 ( "2 h 2 ! 4)
Equation (1) becomes
v3 = 2v1 ! v1 = !2v1 ( "2 h 2 ! 4)v1 ! 2v1 ( "2 h 2 ! 4) ! v1
Substituting this into Eq. (3),
(7 ! 2"2 h 2 )v1 ! ( "2 h 2 ! 4)( "2 h 2 ! 4)v1 ! 2v1 ( "2 h 2 ! 4) ! v1 = 0
from which
"4 h 4 ! 4"2 h 2 + 2 = 0
or
!2 h 2 = 0.59 = PhEI
2
Thus,
Pcr = 2.36L2EI
______________________________________________________________________________________ SOLUTION (11.43) L 1 2 3 P P x 4 0
y From symmetry: v1 = v 3 . We have
I ( x ) = (1 + 2Lx ) EI 1
0 ! x ! L2
I ( x ) = (3 ! 2Lx ) EI 1
L 2
Equation (11.29), gives at 0, 1, 2, 3:
!x!L
v1 + v !1 = 0; v1 = !v !1 Ph 2 v2 + [ ( 3 2 ) EI1 ! 2]v1 = 0 v1 + [ Ph EI1 ! 2]v 2 + v1 = 0 2
[ ( 3 Ph 2 ) EI1 ! 2]v1 + v 2 = 0 2
The foregoing equations lead to
, 23 .2 h 2 - 2 ) & v1 # &0# 1 '% " = % " * 1 2 2 v 2 $0! 2 . h - 2( $ 2 ! + from which, since v1 ! 0 and v 2 ! 0 :
( "2 h 2 ! 6)( "2 h 2 ! 1) = 0 Thus,
Pcr = 16 EIL21
______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 11–21
______________________________________________________________________________________ SOLUTION (11.44) P
L/4
3L/4
EI1
EI2
0
1
P 3
2
x
y We have
!1 = LL 44 = 1
! 2 = LL 24 = 2.
Applying Eq. (11.30) at 1 and 2:
[ 16PLEI1 ! 2]v1 + v2 = 0
(a)
v1 [ 16PLEI1 ! 1]v 2 = 0
(b)
2
2 3
Let
2
k1 = 16PLEI1 ! 1 2
k 2 = 16PLEI 2 2
Equations (a) and (b) yield then
k1 ! 2
1
2 3
k2 ! 1
=0
from which or
( k1 ! 2)( k 2 ! 1) ! 23 = 0 L P 2 [ 256 EL2 I I ] ! P[ 162EI + 16LEI1 ] + 43 = 0 2 4
2
2
1 2
Solution of this quadratic equation gives the critical load as follows: 1
Pcr = 8 E ( 2LI21 + I 2 ) ! 8LE2 [4 I 12 + I 22 ! 1.24 I 1 I 2 ] 2 In a special case, for I 1 = I 2 = I , the preceding reduces to
Pcr = 24LEI ! 15.L32EI = 8.7 EI 2 L2
End of Chapter 11
Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 11–22
CHAPTER 12 SOLUTION (12.1) Components of stress are
! x = PA + MrI ( 0.05 ) = ! ( 090.05)2 + !3375 = 45.84 MPa ( 0.05 ) 4 4 ( 0.05 ) " xy = TrJ = !4500 = 22.92 MPa ( 0.05 ) 4 2
and
" y = " z = ! xz = ! yz = 0
Thus, from Sec. 2.13 (in MPa):
& 2(3 x $ $) xy $0 %
) xy '
(x 3
0
0 # &30.56 22.92 0 # ! $ 0 ! = 22.92 ' 15.28 0 ! $ ! ' (3x !" $% 0 0 ' 15.28!"
______________________________________________________________________________________ SOLUTION (12.2) A
a B !
a
C
D P At instability, member AD (or DC) and BD become in length:
L' AD = L' DC = LAD + 1!n1n1 LAD = 1L!ADn1
L' BD = LBD + 1!nn2 2 LBD = 1L!BDn2 Therefore, Initially:
( 1L!ADn1 ) 2 = a 2 + ( 1L!BDn2 ) 2
(a)
L2AD = a 2 + L2BD
(b)
Eliminating a from Eqs. (a) and (b), we obtain
cos " = LLBD = ( 11!!nn12 ) AD For We have
n1 = 0.2
and
n1 ( 2 ! n1 ) n2 ( 2 ! n2 )
n2 = 0.3
1
cos ! = 00..78 [ 00..23((11..78)) ] 2 = 0.7351 or
! = 42.68o
______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 12–1
______________________________________________________________________________________ SOLUTION (12.3) p PL We write x 2 1 1 2
PL2
M ( x ) = 2 p( L ! x )
L
y
Equation (12.7) is then 1
1
2
v ' ' = ( KIMn ) n = ( 2 KIP n ) n ( L ! x ) n
v ' = ! "2( L! x2)
2 +1 n
+ c1
( +1)( + 2 ) n n
v=
2 +2
" ( L! x ) n 2 2 ( +1)( + 2 ) n n
+ c1 x + c2
(a)
Boundary conditions yield 2 +1 n
v ' (0) = 0;
c1 = !2L n
v (0) = 0;
+1
2 +2 n
c2 = ! 2 "L 2
Substituting these and Eq. (g) of Sec. 12.5 into Eq. (a), we obtain
v=(
p 2 K !n
1 n
) [
2 +2
( L! x ) n 2 2 ( +1)( + 2 ) n n
2 +2
! 2 Ln 2
( +1)( + 2 ) n n
For n = 1, K = E , and x = L : 4
4
( +1)( + 2 ) n n
2 +1
+ L2n x ] n
+1
4
v = 6pLEI ! 24pLEI = 8pLEI
______________________________________________________________________________________ SOLUTION (12.4) P x L
y
Hence, 1
1
We write
M = P( L ! x )
1
v ' ' = ( KIPn ) n ( L ! x ) n = " ( L ! x ) n
v ' = ! " ( L1! x ) n
v= (a)
1 +1 n
+1
1 +2
" ( L! x ) n 1 1 ( +1)( + 2 ) n n
+ c1
+ c1 x + c2
Boundary conditions yield
v ' (0) = 0;
1 +1 n
c1 = !1L n
+1
v (0) = 0;
1 +2 n
c2 = ! 1 "L 1
Substituting these onto Eq. (a), we find an expression for the deflection.
( +1)( + 2 ) n n
For a special case of n = 1 and K = E , the deflection at free end:
v ( L) = 2PLEI ! 6PLEI = 3PLEI 3
3
3
______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 12–2
______________________________________________________________________________________ SOLUTION (12.5) 1
3
We have " = K! 4 and I = 23 bh . Here
! = hy ! max = ay ,
a = ! max h
Moment is thus, h
9
1
M = ! #ydA = ! yK ( ay ) 4 bdy = 89 Ka 4 "h
1 4
1
1
But
" max = K! max = Ka 4 h 4
Hence,
M = ( 89 )bh 2! max
or
! max = 89bhM2 = 34MhI
______________________________________________________________________________________ SOLUTION (12.6)
M = ! Px Hence,
0! x!a 1 n
1 n
v1 ' ' = ( " KIPxn ) = "!x ,
v1 = ! 1
1 +2 "x n
1 ( +1)( + 2 ) n n
v1 ' = ! "1x n
1 +1 n
+1
+ c1
+ c1 x + c2
(a)
Similarly, M = ! Pa , at a " x " ( L ! a ) : 1
1
1
v 2 ' ' = ( " KIPan ) n = "!a n , 1
v 2 ' = ! "a n x + c 3
v2 = !"a n x2 + c3 x + c4 2
Boundary conditions yield,
(b)
v1 (0) = 0;
c2 = 0
v 2 ( L2 ) = 0;
c3 = !a n L2
v1 ' ( a ) = v2 ' ( a );
c1 = "a n L2 ! "a1
1
1
1 +1 n
n ( +1) n
1 +2 n
v1 ( a ) = v2 ( a );
1 +2
c 4 = "a 2 ! 1 "a n 1
( +1)( + 2 ) n n
1 +2
! "a1n
n ( +1) n
Substitution of these of these constants into Eqs. (a) and (b) gives the required solution. For a special case of n = 1 and K = E , the midspan deflection is Pa v ( L2 ) = v max = PaL 8 EI ! 6 EI 2
or
3
v max = 24PaEI (3L2 ! 4a 2 )
We compute
y = 23.19 mm (measured from top surface) and I = 4.4(10 !7 ) m 4 .
