Klimaat en Energie debat NB3 sep2021

Page 1

Climate change and energy Herman Russchenberg

1


What has happened?

KNMI Climate explorer

2


Earth-atmosphere energy balance

3


What might happen?

Number of models to calculate average

Rcp: Representative concentration pathway4


How good are climate models?

http://www.realclimate.org/images//cmp_cmip3_sat_blend_ann.png

5


Anthropogenic perturbation of the global carbon cycle Perturbation of the global carbon cycle caused by anthropogenic activities, averaged globally for the decade 2010–2019 (GtCO2/yr)

The budget imbalance is the difference between the estimated emissions and sinks. Source: CDIAC; NOAA-ESRL; Friedlingstein et al 2020; Ciais et al. 2013; Global Carbon Budget 2020

6


Carbon Circulation

7


Attribution of climate change

high Level of understanding

low

Cooling effect

Warming effect

Source: IPCC

8


Fossil Fuel and Industry Emissions

9


Global Fossil CO2 Emissions Global fossil CO2 emissions: 36.4 ± 2 GtCO2 in 2019, 61% over 1990 Projection for 2020: 34.1 ± 2 GtCO2, about 7% lower than 2019

Uncertainty is ±5% for one standard deviation (IPCC “likely” range)

The 2020 projection is based on preliminary data and modelling, and is the median of the four studies. Source: CDIAC; Friedlingstein et al 2020; Global Carbon Budget 2020

10


UEA Projection: Overall impact of COVID-19 on regional emissions While China’s emissions declined strongly during February, emissions declines in the rest of the world reached their peaks in April.

Source: Le Quéré et al 2020; https://www.icos-cp.eu/gcp-covid19

11


Forecast of global atmospheric CO2 concentration The global atmospheric CO2 concentration is forecast to average 412 ppm in 2020, increasing 2.5 ppm in 2020 Lower emissions in 2020 due to the COVID-19 pandemic have had little effect on the atmospheric CO2 concentration

ppm: parts per million Data source: Tans and Keeling (2020), NOAA-ESRL

12


Clear Blue Skies during Covid-19 in the Netherlands Marieke Dirksen & A. Pier Siebesma TU Delft Netherlands

surface radiation as function of solar zenith angle (20 stations) red points: all clear sky hours during lock-down in NL (March_June 2020) all clear sky hours 2015-2019

solar surface radiation

grey points:

Significant more downward solar radiation during lockdown (up to 25W/m2 )

On average: a decrease of optical depth from t=0.17 to t = 0.16

Consistent with estimates of reduced emissions

Reduction larger for winds from industrial areas ( East: Germany) than for winds from non-industrial areas ( North; North-Sea)

Conclusion: Increased Solar Radiation attributable to aerosol reductions (NOx, Black Carbon and Sulfate)

