TIMBER SCREWS AND DECK FASTENING TIMBER, CONCRETE, METAL TERRACES AND FAÇADES
Solutions for Building Technology
TIMBER
15
PARTIALLY THREADED - COUNTERSUNK HEAD
PLATE FASTENING
SHS.................................................. 16
HBS PLATE...................................212
SHS AISI410...................................20
HBS PLATE EVO......................... 222
HTS..................................................26
HBS PLATE A4.............................227
HBS..................................................30
LBS................................................ 228
HBS SOFTWOOD........................ 44
LBS EVO...................................... 234
HBS COIL.......................................50
LBS HARDWOOD...................... 238
HBS EVO........................................52
LBS HARDWOOD EVO............. 244
HBS EVO C5..................................58
LBA............................................... 250
HBS HARDWOOD....................... 60
DWS.............................................. 259
HUS.................................................68 XYLOFON WASHER.....................73
PARTIALLY THREADED - FLANGE HEAD TBS.................................................. 76
CONCRETE
261
TIMBER-TO-CONCRETE
TBS SOFTWOOD........................ 88 CTC.............................................. 262
V
X
S
X
G
X
TBS MAX.........................................92
V
X
X
S
X
S
G
X
G
V
X
X V
X
S
X
G
X
TBS FRAME....................................98
TC FUSION..................................270
TBS EVO.......................................102 TBS EVO C5.................................108
CONCRETE AND MASONRY
KOP............................................... 110
MBS | MBZ....................................274 SKR EVO | SKS EVO....................276
FULLY THREADED - CYLINDRICAL HEAD
SKR | SKS | SKP............................278
VGZ................................................120 VGZ EVO......................................144 VGZ EVO C5................................152 VGZ HARDWOOD......................154
FULLY THREADED - COUNTERSUNK HEAD VGS................................................164 VGS EVO..................................... 180 VGS EVO C5................................186
METAL
281
TIMBER-TO-METAL SBD............................................... 284 SBS................................................ 292 SBS A2 | AISI304........................ 296 SPP............................................... 298
VGS A4..........................................188 VGU.............................................. 190 RTR................................................196
FASTENING METAL SHEET SBN - SBN A2 | AISI304........... 302 SAR............................................... 304
DOUBLE THREAD
MCS A2 | AISI304...................... 306 DGZ.............................................. 202 DRS............................................... 208 DRT................................................210
MTS A2 | AISI304....................... 308 CPL............................................... 309 WBAZ............................................310
DECKS AND FACADES
313
SCREWS
COMPLEMENTARY PRODUCTS
401
SCREWDRIVERS AND NAILGUNS SCI HCR........................................316
A 12............................................... 402
SCI A4 | AISI316...........................318
A 18 | ASB 18............................... 402
SCI A2 | AISI304......................... 320
KMR 3373.................................... 403
KKT COLOR A4 | AISI316..........324
KMR 3372.................................... 403
KKT A4 | AISI316........................ 328
KMR 3352....................................404
KKT COLOR.................................332
KMR 3338....................................404
FAS A4 | AISI316......................... 336
KMR 3371.................................... 405
KKZ A2 | AISI304........................ 338
B 13 B........................................... 405
KKZ EVO C5............................... 342
ANKER NAILGUNS....................406
EWS AISI410 | EWS A2.............. 344
D 38 RLE...................................... 407
KKF AISI410................................. 348
ACCESSORIES AND TEMPLATES
KKA AISI410.................................352
CATCH.........................................408
KKA COLOR................................ 354
TORQUE LIMITER.....................408
CLIPS
JIG VGU....................................... 409 FLAT | FLIP.................................. 356
JIG VGZ 45°................................ 409
SNAP............................................ 360
BIT STOP......................................410
TVM.............................................. 362
DRILL STOP.................................410
GAP.............................................. 366
JIG ALU STA................................. 411
TERRALOCK............................... 370
COLUMN...................................... 411 BEAR.............................................412
SUBSTRUCTURE
CRICKET.......................................412 JFA.................................................374 SUPPORT.....................................378
LIFTING
ALU TERRACE............................ 386 WASP.............................................413
GROUND COVER.......................392
RAPTOR........................................413
NAG...............................................392 GRANULO....................................393 TERRA BAND UV....................... 394 PROFID........................................ 394
DRILL BITS AND BITS
STAR............................................. 394
LEWIS............................................414
SHIM............................................. 395
SNAIL HSS....................................415
SHIM LARGE............................... 395
SNAIL PULSE...............................416
FASTENERS FOR INSULATION
BIT................................................. 417
THERMOWASHER..................... 396 ISULFIX..........................................397 WRAF........................................... 398
CONTENTS
6 | MADE TO CONNECT
Made to connect HEADQUARTERS • product development • certification • quality check
MANUFACTURING PLANT
INCREASINGLY FAST, SECURE, TECHNOLOGICAL CONNECTIONS We have a new plant in Italy that enhances the development, production and distribution of screws and connectors. We have supported timber construction for more than 30 years because we believe it is the right way to build a better future. We design in Alto Adige, we produce in Italy and around the
world, we export everywhere. Our screws are associated with a unique identification code that guarantees traceability from raw material to marketing. Connecting worlds, materials and people is what we do best, ever since.
rothoblaas.com
MADE TO CONNECT | 7
SERVICE CLASSES
The service classes are related to the thermo-hygrometric conditions of the environment in which a timber structural element is installed. They relate the temperature and humidity of the surroundings to the water content within the material.
SC1
SC2
SC3
SC4
internal
external but covered
external exposed
external in contact
elements within insulated and conditioned buildings
sheltered elements (i.e. not directly exposed to rain or precipitation), in uninsulated and unconditioned structures
elements directly exposed to the weather and not permanently exposed to water
elements immersed in soil or water (e.g. foundation piles and marine structures)
65%
85%
95%
-
(12%)
(20%)
(24%)
saturated
EXPOSURE
MOISTURE LEVEL atmospheric/timber
ATMOSPHERIC CORROSIVITY
C1
C2
C3
C4
C5
rare condensation
rare condensation
occasional condensation
frequent condensation
permanent condensation
> 10 km from the coast
from 10 to 3 km from 3 to 0,25 km from the coast from the coast
CLASSES
MOISTURE
Corrosion caused by the atmosphere depends on relative humidity, air pollution, chloride content and whether the connection is internal, external protected or external. Exposure is described by the CE category which is based on category C as defined in EN ISO 9223. Atmospheric corrosivity only affects the exposed part of the connector.
DISTANCE FROM THE SEA
POLLUTION
WOOD CORROSIVITY
< 0,25 km from the coast
very low
low
average
high
very high
deserts, central arctic/antarctic
rural areas with little pollution, small towns
urban and industrial areas with medium pollution
highly polluted urban and industrial area
environment with very high industrial pollution
T1
T2
T3
T4
T5
pH
pH
pH
pH
pH
any
any
pH > 4
pH ≤ 4
any
"standard" timbers low acidity and no treatment
“aggressive” woods high acidity and/or treated
CLASSES
Corrosion caused by wood depends on the wood species, wood treatment and moisture content. Exposure is defined by the TE category as indicated. The corrosivity of wood only affects the connector part inserted in the wooden element.
TIMBER pH AND TREATMENT
MOISTURE CONTENT OF THE WOOD
SERVICE CLASS
LEGEND:
≤ 10%
10% <
SC1
≤ 16%
SC2
use according to regulations
For further information, see SMARTBOOK TIMBER SCREWS at www.rothoblaas.com.
8 | SMARTBOOK TIMBER SCREWS
16% <
SC3
≤ 20%
SC3
> 20%
SC4
Rothoblaas experience
HOW MUCH DO WE KNOW ABOUT SCREWS? Theory, practice, experimental campaigns: putting it all together on screws takes years of lectures, workshops and construction sites. We make it available to you in 70 pages that are extra catalogue. Because our experience is in your hands. Scan the QR code to download the smartbook rothoblaas.com
COMPLETE RANGE
HEADS AND TIPS HEAD TYPE
TIP TYPE COUNTERSUNK WITH RIBS HBS, HBS COIL, HBS EVO C4/C5, HBS S, VGS, VGS EVO C4/C5, VGS A4, SCI A2/A4, SBS, SPP, MBS
3 THORNS HBS, HTS, HBS COIL, HBS EVO C4/C5, HBS PLATE, HBS PLATE EVO, TBS, TBS MAX, TBS EVO C4/C5, TBS FRAME, VGZ, VGZ EVO C4/C5, VGS, VGS EVO C4/C5, DGZ, CTC, SHS, SHS AISI410, KKF AISI410, SCI A2
FLANGE
SELF-DRILLING
TBS , TBS MAX, TBS EVO C4/C5, TBS S, FAS A4
VGZ , VGS, VGS A4
FLAT FLANGE
LBS, LBS EVO, DRS, DRT, DWS, DWS COIL, MCS A2, KKT COLOR A4, KKT A4, EWS A2, EWS AISI410, SCI HCR, SCI A4, FAS
SHARP
TBS FRAME
COUNTERSUNK SMOOTH
SHARP SAW
HTS, DRS, DRT, SKS EVO, SBS A2, SBN, SBN A2, SCI HCR
HBS S, TBS S
COUNTERSUNK 60°
SHARP SAW NIBS (RBSN)
SHS, SHS AISI410, HBS H
VGS
ROUND
SHARP 2 CUT
LBS, LBS EVO, LBS H, LBS H EVO
KKT COLOR
HEXAGONAL
STANDARD FOR WOOD
KOP, SKR EVO, VGS, VGS EVO, MTS A2, SAR
MBS, MBZ, KOP, MTS A2
CONE-SHAPED
HARD WOOD TIMBER
KKT A4 COLOR, KKT A4, KKT COLOR
HBS H, VGZ H
PAN HEAD
HARD WOOD (STEEL - to - TIMBER)
HBS P, HBS P EVO, KKF AISI410
LBS H, LBS H EVO
REINFORCED PAN HEAD
HARD WOOD (DECKING)
HBS PLATE, HBS PLATE EVO, HBS PLATE A4
KKZ A2, KKZ EVO C5
CONVEX
CONCRETE
EWS A2, EWS AISI410, MCS A2
SKR EVO, SKS EVO
CYLINDRICAL
METAL (TAPERED TIP)
VGZ, VGZ EVO C4/C5, VGZ H, DGZ, CTC, MBZ, SBD, KKZ A2, KKZ EVO C5, KKA AISI410, KKA COLOR
SBD
BUGLE
SBS, SBS A2, SPP
METAL (WITH FINS) DWS, DWS COIL
METAL (WITHOUT FINS) SBD, SBN, SBN A2, KKA AISI 410, KKA COLOR
10 | COMPLETE RANGE
RESEARCH & DEVELOPMENT
3 THORNS TIP
Extensive test campaigns carried out in Rothoblaas' own laboratories and at external institutions on softwood, hardwood and LVL have resulted in the development of a performing product in every respect.
Thanks to the 3 THORNS tip, minimum installation distances are reduced. More screws can be used in less space and larger screws in smaller elements. Costs and time for project implementation are reduced.
Featuring raised slitting elements and an umbrella thread reaching the end, the 3 THORNS tip ensures a quick initial grip and easy installation, reduces torsional stress on the screw and minimises timber damage. The aesthetic finish is optimal.
Thanks to its counter-threaded slitting elements, the 3 THORNS tip facilitates insertion of the screw into the grains without damaging them. It acts as a guide hole, allowing the reduction of edge distances and screw spacing. At the same time, it prevents wooden element's cracking and mechanisms of brittle failure of the connection.
X
V
S
C
X
G
V
S
B
X
X
A
X
X
REDUCTION OF MINIMUM DISTANCES
G
EASY AND FAST INSTALLATION
D The sequence represents the test procedure for the evaluation of minimum distances for axially stressed screws according to EAD 130118-01-0603.
LEGEND A standard tip B standard tip (with pre-drilled hole) C 3 THORNS tip D self-drilling tip
The test is performed by tightening the screw, unscrewing it after 24 hours and filling the hole with dye to check its diffusion inside the wooden element. The portion of wood affected by the insertion of the screw is proportional to the red area.
The picture shows the insertion of screws with different tips and shows the change in pull-through depth after 1.0 second of tightening.
To be inserted, the screw must overcome the strength force of the wood. The screwing force, measured through the insertion moment (Mins), is only minimised if the tip is performing.
A B
Mins
C D
0
Lins
A standard tip
B standard tip (with pre-drilled hole)
C 3 THORNS tip
D self-drilling tip
100%
The graph shows the development of the insertion moment for screws with different geometric characteristics of the drill bit and the same boundary conditions (screw diameter, thread length and type, timber substrate material, applied force) as a function of the penetration length (Lins).
The accumulated torsional stress on the screw with a 3 THORNS tip (C) during its insertion is significantly lower than in the case of screws with standard tips (A) and is close to the screwing with pre-drilling hole (B).
The 3 THORNS tip (C) exhibits similar behaviour to that of the standard screw inserted with pre-drilling hole (B), tending towards the case of the self-drilling tip screw (D).
RESEARCH & DEVELOPMENT | 11
COMPLETE RANGE
MATERIALS AND COATINGS
1
2
3
4
5
colour
CARBON STEEL WITH COATING C5
C5
C5 EVO ANTI-CORROSION COATING
EVO COATING
Multi-layer coating capable of withstanding outdoor environments classified C5 according to ISO 9223. Salt spray exposure time (SST) according to ISO 9227 greater than 3000h (test carried out on screws previously screwed and unscrewed in Douglas fir).
C4
C4 EVO ANTI-CORROSION COATING
EVO COATING
ORGANIC COATING
Zn
ELECTRO PLATED
Inorganic-based multilayer coating with a functional outer layer of epoxy matrix with aluminium flakes. Suitability for atmospheric corrosivity class C4 proven by RISE.
ORGANIC ANTI-CORROSION COATING Coloured organic-based coating that provides excellent resistance to atmospheric and wood corrosive agents in outdoor applications.
ELECTROLYTIC GALVANIZING Coating consisting of a layer of electrolytic galvanizing with Cr passivation; standard for most connectors.
STAINLESS STEEL HCR
HIGH CORROSION RESISTANT - CRC V Austenitic stainless steel. It is characterised by high molybdenum and low carbon content. It offers very high resistance to general corrosion, stress corrosion cracking, intergranular corrosion and pitting. The appropriate choice for exposed fasteners in indoor pools.
A4
STAINLESS STEEL A4 | AISI316 - CRC III
A2
STAINLESS STEEL - A2 | AISI304 - CRC II
A2
STAINLESS STEEL - A2 | AISI305 - CRC II
410
AISI410 STAINLESS STEEL
AISI 316
AISI 304
AISI 305
AISI
LEGEND:
Austenitic stainless steel. The presence of molybdenum provides high resistance to generalised and crevice corrosion.
Austenitic stainless steel. It is the most common of the austenitic steels. It offers an excellent level of protection against generalised corrosion.
Austenitic stainless steel similar to A2 | AISI304. This alloy contains slightly more carbon than A2 | AISI304, making it more workable in production.
Martensitic stainless steel, characterised by its high carbon content. Suitable for outdoor applications (SC3). This stainless steels offers the highest mechanical performance compared to the other available stainless steels. C
atmospheric corrosivity classes
C
Rothoblaas experience
T
wood corrosivity classes
T
Rothoblaas experience
Atmospheric corrosivity classes defined according to EN 14592:2022 based on EN ISO 9223 and EN 1993-1-4:2014 (for stainless steel, an equivalent atmospheric corrosivity class was determined considering only the influence of chlorides and without a cleaning maintenance). Wood corrosivity classes according to EN 14592:2022.
For further information, see SMARTBOOK TIMBER SCREWS at www.rothoblaas.com.
12 | COMPLETE RANGE
RESEARCH & DEVELOPMENT
EVO COATINGS
Rothoblaas research projects result in coatings that meet the most complex market requirements. Our goal is to offer stateof-the-art fastening solutions that guarantee uncompromising mechanical strength and corrosion resistance.
C4 EVO
C5 EVO
C4
C5
Atmospheric corrosivity class C4: areas with a high concentration of pollutants, salts or chlorides. For example, heavily polluted urban and industrial areas and coastal zones.
Atmospheric corrosivity class C5: areas with a very high concentration of salts, chlorides or corrosive agents from production processes. For example, places by the sea or areas of high industrial pollution.
C4
EVO COATING
Inorganic-based multilayer coating with a functional outer layer of epoxy matrix with aluminium flakes. C5
1440 h
C5
EVO COATING
Organic-based multilayer coating with a functional layer. The top-coat has a sealing function, which delays the start of the corrosion reaction.
> 3000 h
t=0h
Hours of exposure in salt spray test according to EN ISO 9227:2012 in the absence of red rust.
t=0h
Hours of exposure in salt spray test according to EN ISO 9227:2012 in the absence of red rust carried out on previously screwed and unscrewed Douglas fir screws. t = 1440 h
t = > 3000 h
DISTANCE FROM THE SEA RESISTANCE TO CHLORIDE EXPOSURE(1)
C4
C4 EVO anti-corrosion coating(2)
C5
C5 EVO anti-corrosion coating(2)
EVO COATING
C5
EVO COATING
distance from the sea
10 km
3 km
1 km
0,25 km
0
(1) C4 and C5 are defined according to EN 14592:2022 based on EN ISO 9223. (2) EN 14592:2022 currently limits the service life of alternative coatings to 15 years.
RESEARCH & DEVELOPMENT | 13
TIMBER
TIMBER
SHS
VGS
60° COUNTERSUNK SCREW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
FULLY THREADED SCREW WITH COUNTERSUNK OR HEXAGONAL HEAD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
SHS AISI410 60° COUNTERSUNK SCREW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
VGS EVO
HTS
FULLY THREADED SCREW WITH COUNTERSUNK OR HEXAGONAL HEAD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
FULLY THREADED COUNTERSUNK SCREW. . . . . . . . . . . . . . . . . . 26
HBS COUNTERSUNK SCREW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
HBS SOFTWOOD COUNTERSUNK SCREW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
HBS COIL HBS BOUND SCREWS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
HBS EVO
VGS EVO C5 FULL THREAD CONNECTOR WITH COUNTERSUNK HEAD. . . . 186
VGS A4 FULL THREAD CONNECTOR WITH COUNTERSUNK HEAD. . . . 188
VGU 45° WASHER FOR VGS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
RTR STRUCTURAL REINFORCEMENT SYSTEM . . . . . . . . . . . . . . . . . . 196
COUNTERSUNK SCREW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
HBS EVO C5 COUNTERSUNK SCREW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
HBS HARDWOOD COUNTERSUNK SCREW FOR HARDWOODS. . . . . . . . . . . . . . . . . 60
HUS TURNED WASHER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
DGZ DOUBLE THREADED SCREW FOR INSULATION . . . . . . . . . . . . . 202
DRS TIMBER-TO-TIMBER SPACER SCREW. . . . . . . . . . . . . . . . . . . . . . .208
DRT TIMBER-BRICKWORK SPACER SCREW . . . . . . . . . . . . . . . . . . . . . 210
XYLOFON WASHER SEPARATING WASHER FOR SCREWS. . . . . . . . . . . . . . . . . . . . . . . . 73
HBS PLATE PAN HEAD SCREW FOR PLATES. . . . . . . . . . . . . . . . . . . . . . . . . . . 212
TBS FLANGE HEAD SCREW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
TBS SOFTWOOD FLANGE HEAD SCREW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
TBS MAX XL FLANGE HEAD SCREW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
TBS FRAME FLAT FLANGE HEAD SCREW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
TBS EVO FLANGE HEAD SCREW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
TBS EVO C5 FLANGE HEAD SCREW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
KOP COACH SCREW DIN571 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
VGZ
HBS PLATE EVO PAN HEAD SCREW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
HBS PLATE A4 PAN HEAD SCREW FOR PLATES. . . . . . . . . . . . . . . . . . . . . . . . . . . 227
LBS ROUND HEAD SCREW FOR PLATES. . . . . . . . . . . . . . . . . . . . . . . . 228
LBS EVO ROUND HEAD SCREW FOR PLATES. . . . . . . . . . . . . . . . . . . . . . . . 234
LBS HARDWOOD ROUND HEAD SCREW FOR PLATES ON HARDWOODS. . . . . . . 238
LBS HARDWOOD EVO ROUND HEAD SCREW FOR PLATES ON HARDWOODS. . . . . . . 244
LBA HIGH BOND NAIL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
DWS DRYWALL SCREW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
FULL THREADED SCREWWITH CYLINDRICAL HEAD . . . . . . . . . 120
VGZ EVO FULLY THREADED SCREW WITH CYLINDRICAL HEAD. . . . . . . . 144
VGZ EVO C5 FULLY THREADED SCREW WITH CYLINDRICAL HEAD. . . . . . . . 152
VGZ HARDWOOD FULLY THREADED SCREW FOR HARDWOODS . . . . . . . . . . . . . . 154
TIMBER | 15
SHS
ETA-11/0030
UKTA-0836 22/6195
ETA-11/0030
60° COUNTERSUNK SCREW SMALL HEAD AND 3 THORNS TIP The 60° head and 3 THORNS tip allow easy insertion of the screw into small thickness without creating openings in the timber.
ENLARGED IMPRESSION Compared to common carpentry screws, it has a larger Torx cavity: TX 25 for Ø4 and 4.5, TX 30 for Ø5. It is the right screw for users requiring strength and precision.
FASTENING ON TONGUE AND GROOVE BOARDS For fixing beads or small elements, the 3.5 mm diameter version is perfectly suited for application in joints.
BIT INCLUDED
DIAMETER [mm] 3
3,5
5
12
LENGTH [mm] 12
30
120
SERVICE CLASS SC1
SC2
SC3
SC4
ATMOSPHERIC CORROSIVITY C1
C2
C3
C4
C5
WOOD CORROSIVITY T1
T2
T3
T4
T5
MATERIAL
Ø3,5
Zn
Ø4 - Ø4,5 - Ø5
ELECTRO PLATED
electrogalvanized carbon steel
FIELDS OF USE • • • • • • •
16 | SHS | TIMBER
tongue-and-groove boards timber based panels fibreboard, MDF, HDF and LDF plated and melamine faced panels solid timber glulam (Glued Laminated Timber) CLT and LVL
1000
CODES AND DIMENSIONS d1
CODE
L
b
A
[mm]
[mm]
[mm]
SHS3530( * )
30
20
10
500
SHS440
40
24
16
500
SHS3540( * )
40
26
14
500
SHS450
50
30
20
400
SHS3550( * )
50
34
16
500
SHS460
60
35
25
200
SHS3560( * )
60
40
20
500
SHS470
70
40
30
200
SHS4550
50
30
20
200
SHS4560
60
35
25
200
SHS4570
70
40
30
200
SHS550
50
24
26
200
SHS560
60
30
30
200
SHS570
70
35
35
200
SHS580
80
40
40
200
[mm]
3,5 TX 10
pcs
d1
CODE
[mm]
4 TX 25
( * ) Not holding CE marking.
4,5 TX 25
5 TX 30
L
b
A
[mm]
[mm]
[mm]
pcs
SHS590
90
45
45
200
SHS5100
100
50
50
200
SHS5120
120
60
60
200
GEOMETRY AND MECHANICAL CHARACTERISTICS SHS Ø3,5
SHS Ø4 - Ø4,5 - Ø5
A
A dS
dS dK
SHS
d2 d1
60°
XXX
dK
d2 d1
60° b
b L
L
GEOMETRY Nominal diameter
d1
[mm]
3,5
4
4,5
5
Head diameter
dK
[mm]
5,75
8,00
9,00
10,00
Thread diameter
d2
[mm]
2,30
2,55
2,80
3,40
Shank diameter
dS
[mm]
2,65
2,75
3,15
3,65
Pre-drilling hole diameter(1)
dV,S
[mm]
2,0
2,5
2,5
3,0
Pre-drilling hole diameter(2)
dV,H
[mm]
-
-
-
3,5
(1) Pre-drilling valid for softwood. (2) Pre-drilling valid for hardwood and beech LVL.
CHARACTERISTIC MECHANICAL PARAMETERS Nominal diameter
d1
[mm]
4
4,5
5
Tensile strength
ftens,k
[kN]
5,0
6,4
7,9
Yield moment
My,k
[Nm]
3,0
4,1
5,4
softwood (softwood)
LVL softwood (LVL softwood)
pre-drilled beech LVL (beech LVL predrilled)
Withdrawal resistance parameter
fax,k
[N/mm2]
11,7
15,0
29,0
Head-pull-through parameter
fhead,k [N/mm2]
10,5
20,0
-
Associated density
ρa
[kg/m3]
350
500
730
Calculation density
ρk
[kg/m3]
≤ 440
410 ÷ 550
590 ÷ 750
For applications with different materials please see ETA-11/0030.
TIMBER | SHS | 17
MINIMUM DISTANCES FOR SHEAR LOADS ρk ≤ 420 kg/m3
screws inserted WITHOUT pre-drilled hole
α=0°
F
d1
[mm]
a1
[mm]
a2
[mm]
5∙d
20
a3,t
[mm]
15∙d
60
a3,c
[mm]
10∙d
40
a4,t
[mm]
5∙d
a4,c
[mm]
5∙d
10∙d
4
4,5
40
45
F
α=90°
5
d1
[mm]
10∙d
50
a1
[mm]
23
5∙d
25
a2
[mm]
5∙d
20
23
5∙d
25
68
15∙d
75
a3,t
[mm]
10∙d
40
45
10∙d
50
45
10∙d
50
a3,c
[mm]
10∙d
40
45
10∙d
50
20
23
5∙d
25
a4,t
[mm]
7∙d
28
32
10∙d
50
20
23
5∙d
25
a4,c
[mm]
5∙d
20
23
5∙d
25
5∙d
4
4,5
20
23
5 5∙d
25
α = load-to-grain angle d = d1 = nominal screw diameter
screws inserted WITH pre-drilled hole
α=0°
F
d1
[mm]
a1
[mm]
a2
[mm]
3∙d
12
14
3∙d
a3,t
[mm]
12∙d
48
54
12∙d
a3,c
[mm]
7∙d
28
32
7∙d
a4,t
[mm]
3∙d
12
14
a4,c
[mm]
3∙d
12
14
5∙d
4
4,5
20
23
F
5
d1
[mm]
25
a1
[mm]
4∙d
15
a2
[mm]
4∙d
60
a3,t
[mm]
7∙d
35
a3,c
[mm]
7∙d
3∙d
15
a4,t
[mm]
3∙d
15
a4,c
[mm]
5∙d
α=90° 4
4,5
16
18
4∙d
20
5
16
18
4∙d
20
28
32
7∙d
35
28
32
7∙d
35
5∙d
20
23
7∙d
35
3∙d
12
14
3∙d
15
α = load-to-grain angle d = d1 = nominal screw diameter stressed end -90° < α < 90°
a2 a2
unloaded end 90° < α < 270°
F a3,t
unload edge 180° < α < 360°
α
F α
α
a1 a1
stressed edge 0° < α < 180°
F α
a4,t
F a4,c
a3,c
NOTE on page 19.
EFFECTIVE NUMBER FOR SHEAR LOADS The load-bearing capacity of a connection made with several screws, all of the same type and size, may be lower than the sum of the load-bearing capacities of the individual connection system. For a row of n screws arranged parallel to the direction of the grain at a distance a1 , the characteristic effective load-bearing capacity is equal to:
Ref,V,k
a1 a1
Ref,V,k = nef RV,k
The nef value is given in the table below as a function of n and a1 .
n
2 3 4 5
4∙d 1,41 1,73 2,00 2,24
5∙d 1,48 1,86 2,19 2,49
6∙d 1,55 2,01 2,41 2,77
7∙d 1,62 2,16 2,64 3,09
( * ) For intermediate a values a linear interpolation is possible. 1
18 | SHS | TIMBER
8∙d 1,68 2,28 2,83 3,34
a 1( * ) 9∙d 1,74 2,41 3,03 3,62
10∙d 1,80 2,54 3,25 3,93
11∙d 1,85 2,65 3,42 4,17
12∙d 1,90 2,76 3,61 4,43
13∙d 1,95 2,88 3,80 4,71
≥ 14∙d 2,00 3,00 4,00 5,00
STRUCTURAL VALUES
CHARACTERISTIC VALUES EN 1995:2014 SHEAR
timber-to-timber ε=90°
timber-to-timber ε=0°
RV,90,k
RV,0,k
SPAN
[kN]
[kN]
[mm]
0,83 0,91 0,99 0,99 1,06 1,18 1,22 1,29 1,46 1,46 1,46 1,46 1,46 1,46
0,51 0,62 0,69 0,77 0,69 0,79 0,86 0,73 0,81 0,88 0,96 1,05 1,13 1,17
thread withdrawal ε=90°
thread withdrawal ε=0°
head pull-through
RV,k
Rax,90,k
Rax,0,k
Rhead,k
[kN]
[kN]
[kN]
[kN]
0,84 0,84 0,84 0,84 1,06 1,06 1,06 1,20 1,20 1,20 1,20 1,20 1,20 1,20
1,21 1,52 1,77 2,02 1,70 1,99 2,27 1,52 1,89 2,21 2,53 2,84 3,16 3,79
0,36 0,45 0,53 0,61 0,51 0,60 0,68 0,45 0,57 0,66 0,76 0,85 0,95 1,14
0,73 0,73 0,73 0,73 0,92 0,92 0,92 1,13 1,13 1,13 1,13 1,13 1,13 1,13
panel-to-timber
SPAN
geometry
TENSION
A L b d1
d1
L
b
A
[mm] [mm] [mm] [mm]
4
4,5
5
40 50 60 70 50 60 70 50 60 70 80 90 100 120
24 30 35 40 30 35 40 24 30 35 40 45 50 60
16 20 25 30 20 25 30 26 30 35 40 45 50 60
12
15
15
ε = screw-to-grain angle
GENERAL PRINCIPLES
NOTES
• Characteristic values comply with the EN 1995:2014 standard in accordance with ETA-11/0030.
• The characteristic timber-to-timber shear strengths were evaluated considering both an ε angle of 90° (RV,90,k) and 0° (RV,0,k) between the grains of the second element and the connector.
• Design values can be obtained from characteristic values as follows:
Rd =
Rk kmod γM
The coefficients γM and kmod should be taken according to the current regulations used for the calculation. • For the mechanical resistance values and the geometry of the screws, reference was made to ETA-11/0030. • Sizing and verification of the timber elements and panels must be done separately. • The screws must be positioned in accordance with the minimum distances. • The characteristic shear resistances are calculated for screws inserted without pre-drilling hole. In the case of screws inserted with pre-drilling hole, greater resistance values can be obtained. • Shear strengths were calculated considering the threaded part fully inserted in the second element. • The characteristic panel-timber shear strengths are calculated considering an OSB3 or OSB4 panel, as per EN 300, or a particle board panel, as per EN 312, with thickness SPAN and density ρk = 500 kg/m3. • The thread withdrawal characteristic strength has been evaluated considering a fixing length equal to b. • The head pull-through characteristic strength was calculated using timber elements.
• The characteristic panel-timber shear strengths were evaluated considering an angle ε of 90° between the grains of the timber element and the connector. • The characteristic thread withdrawal resistances were evaluated considering both an ε angle of 90° (Rax,90,k) and of 0° (Rax,0,k) between the grains of the timber element and the connector. • For the calculation process a timber characteristic density ρk = 385 kg/m3 has been considered. For different ρk values, the strength on the table (timber-to-timber shear and tensile) can be converted by the kdens coefficient.
R’V,k = kdens,v RV,k R’ax,k = kdens,ax Rax,k R’head,k = kdens,ax Rhead,k ρk
[kg/m3 ]
350
380
385
405
425
430
440
C-GL
C24
C30
GL24h
GL26h
GL28h
GL30h
GL32h
kdens,v
0,90
0,98
1,00
1,02
1,05
1,05
1,07
kdens,ax
0,92
0,98
1,00
1,04
1,08
1,09
1,11
Strength values thus determined may differ, for higher safety standards, from those resulting from an exact calculation.
MINIMUM DISTANCES NOTES • The minimum distances comply with the EN 1995:2014 standard in accordance with ETA-11/0030. • The minimum spacing for all panel-to-timber connections (a1 , a2) can be multiplied by a coefficient of 0,85.
• The spacing a1 in the table for screws with 3 THORNS tip and d1≥5 mm inserted without pre-drilling hole in timber elements with density ρ k ≤ 420 kg/m3 and load-to-grain angle α=0° was assumed to be 10∙d based on experimental tests; alternatively, adopt 12∙d in accordance with EN 1995:2014.
• In the case of joints with elements in Douglas fir (Pseudotsuga menziesii), the minimum spacing and distances parallel to the grain must be multiplied by a coefficient of 1.5.
TIMBER | SHS | 19
SHS AISI410
ETA-11/0030
UKTA-0836 22/6195
ETA-11/0030
60° COUNTERSUNK SCREW SMALL HEAD AND 3 THORNS TIP The concealed 60° head and 3 THORNS tip allow easy insertion of the screw into small thickness without creating openings in the timber.
OUTDOOR ON ACID WOOD Martensitic stainless steel. This stainless steels offers the highest mechanical performance compared to the other available stainless steels. Suitable for outdoor applications and on acid wood, but away from corrosive agents (chlorides, sulphides, etc.).
SMALL ELEMENTS FASTENING The smaller diameter versions are ideal for fixing beads or small elements, the 3.5 mm diameter version is perfectly suited for fastening tongue-and-groove boards.
SHS XS
SHS N
BIT INCLUDED
DIAMETER [mm]
3
LENGTH [mm]
12
3,5
8 40
12 280
SERVICE CLASS
SC1
SC2
SC3
SC4
ATMOSPHERIC CORROSIVITY
C1
C2
C3
C4
C5
WOOD CORROSIVITY
T1
T2
T3
T4
T5
MATERIAL
410 AISI
1000
martensitic stainless steel AISI 410 SHS
FIELDS OF USE • • • • •
20 | SHS AISI410 | TIMBER
timber based panels solid timber glulam (Glued Laminated Timber) CLT, LVL high-density woods and acid woods
WINDOWS AND DOORS ON THE OUTSIDE SHS AISI140 is the right choice for fastening small outdoor elements such as beads, façades and window/door frames.
TIMBER | SHS AISI410 | 21
External casing slats fixed with 6 and 8 mm diameter SHS AISI410 screws.
Fastening hardwood and acid wood in farfrom-sea environments with SHS AISI410 8 mm diameter.
GEOMETRY AND MECHANICAL CHARACTERISTICS SHSAS Ø3,5
SHSAS Ø4,5 - Ø5 - Ø6 - Ø8
A
A dS dK
S
d2 d1
60°
XXX
dK
HSAS
dS
d2 d1
60° b
b L
L
GEOMETRY Nominal diameter
d1
[mm]
3,5
4,5
5
6
8
Head diameter
dK
[mm]
Thread diameter
d2
[mm]
5,75
7,50
8,50
11,00
13,00
2,15
2,80
3,40
3,95
5,40
Shank diameter
dS
[mm]
2,50
3,15
3,65
4,30
5,80
Pre-drilling hole diameter(1)
dV,S
[mm]
2,0
2,5
3,0
4,0
5,0
Pre-drilling hole diameter(2)
dV,H
[mm]
-
-
3,5
4,0
6,0
(1) Pre-drilling valid for softwood. (2) Pre-drilling valid for hardwood and beech LVL.
CHARACTERISTIC MECHANICAL PARAMETERS Nominal diameter
d1
[mm]
4,5
5
6
8
Tensile strength
ftens,k
[kN]
6,4
7,9
11,3
20,1
Yield moment
My,k
[Nm]
4,1
5,4
9,5
20,1
softwood (softwood)
LVL softwood (LVL softwood)
pre-drilled beech LVL (beech LVL predrilled)
[N/mm2]
11,7
15,0
29,0
fhead,k [N/mm2]
10,5
20,0
-
Associated density
ρa
[kg/m3]
350
500
730
Calculation density
ρk
[kg/m3]
≤ 440
410 ÷ 550
590 ÷ 750
Withdrawal resistance parameter Head-pull-through parameter
fax,k
For applications with different materials please see ETA-11/0030.
