NÚMEROS UTILIZADOS EN ELECTRÓNICA DIGITAL “SISTEMA DE NUMERACIÓN”
Desde tiempos remotos el hombre comenzó a desarrollar diferentes sistemas matemáticos con su correspondiente base numérica para satisfacer sus necesidades de cálculo. Los sistemas numéricos más antiguos son:
Babilónico Romano Hindú Árabe
El sistema numérico babilónico tenía base 60 y en la actualidad de éste sólo quedan en uso los grados, horas, minutos y segundos. El romano, por su parte, era el más atrasado de todos. De ese sistema actualmente sólo se utilizan sus números (I, V, X, L, C, D y M) para señalar las horas en las esferas de algunos relojes, indicar los capítulos en los libros y, en otros casos para hacer referencia a un determinado año. Sin embargo, el sistema numérico hindú y árabe sí han llegado hasta nuestros días; es lo que
conocemos como sistema numérico decimal (de base 10), siendo el de uso más extendido en todo el mundo. Tal como indica su prefijo (deci), este sistema utiliza 10 dígitos, del 0 al 9, con los cuales podemos realizar cualquier tipo de operación matemática.
Desde el comienzo de nuestra instrucción primaria en la escuela nos enseñan las matemáticas correspondientes al sistema numérico decimal, que continuamos utilizando durante el resto de nuestras vidas para realizar lo mismo cálculos simples que complejos. Debido al extendido uso del sistema decimal muchas personas desconocen la existencia de otros sistemas numéricos como, por ejemplo, el binario (de base 2), el octal (de base 8) y el hexadecimal (de base 16), entre otros.
Con el surgimiento de los ordenadores o computadoras personales (PCs), los ingenieros informáticos se vieron en la necesidad de adoptar un sistema numérico que le permitiera a la máquina funcionar de forma fiable. Debido a que el sistema numérico decimal resultaba complejo para crear un código apropiado, adoptaron el uso del sistema numérico binario (de base 2), que emplea sólo dos dígitos: “0” y “1”.
BASE NUMÉRICA
Con el sistema binario los ingenieros crearon un lenguaje de bajo nivel o “código máquina”, que permite a los ordenadores entender y ejecutar las órdenes sin mayores complicaciones, pues el circuito electrónico de la máquina sólo tiene que distinguir entre dos dígitos para realizar las operaciones matemáticas y no entre diez, como hubiera sucedido de haberse adoptado el sistema numérico decimal para el funcionamiento de los ordenadores o computadoras.
BASE DE UN SISTEMA NUMÉRICO La base de un sistema numérico radica en la cantidad de dígitos diferentes que son necesarios para representar las cifras. Por ejemplo, a continuación se puede apreciar la cantidad de dígitos diferentes que emplea un sistema numérico en particular, de acuerdo con su correspondiente base numérica:
DÍGITOS EMPLEADOS
CANTIDAD TOTAL DE DÍGITOS
Binaria(2)
0y1
2
Octal(8)
0, 1, 2, 3, 4, 5, 6 y 7
8
Decimal(10)
0, 1, 2, 3, 4, 5, 6, 7, 8 y 9
10
Hexadecimal(16)
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, EyF
16
Como se podrá observar, el dígito de mayor valor en el sistema numérico binario es el 1, en el octal el 7, en el decimal el 9 y en el hexadecimal la letra F, cuyo valor numérico es igual a 15.
DESCOMPOSICIÓN DE UN NÚMERO EN FACTORES Descomposición de un número entero de base 10. Para recordar cómo se realiza la descomposición en factores de un número entero perteneciente al sistema numérico decimal (de base 10), veamos un ejemplo con el número 235. Este número está formado por la centena 200, la decena 30 y la unidad 5, tal como se representa a continuación: 235 = 200 + 30 + 5
Para descomponer este número será necesario relacionar cada dígito con el factor 10 de la base numérica y con los exponentes de las potencias que corresponden al lugar específico que ocupa cada uno en la cifra, es decir, 100 para la unidad, 101 para la decena, 102 para la centena y así sucesivamente, tal como se puede ver a continuación:
Descomposición de la centena: Descomposición de la decena: Descomposición de la unidad:
CONVERSIÓN DE UN SISTEMA NUMÉRICO A OTRO Matemáticamente, existe la posibilidad de convertir un número de un sistema numérico a otro.