µ0 = cos(✓) <latexit sha1_base64="JV0gMU3lI6msleQAkXxXiKhbhno=">AAAPLHicfZdbb9s2FMfVXTtv89ptb3sRlgZtBze10uuAbWiRou3DuqaJmxaIDIOmKIszdQlJuXYJ7bPsdXvYp9nLMOx1n2OHimPKR14MBJH4+/OQPOeQPBoXgivd7/914Z1333v/gw8vftT5+JNPu59duvz5kcpLSdlLmotcvh4TxQTP2EvNtWCvC8lIOhbs1Xi6Z/mrGZOK59lALwo2TMkk4zGnREPT6NKXfpiWo77/vU9zdS3UCdPk+ujSVn+nX//89kOwfNjylr/90eWuF0Y5LVOWaSqIUsdBv9BDQ6TmVLCqE5aKFYROyYQdw2NGUqaGpp5+5W9DS+THuYS/TPt1a7OHIalSi3QMypToRGFmGzcyViidF1HcS8mU8Wjem0hSJJzOe4qXGdfzHpGSLHppKTSX+ZvecqDe0mivnkqPZVGWa6bWl5FxyobGmkFgEAyNXQjLKFq4ju8PDc+Ksmb1uuNS+Dr3bWj8iEtGtVjAA6GSg+t8mhBJqIYAduAXPmLgXckeg/XHJOViYZ4PgsoUb2llqjV8mJCCNWhaGa4r892NH3zlf+MfBztBf+gDSvk93ez8DNb9UBQJGTNtQuuFuj+29L9zmcQKos5Srji5wUrB5PnWQX9mnays+74Pq83YG5qnKckiE6opezOojDmE/zeuDMLelapCkiKqVhM2UQtP+HisqtWgZgKKNcETJHjSMpHpRBSLxigJtvETVjzdYESuKVTbxrrgsGUiVQw47FTUMzprH9WdZbrBDSdLy7EkU3OCx5awZayJQnEBx0OA8Mk63kV4lovGvGfY+NEaPsL4GZwbDf4M86c6mwCPmNDEf4Fg0oQrGyet5Uu2yHIRNQc6GDE8FGzthoBjTG2q0ZEpmn5uaWZIM9ugYUjDNmgE0oRMiA2yOZLNWxopl4uSqS8xix2LMZs7NseMrJgh7WxysOVjmaaOpm1aNmivbHHl5qQwo45RzCLHIsy0YxqzwrECMzdVv8Rs5tgMM+GYwIw7xjFLHEswGzs2bvmsGWVj31oBiyFkpn9OPoJErEk2pqO02X9u7ku7h87dQfKRm+yjqrPd2a5rBLgSC7gQ/dvQsqYfnKU3JcIMsLUDFjfwQdU2eBcbLKKoOt4dmhDOSmpCzeZa6YVgfljYwoYIfwuuLdfumnfx6LEo56e2cqjGbLFmoLN/FaT+VSwms+o4aEphGGwPwlCLrtmAWMF1pICLiNuzvq7oRssodeCAjMNkbysw4R4cmkTXtsMZ3MiZzlPbahsq7Ah9OiOWqVIy60TbaKVGt9TRmMilW+Dl5w2eDgLs6pRTmRfJQnGqlqrK3GqdNVAY2bJ1pbiNJwrVUsoAcbUuvIeEbEZEuS65jx0IE4IyWawE3+LBcqhoVjTo4xNZ5GUUMwbuoFMnu7XBHbvYHc9/PHCnn31Bth8eNrh9wZ7ad1tnH1+BM0bhQDfh2N6DUO3mYsNdAaIFEi3akY45XLo7N6MRPEBiqJvYB0kB+SfTvDJ7p4v9BdcMIKmD7xQ47KCAyDuOgw58XIqpE9xpC6hMz51CnThOcbetsBnjBDif7EIhX5wAZ5O1MNeSrKtwStmZ2KxyinZaJQVhTXcFuEgDhYCHhgIW3OlsbyqmzkqcF3aXti+ZGZHwvbQRueqpLnE78M0Y4C/E9sPR7k5wa+fOi9tbD/rLr8eL3lfe1941L/DueQ+8p96+99Kj3lvvV+837/fuH90/u393/zmVvnNh2ecLb+3X/fc/63PKgw==</latexit>