Therefore
) v max = 24 ( 4.04."4510(!8000 [3(1.2) 2 ! 4(0.45) 2 ] 7 ) 200"109
= 0.00598 m = 6 mm ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 12–3
______________________________________________________________________________________ SOLUTION (12.7)
! (0.06) 2 = 2827.44 #10"6 m 2 4 ! ABC = (0.05) 2 = 1965.5 #10"6 m 2 4
AAB =
(a) Since ABC < AAB :
Pmax = ! yp ABC = 240 #106 (1963.5 #10"6 )
= 471.2 kN (b) Loading Segment AB deforms elastically:
! AB =
PL 471.2 #103 (1.5) = = 1.19 mm AE 2827.44 #10"6 (210 #109 )
Segment BC deforms plastically:
(! BC ) max = ! AC " ! AB = 10 " 1.19 = 8.81 mm
After unloading Segment BC remains elastic. Thus
(! AB ) p = 0
Segment BC remains plastic. We have:
" yp = # yp L =
! yp E
L=
240 $106 (1) = 1.15 mm 210 $109
P Pmax
!yp
!yp
!BC
(!BC)p (!BC)max Referring to the above figure:
(! BC ) p = (! BC ) max " ! yp = 8.81 ! 1.15 = 7.66 mm
______________________________________________________________________________________ SOLUTION (12.8)
! (0.03) 2 = 706.85 #10"6 m 2 4 ! ABC = (0.02) 2 = 314.16 #10"6 m 2 4 AAB =
(CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 12–4
______________________________________________________________________________________ 12.8 (CONT.) (a) Since ABC < AAB :
Pmax = ! yp ABC = 280 #106 (314.16 #10"6 )
= 87.96 kN (b) Loading Segment AB deforms elastically:
! AB =
PL 87.96 #103 (1.5) = = 0.89 mm AE 706.85 #10"6 (210 #109 )
Segment BC deforms plastically:
(! BC ) max = ! AC " ! AB = 10 " 0.89 = 9.11 mm
After loading Segment AB remains elastic. Thus
(! AB ) p = 0
Segment BC remains plastic. We have:
280 #106 (1) = 1.33 mm L= " yp = 210 #109 E
! yp
Referring to the solution of prob. 12.1:
(! BC ) p = (! BC ) max " ! y
= 9.11 ! 1.33 = 7.78 mm ______________________________________________________________________________________ SOLUTION (12.9) B
A L
40o 40
C o
L
D
Using Eqs. (P12.9):
P cos 2 40o N AD = N CD = 1 + 2 cos3 40o = 0.309 Pu
P
N BD =
P = 0.527 P 1 + 2 cos3 40o
Since N BD > N AD , we have
0.527 Pu = ! yp A = 250 #106 (400 #10"6 ) or
Pu = 189.8 kN
______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 12–5
______________________________________________________________________________________ SOLUTION (12.10) See Eqs.(i) & (j) of Example 12.3:
Ps' = 4.32 Pa'
2 Pa' + Ps' = 400
(1, 2)
Solving,
Pa' = 63.3 kN
Ps' = 189.9 kN
Then
189.9 #103 = 253 MPa !s = 750(10"6 )
63.3 #103 = 126.6 MPa !a = 500(10"6 )
Since 253 MPa > 240 MPa and 126.6 MPa < 320 MPa, steel bar yields while aluminum bars remain elastic. Thus
(! s ) res = 253 " 240 = 13 ksi
(! a ) res = 0
______________________________________________________________________________________ SOLUTION (12.11) Rod begins to yield at:
( Pr ) yp = (! r ) yp Ar = (250)(45) = 11.25 kN
(" r ) = (# r ) yp L =
(! r ) yp Er
250 $106 L= (1.2) = 1.5 mm 200 $ 109
The result is shown in Fig. (a). Here Yr corresponds to the onset of yield in the rod. Tube begins to yield at:
( Pt ) yp = (! t ) yp At = (310)(60) = 18.6 kN
(" t ) yp =
(! t ) yp Et
L=
310 #106 (1.2) = 3.72 mm 100 # 109
The result is shown in Fig. (b), where Yt represents the onset of yield in the tube. Total P-" of the rod-tube combination:
P = Pr + Pt
! = ! r = !t
The result is in Fig. (c).
P (kN)
Pt (kN) Pr (kN) 11.25
0
29.85
18.6
Yt
18.6
3.72
!t (mm) 0
Yt Yr
Yt 1.5
(a)
!r (mm) 0
1.5
(b)
3.72 ! (mm)
1.5
(c)
______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 12–6
______________________________________________________________________________________ SOLUTION (12.12) We have e = 6 " 2 = 4 mm, I = (1 12)(12)
4
= 1.728 ! 10 3 mm 4 and c = 6 mm.
( a ) Applying Eq. (12.9):
M yp = or
" yp I c
= 350!61.728
M yp = 100.8 N ! m
( b ) Equation (12.10) results in
M u = a" yp ( a 2 ! e3 ) = (0.012)(350)(12 2 ! 43 ) 2
2
= 582.4 N ! m ______________________________________________________________________________________ SOLUTION (12.13)
! yp
a
! yp c
h
h-c
Referring to this figure,
(! yp ) ca2 = ( h " c )a! yp
or Hence,
c = 2h3 M = 12 2 3ha ! yp 23 23h + h3 a! yp h6 11 = ( 54 )ah 2! yp
______________________________________________________________________________________ SOLUTION (12.14) L/2
p +
C L
L/2
C
pL2 2
Deflection at C (Case 7 of Tables D.4), in elastic range: 4
v max = 384pLEI Start of yielding:
p = p yp = Thus, M L
12 M yp L2 ( 2 bh 2!
3) L2
! L2
v max = 32ypEI = 32 E ( 2ypbh3 3) = 32ypEh
______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 12–7
______________________________________________________________________________________ SOLUTION (12.15) Equation (12.9): (a)
(b)
2 M yp = bh 2! yp 3 2 ! 0.06(0.04) 2 = (240 !106 ) = 15.36 kN " m 3 Equation (12.10b):
3 1 20 M = (15.36 !103 )[1 " ( ) 2 ] = 21.12 kN ! m 2 3 40
______________________________________________________________________________________ SOLUTION (12.16) (a)
Equations (12.9) and (12.10b):
M 3 1 e = 1.3 = [1 ! ( ) 2 ] 2 3 h M yp or
1 e2 0.867 = 1 ! ( 2 ), 3 h
e = 0.632h
(b) The residual stress pattern will be as in Fig. 12.16c. ______________________________________________________________________________________ SOLUTION (12.17)
A = 2(10)(40) + (10)(30) = 1100 mm 2 Neutral axis divides section into two equal areas:
(30)(10) + 2(10)(h1 ) = Solving
h1 = 12.5 mm
Therefore,
Z= where
y1 =
A = 550 mm 2 2
h2 = 27.5 mm
A( y1 + y2 ) 2
y 10
h1 z
30
h2 10
30
10
" A y = 1 [2(h )(10)( h ) + 10(30)(h ! 5) ] = 6.93 mm 2 "A A 2 i
i
1
1
1
2
i
y2 =
h 1 [2(10)(h2 )( 2 )] = 13.75 mm A2 2
(CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 12–8
______________________________________________________________________________________ 12.17 (CONT.) So
1100 (6.93 + 13.75) = 11,374 mm3 2 M u = ! yp Z = (260 #106 )(11,374 #10"9 ) Z=
= 2.96 kN ! m ______________________________________________________________________________________ SOLUTION (12.18)
! c3 4 2 ! c 4c Z = 2 Ay = 2 2 3! 3 4c = 3
y
y= C z
A=
4c 3!
c
Thus,
f =
! c2 2
S=
Z 16 = " 1.7 S 3!