22 | SHS AISI410 | TIMBER
CODES AND DIMENSIONS SHS XS AISI410 d1 [mm] 3,5 TX 10
4,5 TX 20
5 TX 25
SHS AISI410 CODE
L [mm]
b [mm]
A [mm]
pcs
500
SHS680AS
80
40
40
100
CODE
L [mm]
b [mm]
A [mm]
pcs
SHS3540AS( * )
40
26
14
d1 [mm]
SHS3550AS( * )
50
34
16
500
SHS6100AS
100
50
50
100
SHS3560AS( * )
60
40
20
500
SHS6120AS
120
60
60
100
6 TX 30
SHS4550AS
50
30
20
500
SHS6140AS
140
75
65
100
SHS4560AS
60
35
25
500
SHS6160AS
160
75
85
100
SHS4570AS
70
40
30
200
SHS6180AS
180
75
105
100
SHS550AS
50
24
26
200
SHS6200AS
200
75
125
100
SHS560AS
60
30
30
200
SHS8120AS
120
60
60
100
SHS570AS
70
35
35
100
SHS8140AS
140
60
80
100
SHS580AS
80
40
40
100
SHS8160AS
160
80
80
100
SHS5100AS
100
50
50
100
SHS8180AS
180
80
100
100
SHS8200AS
200
80
120
100
SHS8220AS
220
80
140
100
SHS8240AS
240
80
160
100
SHS8260AS
260
80
180
100
SHS8280AS
280
80
200
100
8 TX 40
( * ) Not holding CE marking.
SHS N AISI410 - black version d1 [mm]
CODE
4,5 TX 20 5 TX 25
L [mm]
b [mm]
A [mm]
pcs
SHS4550ASN
50
30
20
100
SHS4560ASN
60
35
25
100
SHS550ASN
50
24
26
100
SHS560ASN
60
30
30
200
APPLICATION Oak Quercus petraea
Oak or European oak Quercus robur
Douglas fir Pseudotsuga menziesii
American black cherry Prunus serotina
ρk pH ~ 3,9
ρk pH = 3,4-4,2
ρk pH = 3,3-5,8
ρk = 490-630 kg/m3 pH ~ 3,9
European chestnut Castanea sativa
Red oak Quercus rubra
Blue Douglas fir Pseudotsuga taxifolia
Maritime pine Pinus pinaster
= 665-760 kg/m3
ρk = 580-600 kg/m3 pH = 3,4-3,7
= 690-960 kg/m3
ρk = 550-980 kg/m3 pH = 3,8-4,2
= 510-750 kg/m3
ρk = 500-620 kg/m3 pH ~ 3,8
ρk = 510-750 kg/m3 pH = 3,1-4,4
Possible installation on acid wood but away from corrosive agents (chlorides, sulphides, etc.). Find out the pH and density of the various wood species on page 314.
pH ≤ 4
pH > 4
“aggressive” woods high acidity
"standard" timbers low acidity
FAÇADES IN DARK TIMBER Specially designed to match façades made of charred wood, the black SHS N variant ensures perfect compatibility and offers an excellent aesthetic result. Thanks to its strength to corrosion, it can be used outdoors, allowing to create striking and long-lasting black façades.
TIMBER | SHS AISI410 | 23
MINIMUM DISTANCES FOR SHEAR LOADS ρk ≤ 420 kg/m3
screws inserted WITHOUT pre-drilled hole
α=0°
F
d1
[mm]
a1
[mm]
4,5
a2
[mm]
5∙d
a3,t
[mm]
15∙d
a3,c
[mm]
10∙d
a4,t
[mm]
a4,c
[mm]
F
α=90°
5
6
8
d1
[mm]
10∙d
50
60
80
a1
[mm]
23
5∙d
25
30
40
a2
[mm]
5∙d
23
5∙d
25
30
40
68
15∙d
75
90
120
a3,t
[mm]
10∙d
45
10∙d
50
60
80
45
10∙d
50
60
80
a3,c
[mm]
10∙d
45
10∙d
50
60
80
5∙d
23
5∙d
25
30
40
a4,t
[mm]
7∙d
32
10∙d
50
60
80
5∙d
23
5∙d
25
30
40
a4,c
[mm]
5∙d
23
5∙d
25
30
40
10∙d
45
4,5 5∙d
23
d1
[mm]
a1
[mm]
α=0°
4,5 15∙d
68
15∙d
5
6
8
25
30
40
420 kg/m3 ≤ ρk ≤ 500 kg/m3
screws inserted WITHOUT pre-drilled hole
F
5∙d
F
5
6
8
d1
[mm]
75
90
120
a1
[mm]
α=90°
4,5 7∙d
32
5
6
8
7∙d
35
42
56
a2
[mm]
7∙d
32
7∙d
35
42
56
a2
[mm]
7∙d
32
7∙d
35
42
56
a3,t
[mm]
20∙d
90
20∙d
100
120
160
a3,t
[mm]
15∙d
68
15∙d
75
90
120
a3,c
[mm]
15∙d
68
15∙d
75
90
120
a3,c
[mm]
15∙d
68
15∙d
75
90
120
a4,t
[mm]
7∙d
32
7∙d
35
42
56
a4,t
[mm]
9∙d
41
12∙d
60
72
96
a4,c
[mm]
7∙d
32
7∙d
35
42
56
a4,c
[mm]
7∙d
32
7∙d
35
42
56
screws inserted WITH pre-drilled hole
α=0°
F
4,5
F
α=90°
d1
[mm]
5
6
8
d1
[mm]
5
6
8
a1
[mm]
5∙d
23
5∙d
25
30
40
a1
[mm]
4∙d
4,5 18
4∙d
20
24
32
a2
[mm]
3∙d
14
3∙d
15
18
24
a2
[mm]
4∙d
18
4∙d
20
24
32
a3,t
[mm]
12∙d
54
12∙d
60
72
96
a3,t
[mm]
7∙d
32
7∙d
35
42
56
a3,c
[mm]
7∙d
32
7∙d
35
42
56
a3,c
[mm]
7∙d
32
7∙d
35
42
56
a4,t
[mm]
3∙d
14
3∙d
15
18
24
a4,t
[mm]
5∙d
23
7∙d
35
42
56
a4,c
[mm]
3∙d
14
3∙d
15
18
24
a4,c
[mm]
3∙d
14
3∙d
15
18
24
α = load-to-grain angle d = d1 = nominal screw diameter stressed end -90° < α < 90°
a2 a2 a1 a1
unloaded end 90° < α < 270°
F α
α F a3,t
stressed edge 0° < α < 180°
unload edge 180° < α < 360°
α F α
a4,t
F a4,c
a3,c
NOTES • The minimum distances comply with the EN 1995:2014 standard in accordance with ETA-11/0030. • The minimum spacing for all panel-to-timber connections (a1 , a2) can be multiplied by a coefficient of 0,85. • In the case of joints with elements in Douglas fir (Pseudotsuga menziesii), the minimum spacing and distances parallel to the grain must be multiplied by a coefficient of 1.5.
24 | SHS AISI410 | TIMBER
• The spacing a1 in the table for screws with 3 THORNS tip and d1≥5 mm inserted without pre-drilling hole in timber elements with density ρ k ≤ 420 kg/m3 and load-to-grain angle α=0° was assumed to be 10∙d based on experimental tests; alternatively, adopt 12∙d in accordance with EN 1995:2014.
STRUCTURAL VALUES
CHARACTERISTIC VALUES EN 1995:2014 SHEAR timber-to-timber
panel-to-timber
thread withdrawal
head pull-through
Rax,90,k
Rhead,k
SPAN
geometry
TENSION
A L b d1
d1
L
b
A
[mm] [mm] [mm] [mm] 4,5
5
6
8
50 60 70 50 60 70 80 100 80 100 120 140 160 180 200 120 140 160 180 200 220 240 260 280
30 35 40 24 30 35 40 50 40 50 60 75 75 75 75 60 60 80 80 80 80 80 80 80
20 25 30 26 30 35 40 50 40 50 60 65 85 105 125 60 80 80 100 120 140 160 180 200
RV,90,k
SPAN
RV,k
[kN]
[mm]
[kN]
[kN]
[kN]
1,01 1,01 1,01 1,14 1,14 1,14 1,14 1,14 1,60 1,60 1,60 1,60 1,60 1,60 1,60 2,48 2,48 2,48 2,48 2,48 2,48 2,48 2,48 2,48
1,70 1,99 2,27 1,52 1,89 2,21 2,53 3,16 3,03 3,79 4,55 5,68 5,68 5,68 5,68 6,06 6,06 8,08 8,08 8,08 8,08 8,08 8,08 8,08
0,64 0,64 0,64 0,82 0,82 0,82 0,82 0,82 1,37 1,37 1,37 1,37 1,37 1,37 1,37 1,92 1,92 1,92 1,92 1,92 1,92 1,92 1,92 1,92
0,99 1,11 1,15 1,21 1,38 1,38 1,38 1,38 2,01 2,01 2,01 2,01 2,01 2,01 2,01 3,16 3,16 3,16 3,16 3,16 3,16 3,16 3,16 3,16
15
15
18
22
GENERAL PRINCIPLES • Characteristic values comply with the EN 1995:2014 standard in accordance with ETA-11/0030. • Design values can be obtained from characteristic values as follows:
Rd =
Rk kmod γM
The coefficients γM and kmod should be taken according to the current regulations used for the calculation. • For the mechanical resistance values and the geometry of the screws, reference was made to ETA-11/0030. • Sizing and verification of the timber elements and panels must be done separately. • The characteristic shear resistances are calculated for screws inserted without pre-drilling hole. In the case of screws inserted with pre-drilling hole, greater resistance values can be obtained.
• The characteristic panel-timber shear strengths are calculated considering an OSB3 or OSB4 panel, as per EN 300, or a particle board panel, as per EN 312, with thickness SPAN and density ρk = 500 kg/m3. • The thread withdrawal characteristic strength has been evaluated considering a fixing length equal to b. • The head pull-through characteristic strength was calculated using timber elements.
NOTES • The characteristic shear and tensile strengths were evaluated considering both an ε angle of 90° (Rax,90,k) between the grains of the timber element and the connector.
• The screws must be positioned in accordance with the minimum distances.
• For the calculation process a timber characteristic density ρk = 385 kg/m3 has been considered. For different values of ρ k , the strength values in the table can be converted by the kdens,V coefficient (see page 19).
• The characteristic shear resistances are calculated for screws inserted without pre-drilling hole. In the case of screws inserted with pre-drilling hole, greater resistance values can be obtained.
• For a row of n screws arranged parallel to the direction of the grain at a distance a1 , the characteristic effective shear bearing capacity Ref,V,k can be calculated by means of the effective number nef (see page 18).
• The characteristic shear strengths were evaluated by considering the threaded part fully inserted in the second element.
TIMBER | SHS AISI410 | 25
HTS
EN 14592
FULLY THREADED COUNTERSUNK SCREW 3 THORNS TIP Thanks to the 3 THORNS tip, the screw can be installed without pre-drilling hole on even very thin joinery and furniture wood, such as melamine-faced panels, plated panels or MDF.
FINE THREAD A fine thread is ideal for utmost screwing precision, even on MDF panels. The cavity for the Torx bit ensures stability and security.
LONG THREAD The thread is 80% the length of the screw and the smooth part under head guarantees maximum coupling efficiency with fibreboard panels.
BIT INCLUDED
DIAMETER [mm] 3 3
5
12
LENGTH [mm] 12 12
80
1000
SERVICE CLASS SC1
SC2
SC3
SC4
ATMOSPHERIC CORROSIVITY C1
C2
C3
C4
C5
WOOD CORROSIVITY T1
T2
T3
T4
T5
MATERIAL
Zn
ELECTRO PLATED
electrogalvanized carbon steel
FIELDS OF USE • • • • • •
26 | HTS | TIMBER
timber based panels fibreboard, MDF, HDF and LDF plated and melamine faced panels solid timber glulam (Glued Laminated Timber) CLT and LVL
CODES AND DIMENSIONS d1
CODE
[mm]
3 TX 10
3,5 TX 15
4 TX 20
HTS312( * ) HTS316( * ) HTS320 HTS325 HTS330 HTS3516( * ) HTS3520( * ) HTS3525 HTS3530 HTS3535 HTS3540 HTS3550 HTS420( * ) HTS425 HTS430 HTS435
L
b
[mm]
[mm]
12 16 20 25 30 16 20 25 30 35 40 50 20 25 30 35
6 10 14 19 24 10 14 19 24 27 32 42 14 19 24 27
pcs
d1
CODE
[mm] 500 500 1000 1000 1000 1000 1000 1000 500 500 500 400 1000 1000 500 500
4 TX 20
4,5 TX 20
5 TX 25
HTS440 HTS445 HTS450 HTS4530 HTS4535 HTS4540 HTS4545 HTS4550 HTS530 HTS535 HTS540 HTS545 HTS550 HTS560 HTS570 HTS580
L
b
[mm]
[mm]
pcs
40 45 50 30 35 40 45 50 30 35 40 45 50 60 70 80
32 37 42 24 27 32 37 42 24 27 32 37 42 50 60 70
500 400 400 500 500 400 400 200 500 400 200 200 200 200 100 100
( * ) Not holding CE marking.
GEOMETRY AND MECHANICAL CHARACTERISTICS
XX
dK
HTS
dS d2 d1
90° b
t1 L Nominal diameter
d1
[mm]
3
3,5
4
4,5
5
Head diameter
dK
[mm]
6,00
7,00
8,00
8,80
9,70
Thread diameter
d2
[mm]
2,00
2,20
2,50
2,80
3,20
Shank diameter
dS
[mm]
2,20
2,45
2,75
3,20
3,65
Head thickness
t1
[mm]
2,20
2,40
2,70
2,80
2,80
Pre-drilling hole diameter(1)
dV
[mm]
2,0
2,0
2,5
2,5
3,0
Characteristic tensile strength
ftens,k
[kN]
4,2
4,5
5,5
7,8
11,0
Characteristic yield moment
My,k
[Nm]
2,2
2,7
3,7
5,8
8,8
Characteristic withdrawal-resistance parameter
fax,k
[N/mm2]
18,5
17,9
17,1
17,0
15,5
Associated density
ρa
[kg/m3]
350
350
350
350
350
Characteristic head-pull-through parameter
fhead,k [N/mm2]
26,0
25,1
24,1
23,1
22,5
Associated density
ρa
350
350
350
350
350
[kg/m3]
(1) For high density materials, pre-drilled holes are recommended based on the wood specie.
HINGES AND FURNITURE The total thread and countersunk head geometry are ideal for fastening metal hinges when building furniture. Ideal for use with single bit (included in the package), easily exchanged in the driver bit holder. The new self-perforating tip increases the initial grip capacity of the screw.
TIMBER | HTS | 27
MINIMUM DISTANCES FOR SHEAR LOADS ρk ≤ 420 kg/m3
screws inserted WITHOUT pre-drilled hole
α=0°
F
d1
[mm]
a1
[mm]
a2
[mm]
5∙d
15
18
20
a3,t
[mm]
15∙d
45
53
60
a3,c
[mm]
10∙d
30
35
40
a4,t
[mm]
5∙d
15
18
20
a4,c
[mm]
5∙d
15
18
20
10∙d
F
3
3,5
4
4,5
30
35
40
45
α=90°
5
d1
[mm]
12∙d
60
a1
[mm]
23
5∙d
25
a2
[mm]
5∙d
15
18
20
23
5∙d
25
68
15∙d
75
a3,t
[mm]
10∙d
30
35
40
45
10∙d
50
45
10∙d
50
a3,c
[mm]
10∙d
30
35
40
45
10∙d
50
23
5∙d
25
a4,t
[mm]
7∙d
21
25
28
32
10∙d
50
23
5∙d
25
a4,c
[mm]
5∙d
15
18
20
23
5∙d
25
5∙d
3
3,5
4
4,5
15
18
20
23
5 5∙d
25
α = load-to-grain angle d = d1 = nominal screw diameter
screws inserted WITH pre-drilled hole
α=0°
F
F
d1
[mm]
a1
[mm]
a2
[mm]
3∙d
9
11
12
14
a3,t
[mm]
12∙d
36
42
48
54
a3,c
[mm]
7∙d
21
25
28
32
7∙d
a4,t
[mm]
3∙d
9
11
12
14
3∙d
a4,c
[mm]
3∙d
9
11
12
14
3∙d
5∙d
3
3,5
4
4,5
15
18
20
23
5
d1
[mm]
25
a1
[mm]
3∙d
15
a2
12∙d
60
a3,t
35
a3,c
[mm]
15
a4,t
[mm]
15
a4,c
[mm]
3∙d
5∙d
α=90°
3
3,5
4
4,5
5
4∙d
12
14
16
18
4∙d
20
[mm]
4∙d
12
14
16
18
4∙d
20
[mm]
7∙d
21
25
28
32
7∙d
35
7∙d
21
25
28
32
7∙d
35
5∙d
15
18
20
23
7∙d
35
9
11
12
14
3∙d
15
α = load-to-grain angle d = d1 = nominal screw diameter stressed end -90° < α < 90°
a2 a2 a1 a1
unloaded end 90° < α < 270°
F α
α F a3,t
stressed edge 0° < α < 180°
unload edge 180° < α < 360°
α F α
a4,t
F a4,c
a3,c
MINIMUM DISTANCES NOTES • Minimum distances in accordance with EN 1995:2014. • The minimum spacing for all steel-to-timber connections (a1 , a2) can be multiplied by a coefficient of 0,7.
• The minimum spacing for all panel-to-timber connections (a1 , a2) can be multiplied by a coefficient of 0,85.
STRUCTURAL VALUES NOTES • The characteristic timber-to-timber shear strengths were evaluated by considering an angle ε of 90° between the grains of the second element and the connector. • The characteristic panel-timber and steel-timber shear strengths were evaluated by considering an ε angle of 90° between the grains of the timber element and the connector. • The shear strength characteristics on the plate are calculated considering the case of a thin plate (SPLATE = 0.5 d1). • The characteristic thread withdrawal strength was evaluated by considering a 90° angle ε between the fibers of the timber element and the connector.
28 | HTS | TIMBER
• For the calculation process a timber characteristic density ρk = 385 kg/m3 has been considered. For different values of ρk , the strength values in the table (timber-to-timber shear, steel-to-timber shear and tensile) can be converted by means of the coefficient kdens (see page 42). • The values in the table are independent of the load-to-grain angle. • For a row of n screws arranged parallel to the direction of the grain at a distance a1 , the characteristic effective shear bearing capacity Ref,V,k can be calculated by means of the effective number nef (see page 34).
STRUCTURAL VALUES
CHARACTERISTIC VALUES EN 1995:2014 SHEAR steel-to-timber thin plate
panel-to-timber
SPAN
A L
panel-to-timber
thread withdrawal
head pull-through
SPLATE
timber-to-timber
SPAN
geometry
TENSION
b
d1
d1
L
b
A
RV,k
SPAN
RV,k
SPAN
RV,k
SPLATE
RV,k
Rax,k
Rhead,k
[mm]
[mm]
[mm]
[mm]
[kN]
[mm]
[kN]
[mm]
[kN]
[mm]
[kN]
[kN]
[kN]
12 16 20 25 30 16 20 25 30 35 40 50 20 25 30 35 40 45 50 30 35 40 45 50 30 35 40 45 50 60 70 80
6 10 14 19 24 10 14 19 24 27 32 42 14 19 24 27 32 37 42 24 27 32 37 42 24 27 32 37 42 50 60 70
7 12 9 14 19 29 6 11 16 21 26 3 8 13 18 23 5 10 15 20 30 40 50
0,38 0,60 0,53 0,77 0,82 0,91 0,38 0,71 0,97 1,02 1,08 0,21 0,56 0,90 1,15 1,21 0,38 0,76 1,14 1,39 1,52 1,71 1,71
0,23 0,32 0,41 0,52 0,62 0,33 0,43 0,55 0,66 0,78 0,90 1,13 0,46 0,59 0,72 0,85 0,97 1,10 1,23 0,77 0,91 1,05 1,19 1,33 0,84 0,99 1,14 1,30 1,45 1,75 2,06 2,36
0,36 0,60 0,84 1,14 1,44 0,68 0,95 1,28 1,62 1,83 2,16 2,84 1,03 1,40 1,77 1,99 2,36 2,73 3,10 1,98 2,23 2,64 3,05 3,47 2,01 2,26 2,68 3,09 3,51 4,18 5,02 5,85
1,01 1,01 1,01 1,01 1,01 1,33 1,33 1,33 1,33 1,33 1,33 1,33 1,66 1,66 1,66 1,66 1,66 1,66 1,66 1,93 1,93 1,93 1,93 1,93 2,28 2,28 2,28 2,28 2,28 2,28 2,28 2,28
3
3,5
4
4,5
5
9
9
9
12
12
0,76 0,83 0,92 0,92 0,92 0,99 0,99 0,99 0,99 1,31 1,40 1,40 1,46 1,46 1,46 1,46 1,46
12
12
12
15
15
0,72 0,94 0,99 0,99 1,17 1,17 1,17 1,42 1,46 1,51 1,70 1,74 1,74 1,74
1,5
1,75
2
2,25
2,5
GENERAL PRINCIPLES • Characteristic values according to EN 1995:2014.
• The screws must be positioned in accordance with the minimum distances.
• Design values can be obtained from characteristic values as follows:
• The characteristic panel-timber shear strengths are calculated considering an OSB3 or OSB4 panel, as per EN 300, or a particle board panel, as per EN 312, with thickness SPAN.
Rk kmod Rd = γM The coefficients γM and kmod should be taken according to the current regulations used for the calculation. • Mechanical strength values and screw geometry comply with CE marking according to EN 14592. • Sizing and verification of the timber elements, panels and metal plates must be done separately.
• The thread withdrawal characteristic strength has been evaluated considering a fixing length equal to b. • The head pull-through characteristic strength was calculated using timber elements. In the case of steel-to-timber connections, generally the steel tensile strength is binding with respect to head separation or pull-through.
• The characteristic shear resistances are calculated for screws inserted without pre-drilling hole. In the case of screws inserted with pre-drilling hole, greater resistance values can be obtained.
TIMBER | HTS | 29
HBS
ETA-11/0030
UKTA-0836 22/6195
AC233 ESR-4645
COUNTERSUNK SCREW 3 THORNS TIP Thanks to the 3 THORNS tip, minimum installation distances are reduced. More screws can be used in less space and larger screws in smaller elements. Costs and time for project implementation are reduced.
FAST With the 3 THORNS tip, screw grip becomes more reliable and faster, while maintaining the usual mechanical performance. More speed, less effort.
JOINTS WITH SOUNDPROOFING PROFILES The screw has been tested and characterised in applications with soundproofing layers (XYLOFON) interposed on the shear plane. The impact of acoustic profiles on the mechanical performance of the HBS screw is described on page 74.
NEW-GENERATION WOODS Tested and certified for use on a wide variety of engineered timbers such as CLT, GL, LVL, OSB and Beech LVL. Extremely versatile, the HBS screw guarantees the use of new-generation woods for the creation of increasingly innovative and sustainable structures.
BIT INCLUDED
DIAMETER [mm]
3
LENGTH [mm]
12
3,5
12 12 30
1000 1000
SERVICE CLASS
SC1
SC2
SC3
SC4
ATMOSPHERIC CORROSIVITY
C1
C2
C3
C4
C5
WOOD CORROSIVITY
T1
T2
T3
T4
T5
MATERIAL
Zn
ELECTRO PLATED
electrogalvanized carbon steel
FIELDS OF USE • • • • • • •
30 | HBS | TIMBER
timber based panels fibreboard, MDF, HDF and LDF plated and melamine faced panels solid timber glulam (Glued Laminated Timber) CLT and LVL high density woods
ETA-11/0030
CLT, LVL AND HARDWOOD Values also tested, certified and calculated for CLT, LVL and high density woods such as beech LVL.
TIMBER | HBS | 31
Wall insulation boards fastening with THERMOWASHER and HBS 8 mm diameter.
Fastening CLT walls with 6 mm diameter HBS screws.
GEOMETRY AND MECHANICAL CHARACTERISTICS
XXX
dK
HBS
A
d2 d1
90° t1
dS
b L
GEOMETRY Nominal diameter
d1
[mm]
3,5
4
4,5
5
6
8
10
12
Head diameter
dK
[mm]
7,00
8,00
9,00
10,00
12,00
14,50
18,25
20,75
Thread diameter
d2
[mm]
2,25
2,55
2,80
3,40
3,95
5,40
6,40
6,80
Shank diameter
dS
[mm]
2,45
2,75
3,15
3,65
4,30
5,80
7,00
8,00
Head thickness
t1
[mm]
2,20
2,80
2,80
3,10
4,50
4,50
5,80
7,20
Pre-drilling hole diameter(1)
dV,S
[mm]
2,0
2,5
2,5
3,0
4,0
5,0
6,0
7,0
Pre-drilling hole diameter(2)
dV,H
[mm]
-
-
-
3,5
4,0
6,0
7,0
8,0
4
4,5
5
6
8
10
12
(1) Pre-drilling valid for softwood. (2) Pre-drilling valid for hardwood and beech LVL.
CHARACTERISTIC MECHANICAL PARAMETERS Nominal diameter
d1
[mm]
3,5
Tensile strength
ftens,k
[kN]
3,8
5,0
6,4
7,9
11,3
20,1
31,4
33,9
Yield moment
My,k
[Nm]
2,1
3,0
4,1
5,4
9,5
20,1
35,8
48,0
softwood (softwood)
LVL softwood (LVL softwood)
pre-drilled beech LVL (beech LVL predrilled)
Withdrawal resistance parameter
fax,k
[N/mm2]
11,7
15,0
29,0
Head-pull-through parameter
fhead,k [N/mm2]
10,5
20,0
-
Associated density
ρa
[kg/m3]
350
500
730
Calculation density
ρk
[kg/m3]
≤ 440
410 ÷ 550
590 ÷ 750
For applications with different materials please see ETA-11/0030.
32 | HBS | TIMBER
CODES AND DIMENSIONS d1
CODE
[mm] 3,5 TX 15
4 TX 20
4,5 TX 20
5 TX 25
6 TX 30
HBS3540 HBS3545 HBS3550 HBS430 HBS435 HBS440 HBS445 HBS450 HBS460 HBS470 HBS480 HBS4540 HBS4545 HBS4550 HBS4560 HBS4570 HBS4580 HBS540 HBS545 HBS550 HBS560 HBS570 HBS580 HBS590 HBS5100 HBS5120 HBS640 HBS650 HBS660 HBS670 HBS680 HBS690 HBS6100 HBS6110 HBS6120 HBS6130 HBS6140 HBS6150 HBS6160 HBS6180 HBS6200 HBS6220 HBS6240 HBS6260 HBS6280 HBS6300 HBS6320 HBS6340 HBS6360 HBS6380 HBS6400
L
b
A
[mm]
[mm]
[mm]
40 45 50 30 35 40 45 50 60 70 80 40 45 50 60 70 80 40 45 50 60 70 80 90 100 120 40 50 60 70 80 90 100 110 120 130 140 150 160 180 200 220 240 260 280 300 320 340 360 380 400
18 24 24 18 18 24 30 30 35 40 40 24 30 30 35 40 40 24 24 24 30 35 40 45 50 60 35 35 30 40 40 50 50 60 60 60 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75
22 21 26 12 17 16 15 20 25 30 40 16 15 20 25 30 40 16 21 26 30 35 40 45 50 60 8 15 30 30 40 40 50 50 60 70 65 75 85 105 125 145 165 185 205 225 245 265 285 305 325
pcs
XYLOFON WASHER page 73
CODE
[mm] 500 400 400 500 500 500 400 400 200 200 200 400 400 200 200 200 200 200 200 200 200 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
8 TX 40
10 TX 40
12 TX 50
RELATED PRODUCTS
HUS page 68
d1
THERMOWASHER page 396
HBS880 HBS8100 HBS8120 HBS8140 HBS8160 HBS8180 HBS8200 HBS8220 HBS8240 HBS8260 HBS8280 HBS8300 HBS8320 HBS8340 HBS8360 HBS8380 HBS8400 HBS8440 HBS8480 HBS8520 HBS8560 HBS8580 HBS8600 HBS1080 HBS10100 HBS10120 HBS10140 HBS10160 HBS10180 HBS10200 HBS10220 HBS10240 HBS10260 HBS10280 HBS10300 HBS10320 HBS10340 HBS10360 HBS10380 HBS10400 HBS10440 HBS10480 HBS10520 HBS10560 HBS10600 HBS12120 HBS12160 HBS12200 HBS12240 HBS12280 HBS12320 HBS12360 HBS12400 HBS12440 HBS12480 HBS12520 HBS12560 HBS12600 HBS12700 HBS12800 HBS12900 HBS121000
L
b
A
[mm]
[mm]
[mm]
80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 440 480 520 560 580 600 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 440 480 520 560 600 120 160 200 240 280 320 360 400 440 480 520 560 600 700 800 900 1000
52 52 60 60 80 80 80 80 80 80 80 100 100 100 100 100 100 100 100 100 100 100 100 52 52 60 60 80 80 80 80 80 80 80 100 100 100 100 100 100 100 100 100 100 100 80 80 80 80 80 120 120 120 120 120 120 120 120 120 120 120 120
28 48 60 80 80 100 120 140 160 180 200 200 220 240 260 280 300 340 380 420 460 480 500 28 48 60 80 80 100 120 140 160 180 200 200 220 240 260 280 300 340 380 420 460 500 40 80 120 160 200 200 240 280 320 360 400 440 480 580 680 780 880
pcs 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25
TIMBER | HBS | 33
MINIMUM DISTANCES FOR SHEAR LOADS | TIMBER ρk ≤ 420 kg/m3
screws inserted WITHOUT pre-drilled hole
α=0°
F
d1
[mm]
3,5
4
4,5
a1
[mm] 10∙d
35
40
45
a2
[mm]
5∙d
18
20
a3,t
[mm] 15∙d
53
60
a3,c [mm] 10∙d
35
40
[mm]
5∙d
18
20
a4,c [mm]
5∙d
18
20
a4,t
F
10
α=90°
5
6
8
12
d1
[mm]
10∙d
50
60
80 100 120
a1
[mm]
5∙d
23
5∙d
25
30
40
60
a2
[mm]
5∙d
18
20
23
5∙d
25
68
15∙d
75
90
120 150 180
a3,t
[mm] 10∙d
35
40
45
10∙d
50
45
10∙d
50
60
80 100 120
a3,c [mm] 10∙d
35
40
45
10∙d
50
60
80 100 120
23
5∙d
25
30
40
50
60
a4,t
[mm]
7∙d
25
28
32
10∙d
50
60
80 100 120
23
5∙d
25
30
40
50
60
a4,c [mm]
5∙d
18
20
23
5∙d
25
30
40
50
60
50
3,5
4
4,5
18
20
23
5∙d
5
6
8
10
12
25
30
40
50
60
30
40
50
60
60
80 100 120
screws inserted WITH pre-drilled hole
α=0°
F
d1
[mm]
3,5
4
4,5
F
5
6
8
10
12
d1
[mm]
α=90°
3,5
4
4,5
5
6
8
10
12
a1
[mm]
5∙d
18
20
23
5∙d
25
30
40
50
60
a1
[mm]
4∙d
14
16
18
4∙d
20
24
32
40
48
a2
[mm]
3∙d
11
12
14
3∙d
15
18
24
30
36
a2
[mm]
4∙d
14
16
18
4∙d
20
24
32
40
48
a3,t
[mm] 12∙d
42
48
54
12∙d
60
72
96
120 144
a3,t
[mm]
7∙d
25
28
32
7∙d
35
42
56
70
84
a3,c [mm]
7∙d
25
28
32
7∙d
35
42
56
70
84
a3,c [mm]
7∙d
25
28
32
7∙d
35
42
56
70
84
a4,t
[mm]
3∙d
11
12
14
3∙d
15
18
24
30
36
a4,t
[mm]
5∙d
18
20
23
7∙d
35
42
56
70
84
a4,c [mm]
3∙d
11
12
14
3∙d
15
18
24
30
36
a4,c [mm]
3∙d
11
12
14
3∙d
15
18
24
30
36
α = load-to-grain angle d = d1 = nominal screw diameter stressed end -90° < α < 90°
a2 a2
unloaded end 90° < α < 270°
F a3,t
unload edge 180° < α < 360°
α
F α
α
a1 a1
stressed edge 0° < α < 180°
F α
a4,t
F a4,c
a3,c
NOTE on page 42.
EFFECTIVE NUMBER FOR SHEAR LOADS The load-bearing capacity of a connection made with several screws, all of the same type and size, may be lower than the sum of the load-bearing capacities of the individual connection system. For a row of n screws arranged parallel to the direction of the grain at a distance a1 , the characteristic effective load-bearing capacity is equal to:
Ref,V,k
a1 a1
Ref,V,k = nef RV,k
The nef value is given in the table below as a function of n and a1 .
n
2 3 4 5
4∙d 1,41 1,73 2,00 2,24
5∙d 1,48 1,86 2,19 2,49
6∙d 1,55 2,01 2,41 2,77
7∙d 1,62 2,16 2,64 3,09
( * ) For intermediate a values a linear interpolation is possible. 1
34 | HBS | TIMBER
8∙d 1,68 2,28 2,83 3,34
a 1( * ) 9∙d 1,74 2,41 3,03 3,62
10∙d 1,80 2,54 3,25 3,93
11∙d 1,85 2,65 3,42 4,17
12∙d 1,90 2,76 3,61 4,43
13∙d 1,95 2,88 3,80 4,71
≥ 14∙d 2,00 3,00 4,00 5,00
STRUCTURAL VALUES | TIMBER
CHARACTERISTIC VALUES EN 1995:2014 SHEAR
timber-to-timber timber-to-timber ε=90° ε=0°
steel-to-timber thin plate
panel-to-timber
thread withdrawal ε=90°
thread withdrawal ε=0°
head pull-through
Rax,90,k
Rax,0,k
Rhead,k
SPLATE
geometry
TENSION
SPAN
A L b d1
d1
L
b
A
[mm] [mm] [mm] [mm] 40 3,5
4
4,5
5
18
RV,90,k
RV,0,k
SPAN [mm]
[kN]
[kN]
22
0,73
0,40
45
24
21
0,79
0,47
50
24
26
0,79
0,47
30
18
12
0,72
35
18
17
0,79
40
24
16
45
30
50
30
RV,k
SPLATE
[kN]
[mm]
0,72 12
1,75
[kN]
[kN]
[kN]
[kN]
0,85
0,80
0,24
0,56
0,91
1,06
0,32
0,56
0,72
0,91
1,06
0,32
0,56
0,38
0,76
0,93
0,91
0,27
0,73
0,47
0,84
1,04
0,91
0,27
0,73
0,83
0,51
0,84
1,12
1,21
0,36
0,73
15
0,81
0,56
1,19
1,52
0,45
0,73
20
0,91
0,62
1,19
1,52
0,45
0,73
12
0,72
RV,k
0,84 0,84
2
60
35
25
0,99
0,69
0,84
1,26
1,77
0,53
0,73
70
40
30
0,99
0,77
0,84
1,32
2,02
0,61
0,73
80
40
40
0,99
0,77
0,84
1,32
2,02
0,61
0,73
40
24
16
0,98
0,55
1,06
1,33
1,36
0,41
0,92
45
30
15
0,96
0,61
1,06
1,42
1,70
0,51
0,92
50
30
20
1,06
0,69
1,06
1,42
1,70
0,51
0,92
60
35
25
1,18
0,79
1,49
1,99
0,60
0,92
70
40
30
1,22
0,86
1,06
1,56
2,27
0,68
0,92
80
40
40
1,22
0,86
1,06
1,56
2,27
0,68
0,92
40
24
16
1,12
0,60
1,16
1,46
1,52
0,45
1,13
45
24
21
1,19
0,70
1,20
1,56
1,52
0,45
1,13
15
1,06
2,25
50
24
26
1,29
0,73
1,20
1,56
1,52
0,45
1,13
60
30
30
1,46
0,81
1,20
1,65
1,89
0,57
1,13
15
1,20
2,5
70
35
35
1,46
0,88
1,73
2,21
0,66
1,13
80
40
40
1,46
0,96
1,20
1,81
2,53
0,76
1,13
90
45
45
1,46
1,05
1,20
1,89
2,84
0,85
1,13
100
50
50
1,46
1,13
1,20
1,97
3,16
0,95
1,13
120
60
60
1,46
1,17
1,20
2,13
3,79
1,14
1,13
ε = screw-to-grain angle
NOTES and GENERAL PRINCIPLES on page 42.
Complete calculation reports for designing in wood? Download MyProject and simplify your work!