Ssurf ace (µ0 ) = ST OA f µ0 exp( <latexit sha1_base64="no6A8FuecFq+hfaAoQiCQ5TC+bI=">AAAPWnicfZdbb9s2FMfV7ta6W9Nue9uLsDRoNjiplV4HbEO7FG0f1jVN3LRAZBg0RVmcqUtIyrVHaJ9nn2av24B9mB0qjikfeTEQROLvz0PynEPyaFQIrnSv98+lyx98+NHHn1y52rn26WfXN27c/PxY5aWk7A3NRS7fjYhigmfsjeZasHeFZCQdCfZ2NNm3/O2UScXzrK/nBRukZJzxmFOioWl44yf/aGhUKWNCWbUdpqU/NL3qG/8H295/9aSKz9vYrNjeCWNJqAk1KStTA9AOb2z2dnv1z28/BIuHTW/xOxjevO6FUU7LlGWaCqLUSdAr9MAQqTkVrOqEpWIFoRMyZifwmJGUqYGpF1v5W9AS+XEu4S/Tft3a7GFIqtQ8HYEyJTpRmNnGtYwVSudFFHdTMmE8mnXHkhQJp7Ou4mXG9axLpCTzbloKzWX+vrsYqLsw2q2n0mVZlOWaqdVlZJyygbFmEOgHA2MXwjKKFq7jRwPDs6KsWb3uuBS+zn0bSD/iklEt5vBAqOTgOp8mBMKjIdwd+IVPGXhXsmdg/RlJuZibV/2gMsVvtDLVCj5KSMEaNK0M15X5fudHX/nf+ifBbtAb+IBS/lA3O7+EdT8RRUJGTENCwFvdH1v637mMYwVRZylXnOywUjB5sXXQn1snS+u+78NqM/ae5mlKssiEasLe9ytjjuD/zq1+2L1VVUhSRNVywiZq4TEfjVS1HNSMQbEieI4Ez1smMp2IYt4YJcE2fsGKF2uMyBWFattYFRy1TKSKAWeaoJ7Refuw7izTNW44XViGbT8xp3hsCVvGmigUF3CYBAifruI9hKe5aMx7io0fr+BjjF/CudHgLzF/obMx8IgJTfzXCCZNuLRx2lq+ZPMsF1FzoMMhw0PB1m4IOMbUphodmqLp55ZmijTTNRqGNGyNRiBNyIRYI5sh2aylkXKxKJn6ErPYsRizmWMzzMiSGdLOJgdbPpZp6mjapmWDdssWV25OCjPqGMUscizCTDumMSscKzBzU/VLzKaOTTETjgnMuGMcs8SxBLORY6OWz5pRNvatFbAYQmZ6F+QjSMSKZG06Spv9F+a+tHvowh0kn7rJPq06W52tukaAK7GAC9G/By0r+v55elMiTB9bO2RxAx9WbYMPsMEiiqqTvYE5L5HYTCs9F8wPC1vYEOFvwrXl2l3zHh49FuXszFYOtZst7Qx09m+D1L+NxWRanQRNKQyD7UEYatG2DYgVfIMUcBFxe9brxN4Hiyh14ICMw2R/MzDhPhyaRNe2wyncyJnOU9tqGyrsCH02I5ZBYcmsE22jlRrdUkcjIhdugZdf13g6CLCrU05lXiRzxalaqCpzt3XWQGFki9yl4h6eKFRLKQPE1arwIRKyKRHlquQRdiBMCIpqsRR8hwfLoaJZ0qCHT2SRl1HMGLiDTpzs7hp37GF3vPr50J1+9gXZfnLU4PYFe+rAbZ0DfAVOGYUD3YQjew9CtZuLNXcFiOZING9HOuZw6e7eiYbwAImh7mAfJAXkn0zzyuyfLfZ3XDOApA6+U+CwgwIi7zgOOvBRKSZOcL8toDK9cAp14jjFg7bCZowT4HyyC4V8cQKcTdbCTEuyqsIpZWdis8op2mmVFIQ13RXgIg0UAh4aClhwp7O1rpg6L3Fe213avmSmRML30lrkqqe6xO3AN2OAvxDbD8d7u8Hd3fuv720+7i2+Hq94X3lfe9te4D30HnsvvAPvjUe9P7w/vb+8v6//u3F54+rGtTPp5UuLPl94K7+NL/8DWqbZZg==</latexit>

⌧ ) µ0

Excellent opportunity to constrain sensitivity of radiation to optical depth (see Bellouin et al 2019)

13


Top emitters: Fossil CO2 Emissions to 2019 The top six emitters in 2019 covered 65% of global emissions China 28%, United States 15%, EU27 8%, India 7%, Russia 5%, and Japan 3%

Bunker fuels, used for international transport, are 3.5% of global emissions. Source: CDIAC; Peters et al 2019; Friedlingstein et al 2020; Global Carbon Budget 2020

14


Top emitters: Fossil CO2 Emissions per capita to 2019 Countries have a broad range of per capita emissions reflecting their national circumstances

Source: CDIAC; Friedlingstein et al 2020; Global Carbon Budget 2020

15


Top emitters: fossil fuels and industry (per capita) EU

Source: CDIAC; Le Quéré et al 2016; Global Carbon Budget 2016

16


Energy use by source from fossil fuel use and industry

17


Energy use by source Renewable energy is growing exponentially, but this growth has so far been too low to offset the growth in fossil energy consumption.

This figure shows “primary energy” using the BP substitution method (non-fossil sources are scaled up by an assumed fossil efficiency of 0.38) Source: BP 2020; Global Carbon Budget 2020

18


Carbon intensity of economic activity Global emissions growth has generally recovered quickly from previous financial crises It is unclear if the recent slowdown in global emissions is related to the Global Financial Crisis

Economic activity is measured in Purchasing Power Parity Source: CDIAC; Peters et al 2012; Le Quéré et al 2016; Global Carbon Budget 2016

19


Land-use Change Emissions

20


Land-use change emissions Land-use change emissions are highly uncertain, with no clear trend in the last decade.