______________________________________________________________________________________ SOLUTION (12.19) y A1 h
z
=
_
b
A2
h/2
b/2
bh h bh h 7bh 2 ! ]= 2 4 2(4) 8 32 I 2 1 b h S= = [bh3 ! ( )3 ] h 2 h 12 2 2
Z = 2 A1 y1 ! 2 A2 y2 = 2[
=
bh 2 1 15 (1 ! ) = bh 2 6 16 96
Thus,
f =
Z 7bh 2 96 = = 1.4 S 32 15bh 2
______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 12–9
______________________________________________________________________________________ SOLUTION (12.20)
1 (70)(120)3 12 = 10 !106 mm 4 I M yp = ! yp c 10 "10!6 = (250 "106 ) 0.06 = 41.7 kN ! m
y
I=
120 mm
z 70 mm
M u = fM yp =
3 (41.7) = 62.6 kN ! m 2
Elastic rebound stress
Mc 62.6 #103 (0.06) = I 10 #10"6 = 376 kPa
! 'max =
The results are sketched (in MPa) below.
-250
y
Mu =0
Mu
x
Mu
116
376
=
+
250
-250
60 mm 250 Loading
-376
-116
Unloading
Residual stresses
______________________________________________________________________________________ SOLUTION (12.21) Initial Yielding: where
" yp = !Nr12 + 4!Mr 31 N yp = !r 2" yp ,
(a)
M yp = " yp!r 3 4
(CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 12–10
______________________________________________________________________________________ 12.21 (CONT.) We express Eq. (a) in the from N1 N yp
+ MMyp1 = 1
(1)
Fully Plastic Deformation:
A2 e
A1
dy y
dA
r
r
From a Mathematics Handbook table: 1
A2 = "2r ! [e( r 2 ! e 2 ) 2 + r 2 sin !1 ( er )] 2
1
Thus,
A1 = e( r 2 ! e 2 ) 2 + r 2 sin !1 ( er ) 1
N 2 = 2" yp [e( r 2 ! e 2 ) 2 + r 2 sin !1 ( er )]
(2)
We also write 1
dA = 2( r 2 ! y 2 ) 2 dy r
3
1
Q = " 2 y ( r 2 ! y 2 ) 2 dy = 23 ( r 2 ! e 2 ) 2 e
Here Q is the first moment of the area A2 . Hence, 3
M 2 = 2Q! yp = 43 ( r 2 " e 2 ) 2 ! yp
(3)
M u = 43 r 3" yp = 316! M yp Solving Eq.(3), 2
1
e = [ r 2 " ( 43 !Myp2 ) 3 ] 2 Substituting this into Eq. (2): 2
2
1
1
N 2 = 2! yp [ r 2 " ( 43 !Myp2 ) 3 ] 2 ( 43 !Myp2 ) 3 + 2r 2! yp sin "1 [1 " ( 43r 2 !Myp2 ) 3 ] 2 The foregoing results in !N 2 2 N yp
1
1
2
2
1
2
2
1
= ( 316! ) 3 ( MMyp2 ) 3 [1 " ( 316! ) 3 ( MMyp2 ) 3 ] 2 + sin "1 [1 " ( 316! ) 3 ( MMyp2 ) 3 ] 2
(4)
The governing equations for yielding to impend and for fully plastic deformation are given by Eqs. (1) and (4). A sketch of these, interaction curves, are shown below. (CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 12–11
______________________________________________________________________________________ 12.21 (CONT.) N N yp
1.0
N
0.8
r M
Initial yielding
0.6 0.4
Fully plastic N M yp N yp N
0.2 0
= 201
B
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
M M yp
Figure P12.21 ______________________________________________________________________________________ SOLUTION (12.22) Let P=N. Then referring to Fig. P12.22, we have Thus, Also, and
M = Nd = N (0.05 + 0.05 + 0.025) = 0.125N N M = 1 0.125 M yp N yp
=
("r 3 4 )! yp
"r 3! yp
= 0.025 4
M M yp = 20( N N yp )
Now referring to Fig. P12.21, we find that B (1.68, 0.084) . Therefore,
N 2 = 0.084 N yp = 0.084("r 3! yp )
= 0.084" (0.025) 2 ( 280 ! 10 6 ) = 46.18 kN ______________________________________________________________________________________ SOLUTION (12.23) The plastic hinges for at 1 and 2, Fig. (a). x L" x
! Pu 1
3
2 x
!
L-x
Figure (a)
Apply the principle of virtual work:
Pu ( x"# ) = M u [2("# + Lx"# ! x )]
from which
Pu = x ( 2LL! x ) M u
The condition dPu
dx = 0 gives x = L 2 . Minimum magnitude of the ultimate load is thus
Pu = 8 ML u
______________________________________________________________________________________
Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 12–12
______________________________________________________________________________________ SOLUTION (12.24) b h
h1 e b1 2
h1 ! e ! h ! yp
0 ! e ! h1 ! yp
e
b1 2
Figure (b)
Figure (a)
Figure(c)
Initial Yielding:
! yp = NA1 + MI1c = 2 ( bhN!1b1h1 ) + ( 2 3)(Mbh13h!b h3 )
(a)
1 1
Here,
N yp = 2(bh " b1h1 )! yp M yp = 32h (bh 3 " b1h13 )! yp
Equation (a) may now be written N1 N yp
+ MMyp1 = 1
(1)
Fully Plastic Deformation: For 0 ! e ! h1 (Fig. b):
A2
N 2 = 2 A1! yp = 2(b " b1 )e! yp
from which
e=
A1
N2 2 ( b "b1 )! yp
e
Figure (d)
We have (Fig. d):
A2 = b( h ! h1 ) + ( h1 ! e)(b ! b1 ) = bh ! eb + eb1 ! b1h1 h ! h1
b ( h ! h1 )( +1) 2 2 2 2 Ay 2 y=" = = 1 bh !b1h1 !e b+ e b1
Thus, For
A2
A2
2
bh ! eb + eb1 !b1h1
M 2 = 2! yp A2 y = (bh 2 " b1h12 " e 2 b 2 + e 2 b1 )! yp 2
e = 0:
(b)
2 1 1
M 2 = M u = (bh " b h )! yp .
Substituting the given data, the preceding expressions become
N yp = 1.68h 2! yp ,
M yp = 0.922h 3! yp
M u = 1.113h 3! yp and
Mu M yp
= 1.21,
M yp = 0.55hN yp
Hence, Eq. (b) leads to M2 1.21M yp
= 1 ! 3.116 ( NNyp2 ) 2
This is valid for
0 ! 0 ! h1
or
(2a)
0 ! NNyp2 ! 1.67
(CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 12–13
______________________________________________________________________________________ 12.24 (CONT.) For h1 ! e ! h2 (Figs. c and e):
N 2 = 2[0.7h + 0.2h + ( e " 0.7)2h ]! yp = ( "2.52h 2 + 4eh )! yp
e = 4 hN!2yp + 0.63h
or
A2
M 2 = 2h( h " e)2( e + h 2"e )! yp 3
A1
2
= 2h ! yp " 2he ! yp
e
Figure (e)
Hence, M2
yp
1 M2 2.17 M yp
or
2
N2 = 1 ! he 2 = 1 ! 16 hN4"2 2 ! 0.h315 ! 0.397 2 " 2
2 h 3" yp
= 0.603 ! 0.176(
which is valid for
h1 ! e ! h
yp
N2 2 N yp
) ! 0.529( NNyp2 )
(2b)
1.67 ! NNyp2 ! 1
or
Equations (1) and (2) are the governing expressions of the plastic bending. A sketch of these, interaction curves, are shown in the figure given below. N N yp
1.0
N
0.8
M
0.6 Fully plastic
Initial yielding
0.4 0.2 0
0.2 0.4 0.6 0.8 1.0 1.2
M M yp
Figure P12.24 ______________________________________________________________________________________ SOLUTION (12.25) P 1
2 #1
We have
L
v 3 L/3
4
#2
2L/3
v = 43 L!1 = 23 L! 2
!v = 43 L!" 1 = 23 L!" 2 from which 2!" 1 = !" 2 .