TIMBER | HBS | 35
STRUCTURAL VALUES | TIMBER
CHARACTERISTIC VALUES EN 1995:2014 SHEAR
timber-to-timber timber-to-timber ε=90° ε=0°
steel-to-timber thin plate
A
steel-to-timber thick plate
thread withdrawal ε=90°
thread withdrawal ε=0°
head pull-through
SPLATE
SPLATE
geometry
TENSION
L b d1
d1
L
b
A
[mm] [mm] [mm] [mm] 40 35 8 50 35 15 60 30 30 70 40 30 80 40 40 90 50 40 100 50 50 110 60 50 120 60 60 130 60 70 140 75 65 150 75 75 160 75 85 6 180 75 105 200 75 125 220 75 145 240 75 165 260 75 185 280 75 205 300 75 225 320 75 245 340 75 265 360 75 285 380 75 305 400 75 325 80 52 28 100 52 48 120 60 60 140 60 80 160 80 80 180 80 100 200 80 120 220 80 140 240 80 160 260 80 180 280 80 200 8 300 100 200 320 100 220 340 100 240 360 100 260 380 100 280 400 100 300 440 100 340 480 100 380 520 100 420 560 100 460 580 100 480 600 100 500
36 | HBS | TIMBER
RV,90,k
RV,0,k
SPLATE
RV,k
SPLATE
RV,k
Rax,90,k
Rax,0,k
Rhead,k
[kN] 0,89 1,53 1,78 1,88 2,08 2,08 2,08 2,08 2,08 2,08 2,08 2,08 2,08 2,08 2,08 2,08 2,08 2,08 2,08 2,08 2,08 2,08 2,08 2,08 2,08 2,59 3,28 3,28 3,28 3,28 3,28 3,28 3,28 3,28 3,28 3,28 3,28 3,28 3,28 3,28 3,28 3,28 3,28 3,28 3,28 3,28 3,28 3,28
[kN] 0,72 0,85 1,04 1,20 1,20 1,38 1,38 1,58 1,58 1,58 1,67 1,67 1,67 1,67 1,67 1,67 1,67 1,67 1,67 1,67 1,67 1,67 1,67 1,67 1,67 1,70 1,95 2,13 2,13 2,60 2,60 2,60 2,60 2,60 2,60 2,60 2,62 2,62 2,62 2,62 2,62 2,62 2,62 2,62 2,62 2,62 2,62 2,62
[mm]
[kN] 1,64 2,08 2,24 2,43 2,43 2,61 2,61 2,80 2,80 2,80 3,09 3,09 3,09 3,09 3,09 3,09 3,09 3,09 3,09 3,09 3,09 3,09 3,09 3,09 3,09 4,00 4,00 4,20 4,20 4,70 4,70 4,70 4,70 4,70 4,70 4,70 5,21 5,21 5,21 5,21 5,21 5,21 5,21 5,21 5,21 5,21 5,21 5,21
[mm]
[kN] 2,58 2,98 2,93 3,12 3,12 3,31 3,31 3,49 3,49 3,49 3,78 3,78 3,78 3,78 3,78 3,78 3,78 3,78 3,78 3,78 3,78 3,78 3,78 3,78 3,78 5,11 5,11 5,31 5,31 5,81 5,81 5,81 5,81 5,81 5,81 5,81 6,32 6,32 6,32 6,32 6,32 6,32 6,32 6,32 6,32 6,32 6,32 6,32
[kN] 2,65 2,65 2,27 3,03 3,03 3,79 3,79 4,55 4,55 4,55 5,68 5,68 5,68 5,68 5,68 5,68 5,68 5,68 5,68 5,68 5,68 5,68 5,68 5,68 5,68 5,25 5,25 6,06 6,06 8,08 8,08 8,08 8,08 8,08 8,08 8,08 10,10 10,10 10,10 10,10 10,10 10,10 10,10 10,10 10,10 10,10 10,10 10,10
[kN] 0,80 0,80 0,68 0,91 0,91 1,14 1,14 1,36 1,36 1,36 1,70 1,70 1,70 1,70 1,70 1,70 1,70 1,70 1,70 1,70 1,70 1,70 1,70 1,70 1,70 1,58 1,58 1,82 1,82 2,42 2,42 2,42 2,42 2,42 2,42 2,42 3,03 3,03 3,03 3,03 3,03 3,03 3,03 3,03 3,03 3,03 3,03 3,03
[kN] 1,63 1,63 1,63 1,63 1,63 1,63 1,63 1,63 1,63 1,63 1,63 1,63 1,63 1,63 1,63 1,63 1,63 1,63 1,63 1,63 1,63 1,63 1,63 1,63 1,63 2,38 2,38 2,38 2,38 2,38 2,38 2,38 2,38 2,38 2,38 2,38 2,38 2,38 2,38 2,38 2,38 2,38 2,38 2,38 2,38 2,38 2,38 2,38
3
4
6
8
STRUCTURAL VALUES | TIMBER
CHARACTERISTIC VALUES EN 1995:2014 SHEAR
timber-to-timber timber-to-timber ε=90° ε=0°
steel-to-timber thin plate
A
steel-to-timber thick plate
thread withdrawal ε=90°
thread withdrawal ε=0°
head pull-through
SPLATE
SPLATE
geometry
TENSION
L b d1
d1
L
b
A
[mm] [mm] [mm] [mm] 80 52 28 100 52 48 120 60 60 140 60 80 160 80 80 180 80 100 200 80 120 220 80 140 240 80 160 260 80 180 280 80 200 10 300 100 200 320 100 220 340 100 240 360 100 260 380 100 280 400 100 300 440 100 340 480 100 380 520 100 420 560 100 460 600 100 500 120 80 40 160 80 80 200 80 120 240 80 160 280 80 200 320 120 200 360 120 240 400 120 280 12 440 120 320 480 120 360 520 120 400 560 120 440 600 120 480 700 120 580 800 120 680 900 120 780 1000 120 880
RV,90,k
RV,0,k
SPLATE
RV,k
SPLATE
RV,k
Rax,90,k
Rax,0,k
Rhead,k
[kN] 3,63 4,22 4,81 4,81 4,81 4,81 4,81 4,81 4,81 4,81 4,81 4,81 4,81 4,81 4,81 4,81 4,81 4,81 4,81 4,81 4,81 4,81 4,87 6,00 6,00 6,00 6,00 6,00 6,00 6,00 6,00 6,00 6,00 6,00 6,00 6,00 6,00 6,00 6,00
[kN] 2,02 2,56 2,75 2,75 3,28 3,28 3,28 3,28 3,28 3,28 3,28 3,86 3,86 3,86 3,86 3,86 3,86 3,86 3,86 3,86 3,86 3,86 3,49 3,88 3,88 3,88 3,88 4,83 4,83 4,83 4,83 4,83 4,83 4,83 4,83 4,83 4,83 4,83 4,83
[mm]
[kN] 4,75 5,51 5,76 5,76 6,40 6,40 6,40 6,40 6,40 6,40 6,40 7,03 7,03 7,03 7,03 7,03 7,03 7,03 7,03 7,03 7,03 7,03 7,81 7,81 7,81 7,81 7,81 9,32 9,32 9,32 9,32 9,32 9,32 9,32 9,32 9,32 9,32 9,32 9,32
[mm]
[kN] 6,94 7,12 7,37 7,37 8,00 8,00 8,00 8,00 8,00 8,00 8,00 8,63 8,63 8,63 8,63 8,63 8,63 8,63 8,63 8,63 8,63 8,63 9,79 9,79 9,79 9,79 9,79 11,30 11,30 11,30 11,30 11,30 11,30 11,30 11,30 11,30 11,30 11,30 11,30
[kN] 6,57 6,57 7,58 7,58 10,10 10,10 10,10 10,10 10,10 10,10 10,10 12,63 12,63 12,63 12,63 12,63 12,63 12,63 12,63 12,63 12,63 12,63 12,12 12,12 12,12 12,12 12,12 18,18 18,18 18,18 18,18 18,18 18,18 18,18 18,18 18,18 18,18 18,18 18,18
[kN] 1,97 1,97 2,27 2,27 3,03 3,03 3,03 3,03 3,03 3,03 3,03 3,79 3,79 3,79 3,79 3,79 3,79 3,79 3,79 3,79 3,79 3,79 3,64 3,64 3,64 3,64 3,64 5,45 5,45 5,45 5,45 5,45 5,45 5,45 5,45 5,45 5,45 5,45 5,45
[kN] 3,77 3,77 3,77 3,77 3,77 3,77 3,77 3,77 3,77 3,77 3,77 3,77 3,77 3,77 3,77 3,77 3,77 3,77 3,77 3,77 3,77 3,77 4,88 4,88 4,88 4,88 4,88 4,88 4,88 4,88 4,88 4,88 4,88 4,88 4,88 4,88 4,88 4,88 4,88
5
6
10
12
ε = screw-to-grain angle
NOTES and GENERAL PRINCIPLES on page 42.
TIMBER | HBS | 37
STRUCTURAL VALUES | CLT
CHARACTERISTIC VALUES EN 1995:2014 SHEAR CLT-CLT lateral face
geometry
CLT-CLT lateral face-narrow face
panel-CLT lateral face
A
CLT-panel-CLT lateral face
t
SPAN
L
SPAN b d1
d1
L
b
A
RV,k
RV,k
SPAN
[mm]
[mm]
[mm]
[kN]
[mm]
30 40 50 60 75 52 60 80 100 52 60 80 100 80 80 120
[mm] ≥ 30 ≥ 30 ≥ 40 ≥ 50 ≥ 65 ≥ 28 ≥ 60 ≥ 80 ≥ 200 ≥ 28 ≥ 60 ≥ 80 ≥ 200 ≥ 40 ≥ 80 ≥ 200
[kN]
60 70÷80 90÷100 110÷130 140÷400 80÷100 120÷140 160÷280 300÷600 80÷100 120÷140 160÷280 300÷600 120 160÷280 320÷1000
1,63 1,74 1,97 1,97 1,97 2,42 3,11 3,11 3,11 3,40 4,45 4,56 4,56 4,54 5,69 5,69
1,84 2,26 2,58 2,58 2,34 3,03 3,37 3,76 3,56 4,00 4,65
6
8
10
12
18
22
25
25
RV,k
SPAN
[kN]
[mm] [mm]
[kN]
1,62 1,62 1,62 1,62 1,62 2,55 2,55 2,55 2,55 3,62 3,62 3,62 3,62 4,37 4,37 4,37
20 ≥ 25 ≥ 35 ≥ 45 ≥ 60 ≥ 25 ≥ 45 ≥ 65 ≥ 135 ≥ 25 ≥ 45 ≥ 65 ≥ 135 ≥ 45 ≥ 65 ≥ 145
2,67 2,67 2,67 2,67 2,67 3,64 3,64 3,64 3,64 4,47 4,47 4,47 4,47 4,72 4,72 4,72
18
22
25
25
t
RV,k
SHEAR CLT-timber lateral face
geometry
timber-CLT narrow face
CLT-CLT narrow face
A L tCLT
b
45°
d1
d1
L
b
A
[mm]
[mm]
[mm]
60 70÷80 90÷100 110÷130 140÷400 80÷100 120÷140 160÷280 300÷600 80÷100 120÷140 160÷280 300÷600 120÷280 320÷1000
30 40 50 60 75 52 60 80 100 52 60 80 100 80 120
6
8
10
12
RV,k
RV,k
tCLT
RV,k
[mm]
[kN]
[kN]
[mm]
[kN]
30 ≥ 30 ≥ 40 ≥ 50 ≥ 65 ≥ 28 ≥ 60 ≥ 80 ≥ 200 ≥ 28 ≥ 60 ≥ 80 ≥ 200 40 ≥ 200
1,69 1,77 2,01 2,01 2,01 2,46 3,17 3,17 3,17 3,45 4,55 4,65 4,65 4,60 5,79
1,89 2,27 2,61 2,61 2,40 3,05 3,39 3,79 3,65 4,69
≥ 65 ≥ 80 ≥ 100 ≥ 80 ≥ 85 ≥ 115 ≥ 215 ≥ 100 ≥ 100 ≥ 115 ≥ 215 ≥ 120 ≥ 230
1,54 1,66 1,66 1,84 2,26 2,58 2,58 2,34 3,03 3,37 3,76 3,56 4,65
NOTES and GENERAL PRINCIPLES on page 42.
38 | HBS | TIMBER
STRUCTURAL VALUES | CLT
CHARACTERISTIC VALUES EN 1995:2014 TENSION
geometry
thread withdrawal narrow face
thread withdrawal narrow face
head pull-through
head pull-through with HUS washer
Rhead,k
A L b d1
d1
L
b
Rax,k
Rax,k
Rhead,k
[mm]
[mm]
[mm]
[kN]
[kN]
[kN]
[kN]
6
60 70÷80 90÷100 110÷130 140÷400
30 40 50 60 75
2,11 2,81 3,51 4,21 5,27
-
1,51 1,51 1,51 1,51 1,51
4,20 4,20 4,20 4,20 4,20
8
80÷100 120÷140 160÷280 300÷600
52 60 80 100
4,87 5,62 7,49 9,36
3,70 4,21 5,45 6,66
2,21 2,21 2,21 2,21
6,56 6,56 6,56 6,56
10
80÷100 120÷140 160÷280 300÷600
52 60 80 100
6,08 7,02 9,36 11,70
4,42 5,03 6,51 7,96
3,50 3,50 3,50 3,50
9,45 9,45 9,45 9,45
12
120÷280 320÷1000
80 120
11,23 16,85
7,54 10,86
4,52 4,52
14,37 14,37
MINIMUM DISTANCES FOR SHEAR AND AXIAL LOADS | CLT screws inserted WITHOUT pre-drilled hole
lateral face d1
[mm]
a1
[mm]
4∙d
a2
[mm]
2,5∙d
15
a3,t
[mm]
6∙d
36
a3,c
[mm]
6∙d
36
a4,t
[mm]
6∙d
36
a4,c
[mm]
2,5∙d
15
narrow face
6
8
10
12
d1
[mm]
24
32
40
48
a1
[mm]
6
8
10
12
10∙d
60
80
100
120
20
25
30
a2
48
60
72
a3,t
[mm]
4∙d
24
32
40
48
[mm]
12∙d
72
96
120
144
48
60
72
a3,c
48
60
72
a4,t
[mm]
7∙d
42
56
70
84
[mm]
6∙d
36
48
60
72
20
25
30
a4,c
[mm]
3∙d
18
24
30
36
d = d1 = nominal screw diameter
a2 a2
a1
a3,c
a4,t F
α
α
a3,t
a3,c
F
a4,c
a4,c
a4,c
tCLT
a3,t
F a3,c a4,c a4,t
F
tCLT
NOTES and GENERAL PRINCIPLES on page 42.
TIMBER | HBS | 39
STRUCTURAL VALUES | LVL TENSION geometry
thread withdrawal flat
thread withdrawal edge
head pull-through flat
head pull-through with HUS washer flat
Rhead,k
Rhead,k
A L b d1
d1 [mm]
5
6
8
10
L
b
Rax,k
Rax,k
[mm]
[mm]
[kN]
[kN]
[kN]
[kN]
40÷50
24
1,74
1,16
1,94
-
60
30
2,18
1,45
1,94
-
70
35
2,54
1,69
1,94
-
80
40
2,90
1,94
1,94
-
90
45
3,27
2,18
1,94
-
100
50
3,63
2,42
1,94
-
120
60
4,36
2,90
1,94
-
40÷50
35
3,05
2,03
2,79
7,74
60
30
2,61
1,74
2,79
7,74
70÷80
40
3,48
2,32
2,79
7,74
90÷100
50
4,36
2,90
2,79
7,74
110÷130
60
5,23
3,48
2,79
7,74
140÷150
75
6,53
4,36
2,79
7,74
160÷400
75
6,53
4,36
2,79
7,74
80÷100
52
6,04
4,03
4,07
12,10
120÷140
60
6,97
4,65
4,07
12,10
160÷180
80
9,29
6,19
4,07
12,10
200÷280
80
9,29
6,19
4,07
12,10
300÷600
100
11,61
7,74
4,07
12,10
80÷100
52
7,55
5,03
6,45
17,42
120÷140
60
8,71
5,81
6,45
17,42
160÷200
80
11,61
7,74
6,45
17,42
220÷280
80
11,61
7,74
6,45
17,42
300÷600
100
14,52
9,68
6,45
17,42
NOTES and GENERAL PRINCIPLES on page 42.
Internationality is also measured in the details. Check the availability of our technical data sheets in your language and measuring system.
40 | HBS | TIMBER
STRUCTURAL VALUES | LVL
CHARACTERISTIC VALUES EN 1995:2014 SHEAR
geometry
LVL-LVL
LVL-LVL-LVL
LVL-timber
timber-LVL
t2 A L b d1
A
A
A
A
d1
L
b
A
RV,k
A
t2
RV,k
A
RV,k
A
[mm]
[mm]
[mm]
[mm]
[kN]
[mm]
[mm]
[kN]
[mm]
[kN]
[mm]
[kN]
60 70 80 90 100 120 90÷100 110÷130 140÷150 160÷400 120÷140 160÷180 200÷280 300÷600 120÷140 160÷200 220÷280 300÷600
30 35 40 45 50 60 50 60 75 75 60 80 80 100 60 80 80 100
33 40 45 50 60 ≥ 45 ≥ 55 ≥ 70 ≥ 80 ≥ 60 ≥ 80 ≥ 120 ≥ 200 ≥ 75 ≥ 140 ≥ 200
1,80 1,80 1,80 1,80 1,80 2,56 2,56 2,56 2,56 4,01 4,01 4,01 4,01 5,93 5,93 5,93
≥ 45 ≥ 65 ≥ 100 ≥ 75 ≥ 100
≥ 70 ≥ 75 ≥ 105 ≥ 75 ≥ 105
5,12 8,03 8,03 11,87 11,87
33 40 45 50 60 ≥ 45 ≥ 55 ≥ 70 ≥ 80 ≥ 60 ≥ 80 ≥ 120 ≥ 200 ≥ 75 ≥ 140 ≥ 200
1,73 1,73 1,73 1,73 1,73 2,45 2,45 2,45 2,45 3,84 3,84 3,84 3,84 5,69 5,69 5,69
27 35 40 45 50 60 ≥ 40 ≥ 50 ≥ 65 ≥ 85 ≥ 60 ≥ 80 ≥ 120 ≥ 200 ≥ 45 ≥ 80 ≥ 140 ≥ 200
1,45 1,53 1,53 1,53 1,53 1,53 2,16 2,16 2,16 2,16 3,42 3,42 3,42 3,42 4,34 5,02 5,02 5,02
5
6
8
10
RV,k
MINIMUM DISTANCES FOR SHEAR LOADS | LVL screws inserted WITHOUT pre-drilled hole F
F
α=0°
α=90°
d1
[mm]
5
6
8
10
d1
[mm]
a1
[mm]
12∙d
60
72
96
120
a1
[mm]
a2
[mm]
5∙d
25
30
40
50
a2
[mm]
5d
25
30
40
50
a3,t
[mm]
15∙d
75
90
120
150
a3,t
[mm]
10d
50
60
80
100
a3,c
[mm]
10∙d
50
60
80
100
a3,c
[mm]
10d
50
60
80
100
a4,t
[mm]
5∙d
25
30
40
50
a4,t
[mm]
10d
50
60
80
100
a4,c
[mm]
5∙d
25
30
40
50
a4,c
[mm]
5d
25
30
40
50
5d
5
6
8
10
25
30
40
50
α = load-to-grain angle d = d1 = nominal screw diameter
a2 a2
a1
a4,t F
α
α
a3,t
α
F
a4,c
F F α
a3,c
NOTES and GENERAL PRINCIPLES on page 42.
TIMBER | HBS | 41
STRUCTURAL VALUES GENERAL PRINCIPLES
NOTES | TIMBER
• Characteristic values comply with the EN 1995:2014 standard in accordance with ETA-11/0030.
• The characteristic timber-to-timber shear strengths were evaluated considering both an ε angle of 90° (RV,90,k) and 0° (RV,0,k) between the grains of the second element and the connector.
• Design values can be obtained from characteristic values as follows:
Rd =
Rk kmod γM
The coefficients γM and kmod should be taken according to the current regulations used for the calculation. • For the mechanical resistance values and the geometry of the screws, reference was made to ETA-11/0030. • Sizing and verification of the timber elements, panels and metal plates must be done separately. • The screws must be positioned in accordance with the minimum distances. • The characteristic shear resistances are calculated for screws inserted without pre-drilling hole. In the case of screws inserted with pre-drilling hole, greater resistance values can be obtained. • Shear strengths were calculated considering the threaded part fully inserted in the second element. • The characteristic panel-timber shear strengths are calculated considering an OSB3 or OSB4 panel, as per EN 300, or a particle board panel, as per EN 312, with thickness SPAN and density ρk = 500 kg/m3. • The thread withdrawal characteristic strength has been evaluated considering a fixing length equal to b. • The characteristic strength to head pull-through, with and without a washer, was evaluated using timber or timber based elements. In the case of steel-to-timber connections, generally the steel tensile strength is binding with respect to head separation or pull-through.
• The characteristic panel-timber and steel-timber shear strengths were evaluated by considering an ε angle of 90° between the grains of the timber element and the connector. • The characteristic plate shear strengths are evaluated considering the case of thin plate (SPLATE = 0.5 d1) and thick plate (SPLATE = d1) . • The characteristic thread withdrawal resistances were evaluated considering both an ε angle of 90° (Rax,90,k) and of 0° (Rax,0,k) between the grains of the timber element and the connector. • For the calculation process a timber characteristic density ρk = 385 kg/m3 has been considered. For different values of ρk , the strength values in the table (timber-to-timber shear, steel-to-timber shear and tensile) can be converted by means of the coefficient kdens.
R’V,k = kdens,v RV,k R’ax,k = kdens,ax Rax,k R’head,k = kdens,ax Rhead,k ρk
[kg/m3 ]
350
380
385
405
425
430
440
C-GL
C24
C30
GL24h
GL26h
GL28h
GL30h
GL32h
kdens,v
0,90
0,98
1,00
1,02
1,05
1,05
1,07
kdens,ax
0,92
0,98
1,00
1,04
1,08
1,09
1,11
Strength values thus determined may differ, for higher safety standards, from those resulting from an exact calculation.
• In the case of combined shear and tensile stress, the following verification must be satisfied:
Fv,d Rv,d
2
+
Fax,d Rax,d
2
≥ 1
• In the case of steel-to-timber connections with a thick plate, it is necessary to assess the effects of timber deformation and install the connectors according to the assembly instructions. • For different calculation configurations, the MyProject software is available (www.rothoblaas.com).
NOTES | LVL • For the calculation process, a mass density of ρk = 480 kg/m3 has been considered for the softwood LVL elements and a mass density of ρ k = 385 kg/m3 has been considered for timber elements. • The characteristic shear strengths are evaluated for connectors inserted on the side face (wide face) considering, for individual timber elements, a 90° angle between the connector and the grain, a 90° angle between the connector and the side face of the LVL element and a 0° angle between the force and the grain.
NOTES | CLT
• The axial thread-withdrawal resistance was calculated considering a 90° angle between the grains and the connector.
• The characteristic values are according to the national specifications ÖNORM EN 1995 - Annex K.
• Screws shorter than the minimum in the table are not compatible with the calculation assumptions and are therefore not reported.
• For the calculation process, a mass density of ρ k = 350 kg/m3 has been considered for CLT elements and a mass density of ρ k = 385 kg/m3 has been considered for timber elements. • The characteristics shear resistance are calculated considering a minimum fixing length of 4 d1 . • The characteristic shear strength is independent from the direction of the grain of the CLT panels outer layer. • The axial thread withdrawal resistance in the narrow face is valid for minimum CLT thickness tCLT,min = 10∙d1 and minimum screw pull-through depth tpen = 10∙d1 .
MINIMUM DISTANCES NOTES | TIMBER
NOTES | LVL
• The minimum distances comply with the EN 1995:2014 standard in accordance with ETA-11/0030.
• The minimum distances are compliant with ETA-11/0030 and are to be considered valid unless otherwise specified in the technical documents for the LVL panels.
• The minimum spacing for all steel-to-timber connections (a1 , a2) can be multiplied by a coefficient of 0,7. • The minimum spacing for all panel-to-timber connections (a1 , a2) can be multiplied by a coefficient of 0,85. • In the case of joints with elements in Douglas fir (Pseudotsuga menziesii), the minimum spacing and distances parallel to the grain must be multiplied by a coefficient of 1.5. • The spacing a1 in the table for screws with 3 THORNS tip and d1≥5 mm inserted without pre-drilling hole in timber elements with density ρ k ≤ 420 kg/m3 and load-to-grain angle α=0° was assumed to be 10∙d based on experimental tests; alternatively, adopt 12∙d in accordance with EN 1995:2014.
NOTES | CLT • The minimum distances are compliant with ETA-11/0030 and are to be considered valid unless otherwise specified in the technical documents for the CLT panels. • Minimum distances are valid for minimum CLT thickness tCLT,min =10∙d1 . • The minimum distances referred to "narrow face" are valid for minimum screw pull-through depth tpen = 10∙d1 .
42 | HBS | TIMBER
• The minimum distances are applicable when using both parallel and cross grain softwood LVL. • The minimum distances without pre-drilling hole are valid for minimum thickness of LVL elements tmin: t1 ≥ 8,4 d - 9 t2 ≥
11,4 d 75
where: - t 1 is the thickness in mm of the LVL element in a connection with 2 wooden elements. For connections with 3 or more elements, t 1 represents the thickness of the most external LVL; - t 2 is the thickness in mm of the central element in a connection with 3 or more elements.
INSTALLATION SUGGESTIONS SCREWING USING CATCH
Place the bit inside the CATCH screwing device and fasten it to the correct depth depending on the chosen connector.
CATCH is suitable with long connectors where the insert would otherwise tend to come out of the screw head space.
Useful in case of screwing in corners, which usually do not allow exerting a great screwing force.
PARTIALLY THREADED SCREWS vs FULLY THREADED SCREW
Compressible elements are interposed between two timber beams and a screw is screwed centrally to evaluate its effect on the connection.
The partial thread screw (e.g. HBS) allows the joint to be closed. The threaded portion, inserted all the way inside the second element, allows the first element to slide on the smooth shank.
The fully threaded screw (e.g. VGZ) transfers the force by exploiting its axial strength and penetrates inside the timber elements without moving.
Install the screw (e.g. HBS).
Alternatively, specific screws for hardwood applications (e.g. HBSH) can be used, which can be inserted without the aid of pre-drill hole
APPLICATION ON HARDWOODS
Pre-drill a hole of the required diameter (dV,H) and length equal to the chosen connector size using the SNAIL tip.
RELATED PRODUCTS
CATCH page 408
LEWIS page 414
SNAIL page 415
A 18 | ASB 18 page 402
TIMBER | HBS | 43
HBS SOFTWOOD
EN 14592
COUNTERSUNK SCREW SAW TIP Special self-perforating tip with serrated thread (SAW tip) that cuts the timber grains, facilitating initial grip and subsequent pull-through.
LONGER THREAD Greater thread length (60%) to ensure superb joint closure and great versatility.
SOFTWOOD Optimised geometry for maximum performance on the most common construction timbers.
DIAMETER [mm]
3
LENGTH [mm]
12
5
8
12
50
400
SERVICE CLASS
SC1
SC2
SC3
SC4
ATMOSPHERIC CORROSIVITY
C1
C2
C3
C4
C5
WOOD CORROSIVITY
T1
T2
T3
T4
T5
MATERIAL
Zn
ELECTRO PLATED
1000
electrogalvanized carbon steel
FIELDS OF USE • • • • •
44 | HBS SOFTWOOD | TIMBER
timber based panels fibreboard and MDF panels solid timber glulam (Glued Laminated Timber) CLT and LVL
TIMBER ROOF The screws’ fast initial grip makes it possible to create secure structural connections in all assembly conditions.
SIP PANELS The size range is specially designed for the application of fasteners on medium and large structural elements, such as lightweight boards and frames, up to SIP and Sandwich panels.
TIMBER | HBS SOFTWOOD | 45
CODES AND DIMENSIONS d1
CODE
[mm] HBSS550 HBSS560 5 TX 25
b
A
[mm]
[mm]
50
30
20
60
HBSS570
35
70
pcs
25
40
d1
CODE
[mm]
30
L
b
A
[mm]
[mm]
[mm]
pcs
200
HBSS880
80
52
28
100
200
HBSS8100
100
60
40
100
200
HBSS8120
120
80
40
100
HBSS8140
140
80
60
100
HBSS8160
160
90
70
100
HBSS8180
180
90
90
100
HBSS8200
200
100
100
100
HBSS8220
220
100
120
100
HBSS8240
240
100
140
100
HBSS580
80
50
30
100
HBSS5100
100
60
40
100
HBSS5120
120
60
60
100
HBSS660
60
35
25
100
HBSS670
70
40
30
100
HBSS680
80
50
30
100
HBSS8260
260
100
160
100
HBSS690
90
55
35
100
HBSS8280
280
100
180
100
HBSS6100
100
60
40
100
HBSS8300
300
100
200
100
100
HBSS8320
320
100
220
100
HBSS8340
340
100
240
100
HBSS8360
360
100
260
100
HBSS8380
380
100
280
100
HBSS8400
400
100
300
100
HBSS6120 6 TX 30
L [mm]
120
75
45
8 TX 40
HBSS6140
140
80
60
100
HBSS6160
160
90
70
100
HBSS6180
180
100
80
100
HBSS6200
200
100
100
100
HBSS6220
220
100
120
100
HBSS6240
240
100
140
100
HBSS6260
260
100
160
100
HUS
HBSS6280
280
100
180
100
TURNED WASHER
HBSS6300
300
100
200
100
see page 68
RELATED PRODUCTS
GEOMETRY AND MECHANICAL CHARACTERISTICS A
BS
S
XXX
H
dK
d2 d1
90° t1
b
dS L
GEOMETRY Nominal diameter
d1
[mm]
5
6
8
Head diameter
dK
[mm]
10,00
12,00
14,50
Thread diameter
d2
[mm]
3,40
3,95
5,40
Shank diameter
dS
[mm]
3,65
4,30
5,80
Head thickness
t1
[mm]
3,10
4,50
4,50
Pre-drilling hole diameter(1)
dV
[mm]
3,0
4,0
5,0
6
8
(1) For high density materials, pre-drilled holes are recommended based on the wood specie.
CHARACTERISTIC MECHANICAL PARAMETERS Nominal diameter
d1
[mm]
5
Tensile strength
ftens,k
[kN]
8,0
12,0
19,0
Yield moment
My,k
[Nm]
6,0
10,0
20,5
Withdrawal resistance parameter
fax,k
[N/mm2]
12,0
12,0
12,0
Associated density
ρa
[kg/m3]
350
350
350
Head-pull-through parameter
fhead,k
[N/mm2]
13,0
13,0
13,0
Associated density
ρa
[kg/m3]
350
350
350
46 | HBS SOFTWOOD | TIMBER
MINIMUM DISTANCES FOR SHEAR LOADS ρk ≤ 420 kg/m3
screws inserted WITHOUT pre-drilled hole
α=0°
F
d1 a1 a2 a3,t a3,c a4,t a4,c
[mm] [mm] [mm] [mm] [mm] [mm] [mm]
5 60 25 75 50 25 25
12∙d 5∙d 15∙d 10∙d 5∙d 5∙d
6 72 30 90 60 30 30
F
8 96 40 120 80 40 40
d1 a1 a2 a3,t a3,c a4,t a4,c
[mm] [mm] [mm] [mm] [mm] [mm] [mm]
α=90° 5 25 25 50 50 50 25
5∙d 5∙d 10∙d 10∙d 10∙d 5∙d
6 30 30 60 60 60 30
8 40 40 80 80 80 40
α = load-to-grain angle d = d1 = nominal screw diameter
screws inserted WITH pre-drilled hole
α=0°
F
d1 a1 a2 a3,t a3,c a4,t a4,c
[mm] [mm] [mm] [mm] [mm] [mm] [mm]
5 25 15 60 35 15 15
5∙d 3∙d 12∙d 7∙d 3∙d 3∙d
6 30 18 72 42 18 18
F
8 40 24 96 56 24 24
d1 a1 a2 a3,t a3,c a4,t a4,c
[mm] [mm] [mm] [mm] [mm] [mm] [mm]
α=90° 5 20 20 35 35 35 15
4∙d 4∙d 7∙d 7∙d 7∙d 3∙d
6 24 24 42 42 42 18
8 32 32 56 56 56 24
α = load-to-grain angle d = d1 = nominal screw diameter
stressed end -90° < α < 90°
a2 a2
unloaded end 90° < α < 270°
F a3,t
unload edge 180° < α < 360°
α
F α
α
a1 a1
stressed edge 0° < α < 180°
F α
a4,t
F a4,c
a3,c
NOTE on page 49.
EFFECTIVE NUMBER FOR SHEAR LOADS The load-bearing capacity of a connection made with several screws, all of the same type and size, may be lower than the sum of the load-bearing capacities of the individual connection system. For a row of n screws arranged parallel to the direction of the grain at a distance a1 , the characteristic effective load-bearing capacity is equal to:
Ref,V,k
a1 a1
Ref,V,k = nef RV,k
The nef value is given in the table below as a function of n and a1 .
n
2 3 4 5
4∙d 1,41 1,73 2,00 2,24
5∙d 1,48 1,86 2,19 2,49
6∙d 1,55 2,01 2,41 2,77
7∙d 1,62 2,16 2,64 3,09
8∙d 1,68 2,28 2,83 3,34
a 1( * ) 9∙d 1,74 2,41 3,03 3,62
10∙d 1,80 2,54 3,25 3,93
11∙d 1,85 2,65 3,42 4,17
12∙d 1,90 2,76 3,61 4,43
13∙d 1,95 2,88 3,80 4,71
≥ 14∙d 2,00 3,00 4,00 5,00
( * ) For intermediate a values a linear interpolation is possible. 1
TIMBER | HBS SOFTWOOD | 47
STRUCTURAL VALUES
CHARACTERISTIC VALUES EN 1995:2014 SHEAR
geometry
timber-to-timber
TENSION
steel-to-timber thin plate
panel-to-timber
steel-to-timber thick plate
thread withdrawal
head pull-through
Rhead,k
A
SPLATE
SPAN
SPLATE
Splate
L b d1
d1
L
b
A
[mm] [mm] [mm] [mm] 50
5
6
8
30
20
RV,90,k
SPAN
RV,k
SPLATE
RV,k
SPLATE
RV,k
Rax,90,k
[kN]
[mm]
[kN]
[mm]
[kN]
[mm]
[kN]
[kN]
[kN]
2,06
1,94
1,40
1,18
1,44
1,48
60
35
25
1,27
1,44
1,68
2,14
2,27
1,40
70
40
30
1,37
1,44
1,76
2,22
2,59
1,40
80
50
30
1,37
2,38
3,24
1,40
100
60
40
1,46
1,44
2,08
2,55
3,89
1,40
120
60
60
1,46
1,44
2,08
2,55
3,89
1,40
18
1,44
2,5
1,92
5
60
35
25
1,62
1,85
2,00
2,83
2,72
2,02
70
40
30
1,75
1,85
2,30
2,93
3,11
2,02
80
50
30
1,75
1,85
2,49
3,12
3,89
2,02
90
55
35
1,86
1,85
2,59
3,22
4,27
2,02
100
60
40
1,98
1,85
2,69
3,32
4,66
2,02
120
75
45
2,03
1,85
2,98
3,61
5,83
2,02
140
80
60
2,03
160
90
70
2,03
1,85 18
1,85
3,05 3
3,05
6
3,71
6,22
2,02
3,90
6,99
2,02
180
100
80
2,03
1,85
3,05
4,10
7,77
2,02
200
100
100
2,03
1,85
3,05
4,10
7,77
2,02
220
100
120
2,03
1,85
3,05
4,10
7,77
2,02
240
100
140
2,03
1,85
3,05
4,10
7,77
2,02
260
100
160
2,03
1,85
3,05
4,10
7,77
2,02
280
100
180
2,03
1,85
3,05
4,10
7,77
2,02
300
100
200
2,03
1,85
3,05
4,10
7,77
2,02
80
52
28
2,46
2,65
3,29
4,77
5,39
2,95 2,95
100
60
40
2,75
2,65
3,97
4,98
6,22
120
80
40
2,75
2,65
4,49
5,50
8,29
2,95
140
80
60
3,16
2,65
4,49
5,50
8,29
2,95 2,95
160
90
70
3,16
2,65
4,75
5,75
9,32
180
90
90
3,16
2,65
4,75
5,75
9,32
2,95
200
100
100
3,16
2,65
4,84
6,01
10,36
2,95
220
100
120
3,16
240
100
140
3,16
2,65 18
2,65
4,84 4
4,84
8
6,01
10,36
2,95
6,01
10,36
2,95
260
100
160
3,16
2,65
4,84
6,01
10,36
2,95
280
100
180
3,16
2,65
4,84
6,01
10,36
2,95
300
100
200
3,16
2,65
4,84
6,01
10,36
2,95
320
100
220
3,16
2,65
4,84
6,01
10,36
2,95
340
100
240
3,16
2,65
4,84
6,01
10,36
2,95 2,95
360
100
260
3,16
2,65
4,84
6,01
10,36
380
100
280
3,16
2,65
4,84
6,01
10,36
2,95
400
100
300
3,16
2,65
4,84
6,01
10,36
2,95
NOTES and GENERAL PRINCIPLES on page 49.
