View with images and charts Effect of Topical Gatifloxacin 0.3% & Ciprofloxacin 0.3% in The Treatment Of Bacterial Corneal Ulcer Chapter- 1 Introduction Cornea is the outermost coat of the eyeball, which is the most vital part for vision. It has tremendous optical importance in the visual function. It is the main part of refractive media that contributes about 74% of total diopteric power of normal human eye (John E. Stuphen et al. 2007-8). So the corneal health and disease are not less important than that of any vital organ of the body. The cornea has some anatomical and physiological specialties with which it can function without any interruption throughout life. In spite of these specialties the cornea frequently becomes diseased and corneal ulcer is one of the top of the list of corneal disease. So we should give great importance when it becomes diseased. The avascular, clear anatomical structure of the cornea, with its specialized micro environment predispose to potential alteration and destruction by invading microorganism by virulence factor and host response factors (C. Stephen Foster, 2005). Bacterial Corneal ulcer is a common sight threatening condition. A wide variety of bacterial species can cause microbial corneal ulcer. The common organisms are Streptococcus pneumonae, Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas aeruginosa and Enterobactereriace. Uncommon organisms are N. gonorrhoae, N. meningitides, Moraxella species, Haemophilus species, Mycobacteriam spp. & Corynebacteriam spp. (C. Stephen Foster, 2005). Bacterial corneal ulcer has the potential to progress rapidly to corneal perforation. Even small axial lesion can cause surface irregularity & scar that can lead to significant loss of vision. (Jack J. Kanski, 2007). The objective of therapy in bacterial corneal ulcer is rapidly to eliminate the infective organism, reduce the inflammatory response, prevent structural damage to the cornea and promote healing of the epithelial surface. (Jones DB.1979). A large number of active antimicrobial drugs available for the treatment of bacterial corneal ulcer a greater choice for cure with less drug related toxicity while providing alternative choices despite the continuing emergence of drug resistant pathogenic organisms (C. Stephen Foster, 2005). Different antimicrobial agent used in the treatment of bacterial corneal ulcer are penicillins, cephalosporins, other β-lactum antibiotics, glycopeptides, aminoglycosides, macrolides, tetracyclines, chloramphenicol and fluoroquinolones. Fluoroquinolones block bacterial DNA synthesis by inhibiting bacterial tropoisomerase II (DNA gyres) and tropoisomerase IV. Inhibition of DNA gyres prevents the relaxation of positively super coiled DNA that is required for normal transcription and replication. Inhibition of tropoisomerase IV interferes with separation of replicated chromosomal DNA into the respective daughter cells during cell division (Betan G. Katzung, 2007) Nalidixic acid, the first member of quinolone, then newer generation of fluoroquinolones discovered to expand the antibacterial spectrum greatly. Newer generation of fluoroquinolones have been obtained by the slight modification of previous generation fluoroquinolones side chain. Fluoroquinolones those commonly used as topical solution are ciprofloxacin, levofloxacin, lomifloxacin, gatifloxacin and moxifloxacin. Their high potency and generally excellent