and
Applying the principle of virtual work:
Pu!v = M u!" 1 + M u (!" 1 + !" 2 ) + M u!" 2
or Solving,
4 3
Pu L!" 1 = 6 M!" 1 Pu = 92MLu
______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 12–14
______________________________________________________________________________________ SOLUTION (12.26) x p p px (a) L L/2 L/2 e 1 #1 1
v 2 #2
3 3 #3
2
(b)
4
Figure P12.26
v 4
#4
(c)
We have two different modes to be checked for collapse loading. Mode A, Fig. P12.26b:
!1 = ! 2 ( Le "e ) ;
!1 + ! 2 = L!e 2
Applying the principle of virtual work: e
L
! $ ("1 x ) Lx pdx + ! $ ["1e # " 2 ( x # e)] Lx pdx = M u!" 1 + M u!" 2 + M u!" 2 e
0 e
L
# " $1 x pdx + # " [$1e ! $ 2 ( x ! e)] Lx pdx = M u#$ 2 ( Le + 1)
or
x L
0
e
(a)
Integrating the left hand side of this equation, carrying out the algebra and simplifying:
"# 2 p[ L !6 e ] = M u"# 2 ( Le + 1) 2
Solving,
2
p = e 6( LM!ue )
(b)
Then, dp de = 0 gives,
0 = ! e26(ML!ue ) + e 6( LM!ue ) ;
e = L2
Introducing this value of e into Eq. (b), the collapse load is
Pu = 24LM2 u Mode B, Fig. P12.26c: From symmetry ! 3 = ! 4 = ! . Principle of virtual work gives: L
! $ [" L2 # " ( x # L2 )] pdx = 3M u!" L2
or
L
! $ ["L # "x ] pdx = 3M u!" L2
Integrating, 2
or
!" L8p = 3M u!" Pu = 24LM u
Note that the collapse load is the same for modes A and B. ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 12–15
______________________________________________________________________________________ SOLUTION (12.27) Assume that plastic hinges force at 1 and 2, as shown in Fig. (a). On the average, plastic limit load a# b
pu 1
# a
a#
3 #
2
Figure (a)
b
Note that pu goes through a virtual displacement of a!" 2 . Thus, applying the principle of virtual work: Solving,
( pu L) 12 a!" = M u!" + M u (1 + ab )!" 2 L!a pu = 2 ML u ( La ) !a 2
The unknown distance a is determined from dpu
da = 0. In so doing and
simplifying the result, we obtain
a = (2 ! 2 ) L and
b = L ! a = ( 2 ! 1) L. ______________________________________________________________________________________ SOLUTION (12.28) ! yp y x dy y h h x 3
! yp
b ( a ) We have M yp = ! yp I From geometry, x b2
Then,
= ( h h2 )2! y ;
I = 2!
h2
0
h x = b ( h2!h2 y )
( 2 x )dy ( y 2 ) = bh48
3
Hence, total yielding moment
M u = 2 bh48 h1 ! yp = bh24 ! yp 2
Also,
2
M u = 12 (area of rhombus) ! (distance between centroids) (! yp ) 2
= bh4 ( h3 )! yp = bh12 ! yp Thus,
Mu M yp
=2
(CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 12–16
______________________________________________________________________________________ 12.28 (CONT.) y (b) r +
b
4
#
x
a
4
I = " ( b 4!a ) !
M yp = "4 (b 4 # a 4 ) byp = 4"b (b 4 # a 4 )! yp Also, referring to the figure: Hence,
#
b
0
0
M x = 2 " " r 2 sin $drd$ = 43 (b 3 ! a 3 )
y c = MAx = 43 (" 2b)(!ba2 !a 2 ) = 34" bb2 !!aa 2 3
3
3
3
We therefore have, Mu M yp
(" 2 )( b 2 # a 2 )!
y
3
3
= (" 4 b )( b4 #a 4 )!yp c = 163"b bb4 !!aa 4 yp
______________________________________________________________________________________ SOLUTION (12.29) (a)
! max L 6000 $10#6 (0.5) = = 0.10 rad c 0.03 ! 180 #106 = 2600 µ < 6000 µ " y = yp = 70 # 109 G
"=
and shaft is yielded.
6000 µ 2600 µ
60 mm 2$0
(b)
From similar triangles:
!0 30 = 2600 6000
or
!0 = 13 mm
Elastic core. Use Eq.(b) of Sec. 12.9:
T1 =
!"03 ! # yp = (0.013)3 (180 $106 ) = 621 N % m 2 2
Outer part. Use Eq.(c) of Sec. 12.9:
2! 3 2! (c $ "03 )# yp = (0.033 $ 0.0133 )(180 %106 ) 3 3 = 7.01 kN ! m
T2 = Thus,
T = T1 + T2 = 7.63 kN ! m
______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 12–17
______________________________________________________________________________________ SOLUTION (12.30)
G = 26 "106 GPa, (a)
! yp = 140 MPa (Table D.1)
For partially plastic shaft, using Eq.(12.19):
(
!0 3 3T 6T ) = 4$ = 4$ 3 c Typ " c # yp
Substituting the given values
!0 3 6(4.5 #103 ) ( ) = 4$ = 0.0711 0.025 " (0.025)3 (140 #106 ) !0 = 12.4 mm (b)
$y =
!=
"0# ! yp = , L G
#=
! yp L G "0
140 "106 (1.2) = 0.5211 rad = 29.9o 26 " 109 (0.0124)
______________________________________________________________________________________ SOLUTION (12.31) 80 mm
A
a=2 m
50 mm
Tc
C
b=1.5 m
B
240 #106 = = 3000 µ " yp = 80 #109 G c! 0.04(0.25) (" max ) AC = = = 5000 µ a 2 0.025(0.25) (! max )CB = = 4167 µ 1.5
! yp
Both segments are yielded and partially plastic. Segment AC
"0 =
%max
c! y
! max
0.04(3000 "10!6 ) = = 24 mm 5000 " 10!6 ! c3 ! (0.04)3 Typ = " yp = (240 #106 ) = 24.127 kN $ m 2 2
Use Eq. (12.19):
TAC =
c
%y
$o
4 1 24 (24,127)[1 ! ( )3 ] = 30.43 kN " m 3 4 40
(CONT.) ______________________________________________________________________________________
Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 12–18
______________________________________________________________________________________ 12.31 (CONT.) Segment BC
"0 = Typ =
c! yp
! max
0.025(3000 $10#6 ) = 1.8 mm 4167 $10#6
=
3
!c ! (0.025)3 " yp = (240 #106 ) = 5.89 kN $ m 2 2
Use Eq. (12.19):
4 1 18 TBC = (5.89)[1 ! ( )3 ] = 7.12 kN " m 3 4 25
Total applied torque is therefore
T = TAC + TBC = 37.55 kN ! m
______________________________________________________________________________________ SOLUTION (12.32) For r=0, Eq. (f) of Sec. 12.11 leads to c1 = 0. Then, in plastic zone 2 2
! r = ! yp % #$3 r ,
! " = ! yp
If the plastic zone extends to radius c: 2 2
# c = # yp $ !"3 c
which may be found directly from Eq. (12.30) by setting a=0. The outer elastic zone is represented by an annular disk yielding at the inner radius c, wherein radial stress is ! c . We follow a procedure similar to that described in Sec. 12.11 for an annular disk. Boundary conditions:
( u ) r =0 = 0 are substituted into Eqs. (8.37) to obtain c1 and c2 . We then determine the stresses in the (! r ) r =c = ! c ,
elastic region as follows: #
4
2
# r = 24 Nyp 2 [3(1 + " ) ! (1 + 3" ) rc2b2 ](1 ! br2 ) "
where
4
4
2
" # = 24 Nyp 2 [ bc4 (1 + br 4 )(1 + 3! ) + 3! (3 + ! ) $ 3(1 + 3! ) br2 ] 2
c b ) !1] N 2 = 8+(1+3" )[( 24
______________________________________________________________________________________ SOLUTION (12.33) h a b The sand volume is
V = 12 (b ! a )ah + 2( 13 a 2 h2 )
(CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 12–19
______________________________________________________________________________________ 12.33 (CONT.) Slope
! yp = (ah2 )
The ultimate torque is thus 2
Tu = ( 3b"6a ) a ! yp The yield torque given in Table 6.2, by letting ! = ! yp . ______________________________________________________________________________________ SOLUTION (12.34)
2a
2a
a 3
a 3 3
a
2a
a
h
2a
2a
3 ) = 33 ha 2
Volume = 13 h ( 12 ! 2a ! a
h = a 3 3 ! yp
Slope = a h3 3 = a3h3 = ! yp ,
Tu = 2V = 23 a 3! yp
(a)
( b ) From Table 6.2: ! A = 20 T3 = 20T3 a1
Thus,
8a
T yp = 820a ! yp 3
( c ) Referring to the preceding results in items (a) and (b): Tu T yp
= 53
______________________________________________________________________________________ SOLUTION (12.35) Equilibrium condition, from Eq. (8.2): d dr
(t" r ) ! t (" # r!" r ) = 0
Profile is, using Eq. (8.36) with s = 1, rt = at a . For full plasticity
! " # ! r = ! yp Thus,
t# r = " atra
# yp r
# at
dr = ! ypr a + c1 ! at
c1 = ypb a Then, noting that " r = ! pi at t = t a : Since, (! r ) r =b = 0; pi " yp
or
= a ( 1r ! 1b )
pi = a ( brb" r ) ! yp
______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 12–20
______________________________________________________________________________________ SOLUTION (12.36) We have ! = 1 2 and substituting the given data into Eq. (12.42): 6
pr0 (14!10 )( 0.5 ) t0 = ( 2 K0.606 = ( 2!9000.606 3 )( n 3 ) !106 1.73)( 0.2 1.73)0.2
= 0.0063 m = 6.3 mm ______________________________________________________________________________________ SOLUTION (12.37) In this case, we have " z > " ! . The total force is where
P = 2"rt! 1 "1 = " z " 2 = "!