48 | HBS SOFTWOOD | TIMBER
STRUCTURAL VALUES GENERAL PRINCIPLES • Characteristic values according to EN 1995:2014. • Design values can be obtained from characteristic values as follows:
Rd =
Rk kmod γM
The coefficients γM and kmod should be taken according to the current regulations used for the calculation. • Mechanical strength values and screw geometry comply with CE marking according to EN 14592. • Sizing and verification of the timber elements, panels and metal plates must be done separately. • The characteristic shear resistances are calculated for screws inserted without pre-drilling hole. In the case of screws inserted with pre-drilling hole, greater resistance values can be obtained. • The screws must be positioned in accordance with the minimum distances. • The characteristic panel-timber shear strengths are calculated considering an OSB3 or OSB4 panel, as per EN 300, or a particle board panel, as per EN 312, with thickness SPAN. • The thread withdrawal characteristic strength has been evaluated considering a fixing length equal to b. • The head pull-through characteristic strength was calculated using timber elements. In the case of steel-to-timber connections, generally the steel tensile strength is binding with respect to head separation or pull-through.
• The characteristic plate shear strengths are evaluated considering the case of thin plate (SPLATE = 0.5 d1) and thick plate (SPLATE = d1) . • The characteristic thread withdrawal strength was evaluated by considering a 90° angle ε between the fibers of the timber element and the connector. • For the calculation process a timber characteristic density ρk = 385 kg/m3 has been considered. For different values of ρk , the strength values in the table (timber-to-timber shear, steel-to-timber shear and tensile) can be converted by means of the coefficient kdens.
R’V,k = kdens,v RV,k R’ax,k = kdens,ax Rax,k R’head,k = kdens,ax Rhead,k ρk
[kg/m3 ]
350
380
385
405
425
430
440
C-GL
C24
C30
GL24h
GL26h
GL28h
GL30h
GL32h
kdens,v
0,90
0,98
1,00
1,02
1,05
1,05
1,07
kdens,ax
0,92
0,98
1,00
1,04
1,08
1,09
1,11
Strength values thus determined may differ, for higher safety standards, from those resulting from an exact calculation.
NOTES • The characteristic timber-to-timber shear strengths were evaluated by considering an angle ε of 90° between the grains of the second element and the connector. • The characteristic panel-timber and steel-timber shear strengths were evaluated by considering an ε angle of 90° between the grains of the timber element and the connector. • The values in the table are independent of the load-to-grain angle.
MINIMUM DISTANCES NOTES • Minimum distances in accordance with EN 1995:2014. • The minimum spacing for all steel-to-timber connections (a1 , a2) can be multiplied by a coefficient of 0,7.
• The minimum spacing for all panel-to-timber connections (a1 , a2) can be multiplied by a coefficient of 0,85.
TIMBER | HBS SOFTWOOD | 49
HBS COIL
ETA-11/0030
UKTA-0836 22/6195
ETA-11/0030
HBS BOUND SCREWS QUICK, IN SERIES USE Quick and precise installation. Fast and safe execution thanks to the special binding.
HBS 6,0 mm Also available in a diameter of 6,0 mm, ideal for quick wall-to-wall fastening in CLT structures.
FAST With the 3 THORNS tip, screw grip becomes more reliable and faster, while maintaining the usual mechanical performance. More speed, less effort.
BIT INCLUDED
DIAMETER [mm] 3
4
6
12
LENGTH [mm] 12
25
80
1000
SERVICE CLASS SC1
SC2
SC3
SC4
ATMOSPHERIC CORROSIVITY C1
C2
C3
C4
C5
WOOD CORROSIVITY T1
T2
T3
T4
T5
MATERIAL
Zn
ELECTRO PLATED
electrogalvanized carbon steel
FIELDS OF USE • • • • • • •
50 | HBS COIL | TIMBER
timber based panels fibreboard, MDF, HDF and LDF plated and melamine faced panels solid timber glulam (Glued Laminated Timber) CLT and LVL high density woods
CODES AND DIMENSIONS d1
CODE
L
b
A
[mm]
[mm]
[mm]
[mm]
HH10600459( * ) HZB430 4 TX 20 HZB440 HZB450
25 30 40 50
18 16 24 30
7 14 16 20
pcs/
pcs
167 167 125
3000 3000 2000 1500
d1
(*) Full threaded screw.
CODE
L
b
A
pcs/
pcs
[mm]
[mm]
[mm]
[mm]
4,5 HZB4550 TX 20
50
30
20
125
1500
HZB560 5 HZB570 TX 25 HZB580 HZB670 6 TX 30 HZB680
60 70 80 70 80
30 35 40 40 40
30 35 40 30 40
125 125 125 135 135
1250 625 625 625 625
GEOMETRY | HZB
H
XXX
dK
BS
A
d2 d1
90° t1
dS
b L
Nominal diameter
d1
[mm]
4
4,5
5
6
Head diameter
dK
[mm]
8,00
9,00
10,00
12,00
Thread diameter
d2
[mm]
2,55
2,80
3,40
3,95
Shank diameter
dS
[mm]
2,75
3,15
3,65
4,30
Head thickness
t1
[mm]
2,80
2,80
3,10
4,50
Pre-drilling hole diameter(1)
dV,S
[mm]
2,5
2,5
3,0
4,0
(1) Pre-drilling valid for softwood.
C5
For mechanical properties and structural values see HBS on page 30.
ADDITIONAL PRODUCTS CODE
description
d1
lengths
[mm]
[mm]
pcs
HH3373
automatic loader for cordless screwdriver A 18 M BL
4,0
25-50
1
HH3372
automatic loader for cordless screwdriver A 18 M BL
4,5 - 6,0
40-80
1
HH3352
powered screwdriver
4,0
25-50
1
HH3338
powered screwdriver
4,5 - 6,0
40-80
1
HH14411591
extension
-
-
1
HZB6PLATE
adapter plate for HZB Ø6
-
-
1
HH14001469
TX30 M6 bit for HZB Ø6
-
-
1
HH3372
HH3338
Further information on page 401.
Ø6 mm HBS COIL APPLICATION The adapter plates for use of 4,0, 4,5 and 5,0 diameter HBS COIL screws are already supplied with the respective screwdriver loaders. To use HBS COIL screws with a diameter of 6.0, the adapter plates supplied must be replaced with the adapter plate HZB6PLATE. For HBS COIL screws diameter 6,0 it is also necessary to use the appropriate TX30 bit (code HH14001469). We recommend using the extension HH14411591 for an easier installation of the screws on horizontal planes.
HH14411591
HZB6PLATE
HH14001469
TIMBER | HBS COIL | 51
HBS EVO
ETA-11/0030
UKTA-0836 22/6195
AC233 | AC257 ESR-4645
COUNTERSUNK SCREW C4 EVO COATING Multilayer coating with a surface treatment of epoxy resin and aluminium flakes. No rust after 1440 hours of salt sprayexposure test, as per ISO 9227. It can be used for service class 3 outdoor applications and under class C4 atmospheric corrosion conditions tested by the Research Institutes of Sweden - RISE.
3 THORNS TIP Thanks to the 3 THORNS tip, minimum installation distances are reduced. More screws can be used in less space and larger screws in smaller elements. Costs and time for project implementation are reduced.
AUTOCLAVE-TREATED TIMBER The C4 EVO coating has been certified according to US acceptance criterion AC257 for outdoor use with ACQ-treated timber.
T3 TIMBER CORROSIVITY Coating suitable for use in applications on wood with an acidity level (pH) greater than 4, such as spruce, larch and pine (see page 314).
BIT INCLUDED
DIAMETER [mm]
3
LENGTH [mm]
12
4
8 40
12 320
SERVICE CLASS
SC1
SC2
SC3
SC4
ATMOSPHERIC CORROSIVITY
C1
C2
C3
C4
C5
WOOD CORROSIVITY
T1
T2
T3
T4
T5
MATERIAL
C4
EVO COATING
1000
carbon steel with C4 EVO coating
FIELDS OF USE • • • • •
52 | HBS EVO | TIMBER
timber based panels solid timber and glulam CLT and LVL high density woods ACQ, CCA treated timber
ETA-11/0030
SERVICE CLASS 3 Certified for use in service class 3 outdoor applications and under class C4 atmospheric corrosion conditions. Ideal for fastening timber framed panels and trusses (Rafter, Truss).
PERGOLAS AND DECKS The smaller sizes are ideal for securing boards and battens of decks set up outdoors.
TIMBER | HBS EVO | 53
CODES AND DIMENSIONS d1
CODE
[mm] 4 TX 20
4,5 TX 20
5 TX 25
6 TX 30
HBSEVO440 HBSEVO450 HBSEVO460 HBSEVO4545 HBSEVO4550 HBSEVO4560 HBSEVO4570 HBSEVO550 HBSEVO560 HBSEVO570 HBSEVO580 HBSEVO590 HBSEVO5100 HBSEVO660 HBSEVO670 HBSEVO680 HBSEVO6100 HBSEVO6120 HBSEVO6140 HBSEVO6160 HBSEVO6180 HBSEVO6200
L
b
A
[mm]
[mm]
[mm]
40 50 60 45 50 60 70 50 60 70 80 90 100 60 70 80 100 120 140 160 180 200
24 30 35 30 30 35 40 24 30 35 40 45 50 30 40 40 50 60 75 75 75 75
16 20 25 15 20 25 30 26 30 35 40 45 50 30 30 40 50 60 65 85 105 125
pcs
d1
CODE
[mm] 500 500 500 400 200 200 200 200 200 100 100 100 100 100 100 100 100 100 100 100 100 100
HBSEVO8100 HBSEVO8120 HBSEVO8140 HBSEVO8160 HBSEVO8180 HBSEVO8200 HBSEVO8220 HBSEVO8240 HBSEVO8260 HBSEVO8280 HBSEVO8300 HBSEVO8320
8 TX 40
L
b
A
[mm]
[mm]
[mm]
100 120 140 160 180 200 220 240 260 280 300 320
52 60 60 80 80 80 80 80 80 80 100 100
48 60 80 80 100 120 140 160 180 200 200 220
pcs 100 100 100 100 100 100 100 100 100 100 100 100
RELATED PRODUCTS HUS EVO TURNED WASHER
see page 68
GEOMETRY AND MECHANICAL CHARACTERISTICS
XXX
dK
HBS
A
d2 d1
90° t1
dS
b L
GEOMETRY Nominal diameter
d1
[mm]
4
4,5
5
6
8
Head diameter
dK
[mm]
8,00
9,00
10,00
12,00
14,50
Thread diameter
d2
[mm]
2,55
2,80
3,40
3,95
5,40
Shank diameter
dS
[mm]
2,75
3,15
3,65
4,30
5,80
Head thickness
t1
[mm]
2,80
2,80
3,10
4,50
4,50
Pre-drilling hole diameter(1)
dV,S
[mm]
2,5
2,5
3,0
4,0
5,0
Pre-drilling hole diameter(2)
dV,H
[mm]
-
-
3,5
4,0
6,0
(1) Pre-drilling valid for softwood. (2) Pre-drilling valid for hardwood and beech LVL.
CHARACTERISTIC MECHANICAL PARAMETERS Nominal diameter
d1
[mm]
4
4,5
5
6
8
Tensile strength
ftens,k
[kN]
5,0
6,4
7,9
11,3
20,1
Yield moment
My,k
[Nm]
3,0
4,1
5,4
9,5
20,1
softwood (softwood)
LVL softwood (LVL softwood)
pre-drilled beech LVL (beech LVL predrilled)
Withdrawal resistance parameter
fax,k
[N/mm2]
11,7
15,0
29,0
Head-pull-through parameter
fhead,k [N/mm2]
10,5
20,0
-
Associated density
ρa
[kg/m3]
350
500
730
Calculation density
ρk
[kg/m3]
≤ 440
410 ÷ 550
590 ÷ 750
For applications with different materials please see ETA-11/0030.
54 | HBS EVO | TIMBER
MINIMUM DISTANCES FOR SHEAR LOADS ρk ≤ 420 kg/m3
screws inserted WITHOUT pre-drilled hole
α=0°
F
d1
[mm]
4
4,5
F
5
6
8
d1
[mm]
α=90° 4
4,5
5
6
8
a1
[mm]
10∙d
40
45
10∙d
50
60
80
a1
[mm]
5∙d
20
23
5∙d
25
30
40
a2
[mm]
5∙d
20
23
5∙d
25
30
40
a2
[mm]
5∙d
20
23
5∙d
25
30
40
a3,t
[mm]
15∙d
60
68
15∙d
75
90
120
a3,t
[mm]
10∙d
40
45
10∙d
50
60
80
a3,c
[mm]
10∙d
40
45
10∙d
50
60
80
a3,c
[mm]
10∙d
40
45
10∙d
50
60
80
a4,t
[mm]
5∙d
20
23
5∙d
25
30
40
a4,t
[mm]
7∙d
28
32
10∙d
50
60
80
a4,c
[mm]
5∙d
20
23
5∙d
25
30
40
a4,c
[mm]
5∙d
20
23
5∙d
25
30
40
420 kg/m3 < ρk ≤ 500 kg/m3
screws inserted WITHOUT pre-drilled hole
α=0°
F
d1
[mm]
a1
[mm]
a2
[mm]
7∙d
28
32
7∙d
35
a3,t
[mm]
20∙d
80
90
20∙d
100
a3,c
[mm]
15∙d
60
68
15∙d
75
90
a4,t
[mm]
7∙d
28
32
7∙d
35
42
a4,c
[mm]
7∙d
28
32
7∙d
35
42
15∙d
4
4,5
60
68
F
15∙d
α=90°
5
6
8
d1
[mm]
75
90
120
a1
[mm]
42
56
a2
[mm]
7∙d
28
120
160
a3,t
[mm]
15∙d
60
120
a3,c
[mm]
15∙d
60
68
56
a4,t
[mm]
9∙d
36
41
56
a4,c
[mm]
7∙d
28
32
7∙d
4
4,5
28
32
5
6
8
7∙d
35
42
56
32
7∙d
35
42
56
68
15∙d
75
90
120
15∙d
75
90
120
12∙d
60
72
96
7∙d
35
42
56
screws inserted WITH pre-drilled hole
α=0°
F
d1
[mm]
a1
[mm]
a2
[mm]
3∙d
12
14
3∙d
15
a3,t
[mm]
12∙d
48
54
12∙d
60
a3,c
[mm]
7∙d
28
32
7∙d
35
42
a4,t
[mm]
3∙d
12
14
3∙d
15
18
a4,c
[mm]
3∙d
12
14
3∙d
15
18
5∙d
4
4,5
20
23
F
5∙d
α=90°
5
6
8
d1
[mm]
25
30
40
a1
[mm]
4∙d
4
4,5
5
6
8
16
18
4∙d
20
24
32
18
24
a2
[mm]
4∙d
72
96
a3,t
[mm]
7∙d
16
18
4∙d
20
24
32
28
32
7∙d
35
42
56
56
a3,c
[mm]
7∙d
24
a4,t
[mm]
5∙d
28
32
7∙d
35
42
56
20
23
7∙d
35
42
56
24
a4,c
[mm]
3∙d
12
14
3∙d
15
18
24
α = load-to-grain angle d = d1 = nominal screw diameter stressed end -90° < α < 90°
a2 a2 a1 a1
unloaded end 90° < α < 270°
F α
α F a3,t
stressed edge 0° < α < 180°
unload edge 180° < α < 360°
α F α
a4,t
F a4,c
a3,c
NOTES • The minimum distances comply with the EN 1995:2014 standard in accordance with ETA-11/0030. • The minimum spacing for all steel-to-timber connections (a1 , a2) can be multiplied by a coefficient of 0,7. • The minimum spacing for all panel-to-timber connections (a1 , a2) can be multiplied by a coefficient of 0,85.
• In the case of joints with elements in Douglas fir (Pseudotsuga menziesii), the minimum spacing and distances parallel to the grain must be multiplied by a coefficient of 1.5. • The spacing a1 in the table for screws with 3 THORNS tip and d1≥5 mm inserted without pre-drilling hole in timber elements with density ρ k ≤ 420 kg/m3 and load-to-grain angle α=0° was assumed to be 10∙d based on experimental tests; alternatively, adopt 12∙d in accordance with EN 1995:2014.
TIMBER | HBS EVO | 55
STRUCTURAL VALUES
CHARACTERISTIC VALUES EN 1995:2014 SHEAR
timber-to-timber timber-to-timber ε=90° ε=0°
panel-to-timber
steel-to-timber thin plate
thread withdrawal ε=90°
thread withdrawal ε=0°
head pull-through
SPLATE
geometry
TENSION
SPAN
A L b d1
d1
L
b
A
[mm] [mm] [mm] [mm] 4
4,5
5
6
8
RV,90,k
RV,0,k
SPAN
RV,k
SPLATE
RV,k
Rax,90,k
Rax,0,k
Rhead,k
[kN]
[kN]
[mm]
[kN]
[mm]
[kN]
[kN]
[kN]
[kN]
1,12
1,21
0,36
0,73
2
1,19
1,52
0,45
0,73
40
24
16
0,83
0,51
50
30
20
0,91
0,62
60
35
25
0,99
0,69
0,84
1,26
1,77
0,53
0,73
45
30
15
0,96
0,61
0,97
1,42
1,70
0,51
0,92
50
30
20
1,06
0,69
60
35
25
1,18
0,79
0,84 12
12
0,84
0,97 0,97
2,25
1,42
1,70
0,51
0,92
1,49
1,99
0,60
0,92
70
40
30
1,22
0,86
0,97
1,56
2,27
0,68
0,92
50
24
26
1,29
0,73
1,20
1,56
1,52
0,45
1,13
60
30
30
1,46
0,81
1,20
1,65
1,89
0,57
1,13
70
35
35
1,46
0,88
1,20
1,73
2,21
0,66
1,13
80
40
40
1,46
0,96
1,81
2,53
0,76
1,13
15
1,20
2,5
90
45
45
1,46
1,05
1,20
1,89
2,84
0,85
1,13
100
50
50
1,46
1,13
1,20
1,97
3,16
0,95
1,13
60
30
30
1,78
1,04
1,65
2,24
2,27
0,68
1,63
70
40
30
1,88
1,20
1,65
2,43
3,03
0,91
1,63
80
40
40
2,08
1,20
1,65
2,43
3,03
0,91
1,63
100
50
50
2,08
1,38
1,65
2,61
3,79
1,14
1,63
120
60
60
2,08
1,58
2,80
4,55
1,36
1,63
140
75
65
2,08
1,67
1,65
3,09
5,68
1,70
1,63
18
1,65
3
160
75
85
2,08
1,67
1,65
3,09
5,68
1,70
1,63
180
75
105
2,08
1,67
1,65
3,09
5,68
1,70
1,63
200
75
125
2,08
1,67
1,65
3,09
5,68
1,70
1,63
100
52
48
3,28
1,95
2,60
4,00
5,25
1,58
2,38
120
60
60
3,28
2,13
2,60
4,20
6,06
1,82
2,38
140
60
80
3,28
2,13
2,60
4,20
6,06
1,82
2,38
160
80
80
3,28
2,60
2,60
4,70
8,08
2,42
2,38
180
80
100
3,28
2,60
2,60
4,70
8,08
2,42
2,38
200
80
120
3,28
2,60
2,60
4,70
8,08
2,42
2,38
22
220
80
140
3,28
2,60
4,70
8,08
2,42
2,38
240
80
160
3,28
2,60
2,60
4,70
8,08
2,42
2,38
260
80
180
3,28
2,60
2,60
4,70
8,08
2,42
2,38
280
80
200
3,28
2,60
2,60
4,70
8,08
2,42
2,38
300
100
200
3,28
2,62
2,60
5,21
10,10
3,03
2,38
320
100
220
3,28
2,62
2,60
5,21
10,10
3,03
2,38
ε = screw-to-grain angle
56 | HBS EVO | TIMBER
2,60
4
EFFECTIVE NUMBER FOR SHEAR LOADS The load-bearing capacity of a connection made with several screws, all of the same type and size, may be lower than the sum of the load-bearing capacities of the individual connection system. For a row of n screws arranged parallel to the direction of the grain at a distance a1 , the characteristic effective load-bearing capacity is equal to:
Ref,V,k
a1 a1
Ref,V,k = nef RV,k
The nef value is given in the table below as a function of n and a1 .
n
2 3 4 5
4∙d 1,41 1,73 2,00 2,24
5∙d 1,48 1,86 2,19 2,49
6∙d 1,55 2,01 2,41 2,77
7∙d 1,62 2,16 2,64 3,09
8∙d 1,68 2,28 2,83 3,34
a 1( * ) 9∙d 1,74 2,41 3,03 3,62
10∙d 1,80 2,54 3,25 3,93
11∙d 1,85 2,65 3,42 4,17
12∙d 1,90 2,76 3,61 4,43
13∙d 1,95 2,88 3,80 4,71
≥ 14∙d 2,00 3,00 4,00 5,00
( * ) For intermediate a values a linear interpolation is possible. 1
GENERAL PRINCIPLES
NOTES
• Characteristic values comply with the EN 1995:2014 standard in accordance with ETA-11/0030.
• The characteristic timber-to-timber shear strengths were evaluated considering both an ε angle of 90° (RV,90,k) and 0° (RV,0,k) between the grains of the second element and the connector.
• Design values can be obtained from characteristic values as follows:
Rd =
Rk kmod γM
The coefficients γM and kmod should be taken according to the current regulations used for the calculation. • For the mechanical resistance values and the geometry of the screws, reference was made to ETA-11/0030. • Sizing and verification of the timber elements, panels and metal plates must be done separately. • The screws must be positioned in accordance with the minimum distances.
• The characteristic panel-timber and steel-timber shear strengths were evaluated by considering a α angle of 90° between the grains of the timber element and the connector. • The shear strength characteristics on the plate are calculated considering the case of a thin plate (SPLATE = 0.5 d1). For the case of a thick plate, refer to the structural values of the HBS screw on page 30. • The characteristic thread withdrawal resistances were evaluated considering both an ε angle of 90° (Rax,90,k) and of 0° (Rax,0,k) between the grains of the timber element and the connector. • For the calculation process a timber characteristic density ρk = 385 kg/m3 has been considered.
• The characteristic shear resistances are calculated for screws inserted without pre-drilling hole. In the case of screws inserted with pre-drilling hole, greater resistance values can be obtained.
For different values of ρk , the strength values in the table (timber-to-timber shear, steel-to-timber shear and tensile) can be converted by means of the coefficient kdens.
• Shear strengths were calculated considering the threaded part fully inserted in the second element.
R’V,k = kdens,v RV,k
• The characteristic panel-timber shear strengths are calculated considering an OSB3 or OSB4 panel, as per EN 300, or a particle board panel, as per EN 312, with thickness SPAN and density ρk = 500 kg/m3.
R’head,k = kdens,ax Rhead,k
• The thread withdrawal characteristic strength has been evaluated considering a fixing length equal to b. • The head pull-through characteristic strength was calculated using timber elements. In the case of steel-to-timber connections, generally the steel tensile strength is binding with respect to head separation or pull-through. • For different calculation configurations, the MyProject software is available (www.rothoblaas.com).
R’ax,k = kdens,ax Rax,k ρk
350
380
385
405
425
430
440
C-GL
C24
C30
GL24h
GL26h
GL28h
GL30h
GL32h
kdens,v
0,90
0,98
1,00
1,02
1,05
1,05
1,07
kdens,ax
0,92
0,98
1,00
1,04
1,08
1,09
1,11
[kg/m3 ]
Strength values thus determined may differ, for higher safety standards, from those resulting from an exact calculation.
• For minimum distances and structural values on CLT and LVL see HBS on page 30. • The characteristic strengths of HBS EVO screws with HUS EVO can be found on page 52.
Complete calculation reports for designing in wood? Download MyProject and simplify your work!
TIMBER | HBS EVO | 57
HBS EVO C5
AC233 ESR-4645
ETA-11/0030
COUNTERSUNK SCREW C5 ATMOSPHERIC CORROSIVITY Multi-layer coating capable of withstanding outdoor environments classified C5 according to ISO 9223. SST (Salt Spray Test) with exposure time greater than 3000h carried out on screws previously screwed and unscrewed in Douglas fir timber.
MAXIMUM STRENGTH It is the screw of choice when high mechanical performance is required under very adverse environmental and wood corrosive conditions.
3 THORNS TIP Thanks to the 3 THORNS tip, minimum installation distances are reduced. More screws can be used in less space and larger screws in smaller elements, reducing costs and time.
BIT INCLUDED
LENGTH [mm] 3
3,5
8
12
DIAMETER [mm] 12
30
320
SERVICE CLASS SC1
SC2
SC3
SC4
ATMOSPHERIC CORROSIVITY C1
C2
C3
C4
C5
WOOD CORROSIVITY T1
T2
T3
T4
T5
MATERIAL
C5
C5
EVO COATING
carbon steel with C5 EVO coating with very high corrosion resistance
FIELDS OF USE • • • •
58 | HBS EVO C5 | TIMBER
timber based panels solid timber and glulam CLT and LVL high density woods
1000
CODES AND DIMENSIONS d1
CODE
[mm] 3,5 TX 15 4 TX 20 4,5 TX 20
5 TX 25
6 TX 30
HBSEVO3530C5 HBSEVO3540C5 HBSEVO440C5 HBSEVO450C5 HBSEVO4550C5 HBSEVO4560C5 HBSEVO550C5 HBSEVO560C5 HBSEVO570C5 HBSEVO580C5 HBSEVO590C5 HBSEVO5100C5 HBSEVO680C5 HBSEVO6100C5 HBSEVO6120C5 HBSEVO6140C5 HBSEVO6160C5 HBSEVO6180C5 HBSEVO6200C5
L
b
A
[mm]
[mm]
[mm]
30 40 40 50 50 60 50 60 70 80 90 100 80 100 120 140 160 180 200
18 18 24 30 30 35 24 30 35 40 45 50 40 50 60 75 75 75 75
12 22 16 20 20 25 26 30 35 40 45 50 40 50 60 65 85 105 125
pcs
d1
CODE
[mm] 500 500 500 400 200 200 200 200 100 100 100 100 100 100 100 100 100 100 100
8 TX 40
L
b
A
[mm]
[mm]
[mm]
100 120 140 160 180 200 220 240 280 320
52 60 60 80 80 80 80 80 80 100
48 60 80 80 100 120 140 160 200 220
HBSEVO8100C5 HBSEVO8120C5 HBSEVO8140C5 HBSEVO8160C5 HBSEVO8180C5 HBSEVO8200C5 HBSEVO8220C5 HBSEVO8240C5 HBSEVO8280C5 HBSEVO8320C5
pcs 100 100 100 100 100 100 100 100 100 100
RELATED PRODUCTS HUS EVO TURNED WASHER
see page 68
GEOMETRY AND MECHANICAL CHARACTERISTICS
XXX
dK
HBS
A
d2 d1
90° dS
t1
b L
GEOMETRY Nominal diameter
d1
[mm]
3,5
4
4,5
5
6
8
Head diameter
dK
[mm]
7,00
8,00
9,00
10,00
12,00
14,50
Thread diameter
d2
[mm]
2,25
2,55
2,80
3,40
3,95
5,40
Shank diameter
dS
[mm]
2,45
2,75
3,15
3,65
4,30
5,80
Head thickness
t1
[mm]
2,20
2,80
2,80
3,10
4,50
4,50
Pre-drilling hole diameter(1)
dV,S
[mm]
2,0
2,5
2,5
3,0
4,0
5,0
Pre-drilling hole diameter(2)
dV,H
[mm]
-
-
-
3,5
4,0
6,0
(1) Pre-drilling valid for softwood. (2) Pre-drilling valid for hardwood and beech LVL.
CHARACTERISTIC MECHANICAL PARAMETERS Nominal diameter
d1
[mm]
3,5
4
4,5
5
6
8
Tensile strength
ftens,k
[kN]
3,8
5,0
6,4
7,9
11,3
20,1
Yield moment
My,k
[Nm]
2,1
3,0
4,1
5,4
9,5
20,1
softwood (softwood)
LVL softwood (LVL softwood)
pre-drilled beech LVL (beech LVL predrilled)
Withdrawal resistance parameter
fax,k
[N/mm2]
11,7
15,0
29,0
Head-pull-through parameter
fhead,k [N/mm2]
10,5
20,0
-
Associated density
ρa
[kg/m3]
350
500
730
Calculation density
ρk
[kg/m3]
≤ 440
410 ÷ 550
590 ÷ 750
For applications with different materials please see ETA-11/0030.
C5
For minimum distances and structural values see HBS EVO on page 52. TIMBER | HBS EVO C5 | 59
HBS HARDWOOD
ETA-11/0030
UKTA-0836 22/6195
ETA-11/0030
COUNTERSUNK SCREW FOR HARDWOODS HARDWOOD CERTIFICATION Special tip with diamond geometry and notched, serrated thread. ETA11/0030 certification for use with high density timber without any predrill. Approved for structural applications subject to stresses in any direction vs the grain (α = 0° - 90°).
INCREASED DIAMETER Internal thread diameter increased to ensure tightening in the highest density woods. Excellent twisting moment values. HBS H Ø6 mm, comparable to a diameter of 7 mm; HBS H Ø8 mm, comparable to a diameter of 9 mm.
60° COUNTERSUNK HEAD Concealed head, 60°, for effective, minimally invasive insertion, even in high density woods.
HYBRID SOFTWOOD-HARDWOOD Approved for different types of applications without the need for predrill hole with softwood and hardwood used simultaneously. For example: composite beam (softwood and hardwood) and hybrid engineered timbers (softwood and hardwood).
BIT INCLUDED
DIAMETER [mm]
3
LENGTH [mm]
12
6
8
12
80
480
SERVICE CLASS
SC1
SC2
SC3
SC4
ATMOSPHERIC CORROSIVITY
C1
C2
C3
C4
C5
WOOD CORROSIVITY
T1
T2
T3
T4
T5
MATERIAL
Zn
ELECTRO PLATED
1000
electrogalvanized carbon steel
FIELDS OF USE • • • • •
60 | HBS HARDWOOD | TIMBER
timber based panels solid timber and glulam CLT and LVL high density woods beech, oak, cypress, ash, eucalyptus, bamboo
HARDWOOD PERFORMANCE Geometry developed for high performance and use without pre-drilling on structural woods such as beech, oak, cypress, ash, eucalyptus, bamboo.
BEECH LVL Values also tested, certified and calculated for high density woods such as beechwood Microllam® LVL. Certified for use without pre-drilling, for densities of up to 800 kg/m3.
TIMBER | HBS HARDWOOD | 61
CODES AND DIMENSIONS d1
CODE
[mm]
6 TX 30
L
b
A
[mm]
[mm]
[mm]
d1
pcs
CODE
[mm]
L
b
A
[mm]
[mm]
[mm]
pcs
HBSH680
80
50
30
100
HBSH8120
120
70
50
100
HBSH6100
100
60
40
100
HBSH8140
140
80
60
100
HBSH6120
120
70
50
100
HBSH8160
160
90
70
100
HBSH6140
140
80
60
100
HBSH8180
180
100
80
100
HBSH6160
160
90
70
100
HBSH8200
200
100
100
100
HBSH8220
220
100
120
100
HBSH8240
240
100
140
100
HBSH8280
280
100
180
100
HBSH8320
320
100
220
100
HBSH8360
360
100
260
100
HBSH8400
400
100
300
100
HBSH8440
440
100
340
100
HBSH8480
480
100
380
100
8 TX 40
GEOMETRY AND MECHANICAL CHARACTERISTICS
XXX
dK
SH HB
A
d2 d1
60° t1
dS
b L
GEOMETRY Nominal diameter
d1
[mm]
6
8
Head diameter
dK
[mm]
12,00
14,50
Thread diameter
d2
[mm]
4,50
5,90
Shank diameter
dS
[mm]
4,80
6,30
Head thickness
t1
[mm]
7,50
8,40
Pre-drilling hole diameter(1)
dV,S
[mm]
4,0
5,0
Pre-drilling hole diameter(2)
dV,H
[mm]
4,0
6,0
(1) Pre-drilling valid for softwood. (2) Pre-drilling valid for hardwood and beech LVL.
CHARACTERISTIC MECHANICAL PARAMETERS Nominal diameter
d1
[mm]
6
8
Tensile strength
ftens,k
[kN]
18,0
32,0
Yield moment
My,k
[Nm]
15,8
33,4
softwood (softwood)
oak, beech (hardwood)
ash (hardwood)
beech LVL (Beech LVL)
22,0
30,0
42,0
28,0 (d1 = 6 mm)
28,0 (d1 = 6 mm)
24,0 (d1 = 8 mm)
24,0 (d1 = 8 mm)
Withdrawal resistance parameter
fax,k
[N/mm2]
11,7
Head-pull-through parameter
fhead,k [N/mm2]
10,5
Associated density
ρa
[kg/m3]
350
530
530
730
Calculation density
ρk
[kg/m3]
≤ 440
≤ 590
≤ 590
590 ÷ 750
For applications with different materials please see ETA-11/0030.
62 | HBS HARDWOOD | TIMBER
50,0
MINIMUM DISTANCES FOR SHEAR LOADS | TIMBER ρk > 420 kg/m3
screws inserted WITHOUT pre-drilled hole
α=0°
F
d1
[mm]
a1
[mm]
a2
[mm]
7∙d
a3,t
[mm]
20∙d
a3,c
[mm]
15∙d
a4,t
[mm]
a4,c
[mm]
F
α=90°
6
8
d1
[mm]
90
120
a1
[mm]
42
56
a2
[mm]
7∙d
42
56
120
120
a3,t
[mm]
15∙d
90
120
90
80
a3,c
[mm]
15∙d
90
120
7∙d
42
40
a4,t
[mm]
12∙d
72
96
7∙d
42
40
a4,c
[mm]
7∙d
42
56
15∙d
7∙d
6
8
42
56
α = load-to-grain angle d = d1 = nominal screw diameter
screws inserted WITH pre-drilled hole
α=0°
F
d1
[mm]
a1
[mm]
a2
[mm]
3∙d
a3,t
[mm]
12∙d
a3,c
[mm]
7∙d
42
a4,t
[mm]
3∙d
18
a4,c
[mm]
3∙d
18
5∙d
F
α=90°
6
8
d1
[mm]
30
40
a1
[mm]
4∙d
6
8
24
32
18
24
a2
[mm]
4∙d
24
32
72
96
a3,t
[mm]
7∙d
42
56
56
a3,c
[mm]
7∙d
42
56
24
a4,t
[mm]
7∙d
42
56
24
a4,c
[mm]
3∙d
18
24
α = load-to-grain angle d = d1 = nominal screw diameter stressed end -90° < α < 90°
a2 a2
unloaded end 90° < α < 270°
F a3,t
unload edge 180° < α < 360°
α
F α
α
a1 a1
stressed edge 0° < α < 180°
F α
a4,t
F a4,c
a3,c
NOTE on page 66.