Descomposición en factores de un número base 2 (binario) y su conversión a un número equivalente en el sistema numérico decimal.
: 200 = 2 . 102 30 = 3 . 101 5 = 5 . 100
Por tanto, matemáticamente la descomposición del número 235 podemos representarla de la siguiente forma:
23510 (base) = (2 . 102) + (3 . 101) + (5 . 100) = (200) + (30) + (5)
Por acuerdo internacional, no es necesario identificar la base de los números pertenecientes al sistema decimal como se ha hecho en este ejemplo, porque se sobreentiende que es 10. Sin embargo, cualquier otro sistema numérico es necesario identificarlo escribiendo al final de la cifra el número correspondiente a su base con el fin de evitar confusiones.
Veamos ahora cómo llevamos el número binario 101111012 a su equivalente en el sistema numérico decimal. Para descomponerlo en factores será necesario utilizar el 2, correspondiente a su base numérica y elevarlo a la potencia que le corresponde a cada dígito, de acuerdo con el lugar que ocupa dentro de la serie numérica. Como exponentes utilizaremos el “0”, “1”, “2”, "3" y así sucesivamente, hasta llegar al "7", completando así la cantidad total de exponentes que tenemos que utilizar con ese número binario. La descomposición en factores la comenzamos a hacer de izquierda a derecha empezando por el mayor exponente, como podrás ver a continuación en el siguiente ejemplo:
101111012 = (1 . 27) + (0 . 26) + (1 . 25) + (1 . 24) + (1 . 23) + (1 . 22) + (0 . 21) + (1 . 20) = (128) + (0) + (32) + (16) + (8) + (4) + (0) + (1) = 18910
En el resultado obtenido podemos ver que el número binario 101111012 se corresponde con el número entero 189 en el sistema numérico decimal. Conversión de un número entero del sistema numérico decimal al sistema de binario.
correspondientes a los residuos de cada división en orden inverso, o sea, haciéndolo de abajo hacia arriba. De esa forma obtendremos el número binario, cuyo valor equivale a 189, que en este caso será: 101111012.
BITS Y BYTES Seguidamente realizaremos la operación inversa, es decir, convertir un número perteneciente al sistema numérico decimal (base 10) a un número binario (base 2). Utilizamos primero el mismo número 189 como dividendo y el 2, correspondiente a la base numérica binaria del número que queremos hallar, como divisor. A continuación el resultado o cociente obtenido de esa división (94 en este caso), lo dividimos de nuevo por 2 y así, continuaremos haciendo sucesivamente con cada cociente que obtengamos, hasta que ya sea imposible continuar dividiendo. Veamos el ejemplo:
Una vez terminada la operación, escribimos los números
Mediante el uso de este sistema numérico, el ordenador, que no es otra cosa que una sofisticada calculadora, es capaz de realizar no sólo sumas, sino cualquier otro tipo de operación o cálculo matemático que se le plantee, utilizando solamente los dígitos “1” y “0”. Seguramente en algún momento habrás oído mencionar las palabras “bit” y “byte”. Bit es el nombre que recibe en informática cada dígito “1” ó “0” del sistema numérico binario que permite hacer funcionar a los ordenadores o computadoras (PCs). La palabra “bit” es el acrónimo de la expresión inglesas Binary DigIT, o dígito binario, mientras que “byte” (o también octeto) es simplemente la agrupación de ocho bits o dígitos binarios.
Para que el ordenador pueda reconocer los caracteres alfanuméricos que escribimos cuando trabajamos con textos, se creó el Código ASCII (American Standard Code for Information Interchange – Código Estándar Americano para Intercambio de Información), que utiliza los números del 0 al 255. Cada uno de los números del Código ASCII compuestos por 8 dígitos o bits, representan una función, letra, número o signo y como tal es entendido por el ordenador. Por tanto, cada vez que introducimos un carácter alfanumérico en el ordenador éste lo reconoce como un byte de información y así lo ejecuta. Tanto la capacidad de la memoria RAM como la de otros dispositivos de almacenamiento masivo de datos, imágenes fijas, vídeo o música, se mide en bytes. Cuando nos referimos a grandes cantidades de bytes empleamos los múltiplos: kilobyte (kB) = mil bytes; megabyte (MB) = millón de bytes; gigabyte (GB) = mil millones de bytes y terabyte (TB) = un billón de bytes.