(a)
The values of r and t are given by Eqs. (g) and (f) of Sec. 12.12. Substituting these into Eq. (a):
P = 2"r0 e $#1! 1 At instant of stability,
dP = ( !!#P1 )d# 1 + ( !!"P1 )d" 1 = 0 d! 1 d"1
or
= !1
Equations (12.28) has the form
# 1 = f (" )! 1n
from which stability condition is Then,
!1 = n
1
Solving,
n = ( "K1 ) n (! 2 # ! + 1)( 2#2! ) ( 1# n )
" 1 = K ( 2n ) n ( ! 2 #1! +1 ) 2 ( 2#1! ) n
(b)
Since ! 1 + ! 2 + ! 3 = 0, the maximum principal strain is
! 1 = ln LL0 = ln tt0 + ln rr0 Minimum strain is
t = t0 ln "1 ! 3
! 3 = ln tt0 ; Thus,
# 1 = 2"Prt = 2"r ln $1 !P t ln $1 ! o
2 0
3
Substituting Eqs. (12.38b) and (12.38c) into this equation:
#1 = or
t0 =
2$r0t0 ln !1 [( 2$r0# 1 ln !1 [(
P #1 1 2 2 1! n " ( !1)] ) (" !" +1) K 2 2
P #1 1 2 2 1! n " ( !1)] ) (" !" +1) K 2 2
where, ! 1 is given by Eq. (b).
Results of the preceding expressions are simplified by setting ! = 1 2 . ______________________________________________________________________________________
Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 12–21
______________________________________________________________________________________ SOLUTION (12.38) Since the mean radius does not change, we have d! 0 = 0. We also take ! 3 = ! r = 0. Material is incompressible d! L = d! 3 , or ! L = "! 3 . The Levy-Mises equation is thus d# L " L $" !
Hence, And
= d"#!L
" L = 2" !
or
! e = 23 ! L ! e = ( 23 )d! L = "( 23 )d! 3
Radius r0 = constant. Therefore,
P = 2"r0 # t! L
At instant of instability, dP = 0 : Hence,
d" L "L
= # dtt = #d! 3 = d! L
! e = 23 n = 23 ! L
" e = K ( 23 ) n = 23 " L ,
t = t0 e ! n
At instant of instability, the load is then given by Eq. (P12.38). ______________________________________________________________________________________ SOLUTION (12.39) ( a ) Use Eq. (8.10), with " max = ! yp " yp 2n
2
= bp2 i!ba 2 =
pi a 1!( ) 2 b
2n :
;
Substituting the given data:
50 =
60 50 2 ) b
or
1!(
5 6
= 1 ! ( 50b ) 2
Solving, b = 122.5 mm ( b ) Apply Eq. (12.47) with k = 1 and n = 3 : !
pu = nyp ln( ab ); or Solving,
50 b
=e
! ( 150 ) 250
50 ! 60 = 250 2.5 ln( b )
= 0.549
b = 91.11 mm
______________________________________________________________________________________ SOLUTION (12.40) Apply Eq. (12.61a): with c = 1.4a and k = 2
2 3
. We have pi = ! r at r = a. Thus
2
pi = 23 ( 260)[ln( 1.a4 a ) ! ( 2 a 2) (!2(a1).24 a ) ]
= 300.2[ !0.336 ! 0.255] = !177.4 MPa ______________________________________________________________________________________
Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 12–22
______________________________________________________________________________________ SOLUTION (12.41) ( a ) Using Eq. (8.11):
36! 25 p yp = 420 3 2 ( 36 ) = 21.39 MPa We have k = 1, and thus,
!
6 pu = nyp ln ab = 420 3 ln 5 = 25.53 MPa
(b)
!
( nyp ) 2 = ! "2 # ! " ! r + ! r2 or
+ 25 2 36+ 25 (140) 2 = p 2yp [( 36 36! 25 ) + 36! 25 + 1]
Solving, p yp = 22.92 MPa Now k = 2
3 , and hence, pu = 23 ( 25.53) = 29.48 MPa
______________________________________________________________________________________ SOLUTION (12.42) Using Eqs. (12.57) and (12.58) with k = 1 and r = 0.25 m,
pu = 400 ln( 00..23 ) = 162.2 MPa
and
.3 " r = !400 ln( 00.25 ) = !72.93 MPa 0.3 # " = 400[1 ! ln 0.25 ] = 327.1 MPa " z = 12 (" r + " ! ) = 127.1 MPa
Unloading from pu . At r = 0.25 m, Eqs. (8.12) and (8.20): 2
2
2
2
.2 ) .3 " r = 00.2.32(!162 (1 ! 00.25 2 ) = !57.09 MPa 0.2 2 .2 ) .3 # " = 00.2.32(!162 (1 + 00.25 2 ) = 316.6 MPa 0.2 2
" z = 162.2 0.302 .!20.22 = 129.8 MPa 2
Residual stresses at r=0.25 m:
(# " ) res. = 327.1 ! 316.6 = 10.5 MPa (" r ) res. = !72.93 ! 57.09 = !15.84 MPa (" z ) res. = 127.1 ! 129.8 = !2.7 MPa
______________________________________________________________________________________ SOLUTION (12.43) We have k = 1. Refer to Eq. (12.57). Inner cylinder, at r = b :
" pb = " pu + (! yp ) i ln ab Outer cylinder, at r = c : 0 = " pb + (! yp ) o ln bc
(a) (b)
(CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 12–23
______________________________________________________________________________________ 12.43 (CONT.) From Eqs. (a) and (b), after eliminating pb , we obtain
pu = (! yp ) i ln ab + (! yp ) o ln bc 50 = 280 ln 30 20 + 400 ln 30 = 317.9 MPa
______________________________________________________________________________________ SOLUTION (12.44) ( a ) Equation (12.60):
pc = k! yp 32 ("32)2 = 0.2778k! yp 2
2
( b ) Equation (12.61a):
(! r ) r =a = k! yp [ln 12 " 0.2778] = "0.9709k! yp
( c ) Equation (12.59b):
(! " ) r =b = Equation (12.59b):
(! " ) r =c = Equation (12.61b):
0.2778 k! yp ( 32 ) 32 # 2 2 0.2778 k! yp ( 32 ) 32 # 2 2
(1 + 332 ) = 0.444k! yp 2
(1 + 232 ) = 0.7222k! yp 2
(! " ) r =a = k! yp (1 + ln 12 # 0.2778) = 0.0291k! yp
We see from these results that the maximum stress occurs at the elastic-plastic boundary.