EFFECTIVE NUMBER FOR SHEAR LOADS The load-bearing capacity of a connection made with several screws, all of the same type and size, may be lower than the sum of the load-bearing capacities of the individual connection system. For a row of n screws arranged parallel to the direction of the grain at a distance a1 , the characteristic effective load-bearing capacity is equal to:
Ref,V,k
a1 a1
Ref,V,k = nef RV,k
The nef value is given in the table below as a function of n and a1 .
n
2 3 4 5
4∙d 1,41 1,73 2,00 2,24
5∙d 1,48 1,86 2,19 2,49
6∙d 1,55 2,01 2,41 2,77
7∙d 1,62 2,16 2,64 3,09
8∙d 1,68 2,28 2,83 3,34
a 1( * ) 9∙d 1,74 2,41 3,03 3,62
10∙d 1,80 2,54 3,25 3,93
11∙d 1,85 2,65 3,42 4,17
12∙d 1,90 2,76 3,61 4,43
13∙d 1,95 2,88 3,80 4,71
≥ 14∙d 2,00 3,00 4,00 5,00
( * ) For intermediate a values a linear interpolation is possible. 1
TIMBER | HBS HARDWOOD | 63
STRUCTURAL VALUES | TIMBER(SOFTWOOD)
CHARACTERISTIC VALUES EN 1995:2014
SHEAR timber-to-timber timber-to-timber ε=90° ε=0°
steel-to-timber thin plate
A
steel-to-timber thick plate
thread withdrawal ε=90°
thread withdrawal ε=0°
head pull-through
SPLATE
SPLATE
geometry
TENSION
L b d1
d1
L
b
A
[mm] [mm] [mm] [mm] 80 50 30 100 60 40 6 120 70 50 140 80 60 160 90 70 120 70 50 140 80 60 160 90 70 180 100 80 200 100 100 220 100 120 240 100 140 8 280 100 180 320 100 220 360 100 260 400 100 300 440 100 340 480 100 380
RV,90,k
RV,0,k
SPLATE
RV,k
SPLATE
RV,k
Rax,90,k
Rax,0,k
Rhead,k
[kN] 2,07 2,35 2,56 2,56 2,56 3,62 4,00 4,05 4,05 4,05 4,05 4,05 4,05 4,05 4,05 4,05 4,05 4,05
[kN] 1,37 1,70 1,89 2,03 2,03 2,58 2,79 2,95 3,13 3,13 3,13 3,13 3,13 3,13 3,13 3,13 3,13 3,13
[mm]
[kN] 3,10 3,29 3,48 3,67 3,86 5,23 5,48 5,73 5,98 5,98 5,98 5,98 5,98 5,98 5,98 5,98 5,98 5,98
[mm]
[kN] 3,99 4,18 4,37 4,56 4,75 6,66 6,91 7,16 7,42 7,42 7,42 7,42 7,42 7,42 7,42 7,42 7,42 7,42
[kN] 3,79 4,55 5,30 6,06 6,82 7,07 8,08 9,09 10,10 10,10 10,10 10,10 10,10 10,10 10,10 10,10 10,10 10,10
[kN] 1,14 1,36 1,59 1,82 2,05 2,12 2,42 2,73 3,03 3,03 3,03 3,03 3,03 3,03 3,03 3,03 3,03 3,03
[kN] 1,63 1,63 1,63 1,63 1,63 2,38 2,38 2,38 2,38 2,38 2,38 2,38 2,38 2,38 2,38 2,38 2,38 2,38
3
4
6
8
ε = screw-to-grain angle
STRUCTURAL VALUES | HARDWOOD SHEAR hardwood-hard- hardwood-hardwood wood ε=90° ε=0°
steel-hardwood thin plate
A
steel-hardwood thick plate
thread withdrawal ε=90°
thread withdrawal ε=0°
head pull-through
SPLATE
SPLATE
geometry
TENSION
L b d1
d1
L
b
A
[mm] [mm] [mm] [mm] 80 50 30 100 60 40 6 120 70 50 140 80 60 160 90 70 120 70 50 140 80 60 160 90 70 180 100 80 8 200 100 100 220 100 120 240 100 140
RV,90,k
RV,0,k
SPLATE
RV,k
SPLATE
RV,k
Rax,90,k
Rax,0,k
Rhead,k
[kN] 3,21 3,61 3,61 3,61 3,61 5,35 5,43 5,43 5,43 5,43 5,43 5,43
[kN] 2,06 2,42 2,66 2,76 2,86 3,65 4,02 4,35 4,42 4,42 4,42 4,42
[mm]
[kN] 4,27 4,61 4,95 5,14 5,14 7,31 7,76 8,21 8,27 8,27 8,27 8,27
[mm]
[kN] 5,33 5,67 6,01 6,35 6,69 9,02 9,47 9,92 10,38 10,38 10,38 10,38
[kN] 6,80 8,16 9,52 10,88 12,24 12,69 14,50 16,32 18,13 18,13 18,13 18,13
[kN] 2,04 2,45 2,86 3,26 3,67 3,81 4,35 4,89 5,44 5,44 5,44 5,44
[kN] 4,15 4,15 4,15 4,15 4,15 5,20 5,20 5,20 5,20 5,20 5,20 5,20
ε = screw-to-grain angle NOTES and GENERAL PRINCIPLES on page 66.
64 | HBS HARDWOOD | TIMBER
3
4
6
8
STRUCTURAL VALUES | BEECH LVL
CHARACTERISTIC VALUES EN 1995:2014 SHEAR
beech LVL-beech LVL
steel-beech LVL thin plate
A
steel-beech LVL thick plate
thread withdrawal
steel tension
head pull-through
Rax,90,k
Rtens,k
Rhead,k
[kN]
[kN]
[kN]
7,94 8,57 9,20 9,29 9,29 13,75 14,59 15,43 15,74 15,74 15,74 15,74
12,60 15,12 17,64 20,16 22,68 23,52 26,88 30,24 33,60 33,60 33,60 33,60
SPLATE
SPLATE
geometry
TENSION
L b
d1
d1
L
b
A
[mm] [mm] [mm] [mm]
6
8
80 100 120 140 160 120 140 160 180 200 220 240
50 60 70 80 90 70 80 90 100 100 100 100
30 40 50 60 70 50 60 70 80 100 120 140
RV,90,k
SPLATE
[kN]
[mm]
5,19 5,19 5,19 5,19 5,19 8,19 8,19 8,19 8,19 8,19 8,19 8,19
3
4
RV,k
SPLATE
[kN]
[mm]
6,54 6,77 6,77 6,77 6,77 11,13 11,13 11,13 11,13 11,13 11,13 11,13
6
8
RV,k
18,00
32,00
[kN] 7,20 7,20 7,20 7,20 7,20 10,51 10,51 10,51 10,51 10,51 10,51 10,51
STRUCTURAL VALUES | HYBRID CONNECTIONS SHEAR geometry
timber-beech LVL
A
L
timber-hardwood
beech LVL-timber
A
A
hardwood-timber
A
b
d1
d1
L
b
A
RV,k
A
RV,k
A
RV,k
A
RV,k
[mm]
[mm] 80 100 120 140 160 120 140 160 180 200 220 240 280 320 360 400 440 480
[mm] 50 60 70 80 90 70 80 90 100 100 100 100 100 100 100 100 100 100
[mm] 30 40 50 60 70 50 60 70 80 100 120 140 180 220 260 300 340 380
[kN] 2,31 2,61 2,96 2,98 2,98 4,06 4,47 4,75 4,75 4,75 4,75 4,75 4,75 4,75 4,75 4,75 4,75 4,75
[mm] 30 40 50 60 70 50 60 70 80 100 120 140 180 220 260 300 340 380
[kN] 2,18 2,61 2,74 2,74 2,74 4,06 4,35 4,35 4,35 4,35 4,35 4,35 4,35 4,35 4,35 4,35 4,35 4,35
[mm] 30 40 50 60 70 50 60 70 80 100 120 120 120 120 120 120 120 120
[kN] 3,50 3,70 3,89 4,08 4,27 5,92 6,17 6,43 6,68 6,68 6,68 6,68 6,68 6,68 6,68 6,68 6,68 6,68
[mm] 30 40 50 60 70 50 60 70 80 100 120 120 120 120 120 120 120 120
[kN] 2,97 3,37 3,37 3,37 3,37 5,05 5,05 5,05 5,05 5,05 5,05 5,05 5,05 5,05 5,05 5,05 5,05 5,05
6
8
NOTES and GENERAL PRINCIPLES on page 66.
TIMBER | HBS HARDWOOD | 65
STRUCTURAL VALUES NOTES | HARDWOOD
GENERAL PRINCIPLES • Characteristic values comply with the EN 1995:2014 standard in accordance with ETA-11/0030.
• For the calculation process a mass density equal to ρk = 550 kg/m3 has been considered for hardwood (oak) elements.
• Design values can be obtained from characteristic values as follows:
• The characteristic timber-to-timber shear strengths were evaluated considering both an ε angle of 90° (RV,90,k) and 0° (RV,0,k) between the grains of the second element and the connector.
Rd =
Rk kmod γM
The coefficients γM and kmod should be taken according to the current regulations used for the calculation. • The tensile design strength of the connector is the lower between the timber-side design strength (Rax,d) and the steel-side design strength (Rtens,d).
Rax,d = min
Rax,k kmod γM Rtens,k γM2
• The characteristic steel-timber shear strengths were evaluated considering an angle ε of 90° between the grains of the timber element and the connector. • The characteristic thread withdrawal resistances were evaluated considering both an ε angle of 90° (Rax,90,k) and of 0° (Rax,0,k) between the grains of the timber element and the connector. • The characteristic strength are calculated for screws inserted without pre-drilling hole.
• For the mechanical resistance values and the geometry of the screws, reference was made to ETA-11/0030. • Sizing and verification of the timber elements and metal plates must be done separately. • The screws must be positioned in accordance with the minimum distances. • Shear strengths were calculated considering the threaded part fully inserted in the second element. • The characteristic plate shear strengths are evaluated considering the case of thin plate (SPLATE = 0.5 d1) and thick plate (SPLATE = d1) . • The thread withdrawal characteristic strength has been evaluated considering a fixing length equal to b. • The head pull-through characteristic strength was calculated using timber elements. In the case of steel-to-timber connections, generally the steel tensile strength is binding with respect to head separation or pull-through. • A suitable pilot hole may be required for the insertion of some connectors. For further details please see ETA-11/0030.
NOTES | TIMBER (SOFTWOOD) • The characteristic timber-to-timber shear strengths were evaluated considering both an ε angle of 90° (RV,90,k) and 0° (RV,0,k) between the grains of the second element and the connector. • The characteristic steel-timber shear strengths were evaluated considering an angle ε of 90° between the grains of the timber element and the connector. • The characteristic shear resistances are calculated for screws inserted without pre-drilling hole. In the case of screws inserted with pre-drilling hole, greater resistance values can be obtained. • The characteristic thread withdrawal resistances were evaluated considering both an ε angle of 90° (Rax,90,k) and of 0° (Rax,0,k) between the grains of the timber element and the connector. • For the calculation process a timber characteristic density ρk = 385 kg/m3 has been considered. For different values of ρk , the strength values in the table (timber-to-timber shear, steel-to-timber shear and tensile) can be converted by means of the coefficient kdens.
NOTES | BEECH LVL • For the calculation process a mass density equal to ρk = 730 kg/m3 has been considered for LVL beech elements. • A 90° angle between the connector and the fiber, a 90° angle between the connector and the side face of the LVL element, and a 0° angle between the force and the fiber were considered for individual timber elements in the calculation. • The characteristic strength are calculated for screws inserted without pre-drilling hole.
NOTES | HYBRID CONNECTIONS • In the calculation, a density ρ k = 385 kg/m3 was assumed for softwood elements, a density ρk = 550 kg/m3 for hardwood (oak) elements and a density ρk = 730 kg/m3 for beech LVL elements. • For softwood and hardwood elements, an angle ε = 90° between the connector and the grain was considered in the calculation. • A 90° angle between the connector and the fiber, a 90° angle between the connector and the side face of the LVL element, and a 0° angle between the force and the fiber were considered in the calculation. • The characteristic strength are calculated for screws inserted without pre-drilling hole.
R’V,k = kdens,v RV,k R’ax,k = kdens,ax Rax,k R’head,k = kdens,ax Rhead,k ρk
350
380
385
405
425
430
440
C-GL
C24
C30
GL24h
GL26h
GL28h
GL30h
GL32h
kdens,v
0,90
0,98
1,00
1,02
1,05
1,05
1,07
kdens,ax
0,92
0,98
1,00
1,04
1,08
1,09
1,11
[kg/m3 ]
Strength values thus determined may differ, for higher safety standards, from those resulting from an exact calculation.
MINIMUM DISTANCES NOTES | TIMBER • The minimum distances comply with EN 1995:2014, according to ETA-11/0030, considering a timber element mass density of 420 kg/m3 < ρk ≤ 500 kg/m3. • The minimum spacing for all steel-to-timber connections (a1 , a2) can be multiplied by a coefficient of 0,7.
66 | HBS HARDWOOD | TIMBER
• In the case of joints with elements in Douglas fir (Pseudotsuga menziesii), the minimum spacing and distances parallel to the grain must be multiplied by a coefficient of 1.5.
BUILDING INFORMATION MODELING
Structural connection elements in digital format Complete with three-dimensional geometric features and additional parametric information, they are available in IFC, REVIT, ALLPLAN, ARCHICAD and TEKLA format, and are ready to integrate into your next successful project. Down-load them now!
www.rothoblaas.com
HUS
ETA-11/0030
UKTA-0836 22/6195
AC233 | AC257 ESR-4645
AC233 ESR-4645
ETA-11/0030
TURNED WASHER COMPATIBILITY It is the ideal coupling for countersunk screws (HBS, VGS, SBS-SPP, SCI, etc.) when the axial strength of the connection is to be increased.
TIMBER-TO-METAL It is the optimal choice for connections on metal plates with cylindrical holes.
HUS EVO The HUS EVO version increases the washer's corrosion resistance due to the special surface treatment. This allows it to be used in service class 3 and atmospheric corrosion class C4.
HUS 15° The 15° angled washer is specifically designed for particular timber-to-metal applications where just a small angle is needed for screw insertion. The HUS BAND double-sided adhesive tape holds the washer in place during overhead applications.
MATERIAL HUS 15°
alu
SC1
SC2
SC3
SC4
C1
C2
C3
C4
T2
T3
T4
T5
SC1
SC2
SC3
SC4
C1
C2
C3
C4
T1
T2
T3
T4
SC2
SC3
SC4
C1 coating C2 C3 carbon steel with C4 EVO
C4
C5 T4
aluminium alloy EN AW 6082-T6 T1
HUS
Zn
ELECTRO PLATED
HUS
HUS 15°
electrogalvanized carbon steel
HUS EVO
C4
EVO COATING
SC1
T1
T2
T3
SC2
SC3
SC4
A4 | AISI316 austenitic stainless C1 C2 C3 steel
C4
C5
T4
T5
HUS A4
A4
AISI 316
HUS EVO
SC1
T1
T2
T3
HUS A4
FIELDS OF USE • • • • •
68 | HUS | TIMBER
thin, thick metal plates with cylindrical holes timber based panels solid timber and glulam CLT and LVL high density woods
T5
CODES AND DIMENSIONS
alu
HUS 15° - 15° angled washer CODE HUS815
dHBS
dVGS
[mm]
[mm]
8
9
Zn
ELECTRO PLATED
HUS - turned washer CODE
pcs
dHBS [mm] 6 8 10 12
HUS6 HUS8 HUS10 HUS12
50
dint
dVGS [mm] 9 11 13
pcs 100 50 50 25
C4
CODE
HUS BAND - double-sided adhesive for HUS washers CODE HUSBAND
EVO COATING
HUS EVO - turned washer
dext
dint
dext
[mm]
[mm]
22
30
dHBS EVO [mm] 6 8
HUSEVO6 HUSEVO8
pcs
dVGS EVO [mm] 9
pcs 100 50
50
Compatible with HUS815, HUS10, HUS12, HUS10A4.
A4
AISI 316
HUS A4 - turned washer CODE
dSCI [mm] 6 8 -
HUS6A4 HUS8A4 HUS10A4
dVGS A4 [mm] 9 11
pcs 100 100 50
GEOMETRY AND MECHANICAL CHARACTERISTICS h
D2 D1
h
D2 D1
dH
dHBS
BS
15° 90° SPLATE
SPLATE DF
DF
HUS 15°
HUS - HUS EVO - HUS A4
GEOMETRY Washer [mm]
HUS815
HUS6 HUSEVO6 HUS6A4
HUS8 HUSEVO8 HUS8A4
HUS10
HUS12
HUS10A4
9,50
7,50
8,50
10,80
14,00 37,00
Internal diameter
D1
External diameter
D2
[mm]
31,40
20,00
25,00
30,00
Height
h
[mm]
13,60
4,50
5,50
6,50
8,50
Plate hole diameter (1)
DF
[mm]
20÷22
6,5÷8,0
8,5÷10,0
10,5÷12,0
12,5÷14,0
Steel plate thickness
SPLATE [mm]
4÷18
-
-
-
-
(1)The choice of diameter is also linked to the diameter of the screw used.
CHARACTERISTIC MECHANICAL PARAMETERS softwood (softwood) Head-pull-through parameter
fhead,k [N/mm2]
10,5
Associated density
ρa
[kg/m3]
350
Calculation density
ρk
[kg/m3]
≤ 440
For applications with different materials or with high density please see ETA-11/0030.
TIMBER | HUS | 69
STRUCTURAL VALUES | TIMBER
CHARACTERISTIC VALUES EN 1995:2014
HUS 15°
SHEAR steel-to-timber thin plate
steel-to-timber thick plate SPLATE
SPLATE
SPLATE
steel-to-timber thick plate SPLATE
steel-to-timber thin plate
geometry
L b d1
d1,HBS
L
SPLATE
RV,k
SPLATE
RV,k
SPLATE
RV,k
SPLATE
RV,k
[mm]
[mm]
[mm] [mm]
[kN]
[mm]
[kN]
[mm]
[kN]
[mm]
[kN]
80
52
3,61
HUS 15°
8
b
100
52
120÷140
60
4,93
3,86 4
4,05
3,74
4,93 8
5,11
4,00
5,13
4
4,20
5,11 8
5,31
160÷280
80
4,54
5,62
4,70
5,81
≥ 300
100
5,03
6,10
5,21
6,32
STRUCTURAL VALUES | CLT HUS 15°
SHEAR steel-CLT thin plate
steel-CLT thick plate SPLATE
SPLATE
SPLATE
steel-CLT thick plate SPLATE
steel-CLT thin plate
geometry
L b d1
HUS 15°
d1,HBS
L
SPLATE
RV,k
SPLATE
RV,k
SPLATE
RV,k
SPLATE
RV,k
[mm]
[mm]
[mm] [mm]
[kN]
[mm]
[kN]
[mm]
[kN]
[mm]
[kN]
80
52
3,28
8
b
4,67
3,65
3,40
100
52
120÷140
60
160÷280
80
4,28
5,30
4,43
5,49
≥ 300
100
4,73
5,75
4,90
5,96
4
3,83
NOTES and GENERAL PRINCIPLES on page 71.
70 | HUS | TIMBER
4,67
4,83
8
4,85
3,77 4
3,96
4,83 8
5,02
STRUCTURAL VALUES | TIMBER
CHARACTERISTIC VALUES EN 1995:2014
HUS/HUS EVO
SHEAR steel-to-timber thin plate
A
steel-to-timber thick plate
head pull-through with washer
SPLATE
A
timber-to-timber ε=0° SPLATE
timber-to-timber ε=90°
geometry
TENSION
L b d1
d1,HBS
L
b
A
RV,90,k
A
RV,0,k
SPLATE
RV,k
SPLATE
RV,k
[mm]
[mm]
[mm]
[mm]
[kN]
[mm]
[kN]
[mm]
[kN]
[mm]
[kN]
[kN]
80
40
35
2,38
35
1,20
3,12
4,53
3,31
4,53
HUS HUSEVO
90
50
35
2,57
35
1,38
100
50
45
2,61
45
1,38
110÷130
60
45÷65
2,80
45÷65
1,58
≥ 140
75
≥ 60
2,80
≥ 60
80
52
22
2,98
22
6
HUS HUSEVO
HUS
HUS
8
2,61
3,31
4,53
2,80
3,49
4,53
1,69
3,09
3,78
4,53
1,58
3,79
5,11
7,08
5,11
7,08
100
52
42
3,78
42
1,95
120÷140
60
54÷74
4,20
54÷74
2,13
160÷280
80
74÷194
4,45
74÷194
2,61
≥ 300
100
≥ 194
4,45
≥ 194
80
52
21
3,32
21
100
52
41
4,73
41
2,41
3
2,61
6
4,00 4
4,20
5,31
7,08
4,70
5,81
7,08
2,79
5,21
6,32
7,08
1,86
4,30
6,55
10,20
5,51
7,12
10,20
7,37
10,20
7,37
10,20
120
60
53
5,50
53
2,75
60
73
5,76
73
2,75
160÷280
80
73÷193
6,40
73÷193
3,28
6,40
8,00
10,20
≥ 300
100
≥ 193
6,42
≥ 193
3,87
7,03
8,63
10,20
120
80
31
5,57
31
3,27
7,55
9,79
15,51
160÷280
80
71÷191
7,81
71÷191
3,88
≥ 320
120
≥ 191
8,66
≥ 191
4,98
5
6
5,76
8
140
10
12
2,43
Rhead,k
5,76
7,81 9,32
10
12
9,79
15,51
11,30
15,51
ε = screw-to-grain angle
GENERAL PRINCIPLES
NOTES
• Characteristic values comply with the EN 1995:2014 standard in accordance with ETA-11/0030.
• The characteristic steel-timber shear strengths were evaluated by considering the bearing plane of the washer parallel to the grains.
• Design values can be obtained from characteristic values as follows:
• The characteristic plate shear strengths are evaluated considering the case of thin plate (SPLATE = 0.5 d1) and thick plate (SPLATE = d1) .
Rk kmod Rd = γM The coefficients γM and kmod should be taken according to the current regulations used for the calculation. • For the mechanical strength values and the geometry of the screws and washers, reference was made to ETA-11/0030. • Sizing and verification of the timber elements and metal plates must be done separately. • The values in the table are independent of the load-to-grain angle. • The screws must be positioned in accordance with the minimum distances. • The characteristic shear resistances are calculated for screws inserted without pre-drilling hole. In the case of screws inserted with pre-drilling hole, greater resistance values can be obtained. • Shear strengths were calculated considering the threaded part fully inserted in the second element.
• A density of ρk = 385 kg/m3 for the timber elements and ρk = 350 kg/m3 for the CLT elements was considered during the calculation. For different ρk values, the strength values in the table can be converted by the kdens coefficient (see page 34). • The characteristic values on CLT are according to the national specifications ÖNORM EN 1995 - Annex K. • The characteristic shear strength is independent from the direction of the grain of the CLT panels outer layer. • The characteristic shear and pull-through strength of the head with HUS on CLT can be found on page 39. • For available HBS and HBS EVO screw sizes and structural values see pages 30 and 52. • Characteristic strengths for HUS A4 can be found on page 323.
• The characteristic strength to head pull-through with washer was calculated using timber elements. In the case of steel-to-timber connections, generally the steel tensile strength is binding with respect to head separation or pull-through. • For different calculation configurations, the MyProject software is available (www.rothoblaas.com).
TIMBER | HUS | 71
HUS 15° INSTALLATION
1
2
3
Drill a D F = 20 mm diameter hole in the metal plate at the insertion point of the HUS815 washer.
We recommend applying HUSBAND adhesive underneath the HUS815 washer to facilitate application.
Remove the liner and apply the washer at the hole, paying attention to the insertion direction.
4
5
6
Drill a guide hole with a diameter of 5 mm and a minimum length of 20 mm, preferably using the JIGVGU945 template to ensure the correct installation direction.
Install the HBS screw of the desired length. Do not use pulse screw guns. Pay attention when tightening the connection.
Installation completed. The 15° screw angle ensures that the distance to the head of the panel (or beam) is maintained.
STEEL-TIMBER INSTALLATION FROM BELOW
F
F F
F < 200 mm
F = 200 ÷ 300 mm
F > 300 mm
If the clearance (F) is small, the screws are installed using a long insert; both flanges must be drilled.
In this F range, there are not enough long bits and not enough free space for the operator to manoeuvre. The slight inclination of the HUS 15° allows for easy fastening.
When sufficient free space is available for installation, a HUS washer can also be used, within the minimum distances.
RELATED PRODUCTS
HBS page 30
72 | HUS | TIMBER
VGS page 164
CATCH page 408
TORQUE LIMITER page 408
JIG VGU page 409
XYLOFON WASHER SEPARATING WASHER FOR SCREWS ACOUSTIC PERFORMANCE It improves soundproofing by decoupling of timber-to-timber joints made with screws.
STATICS The washer increases the rope effect in the connection, thus improving the static performance of the detail.
SWELLING OF TIMBER It gives the joint a certain adaptability to mitigate stresses resulting from shrinkage/swelling of the wood.
CODES AND DIMENSIONS
GEOMETRY
SEPARATING WASHER FOR SCREWS CODE XYLW803811
dSCREW Ø8 - Ø10
dext
dint
s
[mm]
[mm]
[mm]
38
11
6,0
dext
dint
s
[mm]
[mm]
[mm]
34
11
3,0
pcs
dint s
50
ULS 440 - WASHER CODE ULS11343
dext dSCREW
Ø8 - Ø10
For more information on the product, go to www.rothoblaas.com.
pcs MATERIAL 200
PU
polyurethane
TESTED The static performance has been tested at the University of Innsbruck for safe use in structural applications.
SAFE Thanks to its modified polyurethane blend, it is extremely chemically stable and resistant to creep deformation.
TIMBER | XYLOFON WASHER | 73
RESEARCH & DEVELOPMENT
STRUCTURAL DESIGN AND ACOUSTICS
The mechanical behaviour of timber-to-timber shear connections with a resilient sound insulation profile in between was studied in depth, both in terms of strength and stiffness, through an extensive experimental campaign.
EXPERIMENTAL INVESTIGATION 1
ANALYTICAL CHARACTERISATION OF A GAP CONNECTION USING PREDICTIVE MODELS For the analytical evaluation of the mechanical parameters of the connection (strength and stiffness), models available in the literature were applied, which modify Johansen's basic theory.
2
APPLICATION OF THE MODEL TO CONNECTIONS WITH AN INTERPOSED RESILIENT PROFILE Over 50 configurations considered by varying numerous parameters. RESILIENT PROFILES
CONNECTORS
Thickness investigated: 6 mm, 2 x 6 mm, 3 x 6 mm
3
XYLOFON 35-50-70-80-90
PIANO A-B
PIANO C-D-E
Polyurethane (monolithic and deformable)
EPDM (expanded and compressible)
EPDM (monolithic and deformable)
ASSESSMENT OF THE FRICTION COEFFICIENT μ FOR XYLOFON ACOUSTIC PROFILES
HBS Ø6 | HBS Ø8 | HBS Ø10 | HBS + SHARP METAL
timber XYLOFON 35
The tests carried out revealed interface properties of a frictional nature that seem to particularly influence the behaviour of the timber connections, especially in terms of strength.
XYLOFON 70 XYLOFON 90 air 0
0,25
0,50
0,75
1
Friction coefficient μ [-]
4
EXECUTION OF MONOTONIC TESTS For the validation of the predictive model studied, samples with one and two shear planes were tested.
5
air
timber F
F
s
XYLOFON 70 F
s
EXECUTION OF CYCLIC TESTS For the comparison of the behaviour under monotonic and cyclic loads, samples with two shear planes were tested.
over 250 TESTS Experimental campaign carried out in cooperation with: CIRI Edilizia e Costruzioni Interdepartmental Centre for Industrial Research Alma Mater Studiorum - Università di Bologna
74 | RESEARCH & DEVELOPMENT | TIMBER
F
F
The results were analysed by bi-linearising the experimental curves. It can be seen that the cyclic behaviour is consistent with the monotonic behaviour.
6
8
5
6 4
4 Force [kN]
CAMPAIGN RESULTS
Force [kN]
6
3 2
2 -25
0 -5 -2
-15
5
15
25
-4 1 0
-6 0
3
6
9
12
15
-8
18
Displacement [mm]
Displacement [mm] Graphical representation of experimental data from monotonic tests (left) and cyclic tests (right).
cyclic XYLOFON 70 monotonic XYLOFON 70
INTERPRETATION OF RESULTS The comparative analysis focused mainly on strength and stiffness parameters. The values obtained in the various configurations were dimensioned with respect to the TIMBER case.
parameter
0,4
0,2
0,2
0,0
0,0
influence on strength
PIANO B
k/kref
0,6
XYLOFON 70
0,4
PIANO B
0,6
0,8
air
1,0
XYLOFON 70
1,0 air
1,2
0,8
With expanded and compressible profiles (represented by PLAN B in the graphs), on the other hand, the variation from the reference configuration is more significant.
STIFFNESS
1,2
timber
STRENGTH
timber
Monolithic, deformable polyurethane and EPDM profiles (represented by XYLOFON 70 in the graphs) do not significantly change the strength of the connection when the elastic modulus of the material changes compared to the timber-to-timber case.
Ry/Rref
7
PIANO B air
XYLOFON 70 timber monotonic
influence on stiffness
profile structure
medium-high
Ry
as compressibility increases(*)
medium
s
profile thickness
significant
Ry
as thickness increases (for s > 6 mm)
significant
d
connector diameter
medium
ΔRy
as the diameter increases
medium
interface properties
significant
Ry
as the profile hardness decreases (shore)
low
(*) Directly proportional to the % of air contained in the material.
According to the analytical model, the use of large thickness values ( s > 6 mm ) leads to a progressive degradation of strength and stiffness regardless of the type of profile interposed. Mechanical stiffness, on the other hand, shows a more or less marked degradation trend depending on the different parameters investigated and their interconnection.
In conclusion, the mechanical behaviour of the investigated connections under monotonic and cyclic loading conditions is not particularly influenced by the presence of the monolithic XYLOFON and PIANO acoustic profiles.
COMPLETE SCIENTIFIC REPORT
CATALOGUE SOUNDPROOFING SOLUTIONS
The strength values, as a first approximation, can, in the case of profiles with a thickness not exceeding 6 mm, always be traced back to the case of direct timber-to-timber connection, thus neglecting the presence of the acoustic profile.
TIMBER | RESEARCH & DEVELOPMENT | 75
TBS
ETA-11/0030
UKTA-0836 22/6195
AC233 ESR-4645
FLANGE HEAD SCREW INTEGRATED WASHER The flange h ead s erves a s w asher a nd e nsures h igh h ead s trength and pull-through. Ideal in the presence of wind or variations in timber dimensions.
3 THORNS TIP Thanks to the 3 THORNS tip, minimum installation distances are reduced. More screws can be used in less space and larger screws in smaller elements. Costs and time for project implementation are reduced.
NEW-GENERATION WOODS
Ø6 - Ø8
Tested and certified for use on a wide variety of engineered timbers such as CLT, GL, LVL, OSB and Beech LVL. Extremely versatile, the TBS screw guarantees the use of new-generation woods for the creation of increasingly innovative and sustainable structures.
FAST With the 3 THORNS tip, screw grip becomes more reliable and faster, while maintaining the usual mechanical performance. More speed, less effort.
Ø10 - Ø12
BIT INCLUDED
DIAMETER [mm]
tbs
6 6
12
16
LENGTH [mm]
40 40
SERVICE CLASS
SC1
SC2
SC3
SC4
ATMOSPHERIC CORROSIVITY
C1
C2
C3
C4
C5
WOOD CORROSIVITY
T1
T2
T3
T4
T5
MATERIAL
Zn
ELECTRO PLATED
1000 1000
electrogalvanized carbon steel
FIELDS OF USE • • • • •
76 | TBS | TIMBER
timber based panels fibreboard and MDF panels solid timber and glulam CLT and LVL high density woods
ETA-11/0030
SECONDARY BEAMS Ideal for fastening joists to sill beams to achieve high wind uplift resistance. The flange head guarantees excellent tensile strength which means the use of additional lateral fastening systems can be avoided.
I-JOIST Values also tested, certified and calculated for CLT and high density woods such as Microllam® LVL.
TIMBER | TBS | 77
Fastening SIP panels with 8 mm diameter TBS screws.
Fastening CLT walls with TBS screws.
GEOMETRY AND MECHANICAL CHARACTERISTICS
XXX
dK
TBS
A
dK d2 d1
dS
dK
b
Ø6 - Ø8
L
Ø10 - Ø12
GEOMETRY Nominal diameter
d1
[mm]
6
8
10
12
Head diameter
dK
[mm]
15,50
19,00
25,00
29,00
Thread diameter
d2
[mm]
3,95
5,40
6,40
6,80
Shank diameter
dS
[mm]
4,30
5,80
7,00
8,00
Pre-drilling hole diameter(1)
dV,S
[mm]
4,0
5,0
6,0
7,0
Pre-drilling hole diameter(2)
dV,H
[mm]
4,0
6,0
7,0
8,0
10
12
(1) Pre-drilling valid for softwood. (2) Pre-drilling valid for hardwood and beech LVL.
CHARACTERISTIC MECHANICAL PARAMETERS Nominal diameter
d1
[mm]
6
8
Tensile strength
ftens,k
[kN]
11,3
20,1
31,4
33,9
Yield moment
My,k
[Nm]
9,5
20,1
35,8
48,0
softwood (softwood)
LVL softwood (LVL softwood)
pre-drilled beech LVL (beech LVL predrilled)
Withdrawal resistance parameter
fax,k
[N/mm2]
11,7
15,0
29,0
Head-pull-through parameter
fhead,k [N/mm2]
10,5
20,0
-
Associated density
ρa
[kg/m3]
350
500
730
Calculation density
ρk
[kg/m3]
≤ 440
410 ÷ 550
590 ÷ 750
For applications with different materials please see ETA-11/0030.
78 | TBS | TIMBER
CODES AND DIMENSIONS d1
dK
[mm]
[mm]
CODE
L
b
A
[mm]
[mm]
[mm]
60
40
20
TBS670
70
40
TBS680
80
50
TBS690
90
50
TBS6100
100
TBS6120
TBS660
6 TX 30
8 TX 40
15,5
19,0
pcs
d1
dK
[mm]
[mm]
CODE
L
b
A
[mm]
[mm]
[mm]
pcs
100
52
48
50
100
TBS10100
30
100
TBS10120
120
60
60
50
30
100
TBS10140
140
60
80
50
40
100
TBS10160
160
80
80
50
60
40
100
TBS10180
180
80
100
50
120
75
45
100
TBS10200
200
100
100
50
TBS6140
140
75
65
100
TBS10220
220
100
120
50
TBS6160
160
75
85
100
TBS10240
240
100
140
50
TBS6180
180
75
105
100
TBS10260
260
100
160
50
TBS6200
200
75
125
100
TBS10280
280
100
180
50
TBS6220
220
100
120
100
TBS10300
300
100
200
50
TBS6240
240
100
140
100
TBS10320
320
120
200
50
TBS6260
260
100
160
100
TBS10340
340
120
220
50
TBS6280
280
100
180
100
TBS10360
360
120
240
50
TBS6300
300
100
200
100
TBS10380
380
120
260
50
TBS6320
320
100
220
100
TBS10400
400
120
280
50
TBS6360
360
100
260
100
TBS10440
440
120
320
50
TBS6400
400
100
300
100
TBS10480
480
120
360
50
TBS840
40
32
8
100
TBS10520
520
120
400
50
TBS860
60
52
8
100
TBS10560
560
120
440
50
TBS880
80
52
28
50
TBS10600
600
120
480
50
TBS8100
100
52
48
50
TBS12200
200
120
80
25
TBS8120
120
80
40
50
TBS12240
240
120
120
25
TBS8140
140
80
60
50
TBS12280
280
120
160
25
TBS8160
160
100
60
50
TBS12320
320
120
200
25
TBS8180
180
100
80
50
TBS12360
360
120
240
25
TBS8200
200
100
100
50
TBS12400
400
140
260
25
TBS8220
220
100
120
50
TBS12440
440
140
300
25
TBS8240
240
100
140
50
TBS12480
480
140
340
25
TBS8260
260
100
160
50
TBS12520
520
140
380
25
TBS8280
280
100
180
50
TBS12560
560
140
420
25
TBS8300
300
100
200
50
TBS12600
600
140
460
25
TBS8320
320
100
220
50
TBS12800
800
160
640
25
TBS8340
340
100
240
50
TBS121000
1000
160
840
25
TBS8360
360
100
260
50
TBS8380
380
100
280
50
TBS8400
400
100
300
50
TBS8440
440
100
340
50
TBS8480
480
100
380
50
TBS8520
520
100
420
50
TBS8560
560
100
460
50
TBS8580
580
100
480
50
TBS8600
600
100
500
50
10 TX 50
12 TX 50
25,0
29,0
RELATED PRODUCTS
TBS MAX page 92
XYLOFON WASHER page 73
TORQUE LIMITER page 408
TIMBER | TBS | 79
MINIMUM DISTANCES FOR SHEAR LOADS | TIMBER ρk ≤ 420 kg/m3
screws inserted WITHOUT pre-drilled hole
α=0°
F
d1
[mm]
a1
[mm]
a2
[mm]
5∙d
30
40
a3,t
[mm]
15∙d
90
120
a3,c
[mm]
10∙d
60
80
a4,t
[mm]
5∙d
30
40
a4,c
[mm]
5∙d
30
40
10∙d
F
α=90°
6
8
10
12
d1
[mm]
60
80
100
120
a1
[mm]
50
60
a2
[mm]
5∙d
30
40
50
60
150
180
a3,t
[mm]
10∙d
60
80
100
120
100
120
a3,c
[mm]
10∙d
60
80
100
120
50
60
a4,t
[mm]
10∙d
60
80
100
120
50
60
a4,c
[mm]
5∙d
30
40
50
60
5∙d
6
8
10
12
30
40
50
60
screws inserted WITH pre-drilled hole
α=0°
F
F
d1
[mm]
a1
[mm]
a2
[mm]
3∙d
18
24
a3,t
[mm]
12∙d
72
96
a3,c
[mm]
7∙d
42
56
70
a4,t
[mm]
3∙d
18
24
30
a4,c
[mm]
3∙d
18
24
30
5∙d
6
8
10
12
d1
[mm]
30
40
50
60
a1
[mm]
4∙d
30
36
a2
[mm]
4∙d
120
144
a3,t
[mm]
7∙d
84
a3,c
[mm]
7∙d
36
a4,t
[mm]
7∙d
36
a4,c
[mm]
3∙d
α=90° 6
8
10
12
24
32
40
48
24
32
40
48
42
56
70
84
42
56
70
84
42
56
70
84
18
24
30
36
α = load-to-grain angle d = d1 = nominal screw diameter stressed end -90° < α < 90°
a2 a2
unloaded end 90° < α < 270°
F a3,t
unload edge 180° < α < 360°
α
F α
α
a1 a1
stressed edge 0° < α < 180°
F α
a4,t
F a4,c
a3,c
NOTE on page 87.