Indonesian fires

Estimates from three bookkeeping models, using fire-based variability from 1997 Source: Houghton and Nassikas 2017; Hansis et al 2015; Gasser et al 2020; van der Werf et al. 2017; Friedlingstein et al 2020; Global Carbon Budget 2020

21


Total global emissions Total global emissions: 43.0 ± 3.3 GtCO2 in 2019, 56% over 1990 Percentage land-use change: 39% in 1960, 14% averaged 2010–2019

Land-use change estimates from three bookkeeping models, using fire-based variability from 1997 Source: CDIAC; Houghton and Nassikas 2017; Hansis et al 2015; Gasser et al 2020; van der Werf et al. 2017; Friedlingstein et al 2020; Global Carbon Budget 2020

22


Closing the Global Carbon Budget

23


Fate of anthropogenic CO2 emissions (2010–2019) Sources = Sinks 34.4 GtCO2/yr

86%

18.6 GtCO2/yr

46%

31%

12.5 GtCO2/yr

14%

5.7 GtCO2/yr

23%

9.2 GtCO2/yr

Source: Friedlingstein et al 2020; Global Carbon Budget 2020

24


Global carbon budget The carbon sources from fossil fuels, industry, and land use change emissions are balanced by the atmosphere and carbon sinks on land and in the ocean

Source: CDIAC; NOAA-ESRL; Houghton et al 2012; Giglio et al 2013; Joos et al 2013; Khatiwala et al 2013; Le Quéré et al 2016; Global Carbon Budget 2016

25


Global carbon budget The cumulative contributions to the global carbon budget from 1850 The carbon imbalance represents the gap in our current understanding of sources & sinks

Source: Friedlingstein et al 2020; Global Carbon Budget 2020

26


Consumption-based Emissions

27


Consumption-based emissions (carbon footprint) Allocating fossil CO2 emissions to consumption provides an alternative perspective. USA and EU28(7) are net importers of embodied emissions, China and India are net exporters.

Consumption-based emissions are calculated by adjusting the standard production-based emissions to account for international trade Source: Peters et al 2011; Friedlingstein et al 2020; Global Carbon Project 2019

28


Consumption-based emissions per person The differences between fossil CO2 emissions per capita is larger than the differences between consumption and territorial emissions.

Consumption-based emissions are calculated by adjusting the standard production-based emissions to account for international trade Source: Peters et al 2011; Friedlingstein et al 2020; Global Carbon Project 2019

29


Major flows from production to consumption Flows from location of generation of emissions to location of consumption of goods and services

Values for 2011. EU is treated as one region. Units: MtCO2 Source: Peters et al 2012

30


Major flows from extraction to consumption Flows from location of fossil fuel extraction to location of consumption of goods and services

Values for 2011. EU is treated as one region. Units: MtCO2 Source: Andrew et al 2013

31


Carbon Quotas to Climate Stabilization

32


Carbon quota for a 66% chance to keep below 2°C The total remaining emissions from 2017 to keep global average temperature below 2°C (800GtCO2) will be used in around 20 years at current emission rates

Grey: Total CO2-only quota for 2°C with 66% chance. Green: Removed from CO2 only quota. Blue: Remaining CO2 quota. The remaining quotas are indicative and vary depending on definition and methodology Source: Peters et al 2015; Global Carbon Budget 2016

33


Historical cumulative emissions by country Cumulative emissions from fossil-fuel and cement were distributed (1870–2015): USA (26%), EU28 (23%), China (13%), Russia (7%), Japan (4%) and India (3%)

Cumulative emissions (1990–2015) were distributed China (21%), USA (20%), EU28 (14%), Russia (6%), India/Japan (4%) ‘All others’ includes all other countries along with bunker fuels and statistical differences Source: CDIAC; Le Quéré et al 2016; Global Carbon Budget 2016

34


The emission pledges (INDCs) of the top-4 emitters The emission pledges from the US, EU, China, and India leave no room for other countries to emit in a 2°C emission budget (66% chance)

Source: Peters et al 2015; Global Carbon Budget 2016

35


In the wake of the Paris pledges

https://science2017.globalchange.gov/chapter/14/

36


Unextractable fossil reserves under 1.5 deg scenario

Welsby, D., Price, J., Pye, S. et al. Unextractable fossil fuels in a 1.5 °C world. Nature 597, 230–234 (2021). https://doi.org/10.1038/s41586021-03821-8

37


Last words Climate change is an international issue Every country has to take its share Our share includes the international context Ø Support the developing world Ø Avoid self-centred thinking Ø PWYP

38


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.