End of Chapter 12
Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 12–24
CHAPTER 13 SOLUTION (13.1)
a x b y
( a ) Boundary conditions at y=0 and y=b:
w=0
dw dy
=0
(a)
We have 2
w' ' ' ' = pD0
w' ' = p20Dy + c1 y + c2
3
w' = p60Dy + 12 c1 y 2 + c2 y + c3 4
3
2
p0 y c1 y c2 y w = 24 D + 6 + 2 + c3 y + c 4 Conditions (a) yield c4 = 0, c3 = 0, 2
c1 = ! 2p0Db Thus,
p0b c2 = 12 D
4
p0b y 4 y 3 y 2 w = 24 D [( b ) ! 2( b ) + ( b ) ]
( b ) Differentiating twice the foregoing expression, we have 4
p0b 2 12 12 2 w' ' = 24 D [ b 4 y ! b3 y + b 2 ]
For y = b2 :
d 2w dy 2
2
p0b = ! 24 D 4
Hence,
0b M y = p24
Thus,
! y ,max = p40 ( bt ) 2 ,
! x ,max = 12p0 ( bt ) 2
Similarly, for y=0: d 2w dy 2
and
2
p0b = ! 12 D ,
M y = p120b
2
! y ,max = 12 p0 ( bt ) 2 = ! max ! x ,max = 16 p0 ( bt ) 2
______________________________________________________________________________________ SOLUTION (13.2) We have rx = r ,
ry = !
and r = 0.12 m, Equation (13.3b):
t = 0.3(10 !3 ) m
.3 ! max = 2tr = 2 (0120 ) = 1250 µ
Equation (13.5): 9
"10 ( 0.3) $ max = ! 2 (1!Et# 2 ) r = ! 200 2 ( 0.91)120 = 274.7 MPa
______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 13–1
______________________________________________________________________________________ SOLUTION (13.3) Using Eq. (13.8), 9
3
)( 0.012 ) D = 9 ( 200!10 = 32,400 12 ( 8 )
From Example 13.1:
w = ( !b ) 4 pD0 sin( !by ) !3 "10 wmax = ( 0#.6 ) 4 20 32 , 400 = 0.82(10 ) m = 0.82 mm 3
M y = " D ddyw2 = "( !b ) 2 p0 sin !by 2
Thus,
! y ,max =
6 M y , max t2
= 0.61 p0 ( bt ) 2
.6 2 = 0.61 p0 ( 20 ! 10 3 )( 0.0012 ) = 30.4 MPa
" x ,max = ! (30.4) = 10.13 MPa Then,
and
# y ,max = E1 (" y ,max $ !" x ,max ) = 2001"103 (30.4 ! 103.13 ) = 135 µ !10 ry = 2" yt,max = 0.2012 (135 ) = 44.41 m 6
______________________________________________________________________________________ SOLUTION (13.4)
M y = Ma
M x = Mb y
z
x
b
a ( a ) Using Eq. (13.7), #2w #x 2 2
" w "y 2
= " MD (b1""!!M2 a) M a !#M b
= ! D (1!# 2 ) ,
(a) 2
" w "x"y
=0
Integrating these equations,
w = ! 2MDb(!1"!M" 2a) x 2 ! 2MDa(!1"!M" 2b) y 2 + c1 x + c2 y + c3 If the origin of xyz is located at the center and midplane of the plate, the c’s will vanish, and
w = " 2MDb("1!"M! 2a) x 2 " 2MDa("1!"M! 2b) y 2
(b)
( b ) By setting M a = ! M b in Eq. (a): "2w "x 2
= ! ""yw2 = D (M1!a# ) = r1x = ! r1y 2
Integrating and locating the origin of xyz, as in item (a):
w = 2 DM(1a!" ) ( x 2 ! y 2 ) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 13–2
______________________________________________________________________________________ SOLUTION (13.5) Equation (13.19) becomes, a
b
0
0
P pmn = 144 [ (b " y ) sin n#by dy ]( a " x ) sin ma#x dx a 4b 4 ! !
Integrating by parts,
P b a P pmn = 144 = mn144 ! 2 a 2b2 a 4 b 4 n! m! 2
2
(a)
4
Substituting Eqs. (13.18) into ! w = p D :
a mn = ! 4 D ( m2 pamn2 + n 2 b2 )2
(b)
Inserting Eqs. (a) and (b) into Eq. (13.18b), we find the required expression for the deflection. ______________________________________________________________________________________ SOLUTION (13.6) ( a ) From Eq. (13.19), we obtain
pmn = p0
Then, Eq. (13.20) becomes for a square plate (a=b): sin m"x sin
4
n"y
w = "p04aD !! ( ma2 + n 2 )b
(a)
At x = y = a 2 , p0 a 4
wmax = # 4 D !! (b)
9
m + n "1
( "1) 2 ( m2 + n 2 )2
3
) D = 21012"10(1!(00.3.025 = 300,480.77 2 )
Equation (a) is then, 4
p0 ( 3) 1 8(10 !3 ) = " 4 ( 300 [ 1 ! 100 ] , 480.77 ) 4
p0 = 12.05 kPa
or
______________________________________________________________________________________ SOLUTION (13.7) The flexural rigidity of the plate is
D = 12 (Et1"# 2 ) = 12200(1!"100.09t ) = 18.315 ! 10 9 t 3 3
9 3
The maximum deflection occurs at the center of the plate. Equation (13.27) is thus 4
6
p0 a wmax = 64 D ;
Solving,
4
(10 )( 0.05 ) 1.5 ! 10 "3 = 6410(18 .315!109 t 3 )
t = 3.29(10 !3 ) m = 3.29 mm
______________________________________________________________________________________ SOLUTION (13.8) a
M0 t
(CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 13–3
______________________________________________________________________________________ 12.8 (CONT.) Since Q = 0, Eq. (13.24c) becomes d dr
[ 1r drd ( r dw dr )] = 0
from which, after integration, 2
w = ! c14r ! c2 ln ar + c3
(a)
M r = D[ c21 ! cr 22 + " ( c21 + cr 22 )]
(b)
Substituting this into Eq. (13.24a): Boundary conditions
( M r ) r =a = M 0
w( 0 ) = 0
( dw dr ) r =0 = 0
yield c2 = 0 and 2
c1 = D2(1M+!0 )
c3 = 2 DM(01a+! )
Equation (a) becomes then,
w = 2 DM(10+" ) ( a 2 ! r 2 ) Introducing this into Eqs. (13.24a) and (13.24b) yields M r = M ! = M 0 . Hence,
" r ,max = " ! ,max = 6 tM2 0
______________________________________________________________________________________ SOLUTION (13.9) We have Qr = 0 and Eq. (13.24c) after integration gives 2
w = ! c14r ! c2 ln ar + c3
(a)
M r = D[ c21 ! cr 22 + " ( c21 + cr 22 )
(b)
Introducing this into Eq. (13.24a): Boundary conditions
w( a ) = 0
M r ( b) = M 0
and Eqs. (a) and (b) result in 2
c1 = (1+"2)(b bM2 !0 a 2 ) ,
2 2
c2 = (1!"a )(bbM2 !0a 2 )
2 2
c3 = 2 (1+"a ) bD (Ma 20 !b2 )
Carrying these into Eq. (a), we have the equation for deflection. ______________________________________________________________________________________ SOLUTION (13.10) From Example 13.3:
" 1 = " r ,max = ! 43 p0 ( at ) 2 ,
" 2 = ! 14 p0 ( at ) 2 ,
"3 = 0
Maximum shearing stress is then
# max = 12 (" 1 ! 0) = ! 83 p0 ( at ) 2
According to maximum shear stress theory: ! yp n
= 43 p0 ( at ) 2
Introducing the given data, 100 (106 ) n
= (0.4 ! 10 6 )( 00..022 ) 2 ( 43 ) n = 3.33
or ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 13–4
______________________________________________________________________________________ SOLUTION (13.11) p 2a Solution proceeds as in Example 13.3. Boundary conditions are
( w) r = a = 0
( M r ) r =a = 0
(a)
We have D p
2
r w = 64 ! c24r + c4 4
(b)
Carrying Eqs. (a) and (b) into Eq. (13.24a), we obtain two equations. From these c2 and c4 are evaluated. In so doing, and substituting the values obtained into Eq. (b): 2
2
w = p ( a64 !Dr ) ( 15++"" a 2 ! r 2 )
______________________________________________________________________________________ SOLUTION (13.12) 2
2
then rx = rxy = ! ,
Let r = ry = ! w !y ,
M = My,
M x = M xy = 0
Hence, Eq.(13.5), for z= ! t z : 9
)(0.006) 120(106 ) = 70(10 , 2(0.91) r
! max = 2(1#Et" 2 )r ;
r=1.923 m, d= 3.85 m
or
Equation (13.9),
6 M max 120(106 ) = 6 Mt 2max = (0.006) 2 ;
M max = 320 N
______________________________________________________________________________________ SOLUTION (13.13)
Dw IV = p0,
(a) and
Dw' ' = 12 p0 y 2 + c1 y + c2
Dw' ' ' = p0 y + c1 ,
Dw' = 16 p0 y 3 + 12 c1 y 2 + c2 y + c3 Dw = 241 p0 y 4 + 16 c1 y 3 + 12 c2 y 2 + c3 y + c4
Boundary conditions:
w( 0) = 0: c4 = 0,
w' ' ( 0) = 0: c2 = 0
w( b) = 0:
p0 b4 24
+ b6 c1 + c3b = 0
w' ( b) = 0:
p0 b3 6
+ b2 c1 + c3 = 0
Solving, c1 = ! 83 b Equation (a) is thus
(a)
3
2
3
b c3 = 48
p b4
y
y
p b4
4 y3
9 y2
y
w = 480 D [( b ) ! 3( b )3 + 2( b ) 4 ]
(b)
( b ) We have dw dy
= 240 D [ b4 ! 2 b3 + 21b ],
d 2w dy 2
p
At y = b: 2
2
M max = ! D ddyw2 = ! p0 b8 ,
3 yb
= 2 D0 [ y 2 ! 4 ]
! y ,max =
6 M max t2
= "0.75 p0 ( bt )2
______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 13–5
______________________________________________________________________________________ SOLUTION (13.14) y
Let W = 1 ! ax ! a .