EFFECTIVE NUMBER FOR SHEAR LOADS The load-bearing capacity of a connection made with several screws, all of the same type and size, may be lower than the sum of the load-bearing capacities of the individual connection system. For a row of n screws arranged parallel to the direction of the grain at a distance a1 , the characteristic effective load-bearing capacity is equal to:
Ref,V,k
a1 a1
Ref,V,k = nef RV,k
The nef value is given in the table below as a function of n and a1 .
n
2 3 4 5
4∙d 1,41 1,73 2,00 2,24
5∙d 1,48 1,86 2,19 2,49
6∙d 1,55 2,01 2,41 2,77
7∙d 1,62 2,16 2,64 3,09
( * ) For intermediate a values a linear interpolation is possible. 1
80 | TBS | TIMBER
8∙d 1,68 2,28 2,83 3,34
a 1( * ) 9∙d 1,74 2,41 3,03 3,62
10∙d 1,80 2,54 3,25 3,93
11∙d 1,85 2,65 3,42 4,17
12∙d 1,90 2,76 3,61 4,43
13∙d 1,95 2,88 3,80 4,71
≥ 14∙d 2,00 3,00 4,00 5,00
MINIMUM DISTANCES FOR SHEAR AND AXIAL LOADS | CLT screws inserted WITHOUT pre-drilled hole
lateral face
narrow face
d1
[mm]
6
8
10
12
d1
[mm]
6
8
10
12
a1
[mm]
4∙d
24
32
40
48
a1
[mm]
10∙d
60
80
100
120
a2
[mm]
2,5∙d
15
20
25
30
a2
[mm]
4∙d
24
32
40
48
a3,t
[mm]
6∙d
36
48
60
72
a3,t
[mm]
12∙d
72
96
120
144
a3,c
[mm]
6∙d
36
48
60
72
a3,c
[mm]
7∙d
42
56
70
84
a4,t
[mm]
6∙d
36
48
60
72
a4,t
[mm]
6∙d
36
48
60
72
a4,c
[mm]
2,5∙d
15
20
25
30
a4,c
[mm]
3∙d
18
24
30
36
a4,t
a3,c
d = d1 = nominal screw diameter
a2 a2
F
a1
α
α
a3,t
F
a4,c
a3,c
a4,c
F
a3,t
a3,c a4,c a4,t
a4,c
F
tCLT
tCLT
NOTE on page 87.
MINIMUM DISTANCES FOR SHEAR LOADS | LVL screws inserted WITHOUT pre-drilled hole
F
d1
[mm]
a1
[mm]
a2
[mm]
5∙d
30
a3,t
[mm]
15∙d
90
a3,c
[mm]
10∙d
60
a4,t
[mm]
5∙d
30
a4,c
[mm]
12∙d
5∙d
F
α=0°
6
8
10
72
96
30
α=90°
d1
[mm]
120
a1
[mm]
40
50
a2
[mm]
5d
30
40
50
120
150
a3,t
[mm]
10d
60
80
100
80
100
a3,c
[mm]
10d
60
80
100
40
50
a4,t
[mm]
10d
60
80
100
50
a4,c
[mm]
5d
30
40
50
40
5d
6
8
10
30
40
50
α = load-to-grain angle d = d1 = nominal screw diameter
a2 a2
a1
a4,t F
α
α
a3,t
α
F
a4,c
F F α
a3,c
NOTE on page 87.
TIMBER | TBS | 81
STRUCTURAL VALUES | TIMBER
CHARACTERISTIC VALUES EN 1995:2014 SHEAR panel-to-timber
thread withdrawal ε=90°
thread withdrawal ε=0°
head pull-through
RV,0,k
SPAN
RV,k
Rax,90,k
Rax,0,k
Rhead,k
[mm]
[kN]
[kN]
[kN]
[kN]
50
2,14 2,50 2,50 2,50 2,50 2,50 2,50 2,50 2,50 2,50 2,50 2,50 2,50 2,50 2,50 2,50
3,03 3,03 3,79 3,79 4,55 5,68 5,68 5,68 5,68 5,68 7,58 7,58 7,58 7,58 7,58 7,58 7,58 7,58
0,91 0,91 1,14 1,14 1,36 1,70 1,70 1,70 1,70 1,70 2,27 2,27 2,27 2,27 2,27 2,27 2,27 2,27
2,72 2,72 2,72 2,72 2,72 2,72 2,72 2,72 2,72 2,72 2,72 2,72 2,72 2,72 2,72 2,72 2,72 2,72
65
3,22 3,89 3,89 3,89 3,89 3,89 3,89 3,89 3,89 3,89 3,89 3,89 3,89 3,89 3,89 3,89 3,89 3,89 3,89 3,89 3,89 3,89
3,23 5,25 5,25 5,25 8,08 8,08 10,10 10,10 10,10 10,10 10,10 10,10 10,10 10,10 10,10 10,10 10,10 10,10 10,10 10,10 10,10 10,10 10,10 10,10 10,10
0,97 1,58 1,58 1,58 2,42 2,42 3,03 3,03 3,03 3,03 3,03 3,03 3,03 3,03 3,03 3,03 3,03 3,03 3,03 3,03 3,03 3,03 3,03 3,03 3,03
4,09 4,09 4,09 4,09 4,09 4,09 4,09 4,09 4,09 4,09 4,09 4,09 4,09 4,09 4,09 4,09 4,09 4,09 4,09 4,09 4,09 4,09 4,09 4,09 4,09
timber-to-timber ε=90°
timber-to-timber ε=0°
RV,90,k
SPAN
geometry
TENSION
A L b d1
d1
L
b
A
[mm] [mm] [mm] [mm]
[kN]
[kN]
6
60 70 80 90 100 120 140 160 180 200 220 240 260 280 300 320 360 400
40 40 50 50 60 75 75 75 75 75 100 100 100 100 100 100 100 100
20 30 30 40 40 45 65 85 105 125 120 140 160 180 200 220 260 300
1,89 2,15 2,15 2,35 2,35 2,35 2,35 2,35 2,35 2,35 2,35 2,35 2,35 2,35 2,35 2,35 2,35 2,35
1,02 1,20 1,37 1,38 1,58 1,69 1,69 1,69 1,69 1,69 1,83 1,83 1,83 1,83 1,83 1,83 1,83 1,83
8
40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 440 480 520 560 580 600
32 52 52 52 80 80 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
8 8 28 48 40 60 60 80 100 120 140 160 180 200 220 240 260 280 300 340 380 420 460 480 500
1,08 1,08 3,02 3,71 3,41 3,71 3,71 3,71 3,71 3,71 3,71 3,71 3,71 3,71 3,71 3,71 3,71 3,71 3,71 3,71 3,71 3,71 3,71 3,71 3,71
0,90 1,08 1,70 1,95 2,54 2,61 2,79 2,79 2,79 2,79 2,79 2,79 2,79 2,79 2,79 2,79 2,79 2,79 2,79 2,79 2,79 2,79 2,79 2,79 2,79
ε = screw-to-grain angle NOTES and GENERAL PRINCIPLES on page 87.
82 | TBS | TIMBER
STRUCTURAL VALUES | TIMBER
CHARACTERISTIC VALUES EN 1995:2014 SHEAR panel-to-timber
thread withdrawal ε=90°
thread withdrawal ε=0°
head pull-through
RV,0,k
SPAN
RV,k
Rax,90,k
Rax,0,k
Rhead,k
[kN]
[kN]
[mm]
[kN]
[kN]
[kN]
[kN]
4,92
2,56
-
6,57
1,97
7,08
timber-to-timber ε=90°
timber-to-timber ε=0°
RV,90,k
SPAN
geometry
TENSION
A L b d1
d1
L
b
A
[mm] [mm] [mm] [mm] 100
10
12
52
48
120
60
60
5,64
2,75
-
7,58
2,27
7,08
140
60
80
5,64
2,75
5,84
7,58
2,27
7,08
160
80
80
5,64
3,28
5,85
10,10
3,03
7,08
180
80
100
5,64
3,28
5,85
10,10
3,03
7,08
200
100
100
5,64
3,87
5,85
12,63
3,79
7,08
220
100
120
5,64
3,87
5,85
12,63
3,79
7,08
240
100
140
5,64
3,87
5,85
12,63
3,79
7,08
260
100
160
5,64
3,87
5,85
12,63
3,79
7,08
280
100
180
5,64
3,87
5,85
12,63
3,79
7,08
300
100
200
5,64
3,87
5,85
12,63
3,79
7,08
320
120
200
5,64
4,06
5,85
15,15
4,55
7,08
340
120
220
5,64
4,06
5,85
15,15
4,55
7,08
80
360
120
240
5,64
4,06
5,85
15,15
4,55
7,08
380
120
260
5,64
4,06
5,85
15,15
4,55
7,08
400
120
280
5,64
4,06
5,85
15,15
4,55
7,08
440
120
320
5,64
4,06
5,85
15,15
4,55
7,08
480
120
360
5,64
4,06
5,85
15,15
4,55
7,08
520
120
400
5,64
4,06
5,85
15,15
4,55
7,08
560
120
440
5,64
4,06
5,85
15,15
4,55
7,08
600
120
480
5,64
4,06
5,85
15,15
4,55
7,08
200
120
80
7,16
4,98
7,35
18,18
5,45
9,53
240
120
120
7,16
4,98
7,35
18,18
5,45
9,53
280
120
160
7,16
4,98
7,35
18,18
5,45
9,53 9,53
320
120
200
7,16
4,98
7,35
18,18
5,45
360
120
240
7,16
4,98
7,35
18,18
5,45
9,53
400
140
260
7,16
5,20
7,35
21,21
6,36
9,53
440
140
300
7,16
5,20
7,35
21,21
6,36
9,53
480
140
340
7,16
5,20
7,35
21,21
6,36
9,53
95
520
140
380
7,16
5,20
7,35
21,21
6,36
9,53
560
140
420
7,16
5,20
7,35
21,21
6,36
9,53 9,53
600
140
460
7,16
5,20
7,35
21,21
6,36
800
160
640
7,16
5,43
7,35
24,24
7,27
9,53
1000
160
840
7,16
5,43
7,35
24,24
7,27
9,53
ε = screw-to-grain angle
NOTES and GENERAL PRINCIPLES on page 87.
TIMBER | TBS | 83
STRUCTURAL VALUES | CLT
CHARACTERISTIC VALUES EN 1995:2014 SHEAR CLT-CLT lateral face
geometry
CLT-CLT lateral face-narrow face
A
panel-CLT lateral face
CLT-panel-CLT lateral face
t
SPAN
L
SPAN b d1
d1
L
b
A
RV,k
RV,k
SPAN
RV,k
SPAN
[mm]
[mm]
[mm]
[kN]
[kN]
[mm]
[kN]
60÷70 80÷90 100 120÷200 220÷400 40 60÷100 120÷140 160÷600 100 120÷140 160÷180 200÷300 320÷600 200÷360 400÷600 800÷1000
40 50 60 75 100 32 52 80 100 52 60 80 100 120 120 140 160
[mm] ≥ 20 ≥ 30
1,77 2,00 2,22 2,22 2,22 0,98 2,23 3,16 3,51 4,50 5,22 5,33 5,33 5,33 6,76 6,76 6,76
0,98 1,70 2,80 2,98 3,14 3,41 4,12 4,52 4,52 5,72 5,72 5,72
[mm] [mm] ≥ 20 ≥ 30 ≥ 40 18 ≥ 50 ≥ 100 ≥5 ≥ 15 22 ≥ 45 ≥ 65 ≥ 35 ≥ 45 ≥ 65 25 ≥ 85 ≥ 145 ≥ 85 25 ≥ 185 ≥ 385
6
8
10
12
40 ≥ 45 ≥ 120 8 ≥ 30 ≥ 40 ≥ 60 48 ≥ 60 ≥ 80 ≥ 100 ≥ 200 ≥ 80 ≥ 260 ≥ 640
18
22
25
25
1,82 1,82 1,82 1,82 1,82 1,65 2,66 2,98 2,98 4,20 4,44 4,44 4,44 4,44 4,72 4,72 4,72
SHEAR CLT-timber lateral face
geometry
timber-CLT narrow face
A L b d1
d1
L
b
A
RV,k
RV,k
[mm]
[mm]
[mm]
[kN]
[kN]
60-70 80-90 100 120-200 220-400 40 60-100 120-140 160-600 100 120-140 160-180 200-300 320-600 200-360 400-600 800-1000
40 50 60 75 100 32 52 80 100 52 60 80 100 120 120 140 160
[mm] ≥ 20 ≥ 30
1,79 2,02 2,26 2,26 2,26 0,98 2,36 3,20 3,57 4,78 5,32 5,42 5,42 5,42 6,87 6,87 6,87
1,08 1,70 2,90 3,01 3,17 3,43 4,15 4,56 4,57 5,77 5,77 5,77
6
8
10
12
84 | TBS | TIMBER
40 ≥ 45 ≥ 120 8 ≥ 30 ≥ 40 ≥ 60 48 ≥ 60 ≥ 80 ≥ 100 ≥ 200 ≥ 80 ≥ 260 ≥ 640
t
RV,k [kN] 2,67 2,67 2,67 2,67 2,67 1,23 3,64 3,64 3,64 4,47 4,47 4,47 4,47 4,47 4,72 4,72 4,72
STRUCTURAL VALUES | CLT
CHARACTERISTIC VALUES EN 1995:2014 TENSION
geometry
thread withdrawal narrow face
thread withdrawal narrow face
head pull-through
A L b d1
d1
L
b
Rax,k
Rax,k
Rhead,k
[mm]
[mm]
[mm]
[kN]
[kN]
[kN]
6
60÷70 80÷90 100 120÷200 220÷400
40 50 60 75 100
2,81 3,51 4,21 5,27 7,02
-
2,52 2,52 2,52 2,52 2,52
8
40 60÷100 120÷140 160÷600
32 52 80 100
3,00 4,87 7,49 9,36
2,39 3,70 5,45 6,66
3,79 3,79 3,79 3,79
10
100 120÷140 160÷180 200÷300 320÷600
52 60 80 100 120
6,08 7,02 9,36 11,70 14,04
4,42 5,03 6,51 7,96 9,38
6,56 6,56 6,56 6,56 6,56
12
200÷360 400÷600 800÷1000
120 140 160
16,85 19,66 22,46
10,86 12,47 14,06
8,83 8,83 8,83
NOTES and GENERAL PRINCIPLES on page 87.
Complete calculation reports for designing in wood? Download MyProject and simplify your work!
TIMBER | TBS | 85
STRUCTURAL VALUES | LVL
CHARACTERISTIC VALUES EN 1995:2014 SHEAR
geometry
LVL-LVL
LVL-LVL- LVL
LVL-timber
timber-LVL
t2 A L b d1
d1 [mm]
6
8
10
A
A
A
A
A
L
b
A
RV,k
A
t2
RV,k
A
RV,k
A
[mm]
[mm]
[mm]
[kN]
[mm]
[mm]
[kN]
[mm]
[kN]
[mm]
[kN]
80÷90
50
-
-
-
-
-
-
-
≥ 30
2,21
100
60
3,02
≥ 75
5,47
≥ 70
≥ 85
6,05
2,92
40 ≥ 45 ≥ 120
2,44
3,02
45 ≥ 45 ≥ 120
2,80
3,02
≥ 45
120÷200
75
220÷400
100
45 ≥ 45 ≥ 120
120÷140
80
≥ 60
4,74
-
-
-
≥ 60
4,34
≥ 40
3,51
160÷180
100
≥ 60
4,74
-
-
-
≥ 60
4,57
≥ 60
3,85
200÷600
100
≥ 60
4,74
≥ 60
≥ 75
9,48
≥ 60
4,57
≥ 60
3,85 5,84
120÷140
60
160÷180
80
200
100
220÷300 320÷600
≥ 75
2,92
-
≥ 80
5,85
7,10 7,10
100 ≥ 100
5,85
13,73
100 ≥ 100
14,69
≥ 200
7,10
≥ 200
5,85
-
-
-
-
-
-
7,35
-
-
-
100
100 ≥ 120
7,35
120
≥ 200
7,35
≥ 75 ≥ 100
≥ 75 ≥ 125
≥ 75
thread withdrawal flat
thread withdrawal edge
head pull-through flat
Rax,k
Rax,k
Rhead,k
A L b d1
[mm]
6
8
10
L
b
[mm]
[mm]
[kN]
[kN]
[kN]
60÷70 80÷90 100 120÷200 220÷400 40 60÷100 120÷140 160÷180 200÷600 100 120÷140 160÷180 200÷300 320÷600
40 50 60 75 100 32 52 80 100 100 52 60 80 100 120
3,48 4,36 5,23 6,53 8,71 3,72 6,04 9,29 11,61 11,61 7,55 8,71 11,61 14,52 17,42
2,32 2,90 3,48 4,36 5,81 2,48 4,03 6,19 7,74 7,74 5,03 5,81 7,74 9,68 11,61
4,65 4,65 4,65 4,65 4,65 6,99 6,99 6,99 6,99 6,99 12,10 12,10 12,10 12,10 12,10
NOTES and GENERAL PRINCIPLES on page 87.
86 | TBS | TIMBER
2,44
6,60
7,23
geometry
2,44
≥ 60
TENSION
d1
RV,k
5,85
STRUCTURAL VALUES GENERAL PRINCIPLES • Characteristic values consistent with EN 1995:2014 and in accordance with ETA-11/0030. • Design values can be obtained from characteristic values as follows:
Rd =
NOTES | CLT • The characteristic values are according to the national specifications ÖNORM EN 1995 - Annex K. • For the calculation process, a mass density of ρ k = 350 kg/m3 has been considered for CLT elements and a mass density of ρ k = 385 kg/m3 has been considered for timber elements.
Rk kmod γM
The coefficients γM and kmod should be taken according to the current regulations used for the calculation.
• The characteristics shear resistance are calculated considering a minimum fixing length of 4 d1 .
• For the mechanical resistance values and the geometry of the screws, reference was made to ETA-11/0030.
• The characteristic shear strength is independent from the direction of the grain of the CLT panels outer layer.
• Sizing and verification of the timber elements and panels must be done separately. • The screws must be positioned in accordance with the minimum distances.
• The axial thread withdrawal resistance in the narrow face is valid for minimum CLT thickness tCLT,min = 10∙d1 and minimum screw pull-through depth tpen = 10∙d1 .
• The characteristic shear resistances are calculated for screws inserted without pre-drilling hole. In the case of screws inserted with pre-drilling hole, greater resistance values can be obtained.
NOTES | LVL
• Shear strengths were calculated considering the threaded part fully inserted in the second element. • The characteristic panel-timber shear strength are calculated considering an OSB panel or particle board with a SPAN thickness and density ρk = 500 kg/m3.
• For the calculation process, a mass density of ρk = 480 kg/m3 has been considered for the softwood LVL elements and a mass density of ρ k = 385 kg/m3 has been considered for timber elements.
• The thread withdrawal characteristic strength has been evaluated considering a fixing length equal to b.
• The characteristic shear strengths are evaluated for connectors inserted on the side face (wide face) considering, for individual timber elements, a 90° angle between the connector and the grain, a 90° angle between the connector and the side face of the LVL element and a 0° angle between the force and the grain.
• The head pull-through characteristic strength was calculated using timber elements.
• The axial thread-withdrawal resistance was calculated considering a 90° angle between the grains and the connector.
• For different calculation configurations, the MyProject software is available (www.rothoblaas.com).
• Screws shorter than the minimum in the table are not compatible with the calculation assumptions and are therefore not reported.
NOTES | TIMBER • The characteristic timber-to-timber shear strengths were evaluated considering both an ε angle of 90° (RV,90,k) and 0° (RV,0,k) between the grains of the second element and the connector. • The characteristic panel-timber shear strengths were evaluated considering an angle ε of 90° between the grains of the timber element and the connector. • The characteristic thread withdrawal resistances were evaluated considering both an ε angle of 90° (Rax,90,k) and of 0° (Rax,0,k) between the grains of the timber element and the connector. • For the calculation process a timber characteristic density ρk = 385 kg/m3 has been considered. For different ρk values, the strength on the table (timber-to-timber shear and tensile) can be converted by the kdens coefficient.
R’V,k = kdens,v RV,k R’ax,k = kdens,ax Rax,k R’head,k = kdens,ax Rhead,k ρk
350
380
385
405
425
430
440
C-GL
C24
C30
GL24h
GL26h
GL28h
GL30h
GL32h
kdens,v
0,90
0,98
1,00
1,02
1,05
1,05
1,07
kdens,ax
0,92
0,98
1,00
1,04
1,08
1,09
1,11
[kg/m3 ]
Strength values thus determined may differ, for higher safety standards, from those resulting from an exact calculation.
MINIMUM DISTANCES NOTES | TIMBER
NOTES | LVL
• The minimum distances comply with the EN 1995:2014 standard in accordance with ETA-11/0030.
• The minimum distances are compliant with ETA-11/0030 and are to be considered valid unless otherwise specified in the technical documents for the LVL panels.
• The minimum spacing for all panel-to-timber connections (a1 , a2) can be multiplied by a coefficient of 0,85. • In the case of joints with elements in Douglas fir (Pseudotsuga menziesii), the minimum spacing and distances parallel to the grain must be multiplied by a coefficient of 1.5. • The spacing a1 in the table for screws with 3 THORNS tip inserted without pre-drilling hole in timber elements with density ρk ≤ 420 kg/m3 and loadto-grain angle α=0° was assumed to be 10∙d based on experimental tests; alternatively, adopt 12∙d in accordance with EN 1995:2014.
NOTES | CLT • The minimum distances are compliant with ETA-11/0030 and are to be considered valid unless otherwise specified in the technical documents for the CLT panels. • Minimum distances are valid for minimum CLT thickness tCLT,min =10∙d1 .
• The minimum distances are applicable when using both parallel and cross grain softwood LVL. • The minimum distances without pre-drilling hole are valid for minimum thickness of LVL elements tmin: t1 ≥ 8,4 d - 9 t2 ≥
11,4 d 75
where: - t 1 is the thickness in mm of the LVL element in a connection with 2 wooden elements. For connections with 3 or more elements, t 1 represents the thickness of the most external LVL; - t 2 is the thickness in mm of the central element in a connection with 3 or more elements.
• The minimum distances referred to "narrow face" are valid for minimum screw pull-through depth tpen = 10∙d1 .
TIMBER | TBS | 87
TBS SOFTWOOD
EN 14592
FLANGE HEAD SCREW SAW TIP Special self-perforating tip with serrated thread (SAW tip) that cuts the timber grains, facilitating initial grip and subsequent pull-through.
INTEGRATED WASHER The flange head serves as washer and ensures high head strength and pull-through. Ideal in the presence of wind or variations in timber dimensions.
LONGER THREAD Greater thread length (60%) to ensure superb joint closure and great versatility.
SOFTWOOD Optimised geometry for maximum performance on the most common construction timbers.
DIAMETER [mm]
6 6
8
LENGTH [mm]
40
80
16 400
SERVICE CLASS
SC1
SC2
SC3
SC4
ATMOSPHERIC CORROSIVITY
C1
C2
C3
C4
C5
WOOD CORROSIVITY
T1
T2
T3
T4
T5
MATERIAL
Zn
ELECTRO PLATED
1000
electrogalvanized carbon steel
FIELDS OF USE • • • • •
88 | TBS SOFTWOOD | TIMBER
timber based panels fibreboard and MDF panels solid timber glulam (Glued Laminated Timber) CLT and LVL
CODES AND DIMENSIONS d1
dK
[mm]
[mm]
6 TX 30
15,5
CODE
L
b
A
[mm]
[mm]
[mm]
pcs
d1
dK
[mm]
[mm]
CODE
L
b
A
[mm]
[mm]
[mm]
pcs
TBSS680
80
50
30
100
TBSS8180
180
100
80
50
TBSS6100
100
60
40
100
TBSS8200
200
100
100
50
TBSS6120
120
75
45
100
TBSS8220
220
100
120
50
TBSS6140
140
80
60
100
TBSS8240
240
100
140
50
TBSS6160
160
90
70
100
TBSS8260
260
100
160
50
TBSS8280
280
100
180
50
TBSS8300
300
100
200
50
TBSS8320
320
120
200
50
TBSS8340
340
120
220
50
TBSS8360
360
120
240
50
8 TX 40
19,0
TBSS8380
380
120
260
50
TBSS8400
400
120
280
50
GEOMETRY AND MECHANICAL CHARACTERISTICS
XXX
dK
S TB S
A
d2 d1 dS
b L
GEOMETRY Nominal diameter Head diameter Thread diameter Shank diameter Pre-drilling hole diameter (softwood)(1)
d1 dK d2 dS dV
[mm] [mm] [mm] [mm] [mm]
6 15,50 3,95 4,30 4,0
8 19,00 5,40 5,80 5,0
6 12,0 9,5 12,0 350 13,0 350
8 19,0 18,5 12,0 350 13,0 350
(1) For high density materials, pre-drilled holes are recommended based on the wood specie.
CHARACTERISTIC MECHANICAL PARAMETERS Nominal diameter Tensile strength Yield moment Withdrawal resistance parameter Associated density Head-pull-through parameter Associated density
d1 ftens,k My,k fax,k ρa fhead,k ρa
[mm] [kN] [Nm] [N/mm2] [kg/m3] [N/mm2] [kg/m3]
TIMBER FRAME & SIP PANELS Range of sizes designed for fastening applications of medium to large structural elements such as lightweight boards and frames up to SIP and Sandwich type panels.
TIMBER | TBS SOFTWOOD | 89
MINIMUM DISTANCES FOR SHEAR LOADS ρk ≤ 420 kg/m3
screws inserted WITHOUT pre-drilled hole
α=0°
F
d1
[mm]
F
6
8
d1
[mm]
α=90° 6
8
a1
[mm]
12∙d
72
96
a1
[mm]
5∙d
30
40
a2
[mm]
5∙d
30
40
a2
[mm]
5∙d
30
40
a3,t
[mm]
15∙d
90
120
a3,t
[mm]
10∙d
60
80
a3,c
[mm]
10∙d
60
80
a3,c
[mm]
10∙d
60
80
a4,t
[mm]
5∙d
30
40
a4,t
[mm]
10∙d
60
80
a4,c
[mm]
5∙d
30
40
a4,c
[mm]
5∙d
30
40
screws inserted WITH pre-drilled hole
α=0°
F
d1
[mm]
a1
[mm]
a2
[mm]
3∙d
a3,t
[mm]
12∙d
a3,c
[mm]
7∙d
a4,t
[mm]
a4,c
[mm]
F
α=90°
6
8
d1
[mm]
30
40
a1
[mm]
4∙d
18
24
a2
[mm]
4∙d
24
32
72
96
a3,t
[mm]
7∙d
42
56
42
56
a3,c
[mm]
7∙d
42
56
3∙d
18
24
a4,t
[mm]
7∙d
42
56
3∙d
18
24
a4,c
[mm]
3∙d
18
24
5∙d
6
8
24
32
α = load-to-grain angle d = d1 = nominal screw diameter stressed end -90° < α < 90°
a2 a2
unloaded end 90° < α < 270°
F a3,t
unload edge 180° < α < 360°
α
F α
α
a1 a1
stressed edge 0° < α < 180°
F α
a4,t
F a4,c
a3,c
NOTE on page 91.
EFFECTIVE NUMBER FOR SHEAR LOADS The load-bearing capacity of a connection made with several screws, all of the same type and size, may be lower than the sum of the load-bearing capacities of the individual connection system. For a row of n screws arranged parallel to the direction of the grain at a distance a1 , the characteristic effective load-bearing capacity is equal to:
Ref,V,k
a1 a1
Ref,V,k = nef RV,k
The nef value is given in the table below as a function of n and a1 .
n
2 3 4 5
4∙d 1,41 1,73 2,00 2,24
5∙d 1,48 1,86 2,19 2,49
6∙d 1,55 2,01 2,41 2,77
7∙d 1,62 2,16 2,64 3,09
( * ) For intermediate a values a linear interpolation is possible. 1
90 | TBS SOFTWOOD | TIMBER
8∙d 1,68 2,28 2,83 3,34
a 1( * ) 9∙d 1,74 2,41 3,03 3,62
10∙d 1,80 2,54 3,25 3,93
11∙d 1,85 2,65 3,42 4,17
12∙d 1,90 2,76 3,61 4,43
13∙d 1,95 2,88 3,80 4,71
≥ 14∙d 2,00 3,00 4,00 5,00
STRUCTURAL VALUES
CHARACTERISTIC VALUES EN 1995:2014 SHEAR
TENSION
timber-to-timber ε=90°
panel-to-timber
thread withdrawal
head pull-through
SPAN
geometry
A L b d1
d1
L
b
A
[mm] [mm] [mm] [mm] 80 50 30 100 60 40 6 120 75 45 140 80 60 160 90 70 180 100 80 200 100 100 220 100 120 240 100 140 260 100 160 280 100 180 8 300 100 200 320 120 200 340 120 220 360 120 240 380 120 260 400 120 280
RV,90,k
SPAN
RV,k
Rax,90,k
Rhead,k
[kN] 2,07 2,31 2,33 2,33 2,33 3,57 3,57 3,57 3,57 3,57 3,57 3,57 3,57 3,57 3,57 3,57 3,57
[mm]
[kN] 1,92 2,64 2,70 2,70 2,70 4,10 4,10 4,10 4,10 4,10 4,10 4,10 4,10 4,10 4,10 4,10 4,10
[kN] 3,89 4,66 5,83 6,22 6,99 10,36 10,36 10,36 10,36 10,36 10,36 10,36 12,43 12,43 12,43 12,43 12,43
[kN] 3,37 3,37 3,37 3,37 3,37 5,06 5,06 5,06 5,06 5,06 5,06 5,06 5,06 5,06 5,06 5,06 5,06
50
65
STRUCTURAL VALUES GENERAL PRINCIPLES
NOTES
• Characteristic values according to EN 1995:2014.
• The characteristic timber-to-timber shear strengths were evaluated by considering an angle ε of 90° between the grains of the second element and the connector.
• Design values can be obtained from characteristic values as follows:
Rd =
Rk kmod γM
The coefficients γM and kmod should be taken according to the current regulations used for the calculation. •
Mechanical strength values and screw geometry comply with CE marking according to EN 14592.
• Sizing and verification of the timber elements, panels and metal plates must be done separately. • The characteristic shear resistances are calculated for screws inserted without pre-drilling hole. In the case of screws inserted with pre-drilling hole, greater resistance values can be obtained. • The values in the table are independent of the load-to-grain angle.
• The characteristic panel-timber shear strengths were evaluated considering an angle ε of 90° between the grains of the timber element and the connector. • The characteristic thread withdrawal strength was evaluated by considering a 90° angle ε between the fibers of the timber element and the connector. • For the calculation process a timber characteristic density ρk = 385 kg/m3 has been considered. For different values of ρk , the strength values in the table (timber-to-timber shear, steel-to-timber shear and tensile) can be converted by means of the coefficient kdens.
R’V,k = kdens,v RV,k R’ax,k = kdens,ax Rax,k
• The screws must be positioned in accordance with the minimum distances.
R’head,k = kdens,ax Rhead,k
• The characteristic panel-timber shear strengths are calculated considering an OSB3 or OSB4 panel, as per EN 300, or a particle board panel, as per EN 312, with thickness SPAN.
[kg/m3 ]
C-GL
• The thread withdrawal characteristic strength has been evaluated considering a fixing length equal to b.
kdens,v kdens,ax
0,92
• The head pull-through characteristic strength was calculated using timber elements.
ρk
380
385
405
425
430
440
C24
C30
GL24h
GL26h
GL28h
GL30h
GL32h
0,90
0,98
1,00
1,02
1,05
1,05
1,07
0,98
1,00
1,04
1,08
1,09
1,11
350
Strength values thus determined may differ, for higher safety standards, from those resulting from an exact calculation.
MINIMUM DISTANCES NOTES • Minimum distances in accordance with EN 1995:2014. • The minimum spacing for all panel-to-timber connections (a1 , a2) can be multiplied by a coefficient of 0,85.
TIMBER | TBS SOFTWOOD | 91
TBS MAX
ETA-11/0030
UKTA-0836 22/6195
AC233 ESR-4645
XL FLANGE HEAD SCREW FLANGE HEAD OF INCREASED SIZE The oversized head provides excellent head pull-through strength and joint tightening capacity.
LONGER THREAD The oversized thread of the TBS MAX guarantees excellent withdrawal resistance and closing strength of the joint.
RIBBED FLOORS Thanks to its large head and oversized thread, it is the ideal screw in the production of ribbed floors (Rippendecke). Used in conjunction with SHARP METAL, it optimises the number of fasteners by avoiding the use of presses when gluing timber elements together.
3 THORNS TIP Thanks to the 3 THORNS tip, minimum installation distances are reduced. More screws can be used in less space and larger screws in smaller elements. Costs and time for project implementation are reduced.
BIT INCLUDED
DIAMETER [mm] LENGTH [mm]
tbs max
6
8
40
16 120
400
SERVICE CLASS
SC1
SC2
SC3
SC4
ATMOSPHERIC CORROSIVITY
C1
C2
C3
C4
C5
WOOD CORROSIVITY
T1
T2
T3
T4
T5
MATERIAL
Zn
ELECTRO PLATED
1000
electrogalvanized carbon steel
FIELDS OF USE • • • • • •
92 | TBS MAX | TIMBER
timber based panels fibreboard and MDF panels SIP and ribbed panels. solid timber and glulam CLT and LVL high density woods
ETA-11/0030
CODES AND DIMENSIONS d1
dK
[mm]
[mm]
8 TX 40
24,5
CODE
L
b
A
[mm]
[mm]
[mm]
120 160 180 200 220
100 120 120 120 120
20 40 60 80 100
TBSMAX8120 TBSMAX8160 TBSMAX8180 TBSMAX8200 TBSMAX8220
pcs 50 50 50 50 50
d1
dK
[mm]
[mm]
8 TX 40
24,5
CODE TBSMAX8240 TBSMAX8280 TBSMAX8320 TBSMAX8360 TBSMAX8400
L
b
A
[mm]
[mm]
[mm]
240 280 320 360 400
120 120 120 120 120
120 160 200 240 280
pcs 50 50 50 50 50
GEOMETRY AND MECHANICAL CHARACTERISTICS
XXX
dK
TBS
A
d2 d1 dS
b L
GEOMETRY Nominal diameter Head diameter Thread diameter Shank diameter Pre-drilling hole diameter(1) Pre-drilling hole diameter(2)
d1 dK d2 dS dV,S dV,H
[mm] [mm] [mm] [mm] [mm] [mm]
8 24,50 5,40 5,80 5,0 6,0
d1 ftens,k My,k
[mm] [kN] [Nm]
8 20,1 20,1
(1) Pre-drilling valid for softwood. (2) Pre-drilling valid for hardwood and beech LVL.