x
a a
w = cx 2 y 2W .
Then !w !x
y=a!x
= 2cxy 2W 2 + 2cx 2 y 2W ( " a1 )
y ! 2w !x!y
( a ) At x=0: At y=0:
= 4cxyW + 4cxy 2W ( " a1 ) + 4cx 2 y ( " a1 ) + 2cx 2 y 2W "1 ( " a1 )
!w !y
= 2cx 2 yW + 2cx 2 y 2W ( " a1 )
! 2w !x 2
= 2cy 2W 2 + 4cxy 2W ( " a1 ) + 4cxy 2 ( " a1 ) + 2cx 2 y 2W "1 ( " a1 ) 2
! 2w !y 2
= 2cx 2W 2 + 4cx 2 yW ( " a1 ) + 4cx 2 y ( " a1 ) + 4cx 2 y 2W "1 ( " a1 ) 2
w=0, w=0,
At y=a-x: w=0,
!w !x
=0
!w !y !w !x
=0
= 0, !!wy = 0
( b ) At x=0, y=a: 2
2
! y = $ 2(1Et$" 2 ) [ ##yw2 + " ##xw2 ] = % % % % % % % = 0 , x = a2:
At y=0,
! 2w !y 2
! 2w !x 2
2
= ca8 , 2
2
! y ,max = # 2(1Et#" 2 ) [ ca8 ] = # 16Ecta , (1#" 2 )
and
! 2w !x!y
= 0,
2
! xy = 2(1E+" ) ##x#wy = $ $ $ $ $ $ $ = 0 =0
! xy = 0
______________________________________________________________________________________ SOLUTION (13.15) We have 2
M xy = ! D(1 ! " ) ##x#wy = M 0 Let,
! 2w !x!y
#M
= D (1#"0 ) = k
Integrating with respect to x : !w !y
= kx + f ( y ) + c1
Then, integrating the above with respect to y gives
w = kxy + ! f1 ( y )dy + c2 Due to the symmetry in deflection :
where
f1 ( y ) = f ( y ) + c1
! f ( y )dy = 0. 1
Also, owing to the symmetry, center (a/2, a/2) should be free of displacement,
! c2 = " 14 ka 2
w = 0 = 14 ka 2 + c2
It follows that
M
2
w = ! D (1!0" ) ( xy ! a4 ) We observe that this solution satisfies boundary conditions, M x = 0 and M y = 0 at plate edges. ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 13–6
______________________________________________________________________________________ SOLUTION (13.16) Cylinder end can be approximated as a clamped edge plate subjected to uniform loading. ( a ) Equation (13.29), 3p
6
)!4 ( at ) 2 = 135(10 = 120 3!1.5(106 )
! r ,max = 4 0 ( at ) 2 ; or a/t=10.954. Hence,
200 t = 10.954 = 18.26 mm
( b ) Then, Eq.(13.27) for r=0, gives 4
6
4
2
p0 a 1.5!10 (0.2) !12(1" 0.3 ) wmax = 64 D = 64!200!109 (0.01826)3 = 0.336 mm
______________________________________________________________________________________ SOLUTION (13.17) ( a ) From Eq. (13.29):
2 ! max = 34 p0 ( at ) 2 = 34 p yp ( 125 10 ) = 117.19! yp
Setting ! max = p yp !
yp 345 p yp = 117.19 = 117.19 = 2.944 MPa
We have D =
Et 3 12(1"! 2 )
9
3
)(0.01) = 200(10 = 18.315 kPa 12(1" 0.32 )
Eq. (13.27) for r=0 is then p a4
6
4
)(0.125) wmax = 64ypD = 2.944(10 = 0.613 mm 64(18.315!103 )
(b)
p
pallow = nyp = 2.944 1.2 = 2.45 MPa
______________________________________________________________________________________ SOLUTION (13.18) Referring to Example 13.2:
! max = 6 Mt 2max = 6(0.0534 p0 )( 502 ) 2 Thus,
240(10 6 ) = 200.25 p0
or
p0 = 1.2 MPa
Similarly, 4
wmax = 0.0454 p0 Eta 3 = 0.0454(1.2 ! 10 6 ) 70!10( 09.5( 0) .02 )3 4
= 0.0608 m = 6.1 mm ______________________________________________________________________________________ SOLUTION (13.19) We observe that a
b
0
0
n"y n"y ! sin ma"x sin ma"x dx = ! sin b sin b dy = 0
if m ! m' and n ! n ' Therefore, integrating, we consider only the squares of the terms in the parenthesis in Eq. (b) of Sec. 13.9. Using the formula:
(CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 13–7
______________________________________________________________________________________ 12.19 (CONT.) a
b
0
0
! ! sin
2 m"x a
sin 2 n"by dxdy = ab4
calculation of the first term of the integral in Eq. (b) gives # 4 abD 8
"
"
m
n
2 mn
!! a (
+ nb2 ) 2
m2 a2
2
Also, the second term of the integral in Eq. (b): a
b
0
0
p0 ! ! a mn sin ma"x sin n"by dxdy ab = !p20mn a mn (1 " cos m! )(1 " cos n! )
= 4! p20mnab a mn
( m, n = 1, 3, . . . )
______________________________________________________________________________________ SOLUTION (13.20) Deflection is given by Eq. (13.18b). Loading is expressed as follows:
p = 2 p0 ax
0 ! x ! a2
p = 2 p0 ! 2 p0 ax
a 2
Potential energy, Eq. (13.33):
W = 2!! "
a 2
0
"
a 2p x 0
a
0
!x!a
(a)
sin ma#x sin na#y dxdy
2
= !! m8 p2n0a" 3 a mn sin m2"
(b)
Strain energy, Eq. (13.32): a
a
0
0 4
U = D2 ! ! [a mn ( ma"2 + nb"2 ) sin ma"x sin na"y ]2 dxdy 2 2
2 2
2 = 81 D" a 2 !! a mn ( ma 2 + an 2 ) 2 2
2
We thus have or
"# "amn
2
= D$4 a a mn ( ma 2 + an 2 ) 2 ! m8 p2n0a$ 3 sin m2$ = 0 4 2
2
4
m! 2 ) a mn = m322np!0a7 Dsin( ( m2 + n 2 )2
2
( m, n = 1, 3, . )
(c)
Substitute this into Eq. (13.18b) to obtain deflection. ______________________________________________________________________________________ SOLUTION (13.21) Let p represent the pressure differential. Cylinder:
" ! = apt
or
" ! = 1506 p = 25 p 6
From the above, p = " ! / 25 = 15 # 10 / 25 = 600 kPa Sphere: Thus,
! = pa 2 t = 12.5 p p = ! 12.5 = 15 "106 12.5 = 1.2 MPa
______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 13–8
______________________________________________________________________________________ SOLUTION (13.22)
p=
2t! all 2(0.05)(30 "106 ) 2 = = 1.5 MPa 2.5 "12 r
We have
9.81(103 )h = 1.5 !106 ,
h = 152.9 m
______________________________________________________________________________________ SOLUTION (13.23) y p r
t
Total pressure at any depth:
p = 500(103 ) + ! (h " y ) (a) At y = h :
h x
p = 500(103 ) Pa
Liquid pressure Therefore,
pr 500(103 )4000 t= = = 11.11 mm 180(106 ) ! all (b)
At y = h 4 :
p = 500(103 ) + 15(103 )(13.5) = 702.5(103 ) Pa
t= (c)
702.5(103 )4000 = 15.6 mm 180(106 )
At y = 0 :
p = 500(103 ) + 15(103 )(18) = 770(103 ) Pa
t=
770(103 )4000 = 17.1 mm 180(106 )
______________________________________________________________________________________ SOLUTION (13.24) Total pressure at any depth:
p = 200(103 ) + ! (h " y )
(a)
At y = h :
p = 200(103 ) Pa
t=
pr 200(103 )4000 = = 4.44 mm 180 "106 ! all
(CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 13–9
______________________________________________________________________________________ 12.24 (CONT.) (b)
At y = h 4 :
p = 200(103 ) + 15(103 )(13.5) = 402.5(103 ) Pa