CHARACTERISTIC MECHANICAL PARAMETERS Nominal diameter Tensile strength Yield moment
softwood (softwood)
LVL softwood (LVL softwood)
pre-drilled beech LVL (beech LVL predrilled)
Withdrawal resistance parameter
fax,k
[N/mm2]
11,7
15,0
29,0
Head-pull-through parameter
fhead,k [N/mm2]
10,5
20,0
-
Associated density
ρa
[kg/m3]
350
500
730
Calculation density
ρk
[kg/m3]
≤ 440
410 ÷ 550
590 ÷ 750
For applications with different materials please see ETA-11/0030.
TBS MAX FOR RIB TIMBER With its increased thread (120 mm) and enlarged head (24,5 mm), the TBS MAX guarantees excellent grip and superb joint closure. Ideal for the production of ribbed floors (Rippendecke), optimising the number of fastenings.
SHARP METAL Ideal in combination with the SHARP METAL system, as the enlarged head guarantees excellent joint tightening, making the use of presses unnecessary when gluing wooden elements together.
TIMBER | TBS MAX | 93
MINIMUM DISTANCES FOR SHEAR LOADS | TIMBER ρk ≤ 420 kg/m3
screws inserted WITHOUT pre-drilled hole
α=0°
F
d1
[mm]
a1
[mm]
a2
[mm]
a3,t
[mm]
a3,c
[mm]
a4,t a4,c
F
α=90°
8
d1
[mm]
80
a1
[mm]
5∙d
40
a2
[mm]
5∙d
40
15∙d
120
a3,t
[mm]
10∙d
80
10∙d
80
a3,c
[mm]
10∙d
80
[mm]
5∙d
40
a4,t
[mm]
10∙d
80
[mm]
5∙d
40
a4,c
[mm]
5∙d
40
10∙d
8 5∙d
40
α = load-to-grain angle d = d1 = nominal screw diameter
screws inserted WITH pre-drilled hole
α=0°
F
d1
[mm]
a1
[mm]
5∙d
F
8
d1
[mm]
40
a1
[mm]
4∙d
α=90° 8 32
a2
[mm]
3∙d
24
a2
[mm]
4∙d
32
a3,t
[mm]
12∙d
96
a3,t
[mm]
7∙d
56
a3,c
[mm]
7∙d
56
a3,c
[mm]
7∙d
56
a4,t
[mm]
3∙d
24
a4,t
[mm]
7∙d
56
a4,c
[mm]
3∙d
24
a4,c
[mm]
3∙d
24
stressed edge 0° < α < 180°
unload edge 180° < α < 360°
α = load-to-grain angle d = d1 = nominal screw diameter stressed end -90° < α < 90°
a2 a2 a1 a1
unloaded end 90° < α < 270°
F α
α F a3,t
α F α
a4,t
F a4,c
a3,c
NOTES • Minimum distances are in accordance with EN 1995:2014 as per ETA-11/0030 considering a timber characteristic density of ρk ≤ 420 kg/m3. • The minimum spacing for all panel-to-timber connections (a1 , a2) can be multiplied by a coefficient of 0,85.
• The spacing a1 in the table for screws with 3 THORNS tip inserted without pre-drilling hole in timber elements with density ρk ≤ 420 kg/m3 and loadto-grain angle α=0° was assumed to be 10∙d based on experimental tests; alternatively, adopt 12∙d in accordance with EN 1995:2014.
• In the case of joints with elements in Douglas fir (Pseudotsuga menziesii), the minimum spacing and distances parallel to the grain must be multiplied by a coefficient of 1.5.
SHARP METAL STEEL HOOKED PLATES The joint between the two timber elements is made by the mechanical engagement of the metal hooks in the timber. The system is non-invasive can be uninstalled. www.rothoblaas.com
94 | TBS MAX | TIMBER
STRUCTURAL VALUES | TIMBER
CHARACTERISTIC VALUES EN 1995:2014 SHEAR panel-to-timber
thread withdrawal ε=90°
thread withdrawal ε=0°
head pull-through
RV,0,k
SPAN
Rax,90,k
Rax,0,k
Rhead,k
[mm]
timber-to-timber ε=90°
timber-to-timber ε=0°
RV,90,k
SPAN
geometry
TENSION
A L b d1
d1
L
b
A
[mm] [mm] [mm] [mm]
8
[kN]
[kN]
120
100
20
2,71
2,17
RV,k [kN]
[kN]
[kN]
[kN]
4,27
10,10
3,03
9,72
160
120
40
4,78
2,84
5,28
12,12
3,64
9,72
180
120
60
5,11
2,94
5,28
12,12
3,64
9,72
200
120
80
5,11
2,94
5,28
12,12
3,64
9,72
220
120
100
5,11
2,94
5,28
12,12
3,64
9,72
240
120
120
5,11
2,94
5,28
12,12
3,64
9,72
280
120
160
5,11
2,94
5,28
12,12
3,64
9,72
320
120
200
5,11
2,94
5,28
12,12
3,64
9,72
360
120
240
5,11
2,94
5,28
12,12
3,64
9,72
400
120
280
5,11
2,94
5,28
12,12
3,64
9,72
65
ε = screw-to-grain angle NOTES | TIMBER • The characteristic timber-to-timber shear strengths were evaluated considering both an ε angle of 90° (RV,90,k) and 0° (RV,0,k) between the grains of the second element and the connector. • The characteristic panel-timber shear strengths were evaluated considering an angle ε of 90° between the grains of the timber element and the connector. • The characteristic thread withdrawal resistances were evaluated considering both an ε angle of 90° (Rax,90,k) and of 0° (Rax,0,k) between the grains of the timber element and the connector. • For the calculation process a timber characteristic density ρk = 385 kg/m3 has been considered. For different ρk values, the strength on the table (timber-to-timber shear and tensile) can be converted by the kdens coefficient.
ρk
350
380
385
405
425
430
440
C-GL
C24
C30
GL24h
GL26h
GL28h
GL30h
GL32h
kdens,v
0,90
0,98
1,00
1,02
1,05
1,05
1,07
kdens,ax
0,92
0,98
1,00
1,04
1,08
1,09
1,11
[kg/m3 ]
Strength values thus determined may differ, for higher safety standards, from those resulting from an exact calculation.
GENERAL PRINCIPLES on page 97.
R’V,k = kdens,v RV,k R’ax,k = kdens,ax Rax,k R’head,k = kdens,ax Rhead,k
EFFECTIVE NUMBER FOR SHEAR LOADS The load-bearing capacity of a connection made with several screws, all of the same type and size, may be lower than the sum of the load-bearing capacities of the individual connection system. For a row of n screws arranged parallel to the direction of the grain at a distance a1 , the characteristic effective load-bearing capacity is equal to:
Ref,V,k
a1 a1
Ref,V,k = nef RV,k
The nef value is given in the table below as a function of n and a1 .
n
2 3 4 5
4∙d 1,41 1,73 2,00 2,24
5∙d 1,48 1,86 2,19 2,49
6∙d 1,55 2,01 2,41 2,77
7∙d 1,62 2,16 2,64 3,09
8∙d 1,68 2,28 2,83 3,34
a 1( * ) 9∙d 1,74 2,41 3,03 3,62
10∙d 1,80 2,54 3,25 3,93
11∙d 1,85 2,65 3,42 4,17
12∙d 1,90 2,76 3,61 4,43
13∙d 1,95 2,88 3,80 4,71
≥ 14∙d 2,00 3,00 4,00 5,00
( * ) For intermediate a values a linear interpolation is possible. 1
TIMBER | TBS MAX | 95
STRUCTURAL VALUES | CLT
CHARACTERISTIC VALUES EN 1995:2014 SHEAR
CLT-CLT lateral face
geometry
CLT-CLT lateral face-narrow face
A
panel-CLT lateral face
CLT-panel-CLT lateral face
t
SPAN
L
SPAN b d1
d1
L
b
A
RV,k
RV,k
SPAN
RV,k
SPAN
[mm]
[mm]
[mm]
[mm]
[kN]
[kN]
[mm]
[kN]
[mm] [mm]
8
t
RV,k [kN]
120
100
20
2,46
2,46
3,64
45
3,64
160
120
40
4,43
3,71
3,64
65
3,64
180
120
60
4,81
3,99
3,64
75
3,64
200
120
80
4,81
3,99
220
120
100
4,81
3,99
3,64 22
3,64
22
85
3,64
95
3,64
240
120
120
4,81
3,99
3,64
105
3,64
280
120
160
4,81
3,99
3,64
125
3,64
320
120
200
4,81
3,99
3,64
145
3,64
360
120
240
4,81
3,99
3,64
165
3,64
SHEAR geometry
TENSION
CLT-timber lateral face
timber-CLT narrow face
thread withdrawal narrow face
thread withdrawal narrow face
head pull-through
RV,k
RV,k
Rax,k
Rax,k
Rhead,k
A L b d1
d1
L
b
A
[mm]
[mm]
[mm]
[mm]
[kN]
[kN]
[kN]
[kN]
[kN]
120
100
20
2,46
2,71
9,36
6,66
9,00
160
120
40
4,50
3,91
11,23
7,85
9,00
180
120
60
4,87
4,02
11,23
7,85
9,00
8
200
120
80
4,87
4,02
11,23
7,85
9,00
220
120
100
4,87
4,02
11,23
7,85
9,00
240
120
120
4,87
4,02
11,23
7,85
9,00
280
120
160
4,87
4,02
11,23
7,85
9,00
320
120
200
4,87
4,02
11,23
7,85
9,00
360
120
240
4,87
4,02
11,23
7,85
9,00
NOTES and GENERAL PRINCIPLES on page 97.
96 | TBS MAX | TIMBER
MINIMUM DISTANCES FOR SHEAR AND AXIAL LOADS | CLT screws inserted WITHOUT pre-drilled hole
lateral face
narrow face
d1
[mm]
8
d1
[mm]
a1
[mm]
4∙d
32
a1
[mm]
10∙d
80
8
a2
[mm]
2,5∙d
20
a2
[mm]
4∙d
32
a3,t
[mm]
6∙d
48
a3,t
[mm]
12∙d
96
a3,c
[mm]
6∙d
48
a3,c
[mm]
7∙d
56
a4,t
[mm]
6∙d
48
a4,t
[mm]
6∙d
48
a4,c
[mm]
2,5∙d
20
a4,c
[mm]
3∙d
24
d = d1 = nominal screw diameter
a2 a2
a3,c
a4,t α
F
a4,c
F
a4,c α
a1
a3,t
a3,c
a4,c
tCLT
a3,t
F a3,c a4,c a4,t
F
tCLT
NOTES • The minimum distances are compliant with ETA-11/0030 and are to be considered valid unless otherwise specified in the technical documents for the CLT panels.
• The minimum distances referred to "narrow face" are valid for minimum screw pull-through depth tpen = 10∙d1 .
• Minimum distances are valid for minimum CLT thickness tCLT,min =10∙d1 .
STRUCTURAL VALUES GENERAL PRINCIPLES
NOTES | CLT
• Characteristic values consistent with EN 1995:2014 and in accordance with ETA-11/0030.
• The characteristic values are according to the national specifications ÖNORM EN 1995 - Annex K.
• Design values can be obtained from characteristic values as follows:
• For the calculation process, a mass density of ρ k = 350 kg/m3 has been considered for CLT elements and a mass density of ρ k = 385 kg/m3 has been considered for timber elements.
Rd =
Rk kmod γM
The coefficients γM and kmod should be taken according to the current regulations used for the calculation. • For the mechanical resistance values and the geometry of the screws, reference was made to ETA-11/0030. • Sizing and verification of the timber elements and panels must be done separately.
• The characteristics shear resistance are calculated considering a minimum fixing length of 4 d1 . • The characteristic shear strength is independent from the direction of the grain of the CLT panels outer layer. • The axial thread withdrawal resistance is valid for minimum CLT thickness tCLT,min = 10∙d1 and minimum screw pull-through depth tpen = 10∙d1 .
• The characteristic shear resistances are calculated for screws inserted without pre-drilling hole. In the case of screws inserted with pre-drilling hole, greater resistance values can be obtained. • The screws must be positioned in accordance with the minimum distances. • The characteristic panel-timber shear strengths are calculated considering an OSB panel or particle board with a SPAN thickness. • The thread withdrawal characteristic strength has been evaluated considering a fixing length equal to b. • The head pull-through characteristic strength was calculated using timber elements. • For different calculation configurations, the MyProject software is available (www.rothoblaas.com).
TIMBER | TBS MAX | 97
TBS FRAME
AC233 ESR-4645
FLAT FLANGE HEAD SCREW FLAT FLANGE HEAD The flange head ensures excellent tightening capacity of the joint; the flat shape allows a joint without additional thickness on the wooden surface, thus enabling the fixing of plates on the same element without interference.
SHORT THREAD The short, fixed-length thread at 1 1/3" (34 mm) is optimised for fastening multi-layer elements (Multi-ply) for lightweight frame construction.
BLACK E-COATING Coated with black E-coating for easy recognition on site and increased corrosion resistance.
3 THORNS TIP TBSF is easily installed without pre-drilling hole. More screws can be used in less space and larger screws in smaller elements.
BIT INCLUDED
DIAMETER [mm]
6
8
LENGTH [mm]
40
73
16 175
1000
SERVICE CLASS
SC1
SC2
SC3
SC4
ATMOSPHERIC CORROSIVITY
C1
C2
C3
C4
C5
WOOD CORROSIVITY
T1
T2
T3
T4
T5
MATERIAL
C5
Zn
E-COATING
electrogalvanised carbon steel with black E-Coating
FIELDS OF USE • • • • •
98 | TBS FRAME | TIMBER
timber based panels solid timber and glulam CLT and LVL high density woods multilayer lattice beams
ETA-11/0030
CODES AND DIMENSIONS d1
dK
[mm]
[mm]
8 TX 40
19
CODE
L
b
T
L
b
T
[mm]
[mm]
[mm]
[in]
[in]
[in]
pcs
TBSF873
73
34
76
2 7/8''
1 5/16''
3''
50
TBSF886
86
34
90
3 3/8''
1 5/16''
3 1/2''
50
TBSF898
98
34
102
3 7/8''
1 5/16''
4''
50
TBSF8111
111
34
114
4 3/8''
1 5/16''
4 1/2''
50
TBSF8130
130
34
134
5 1/8''
1 5/16''
5 1/4''
50
TBSF8149
149
34
152
5 7/8''
1 5/16''
6''
50
TBSF8175
175
34
178
6 7/8''
1 5/16''
7''
50
GEOMETRY AND MECHANICAL CHARACTERISTICS
T
XXX
dK
BSF
T
d2 d1 dS
b L
Nominal diameter Head diameter Thread diameter Shank diameter Pre-drilling hole diameter(1) Pre-drilling hole diameter(2) Characteristic tensile strength Characteristic yield moment
d1 dK d2 dS dV,S dV,H ftens,k My,k
[mm] [mm] [mm] [mm] [mm] [mm] [kN] [Nm]
8 19,00 5,40 5,80 5,0 6,0 20,1 20,1
(1) Pre-drilling valid for softwood. (2) Pre-drilling valid for hardwood and beech LVL.
softwood (softwood)
LVL softwood (LVL softwood)
pre-drilled beech LVL (beech LVL predrilled)
Characteristic withdrawal resistance parameter
fax,k
[N/mm2]
11,7
15,0
29,0
Characteristic head-pull-through parameter
fhead,k [N/mm2]
10,5
20,0
-
Associated density
ρa
[kg/m3]
350
500
730
Calculation density
ρk
[kg/m3]
≤ 440
410 ÷ 550
590 ÷ 750
For applications with different materials please see ETA-11/0030.
MULTILAYER LATTICE It is available in optimised lengths for fastening 2-, 3- and 4-layer lattice elements of the most common solid timber and LVL dimensions.
TIMBER | TBS FRAME | 99
MINIMUM DISTANCES FOR SHEAR LOADS | TIMBER ρk ≤ 420 kg/m3
screws inserted WITHOUT pre-drilled hole
α=0°
F
d1 a1 a2 a3,t a3,c a4,t a4,c
[mm] [mm] [mm] [mm] [mm] [mm] [mm]
F
8 80 40 120 80 40 40
10∙d 5∙d 15∙d 10∙d 5∙d 5∙d
d1 a1 a2 a3,t a3,c a4,t a4,c
[mm] [mm] [mm] [mm] [mm] [mm] [mm]
α=90° 8 40 40 80 80 80 40
5∙d 5∙d 10∙d 10∙d 10∙d 5∙d
screws inserted WITH pre-drilled hole
α=0°
F
d1 a1 a2 a3,t a3,c a4,t a4,c
[mm] [mm] [mm] [mm] [mm] [mm] [mm]
F
8 40 24 96 56 24 24
5∙d 3∙d 12∙d 7∙d 3∙d 3∙d
d1 a1 a2 a3,t a3,c a4,t a4,c
[mm] [mm] [mm] [mm] [mm] [mm] [mm]
α=90°
4∙d 4∙d 7∙d 7∙d 7∙d 3∙d
8 32 32 56 56 56 24
stressed edge 0° < α < 180°
unload edge 180° < α < 360°
α = load-to-grain angle d = d1 = nominal screw diameter stressed end -90° < α < 90°
a2 a2 a1 a1
unloaded end 90° < α < 270°
F α
α F a3,t
α F α
a4,t
F a4,c
a3,c
NOTES • The minimum distances comply with the EN 1995:2014 standard in accordance with ETA-11/0030. • In the case of joints with elements in Douglas fir (Pseudotsuga menziesii), the minimum spacing and distances parallel to the grain must be multiplied by a coefficient of 1.5.
• The spacing a1 in the table for screws with 3 THORNS tip inserted without pre-drilling hole in timber elements with density ρk ≤ 420 kg/m3 and loadto-grain angle α=0° was assumed to be 10∙d based on experimental tests; alternatively, adopt 12∙d in accordance with EN 1995:2014. • For minimum distances on LVL see TBS on page 81.
APPLICATION EXAMPLES: LIGHTWEIGHT FRAME
screw: TBSF873
screw: TBSF8111
screw: TBSF8149
timber element: 2 x 38 mm (1 1/2'')
timber element: 3 x 38 mm (1 1/2'')
timber element: 4 x 38 mm (1 1/2'')
total thickness:
total thickness: 114 mm (4 1/2'')
total thickness: 152 mm (6 '')
76 mm (3 '')
100 | TBS FRAME | TIMBER
STRUCTURAL VALUES | TIMBER
CHARACTERISTIC VALUES EN 1995:2014 SHEAR
TENSION
timber-to-timber ε=90°
geometry
A L
thread withdrawal ε=90°
thread withdrawal ε=0°
head pull-through
Rax,90,k [kN] 3,43 3,43 3,43 3,43 3,43 3,43 3,43
Rax,0,k [kN] 1,03 1,03 1,03 1,03 1,03 1,03 1,03
Rhead,k [kN] 4,09 4,09 4,09 4,09 4,09 4,09 4,09
A T
A
b d1
d1 L b T T A A [mm] [mm] [mm] [mm] [in] [mm] [in] 73 34 76 3'' 38 1 1/2'' 86 34 90 3 1/2'' 45 1 3/4'' 98 34 102 4'' 51 2'' 111 34 114 4 1/2'' 57 2 1/4'' 8 130 34 134 5 1/4'' 67 2 5/8'' 149 34 152 6'' 76 3'' 175 34 178 7'' 89 3 1/2''
RV,90,k [kN] 2,91 3,27 3,51 3,54 3,54 3,54 3,54
STRUCTURAL VALUES | LVL SHEAR LVL-LVL ε=90°
geometry
A L
TENSION thread withdrawal ε=90°
thread withdrawal ε=0°
head pull-through
Rax,90,k [kN] 3,95 3,95 3,95 3,95 3,95 3,95 3,95
Rax,0,k [kN] 2,63 2,63 2,63 2,63 2,63 2,63 2,63
Rhead,k [kN] 6,99 6,99 6,99 6,99 6,99 6,99 6,99
A T
A
b d1
d1 L b T T A A [mm] [mm] [mm] [mm] [in] [mm] [in] 73 34 76 3'' 38 1 1/2'' 86 34 90 3 1/2'' 45 1 3/4'' 98 34 102 4'' 51 2'' 111 34 114 4 1/2'' 57 2 1/4'' 8 130 34 134 5 1/4'' 67 2 5/8'' 149 34 152 6'' 76 3'' 175 34 178 7'' 89 3 1/2''
RV,90,k [kN] 3,54 3,90 3,98 3,98 3,98 3,98 3,98
ε = screw-to-grain angle GENERAL PRINCIPLES
NOTES | TIMBER
• Characteristic values comply with the EN 1995:2014 standard in accordance with ETA-11/0030.
• The characteristic timber-to-timber shear strengths were evaluated considering an angle ε of 90° (RV,90,k) between the grains of the second element and the connector.
• Design values can be obtained from characteristic values as follows:
Rd =
Rk kmod γM
The coefficients γM and kmod should be taken according to the current regulations used for the calculation. • For the mechanical resistance values and the geometry of the screws, reference was made to ETA-11/0030. • Dimensioning and verification of the timber elements must be carried out separately.
• The characteristic thread withdrawal resistances were evaluated considering both an ε angle of 90° (Rax,90,k) and of 0° (Rax,0,k) between the grains of the timber element and the connector. • For the calculation process a timber characteristic density ρk = 385 kg/m3 has been considered. For different ρk values, the strength values in the table can be converted by the kdens coefficient (see page 87). • For a row of n screws arranged parallel to the direction of the grain at a distance a1 , the characteristic effective shear bearing capacity Ref,V,k can be calculated by means of the effective number nef (see page 80).
• The screws must be positioned in accordance with the minimum distances. • The characteristic shear resistances are calculated for screws inserted without pre-drilling hole. In the case of screws inserted with pre-drilling hole, greater resistance values can be obtained. • The characteristic shear strengths were evaluated by considering the threaded part fully inserted in the second element. • The thread withdrawal characteristic strength has been evaluated considering a fixing length equal to b. • The head pull-through characteristic strength was calculated using timber elements.
NOTES | LVL • For the calculation process a mass density equal to ρk = 480 kg/m3 has been considered for softwood LVL elements. • The characteristic shear strengths are evaluated for connectors inserted on the side face (wide face) considering, for individual timber elements, a 90° angle between the connector and the grain, a 90° angle between the connector and the side face of the LVL element and a 0° angle between the force and the grain. • The axial thread-withdrawal resistance was calculated considering a 90° angle between the grains and the connector.
TIMBER | TBS FRAME | 101
TBS EVO
ETA-11/0030
UKTA-0836 22/6195
AC233 | AC257 ESR-4645
FLANGE HEAD SCREW C4 EVO COATING Multilayer coating with a surface treatment of epoxy resin and aluminium flakes. No rust after 1440 hours of salt spray exposure test, as per ISO 9227. Can be used in service class 3 outdoor applications and under class C4 atmospheric corrosion conditions.
INTEGRATED WASHER The flange head serves as washer and ensures high head strength and pullthrough. Ideal in the presence of wind or variations in timber dimensions.
AUTOCLAVE-TREATED TIMBER The C4 EVO coating has been certified according to US acceptance criterion AC257 for outdoor use in ACQ-treated wood.
T3 TIMBER CORROSIVITY Coating suitable for use in applications on wood with an acidity level (pH) greater than 4, such as spruce, larch and pine (see page 314).
BIT INCLUDED
DIAMETER [mm]
6 6
LENGTH [mm]
40
10
16
60
400
SERVICE CLASS
SC1
SC2
SC3
SC4
ATMOSPHERIC CORROSIVITY
C1
C2
C3
C4
C5
WOOD CORROSIVITY
T1
T2
T3
T4
T5
MATERIAL
C4
EVO COATING
1000
carbon steel with C4 EVO coating
FIELDS OF USE • • • • •
102 | TBS EVO | TIMBER
timber based panels solid timber and glulam CLT and LVL high density woods ACQ, CCA treated timber
ETA-11/0030
OUTDOOR WALKWAYS Ideal for the construction of outdoor structures such as walkways and arcades. Values also certified for screw insertion parallel to the grain. Ideal for fastening aggressive woods containing tannins.
SIP PANELS Values also tested, certified and calculated for CLT and high density woods such as Microllam® LVL. Suitable for fastening SIP and sandwich panels.
TIMBER | TBS EVO | 103
Fastening Wood Trusses outdoors.
Multi-ply beam fastening.
GEOMETRY AND MECHANICAL CHARACTERISTICS
XXX
dK
TBS
A
dK d2 d1
dS
dK
b
Ø6 - Ø8
L
Ø10
GEOMETRY Nominal diameter
d1
[mm]
6
8
10
Head diameter
dK
[mm]
15,50
19,00
25,00
Thread diameter
d2
[mm]
3,95
5,40
6,40
Shank diameter
dS
[mm]
4,30
5,80
7,00
Pre-drilling hole diameter(1)
dV,S
[mm]
4,0
5,0
6,0
Pre-drilling hole diameter(2)
dV,H
[mm]
4,0
6,0
7,0
10
(1) Pre-drilling valid for softwood. (2) Pre-drilling valid for hardwood and beech LVL.
CHARACTERISTIC MECHANICAL PARAMETERS Nominal diameter
d1
[mm]
6
8
Tensile strength
ftens,k
[kN]
11,3
20,1
31,4
Yield moment
My,k
[Nm]
9,5
20,1
35,8
softwood (softwood)
LVL softwood (LVL softwood)
pre-drilled beech LVL (beech LVL predrilled)
Withdrawal resistance parameter
fax,k
[N/mm2]
11,7
15,0
29,0
Head-pull-through parameter
fhead,k [N/mm2]
10,5
20,0
-
Associated density
ρa
[kg/m3]
350
500
730
Calculation density
ρk
[kg/m3]
≤ 440
410 ÷ 550
590 ÷ 750
For applications with different materials please see ETA-11/0030.
104 | TBS EVO | TIMBER
CODES AND DIMENSIONS d1
dK
[mm]
[mm]
6 TX 30
8 TX 40
15,5
19,0
CODE TBSEVO660 TBSEVO680 TBSEVO6100 TBSEVO6120 TBSEVO6140 TBSEVO6160 TBSEVO6180 TBSEVO6200 TBSEVO8100 TBSEVO8120 TBSEVO8140 TBSEVO8160 TBSEVO8180 TBSEVO8200 TBSEVO8220 TBSEVO8240 TBSEVO8280 TBSEVO8320 TBSEVO8360 TBSEVO8400
L
b
A
[mm]
[mm]
[mm]
60 80 100 120 140 160 180 200 100 120 140 160 180 200 220 240 280 320 360 400
40 50 60 75 75 75 75 75 52 80 80 100 100 100 100 100 100 100 100 100
20 30 40 45 65 85 105 125 48 40 60 60 80 100 120 140 180 220 260 300
pcs 100 100 100 100 100 100 100 100 50 50 50 50 50 50 50 50 50 50 50 50
d1
dK
[mm]
[mm]
10 TX 50
25,0
CODE TBSEVO10120 TBSEVO10140 TBSEVO10160 TBSEVO10180 TBSEVO10200 TBSEVO10220 TBSEVO10240 TBSEVO10280
L
b
A
[mm]
[mm]
[mm]
120 140 160 180 200 220 240 280
60 60 80 80 100 100 100 100
60 80 80 100 100 120 140 180
pcs 50 50 50 50 50 50 50 50
WBAZ WASHER D1 H
D2
CODE WBAZ25A2
screw
D2
H
D1
[mm]
[mm]
[mm]
[mm]
6,0 - 6,5
25
15
6,5
pcs 100
INSTALLATION
A
TBS EVO + WBAZ ØxL 6 x 60 6 x 80 6 x 100 6 x 120 6 x 140 6 x 160 6 x 180 6 x 200
A
Correct tightening
Excessive tightening
fastening package [mm] min. 0 - max. 30 min. 10 - max. 50 min. 30 - max. 70 min. 50 - max. 90 min. 70 - max. 110 min. 90 - max. 130 min. 110 - max. 150 min. 130 - max. 170
Insufficient tightening
Tightening off axis
NOTE: The thickness of the washer after installation is approximately 8-9 mm. The maximum thickness of the fastening package was calculated by ensuring a minimum penetration length into the wood of 4∙d.
FASTENING METAL SHEET Can be installed on sheets up to 0,7 mm thick without pre-drilling. TBS EVO Ø6 mm is ideal when used in combination with washer WBAZ. For outdoor use (Service class 3).
TIMBER | TBS EVO | 105
MINIMUM DISTANCES FOR SHEAR LOADS ρk ≤ 420 kg/m3
screws inserted WITHOUT pre-drilled hole
α=0°
F
d1
[mm]
a1
[mm]
a2
[mm]
5∙d
30
a3,t
[mm]
15∙d
90
a3,c
[mm]
10∙d
60
a4,t
[mm]
5∙d
30
a4,c
[mm]
5∙d
30
10∙d
F
α=90°
6
8
10
d1
[mm]
60
80
100
a1
[mm]
40
50
a2
[mm]
5∙d
30
40
50
120
150
a3,t
[mm]
10∙d
60
80
100
80
100
a3,c
[mm]
10∙d
60
80
100
40
50
a4,t
[mm]
10∙d
60
80
100
40
50
a4,c
[mm]
5∙d
30
40
50
5∙d
6
8
10
30
40
50
420 kg/m3 < ρk ≤ 500 kg/m3
screws inserted WITHOUT pre-drilled hole
α=0°
F
d1
[mm]
a1
[mm]
a2
[mm]
7∙d
42
a3,t
[mm]
20∙d
120
a3,c
[mm]
15∙d
90
120
a4,t
[mm]
7∙d
42
56
a4,c
[mm]
7∙d
42
56
15∙d
F
α=90°
6
8
10
d1
[mm]
90
120
150
a1
[mm]
56
70
a2
[mm]
7∙d
42
56
70
160
200
a3,t
[mm]
15∙d
90
120
150
150
a3,c
[mm]
15∙d
90
120
150
70
a4,t
[mm]
12∙d
72
96
120
70
a4,c
[mm]
7∙d
42
56
70
7∙d
6
8
10
42
56
70
screws inserted WITH pre-drilled hole
α=0°
F
d1
[mm]
a1
[mm]
a2
[mm]
3∙d
18
a3,t
[mm]
12∙d
72
a3,c
[mm]
7∙d
42
a4,t
[mm]
3∙d
a4,c
[mm]
3∙d
5∙d
F
6
8
10
d1
[mm]
30
40
50
a1
[mm]
4∙d
24
30
a2
[mm]
4∙d
96
120
a3,t
[mm]
7∙d
56
70
a3,c
[mm]
7∙d
18
24
30
a4,t
[mm]
18
24
30
a4,c
[mm]
α=90° 6
8
10
24
32
40
24
32
40
42
56
70
42
56
70
7∙d
42
56
70
3∙d
18
24
30
α = load-to-grain angle d = d1 = nominal screw diameter stressed end -90° < α < 90°
a2 a2 a1 a1
unloaded end 90° < α < 270°
F α
α F a3,t
stressed edge 0° < α < 180°
unload edge 180° < α < 360°
α F α
a4,t
F a4,c
a3,c
NOTES • The minimum distances comply with the EN 1995:2014 standard in accordance with ETA-11/0030. • The minimum spacing for all panel-to-timber connections (a1 , a2) can be multiplied by a coefficient of 0,85. • In the case of joints with elements in Douglas fir (Pseudotsuga menziesii), the minimum spacing and distances parallel to the grain must be multiplied by a coefficient of 1.5.
106 | TBS EVO | TIMBER
• The spacing a1 in the table for screws with 3 THORNS tip inserted without pre-drilling hole in timber elements with density ρk ≤ 420 kg/m3 and loadto-grain angle α=0° was assumed to be 10∙d based on experimental tests; alternatively, adopt 12∙d in accordance with EN 1995:2014.
STRUCTURAL VALUES | TIMBER
CHARACTERISTIC VALUES EN 1995:2014 SHEAR
timber-to-timber ε=90°
timber-to-timber ε=0°
RV,90,k [kN] 1,89 2,15 2,35 2,35 2,35 2,35 2,35 2,35 3,71 3,41 3,71 3,71 3,71 3,71 3,71 3,71 3,71 3,71 3,71 3,71 5,64 5,64 5,64 5,64 5,64 5,64 5,64 5,64
RV,0,k [kN] 1,02 1,37 1,58 1,69 1,69 1,69 1,69 1,69 1,95 2,54 2,61 2,79 2,79 2,79 2,79 2,79 2,79 2,79 2,79 2,79 2,75 2,75 3,28 3,28 3,87 3,87 3,87 3,87
panel-to-timber
thread withdrawal ε=90°
thread withdrawal ε=0°
head pull-through
Rax,90,k [kN] 3,03 3,79 4,55 5,68 5,68 5,68 5,68 5,68 5,25 8,08 8,08 10,10 10,10 10,10 10,10 10,10 10,10 10,10 10,10 10,10 7,58 7,58 10,10 10,10 12,63 12,63 12,63 12,63
Rax,0,k [kN] 0,91 1,14 1,36 1,70 1,70 1,70 1,70 1,70 1,58 2,42 2,42 3,03 3,03 3,03 3,03 3,03 3,03 3,03 3,03 3,03 2,27 2,27 3,03 3,03 3,79 3,79 3,79 3,79
Rhead,k [kN] 2,72 2,72 2,72 2,72 2,72 2,72 2,72 2,72 4,09 4,09 4,09 4,09 4,09 4,09 4,09 4,09 4,09 4,09 4,09 4,09 7,08 7,08 7,08 7,08 7,08 7,08 7,08 7,08
SPAN
geometry
TENSION
A L b d1
d1 L b A [mm] [mm] [mm] [mm] 60 40 20 80 50 30 100 60 40 120 75 45 6 140 75 65 160 75 85 180 75 105 200 75 125 100 52 48 120 80 40 140 80 60 160 100 60 180 100 80 200 100 100 8 220 100 120 240 100 140 280 100 180 320 100 220 360 100 260 400 100 300 120 60 60 140 60 80 160 80 80 180 80 100 10 200 100 100 220 100 120 240 100 140 280 100 180
SPAN [mm]
50
65
80
RV,k [kN] 2,14 2,50 2,50 2,50 2,50 2,50 2,50 3,22 3,89 3,89 3,89 3,89 3,89 3,89 3,89 3,89 3,89 3,89 3,89 5,84 5,85 5,85 5,85 5,85 5,85 5,85
ε = screw-to-grain angle GENERAL PRINCIPLES • Characteristic values consistent with EN 1995:2014 and in accordance with ETA-11/0030.
• For minimum distances and structural values on CLT and LVL see TBS on page 76.
• Design values can be obtained from characteristic values as follows:
• For different calculation configurations, the MyProject software is available (www.rothoblaas.com).
Rk kmod Rd = γM The coefficients γM and kmod should be taken according to the current regulations used for the calculation. • For the mechanical resistance values and the geometry of the screws, reference was made to ETA-11/0030. • Sizing and verification of the timber elements and panels must be done separately. • The screws must be positioned in accordance with the minimum distances. • The characteristic shear resistances are calculated for screws inserted without pre-drilling hole. In the case of screws inserted with pre-drilling hole, greater resistance values can be obtained. • Shear strengths were calculated considering the threaded part fully inserted in the second element. • The characteristic panel-timber shear strength are calculated considering an OSB panel or particle board with a SPAN thickness and density ρk = 500 kg/m3. • The thread withdrawal characteristic strength has been evaluated considering a fixing length equal to b.