t= (c)
At y = 0 : :
402.5(103 )4000 = 8.94 mm 180 !106
p = 200(103 ) + 15(103 )18 = 470(103 ) Pa
t=
470(103 )4000 = 10.4 mm 180 !106
______________________________________________________________________________________ SOLUTION (13.25) The thickness for circumferential stress:
pr 1.2(103 )(0.6) t= = = 12 mm 24.0 2.4 ! all
The thickness for axial stress:
pr 12 = = 6 mm 2! all 2 treq = 12 mm
t= Thus,
______________________________________________________________________________________ SOLUTION (13.26)
pr p =#h t pr ! hr 9.81(103 )(150)(400) = 8.83 mm treq = = = " all " all 120(106 ) 1.8
"! =
______________________________________________________________________________________ SOLUTION (13.27)
pr ! hr 9.81(103 )(150)(400) = 5.89 mm treq = = = " all " all 100(106 )
______________________________________________________________________________________ SOLUTION (13.28)
! 1 # ! 2 1 pr pr pr pd = ( # )= = 2 2 t 2t 4t 8t 6 8t! 8 "12 " 35 "10 d = max = = 336 mm p 10 "106
(a)
" max =
(b)
pr 10 "106 "168 = = 140 MPa !1 = t 12
______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 13–10
______________________________________________________________________________________ SOLUTION (13.29)
F N! The given numerical values are:
r" = 180 ! 1 = 179 mm
r" = 80 ! 1 = 79 mm
ri = 80 ! 2 = 78 F = !ri 2 p
p = !0.08 MPa Equation (13.46b) is therefore 2
6
) ( 0.08$10 ) N " = 2!rF# (1) = ! ( 0.078 2! ( 0.079 )
= 3.081 kN m and
" ! = 03081 .002 = 1.541 MPa
Using Eq. (13.46a), or
"! 0.079
0.08 + 10..541 179 = 0.02
! " = 2.48 MPa = ! max
______________________________________________________________________________________ SOLUTION (13.30) ! b
N
A
!
a
N
p "
r! r0
Consider the portion of shell defined by ! . Vertical equilibrium of force yields,
2"r0 N # sin # = "p( r02 ! b 2 ) from which 2
2
pa ( r0 + b ) !b ) N " = p2(rr00sin " = 2 r0
or
N ! = b+ apasin ! ( a2 sin ! + b) Substituting N ! into Eq. (13.46a), setting p z = ! p, and r! = a :
N " = pr" 2( rr00!b ) = pa2 Since sin # = r0
r" = ( r0 ! b) a , from symmetry.
Note that N ! is constant throughout the shell from the condition of symmetry. ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 13–11
______________________________________________________________________________________ SOLUTION (13.31) Referring to Solution of Prob. 13.30, we have
2a = (1 ! 0.7) 2 , 2b = (1 + 0.7) 2,
a = 0.075 m b = 0.425 m
At point A (crotch):
" A = " ! ,max = pa ( r0 + b) ( 2r0 t )
or
t = pa ( r0 + b) ( 2r0" ! ,max ) 6
.075 )( 0.35+ 0.425 ) = 2 (102)(( 00.35 )( 210!106 )
= 0.791 mm = t req. Similarly,
" ! = pa 2t
or 6
(10 ) 75 t = 22( 210 = 0.357 mm !106 )
______________________________________________________________________________________ SOLUTION (13.32) N
!
u
N
v
!
! r2 s
# #
a
t y
O Pressure at any level st is p r = " ( a ! y ) . We have
" = #2 + !
r0 = y tan !
Thus, the first of Eqs. (13.49) becomes and
y ) y tan ! N # = " ( a $cos !
tan ! $ # = " ( a%t y ) y cos !
The load F is equal to the weight of liquid in cylindrical portion stuv:
F = $"#y 2 ( a $ y + 3y ) tan 2 !
Then second of Eqs. (13.49) gives
N # = "y ( a $ 23 y ) tan ! 2 cos !
and
tan ! $ # = "y ( a %22t y 3) cos !
______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 13–12
______________________________________________________________________________________ SOLUTION (13.33) Expressions for the components of pressure are:
p" = ! p cos "
pr = p sin "
px = 0
Thus,
N x# = " ! [ " p cos # + a1 ( " pa cos # )]dx + f1 (# )
= 2 px cos ! + f1 (! ) N ! = " pa sin !
N x = " ! a2 ( " px sin # )dx +
(a) (b) df1 d#
+ f 2 (# )
= a1 px 2 sin ! + dfd!1 + f 2 (! )
Boundary conditions: N x = 0 2
or
pL a
(c)
(at x=0 and x=L)
give
f 2 = 0 and
sin ! + L dfd!1 = 0
f1 (" ) = ! pL2 sin " + c Note that no torque is applied to the shell; c = 0. Hence,
N ! = " pa sin !
N x = " La" x px sin !
N x! = "( L " x ) p cos ! ______________________________________________________________________________________ SOLUTION (13.34) Now the cylinder length does not change:
"
L2
!L 2
( N x ! $N # )dx = 0
Substituting Eqs. (b) of Example 13.7 into this, taking the resulting expression, we have
f1 = 0 and integrating
2
f 2 (! ) = "#a 2 (1 $ cos ! ) $ #24L cos ! Referring to Example 13.7, the solution is thus,
N ! = "a 2 (1 # cos ! ) 2
N x! = "ax sin ! 2
N x = #x2 cos ! + "#a 2 (1 $ cos ! ) $ #24L cos ! ______________________________________________________________________________________ SOLUTION (13.35) Referring to Fig. 13.13b:
p x = p sin !
p z = p cos !
r0 = x cos !
Stress resultants due to weight:
F = 2"r # p sin ! # rd!
(CONT.) ______________________________________________________________________________________ Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 13–13
______________________________________________________________________________________ 13.35 (CONT.) Since
rd! = dx and r = x cot ! . Then x
F = 2# ! x cot "p sin "dx = 2#p cos " ( x2 ) + c 2
0
For a cone supported at its edge c = 0 , since F = 0 at x = 0. Therefore, Eq. (13.46b) gives px N ! = " 2 sin !
(1)
Equation (13.46a): 2
p z r0 cos ! N " = sin ! = # px sin !
(2)
Stress resultants due to pressure: Equation (13.46a) yields,
cos ! N " = # p r xsin ! = # p r x cot !
(3)
We now have
F = ( 2"p r sin !rd! ) cos !
Following a procedure similar to that the preceding, we obtain
F = 2"p r cos 2 ! ( x2 ) 2
Equation (13.46a) leads to
N ! = " p2r xsincos! ! = " 12 p r x cot !
(4)
Solution is determined by the superposition of the preceding results: adding Eqs. (4) and (1), and (3) and (2). In so doing, we have
N x = " 2 sinx ! ( p + p r cos ! ) and
N # = ! x cot " ( p cos " + 12 p r ) End of Chapter 13
Solutions Manual for Advanced Mechanics of Materials and Applied Elasticity, Fifth Edition, © 2012 Pearson Education, Inc. 13–14