NOTES • The characteristic timber-to-timber shear strengths were evaluated considering both an ε angle of 90° (RV,90,k) and 0° (RV,0,k) between the grains of the second element and the connector. • The characteristic panel-timber shear strengths were evaluated considering an angle ε of 90° between the grains of the timber element and the connector. • The characteristic thread withdrawal resistances were evaluated considering both an ε angle of 90° (Rax,90,k) and of 0° (Rax,0,k) between the grains of the timber element and the connector. • For the calculation process a timber characteristic density ρk = 385 kg/m3 has been considered. For different ρk values, the strength values in the table (timber-to-timber shear and tensile strength) can be converted using the kdens coefficient (see page 87). • For a row of n screws arranged parallel to the direction of the grain at a distance a1 , the characteristic effective shear bearing capacity Ref,V,k can be calculated by means of the effective number nef (see page 80).
• The head pull-through characteristic strength was calculated using timber elements.
TIMBER | TBS EVO | 107
TBS EVO C5
AC233 ESR-4645
ETA-11/0030
FLANGE HEAD SCREW C5 ATMOSPHERIC CORROSIVITY Multi-layer coating capable of withstanding outdoor environments classified C5 according to ISO 9223. SST (Salt Spray Test) with exposure time greater than 3000h carried out on screws previously screwed and unscrewed in Douglas fir timber.
MAXIMUM STRENGTH It is the screw of choice when high mechanical performance is required under very adverse environmental and wood corrosive conditions. The wide head provides additional tensile strength, which is ideal in the presence of wind or variations in timber dimensions.
3 THORNS TIP Thanks to the 3 THORNS tip, minimum installation distances are reduced. More screws can be used in less space and larger screws in smaller elements. Costs and time for project implementation are reduced.
BIT INCLUDED
LENGTH [mm] 6 6
tbs evo c5
8
16
DIAMETER [mm] 40
60
240
1000
SERVICE CLASS SC1
SC2
SC3
SC4
ATMOSPHERIC CORROSIVITY C1
C2
C3
C4
C5
WOOD CORROSIVITY T1
T2
T3
T4
T5
MATERIAL
C5
C5
EVO COATING
carbon steel with C5 EVO coating with very high corrosion resistance
FIELDS OF USE • • • •
108 | TBS EVO C5 | TIMBER
timber based panels solid timber and glulam CLT and LVL high density woods
CODES AND DIMENSIONS d1
dK
[mm]
[mm]
6 TX 30
15,5
CODE
L
b
A
pcs
[mm] [mm] [mm] TBSEVO660C5 TBSEVO680C5 TBSEVO6100C5 TBSEVO6120C5 TBSEVO6140C5 TBSEVO6160C5 TBSEVO6180C5 TBSEVO6200C5
60 80 100 120 140 160 180 200
40 50 60 75 75 75 75 75
20 30 40 45 65 85 105 125
100 100 100 100 100 100 100 100
d1
dK
[mm]
[mm]
8 TX 40
CODE
L
b
A
pcs
[mm] [mm] [mm] TBSEVO8100C5 TBSEVO8120C5 TBSEVO8140C5 TBSEVO8160C5 TBSEVO8180C5 TBSEVO8200C5 TBSEVO8220C5 TBSEVO8240C5
19,0
100 120 140 160 180 200 220 240
52 80 80 100 100 100 100 100
48 40 60 60 80 100 120 140
50 50 50 50 50 50 50 50
GEOMETRY AND MECHANICAL CHARACTERISTICS
XXX
dK
TBS
A
d2 d1 dS
b L
Nominal diameter Head diameter Thread diameter
d1 dK d2
[mm] [mm] [mm]
6 15,50 3,95
8 19,00 5,40
Shank diameter
dS
[mm]
4,30
5,80
Pre-drilling hole diameter(1) Pre-drilling hole diameter(2) Characteristic tensile strength Characteristic yield moment
dV,S dV,H ftens,k My,k
[mm] [mm] [kN] [Nm]
4,0 4,0 11,3 9,5
5,0 6,0 20,1 20,1
(1) Pre-drilling valid for softwood. (2) Pre-drilling valid for hardwood and beech LVL.
Withdrawal resistance parameter Head-pull-through parameter Associated density Calculation density
softwood (softwood)
LVL softwood (LVL softwood)
pre-drilled beech LVL (beech LVL predrilled)
[N/mm2]
11,7
15,0
29,0
fhead,k [N/mm2]
10,5
20,0
-
ρa ρk
350 ≤ 440
500 410 ÷ 550
730 590 ÷ 750
fax,k
[kg/m3] [kg/m3]
For applications with different materials please see ETA-11/0030.
C5
For minimum distances and structural values see TBS EVO on page 102.
LIGHT FRAME & MASS TIMBER The extensive size range allows a wide variety of applications: from lightweight and lattice frames to the joining of engineered timbers such as LVL and CLT, in the aggressive environments that characterise atmospheric class C5.
TIMBER | TBS EVO C5 | 109
KOP
EN 14592
COACH SCREW DIN571 CE MARKING Screws with the CE mark, in accordance with EN 14592.
HEXAGONAL HEAD Appropriate for use on plates in steel-to-timber applications, thanks to its hexagonal head.
OUTDOOR VERSION Also available in stainless steel A2 | AISI304 for outdoor use (service class 3).
DIAMETER [mm]
6
LENGTH [mm]
40
8
16 16
50
400
AI571
1000
MATERIAL
Zn
electrogalvanized carbon steel
A2
SC1 A2 | AISI304 austenitic stainless steel (CRC II)C1
ELECTRO PLATED
SC1
SC2 C1
SC3 T1 C2
SC4 T2 C3
T3 C4
SC2 T1 C2
SC3 T2 C3
SC4 T3 C4
T4 C5
T5
T4 C5
T5
KOP AISI 304
FIELDS OF USE • • • • •
110 | KOP | TIMBER
timber based panels fibreboard and MDF panels solid timber glulam (Glued Laminated Timber) CLT, LVL
CODES AND DIMENSIONS
Zn
KOP d1
ELECTRO PLATED
CODE
[mm]
8 SW 13
10 SW 17
12 SW 19
L
pcs
[mm]
d1
CODE
[mm]
L
pcs
[mm]
KOP850( * )
50
100
KOP12150
150
25
KOP860
60
100
KOP12160
160
25
KOP870
70
100
KOP12180
180
25
KOP880
80
100
KOP12200
200
25
KOP8100
100
50
KOP12220
220
25
KOP8120
120
50
KOP12240
240
25
KOP8140
140
50
KOP12260
260
25
KOP8160
160
50
KOP12280
280
25
KOP8180
180
50
KOP12300
300
25
KOP8200
200
50
KOP12320
320
25
KOP1050( * )
50
50
KOP12340
340
25
KOP1060( * )
60
50
KOP12360
360
25
KOP1080
80
50
KOP12380
380
25
KOP10100
100
50
KOP12400
400
25
80
25
100
25
12 SW 19
KOP10120
120
50
KOP1680( * )
KOP10140
140
50
KOP16100( * )
KOP10150
150
50
KOP16120
120
25
KOP10160
160
50
KOP16140
140
25
KOP10180
180
50
KOP16150
150
25
KOP10200
200
50
KOP16160
160
25
KOP10220
220
50
KOP16180
180
25
KOP10240
240
50
KOP16200
200
25
KOP10260
260
50
KOP16220
25
KOP10280
280
50
16 SW 24 KOP16240
220 240
25
KOP10300
300
50
KOP16260
260
25
KOP1250( * )
50
50
KOP16280
280
25
KOP1260( * )
60
50
KOP16300
300
25
KOP1270( * )
70
50
KOP16320
320
25
KOP1280
80
50
KOP16340
340
25
KOP1290
90
50
KOP16360
360
25
KOP12100
100
25
KOP16380
380
25
KOP12120
120
25
KOP16400
400
25
KOP12140
140
25
( * ) Not holding CE marking.
A2
AI571 - A2 | AISI304 VERSION d1 [mm]
8 SW 13
10 SW 17
AISI 304
CODE
L [mm]
pcs
AI571850
50
100
AI571860
60
100
AI571880
80
100
AI5718100
100
100
AI5718120
120
100
AI5711050
50
100
AI5711060
60
100
AI5711080
80
100
AI57110100
100
50
AI57110120
120
50
AI57110140
140
50
AI57110160
160
50
AI57110180
180
50
AI57110200
200
50
d1 [mm]
12 SW 19
CODE
L [mm]
pcs
AI57112100
100
50
AI57112120
120
25
AI57112140
140
25
AI57112160
160
25
AI57112180
180
25
The stainless steel screws have not been granted the CE mark.
TIMBER | KOP | 111
GEOMETRY AND MECHANICAL CHARACTERISTICS | KOP A
d2 d1 SW
k
dS
b L
Nominal diameter
d1
[mm]
8
10
12
16
Wrench size
SW
[mm]
13
17
19
24
Head thickness
k
[mm]
5,50
7,00
8,00
10,00
Thread diameter
d2
[mm]
5,60
7,00
9,00
12,00
Shank diameter
dS
[mm]
8,00
10,00
12,00
16,00
Diameter pre-drilling hole - smooth part
dV1
[mm]
8,0
10,0
12,0
16,0
Diameter pre-drilling hole - threaded part
dV2
[mm]
5,5
7,0
8,5
11,0
Thread length
b
[mm]
≥ 0,6 L
Characteristic tensile strength
ftens,k
[kN]
15,7
23,6
37,3
75,3
Characteristic yield moment
My,k
[Nm]
16,9
32,2
65,7
138,0
Characteristic withdrawal-resistance parameter
fax,k
[N/mm2]
12,9
10,6
10,2
10,0
Associated density
ρa
[kg/m3]
400
400
440
360
Characteristic head-pull-through parameter
fhead,k
[N/mm2]
22,8
19,8
16,4
16,5
Associated density
ρa
[kg/m3]
440
420
430
430
MINIMUM DISTANCES FOR SHEAR LOADS screws inserted WITH pre-drilled hole
α=0°
F
F
d1
[mm]
a1
[mm]
a2
[mm]
4∙d
32
40
48
a3,t
[mm]
min (7∙d;80)
80
80
84
a3,c
[mm]
4∙d
32
40
48
a4,t
[mm]
3∙d
24
30
a4,c
[mm]
3∙d
24
30
5∙d
α=90°
8
10
12
16
d1
[mm]
40
50
60
80
a1
[mm]
64
a2
[mm]
4∙d
32
40
48
64
112
a3,t
[mm]
min (7∙d;80)
80
80
84
112
64
a3,c
[mm]
7∙d
56
70
84
112
36
48
a4,t
[mm]
4∙d
32
40
48
64
36
48
a4,c
[mm]
3∙d
24
30
36
48
4∙d
8
10
12
16
32
40
48
64
α = load-to-grain angle d = d1 = nominal screw diameter stressed end -90° < α < 90°
a2 a2 a1 a1
unloaded end 90° < α < 270°
F α
α F a3,t
stressed edge 0° < α < 180°
unload edge 180° < α < 360°
α F α
a4,t
a3,c
NOTES • Minimum distances in accordance with EN 1995:2014. • For KOP screws a pre-drill is required as per EN 1995:2014: - pre-drill hole for smooth part of the shank, dimensions matching that of the shank itself, depth equal to the length of the shank. - pre-drill hole for the threaded portion, equal to approximately 70% of the shank diameter.
112 | KOP | TIMBER
F a4,c
STRUCTURAL VALUES
CHARACTERISTIC VALUES EN 1995:2014 SHEAR steel-timber thick plate α=0°
timber-to-timber α=0°
timber-to-timber α=90°
RV,90,k
SPLATE [mm]
SPLATE
A
steel-timber thick plate α=90°
thread withdrawal
head pull-through
Rax,k
Rhead,k
SPLATE
geometry
TENSION
L b d1
d1
L
b
A
RV,0,k
[mm]
[mm]
[mm]
[mm]
[kN]
[kN]
50 60 70 80 100 120 140 160 180 200 50 60 80 100 120 140 150 160 180 200 220 240 260 280 300 50 60 70 80 90 100 120 140 150 160 180 200 220 240 260 280 300 320 340 360 380 400
30 36 42 48 60 72 84 96 108 120 30 36 48 60 72 84 90 96 108 120 132 144 156 168 180 30 36 42 48 54 60 72 84 90 96 108 120 132 144 156 168 180 192 195( * ) 195( * ) 195( * ) 195
20 24 28 32 40 48 56 64 72 80 20 24 32 40 48 56 60 64 72 80 88 96 104 112 120 20 24 28 32 36 40 48 56 60 64 72 80 88 96 104 112 120 128 145 165 185 205
3,17 3,53 3,83 4,08 4,18 4,18 4,18 4,18 4,18 4,18 3,81 4,56 5,40 6,25 6,39 6,39 6,39 6,39 6,39 6,39 6,39 6,39 6,39 6,39 6,39 4,39 5,27 6,15 6,97 7,42 7,75 8,45 9,11 9,11 9,11 9,11 9,11 9,11 9,11 9,11 9,11 9,11 9,11 9,11 9,11 9,11 9,11
2,44 2,89 3,08 3,24 3,59 3,61 3,61 3,61 3,61 3,61 2,80 3,36 4,31 4,91 5,32 5,49 5,49 5,49 5,49 5,49 5,49 5,49 5,49 5,49 5,49 3,16 3,79 4,42 5,05 5,68 6,08 6,47 6,92 7,16 7,40 7,65 7,65 7,65 7,65 7,65 7,65 7,65 7,65 7,65 7,65 7,65 7,65
8
10
12
8
10
12
RV,k
SPLATE
[kN]
[mm]
5,31 5,46 5,61 5,76 6,06 6,36 6,66 6,96 7,26 7,56 6,58 7,70 8,19 8,50 8,81 9,12 9,27 9,42 9,73 10,04 10,35 10,66 10,97 11,27 11,58 8,37 9,48 10,72 12,05 12,25 12,41 12,74 13,07 13,24 13,40 13,73 14,06 14,39 14,72 15,05 15,38 15,71 16,04 16,13 16,13 16,13 16,13
8
10
12
RV,k [kN]
[kN]
[kN]
4,05 4,66 4,81 4,96 5,26 5,56 5,86 6,16 6,46 6,76 4,99 5,73 6,91 7,22 7,53 7,84 7,99 8,15 8,46 8,76 9,07 9,38 9,69 10,00 10,31 6,49 7,15 7,93 8,78 9,69 10,35 10,68 11,01 11,18 11,34 11,67 12,00 12,33 12,66 12,99 13,32 13,65 13,98 14,06 14,06 14,06 14,06
3,00 3,60 4,20 4,80 6,01 7,21 8,41 9,61 10,81 12,01 3,08 3,70 4,93 6,17 7,40 8,64 9,25 9,87 11,10 12,34 13,57 14,80 16,04 17,27 18,51 3,30 3,96 4,62 5,28 5,94 6,60 7,92 9,24 9,90 10,56 11,88 13,20 14,52 15,84 17,16 18,48 19,80 21,12 21,45 21,45 21,45 21,45
3,82 3,82 3,82 3,82 3,82 3,82 3,82 3,82 3,82 3,82 5,89 5,89 5,89 5,89 5,89 5,89 5,89 5,89 5,89 5,89 5,89 5,89 5,89 5,89 5,89 5,98 5,98 5,98 5,98 5,98 5,98 5,98 5,98 5,98 5,98 5,98 5,98 5,98 5,98 5,98 5,98 5,98 5,98 5,98 5,98 5,98 5,98
α = load-to-grain angle
TIMBER | KOP | 113
STRUCTURAL VALUES
CHARACTERISTIC VALUES EN 1995:2014 SHEAR steel-timber thick plate α=0°
timber-to-timber α=0°
timber-to-timber α=90°
RV,0,k
RV,90,k
SPLATE [mm]
SPLATE
A
steel-timber thick plate α=90°
thread withdrawal
head pull-through
Rax,k
Rhead,k
SPLATE
geometry
TENSION
L b d1
d1
L
b
A
[mm]
[mm]
[mm]
[mm]
[kN]
[kN]
80
48
32
9,29
6,60
100
60
40
11,48
120
72
48
12,28
16
RV,k
SPLATE
[kN]
[mm]
RV,k [kN]
[kN]
[kN]
16,21
11,98
8,10
9,59
8,11
19,57
14,06
10,13
9,59
9,26
20,64
16,37
12,16
9,59
140
84
56
13,13
9,96
21,15
17,50
14,18
9,59
150
90
60
13,58
10,20
21,40
17,76
15,19
9,59
160
96
64
14,05
10,46
21,65
18,01
16,21
9,59
180
108
72
14,84
11,00
22,16
18,52
18,23
9,59
200
120
80
14,84
11,58
22,66
19,02
20,26
9,59 9,59
220
132
88
14,84
12,19
240
144
96
14,84
12,27
260
156
104
14,84
12,27
16
23,17
19,53
22,29
20,04
24,31
9,59
24,18
20,54
26,34
9,59
23,68
16
280
168
112
14,84
12,27
24,69
21,05
28,36
9,59
300
180
120
14,84
12,27
25,20
21,55
30,39
9,59
320
192
128
14,84
12,27
25,70
22,06
32,42
9,59
340
204
136
14,84
12,27
26,21
22,57
34,44
9,59
360
205( * )
155
14,84
12,27
26,25
22,61
34,61
9,59
380
205( * )
175
14,84
12,27
26,25
22,61
34,61
9,59
400
205( * )
195
14,84
12,27
26,25
22,61
34,61
9,59
α = load-to-grain angle
STRUCTURAL VALUES GENERAL PRINCIPLES
NOTES
• Characteristic values are consistent with EN 1995:2014 and in accordance with EN 14592.
• The characteristic timber-to-timber shear strengths were evaluated by considering an angle α between the acting force and the grains of the timber elements of both 0° (Rv,0,k) and 90° (Rv,90,k).
• Design values can be obtained from characteristic values as follows:
Rd =
Rk kmod γM
The coefficients γM and kmod should be taken according to the current regulations used for the calculation. • Mechanical strength values and KOP screw geometry according to CE marking according to EN 14592. • Dimensioning and verification of the timber elements must be carried out separately. • The characteristic shear resistance values are calculated for screws inserted with pre-drilling hole. • The screws must be positioned in accordance with the minimum distances. • The thread withdrawal characteristic strength has been evaluated considering a fixing length equal to b. • The head pull-through characteristic strength was calculated using timber elements. In the case of steel-to-timber connections, generally the steel tensile strength is binding with respect to head separation or pull-through.
114 | KOP | TIMBER
• The characteristic steel-timber shear strengths were evaluated considering an angle α between the acting force and the grains of the timber element of both 0° (Rv,0,k) and 90° (Rv,90,k). • The shear strength characteristics on the plate are calculated considering the case of a thick plate (SPLATE = d1). • The characteristic thread withdrawal resistances were evaluated by considering an angle α of 90° (Rax,90,k) between the acting force and the grains of the timber elements. • During calculation, a thread length of b = 0,6 L is used, with the exception of the measures (*). • For the calculation process a timber characteristic density ρk = 385 kg/m3 has been considered. For different ρk values, the strength values in the table can be converted by the kdens coefficient (see page 87). • For a row of n screws arranged parallel to the direction of the grain at a distance a1 , the characteristic effective shear bearing capacity Ref,V,k can be calculated by means of the effective number nef (see page 80).
SMALL IN SIZE YET BIG IN PERFORMANCE
NINO, the universal fastening solution for timber walls. NINO angle brackets introduce the new concept of universal angle brackets into the Rothoblaas range. They combine the simplicity of WBR building angle brackets with the technical quality of TITAN angle brackets.
www.rothoblaas.com
AXIALLY LOADED CONNECTORS FULLY THREADED SCREWS STRENGTH The strength is proportional to the effective thread length within the timber element. The connectors guarantee high performance with small diameters. The stresses are distributed, in the form of tangential stresses, along the entire wood surface affected by the screw thread. For the verification of a connection with axially stressed connectors, it will be necessary to evaluate the limiting strength, depending on the acting load. The strength of the full thread connector is related to its mechanical performance and the type of wood material in which it is applied.
TIMBER
TIMBER
TIMBER
STEEL
total F withdrawal thread
partial thread withdrawal
head pull-through
tension/head separation
Rhead
Rtens
Rax
Rax
TENSILE-stressed full thread connectors
TIMBER
STEEL + TIMBER
total thread withdrawal
instability
Rax
Rki
COMPRESION-stressed full thread connectors
STIFFNESS
kSER VGZ
F - load [kN]
The joint made with full thread connectors, which utilise their axial strength, guarantees very high stiffness, limited element displacements and reduced ductility.
kSER VGZ
kSER HBS kSER HBS
A B
The graph refers to shear tests to control displacement for HBS screws under lateral stress (shear) and crossed VGZ axially loaded screws.
PARTIAL THREAD SCREWS The strength is proportional to the diameter and is related to the bearing stress of the timber and the yielding of the screw. The partial thread is mainly used to transfer shear forces that stress the screw perpendicular to its axis. If the screw is under tensile stress, the pull-through strength of the head must be taken into account, which is often a constraint compared to the withdrawal resistance of the threaded part and compared to the tensile strength on the steel side.
116 | AXIALLY LOADED CONNECTORS | TIMBER
A
A
A
B
B
s - slip [mm]
B
APPLICATIONS To optimise the performance of full thread or double thread connectors, it is essential to use them in such a way that they are subjected to axial stress. The load is distributed parallel to the axis of the connectors along the effective thread portion. They are used to transfer shear and sliding stresses, for structural reinforcement or for fixing continuous insulation.
CROSSED SCREWS TIMBER-TO-TIMBER SHEAR JOINT F
CONNECTORS VGZ or VGS INSERTION 45° to the shear plane STRESSES ON CONNECTORS Tension and compression F
INCLINED SCREWS
section
plan
TIMBER-TO-TIMBER SHEAR JOINT F
CONNECTORS VGZ or VGS INSERTION 45° to the shear plane STRESSES ON CONNECTORS Tension
section
plan
TIMBER-TO-TIMBER SLIDING JOINT CONNECTORS VGZ or VGS
F
INSERTION 45° to the shear plane
F
STRESSES ON CONNECTORS Tension
section
plan
STEEL-TIMBER SLIDING JOINT CONNECTORS VGS (with VGU)
F F
INSERTION 45° to the shear plane STRESSES ON CONNECTORS Tension
section
F
F
plan
CONCRETE-TIMBER SLIDING JOINT CONNECTORS CTC
F
INSERTION 45° to the shear plane STRESSES ON CONNECTORS Tension
F
section
F
plan TIMBER | APPLICATIONS | 117
STRUCTURAL REINFORCEMENT Wood is an anisotropic material. Therefore, it has different mechanical characteristics depending on the direction of the grain and the stress. It provides less strength and stiffness for stresses orthogonal to the grain, but can be reinforced with full thread connectors (VGS, VGZ or RTR).
NOTCHED BEAM TYPE OF REINFORCEMENT Tension perpendicular to the grains
FAILURE
REINFORCEMENT F
F
INSERTION 90° to the grains STRESSES ON CONNECTORS Tension
BEAM WITH HANGING LOAD TYPE OF REINFORCEMENT Tension perpendicular to the grains
FAILURE
REINFORCEMENT
INSERTION 90° to the grains STRESSES ON CONNECTORS Tension
F
F
SPECIAL BEAM (curved, tapered, with double inclination) TYPE OF REINFORCEMENT Tension perpendicular to the grains
FAILURE
REINFORCEMENT
INSERTION 90° to the grains STRESSES ON CONNECTORS Tension
F
F
BEAM WITH OPENINGS TYPE OF REINFORCEMENT Tension perpendicular to the grains
FAILURE
REINFORCEMENT
INSERTION 90° to the grains STRESSES ON CONNECTORS Tension
F
F
SUPPORT BEAM TYPE OF REINFORCEMENT Compression perpendicular to the grains
FAILURE
REINFORCEMENT
INSERTION 90° to the grains STRESSES ON CONNECTORS Compression
118 | APPLICATIONS | TIMBER
F
F
FASTENING FOR CONTINUOUS INSULATION Installation of a continuous layer of insulation guarantees excellent energy performance, limiting thermal bridges. Efficiency is bound to the use of appropriate fastening systems (ex. DGZ), suitably designed.
SLIDING OF INSULATION AND COATING PROBLEM The connectors for fixing insulation prevent the package from sliding due to the load component parallel to the pitch, resulting in damage to the roof system and loss of insulating power.
SOLUTION F
F
CRUSHING OF INSULATION PROBLEM
SOLUTION
If insulation does not have sufficient compressive strength, the connectors with double threads effectively transfer the loads and prevent crushing with consequent loss of insulating power of the package.
ROOFING AND FAÇADE APPLICATIONS COVER
FAÇADE
SOFT INSULATION Low compression resistance (σ (10%) < 50 kPa (EN 826)
HARD INSULATION High compression resistance σ(10%) ≥ 50 kPa (EN 826)
SOFT OR HARD CONTINUOUS INSULATION
1
2
3
N
N
A
F
F
A
A
A C
B
C
A
B
±N
A
A
C
The continuous insulation does not support the load component perpendicular to the layer (N).
F
The continuous insulation supports the load component perpendicular to the layer (N);
C
Fasteners must withstand both wind actions (±N) and transfer vertical forces (F).
LEGEND: A. Tensile-stressed screw. B. Compression-stressed screw. C. Additional screw for suction pressure. NOTE: Adequate batten thickness makes it possible to optimise the number of fastenings.
For the sizing and positioning of connectors, download MyProject. Simplify your work!
TIMBER | APPLICATIONS | 119
VGZ
ETA-11/0030
UKTA-0836 22/6195
AC233 ESR-4645
FULL THREADED SCREW WITH CYLINDRICAL HEAD 3 THORNS TIP Thanks to the 3 THORNS tip, minimum installation distances are reduced. More screws can be used in less space and larger screws in smaller elements. Costs and time for project implementation are reduced.
STRUCTURAL APPLICATIONS Approved for structural applications subject to stresses in any direction vs the grain (0° ÷ 90°). Cyclical SEISMIC-REV tests according to EN 12512.
CYLINDRICAL HEAD It allows the screw to penetrate and pass through the surface of the wood substrate. Ideal for concealed joints, timber couplings and structural reinforcements. It is the right choice to ensure strength in fire conditions.
TIMBER FRAME Also ideal for joining small timber elements such as the crossbeams and uprights of light frame structures.
BIT INCLUDED
DIAMETER [mm]
5
LENGTH [mm]
80 80
SERVICE CLASS
SC1
SC2
SC3
SC4
ATMOSPHERIC CORROSIVITY
C1
C2
C3
C4
C5
WOOD CORROSIVITY
T1
T2
T3
T4
T5
MATERIAL
Zn
ELECTRO PLATED
7
11 11 1000 1000
electrogalvanized carbon steel
FIELDS OF USE • • • • •
120 | VGZ | TIMBER
timber based panels solid timber glulam (Glued Laminated Timber) CLT and LVL high density woods
ETA-11/0030
STRUCTURAL RESTORATION Ideal for coupling beams in structural renovations and new works. Can also be used parallel to the grain thanks to the special approval.
CLT, LVL Values also tested, certified and calculated for CLT and high density woods such as Microllam® LVL.
TIMBER | VGZ | 121
Very high stiffness in side-by-side joining of CLT floors. Application with double inclination at 45°, perfect combined with the JIG VGZ template.
Reinforcement orthogonal to grain for hanging load due to joining of main-secondary beams.
VGZ
d2 d1
XXX
dK
XXX
dK
VGZ
GEOMETRY AND MECHANICAL CHARACTERISTICS
b
b
L
L
Ø9 | L > 520 mm Ø11 | L > 600 mm
GEOMETRY Nominal diameter
d1
[mm]
7
9
11
Head diameter
dK
[mm]
9,50
11,50
13,50
Thread diameter
d2
[mm]
4,60
5,90
6,60
Pre-drilling hole diameter(1)
dV,S
[mm]
4,0
5,0
6,0
Pre-drilling hole diameter(2)
dV,H
[mm]
5,0
6,0
7,0
(1) Pre-drilling valid for softwood. (2) Pre-drilling valid for hardwood and beech LVL.
CHARACTERISTIC MECHANICAL PARAMETERS Nominal diameter
d1
[mm]
7
9
11
Tensile strength
ftens,k
[kN]
15,4
25,4
38,0
Yield strength
fy,k
[N/mm2]
1000
1000
1000
Yield moment
My,k
[Nm]
14,2
27,2
45,9
softwood (softwood)
LVL softwood (LVL softwood)
pre-drilled beech LVL (beech LVL predrilled)
11,7
15,0
29,0
Withdrawal resistance parameter
fax,k
[N/mm2]
Associated density
ρa
[kg/m3]
350
500
730
Calculation density
ρk
[kg/m3]
≤ 440
410 ÷ 550
590 ÷ 750
For applications with different materials please see ETA-11/0030.
122 | VGZ | TIMBER
CODES AND DIMENSIONS d1
CODE
[mm]
L
b
pcs
d1
CODE
[mm]
L
b
pcs
[mm]
[mm]
[mm]
[mm]
VGZ780
80
70
25
VGZ11150
150
140
25
VGZ7100
100
90
25
VGZ11200
200
190
25
VGZ7120
120
110
25
VGZ11250
250
240
25
VGZ7140
140
130
25
VGZ11275
275
265
25
VGZ7160
160
150
25
VGZ11300
300
290
25
VGZ7180
180
170
25
VGZ11325
325
315
25
VGZ7200
200
190
25
VGZ11350
350
340
25
VGZ7220
220
210
25
VGZ11375
375
365
25
7 VGZ7240 TX 30 VGZ7260
240
230
25
VGZ11400
400
390
25
260
250
25
VGZ11425
425
415
25
VGZ7280
280
270
25
VGZ11450
450
440
25
VGZ7300
300
290
25
VGZ11475
475
465
25
500
490
25
525
515
25
550
540
25
VGZ7320
320
310
25
VGZ7340
340
330
25
11 VGZ11500 TX 50 VGZ11525
VGZ7360
360
350
25
VGZ11550
VGZ7380
380
370
25
VGZ11575
575
565
25
VGZ7400
400
390
25
VGZ11600
600
590
25
VGZ9160
160
150
25
VGZ11650
650
640
25
VGZ9180
180
170
25
VGZ11700
700
690
25
VGZ9200
200
190
25
VGZ11750
750
740
25
VGZ9220
220
210
25
VGZ11800
800
790
25
VGZ9240
240
230
25
VGZ11850
850
840
25
VGZ9260
260
250
25
VGZ11900
900
890
25
VGZ9280
280
270
25
VGZ11950
950
940
25
VGZ9300
300
290
25
VGZ111000
1000
990
25
VGZ9320 9 TX 40 VGZ9340
320
310
25
340
330
25
VGZ9360
360
350
25
VGZ9380
380
370
25
VGZ9400
400
390
25
VGZ9440
440
430
25
VGZ9480
480
470
25
VGZ9520
520
510
25
VGZ9560
560
550
25
VGZ9600
600
590
25
RELATED PRODUCTS JIG VGZ 45° TEMPLATE FOR 45° SCREWS
page 409
JIG VGZ 45° TEMPLATE Installation at 45° using the JIG VGZ steel template.
TIMBER | VGZ | 123
MINIMUM DISTANCES FOR AXIAL STRESSES | TIMBER screws inserted WITH and WITHOUT pre-drilled hole
d1
[mm]
7
9
11
d1
[mm]
9
11
a1
[mm]
5∙d
35
45
55
a1
[mm]
5∙d
45
55
a2
[mm]
5∙d
35
45
55
a2
[mm]
5∙d
45
55
a2,LIM
[mm]
2,5∙d
18
23
28
a2,LIM
[mm]
2,5∙d
23
28
a1,CG
[mm]
8∙d
56
72
88
a1,CG
[mm]
5∙d
45
55
a2,CG
[mm]
3∙d
21
27
33
a2,CG
[mm]
3∙d
27
33
aCROSS [mm]
1,5∙d
11
14
17
aCROSS [mm]
1,5∙d
14
17
SCREWS UNDER TENSION INSERTED WITH AN ANGLE α WITH RESPECT TO THE GRAIN
a2,CG a2,CG
a2,CG a2 a2,CG
a2
a2,CG
a2,CG a1,CG
1
a1
a
a2,CG a1,CG
a1,CG
a2,CG a1,CG
plan
front
plan
SCREWS INSERTED WITH α = 90° ANGLE WITH RESPECT TO THE GRAIN
front
CROSSED SCREWS INSERTED WITH AN ANGLE α WITH RESPECT TO THE GRAIN
a2,CG
45°
a2 a2,CG
a2,CG a1,CG
aCROSS a2,CG
a1 a1,CG
plan
a1
front
plan
front
NOTES • Minimum distances according to ETA-11/0030. • The minimum distances are independent of the insertion angle of the connector and the angle of the force with respect to the grain.
• For 3 THORNS tip and self-drilling tip screws, the minimum distances in the table are derived from experimental tests; alternatively, adopt a1,CG = 10∙d and a2,CG = 4∙d in accordance with EN 1995:2014.
• The axial distance a2 can be reduced down to a2,LIM if for each connector a “joint surface” a1 a2 = 25 d1 2 is maintained. • For main beam-secondary beam joints with VGZ screws d = 7 mm inclined or crossed, inserted at an angle of 45° to the secondary beam head, with a minimum secondary beam height of 18 d, the minimum distance a1,CG can be taken equal to 8∙d1 anc the minimum distance a2,CG equal to 3∙d1 .
EFFECTIVE THREAD USED IN CALCULATION 10
Sg
Tol.
b L
124 | VGZ | TIMBER
Sg
10
b = S g,tot = L - 10 mm
represents the entire length of the threaded part
S g = (L - 10 mm - 10 mm - Tol.)/ 2
represents the partial length of the threaded part net of a laying tolerance (Tol.) of 10 mm
MINIMUM DISTANCES FOR SHEAR LOADS | TIMBER ρk ≤ 420 kg/m3
screws inserted WITHOUT pre-drilled hole
α=0°
F
d1
[mm]
a1
[mm]
a2
[mm]
5∙d
35
45
a3,t
[mm]
15∙d
105
135
a3,c [mm]
10∙d
70
90
a4,t
[mm]
5∙d
35
45
a4,c [mm]
5∙d
35
45
10∙d
F
α=90°
7
9
11
d1
[mm]
70
90
110
a1
[mm]
55
a2
[mm]
5∙d
35
45
55
165
a3,t
[mm]
10∙d
70
90
110
110
a3,c [mm]
10∙d
70
90
110
55
a4,t
[mm]
10∙d
70
90
110
55
a4,c [mm]
5∙d
35
45
55
5∙d
7
9
11
35
45
55
α = load-to-grain angle d = d1 = nominal screw diameter
screws inserted WITH pre-drilled hole
α=0°
F
F
d1
[mm]
a1
[mm]
a2
[mm]
3∙d
21
a3,t
[mm]
12∙d
84
a3,c [mm]
7∙d
49
63
a4,t
[mm]
3∙d
21
27
a4,c [mm]
3∙d
21
27
33
5∙d
7
9
11
d1
[mm]
35
45
55
a1
[mm]
4∙d
27
33
a2
[mm]
4∙d
108
132
a3,t
[mm]
7∙d
77
a3,c [mm]
7∙d
33
a4,t
[mm]
7∙d
a4,c [mm]
3∙d
α=90° 7
9
11
28
36
44
28
36
44
49
63
77
49
63
77
49
63
77
21
27
33
α = load-to-grain angle d = d1 = nominal screw diameter stressed end -90° < α < 90°
a2 a2 a1 a1
unloaded end 90° < α < 270°
F α
α F a3,t
stressed edge 0° < α < 180°
unload edge 180° < α < 360°
α F α
a4,t
F a4,c
a3,c
NOTES • The minimum distances comply with the EN 1995:2014 standard in accordance with ETA-11/0030. • The minimum spacing for all panel-to-timber connections (a1 , a2) can be multiplied by a coefficient of 0,85.
• The spacing a1 in the table for screws with 3 THORNS tip inserted without pre-drilling hole in timber elements with density ρk ≤ 420 kg/m3 and loadto-grain angle α = 0° was assumed to be 10∙d based on experimental tests; alternatively, adopt 12∙d in accordance with EN 1995:2014.
EFFECTIVE NUMBER FOR SHEAR LOADS The load-bearing capacity of a connection made with several screws, all of the same type and size, may be lower than the sum of the load-bearing capacities of the individual connection system. For a row of n screws arranged parallel to the direction of the grain at a distance a1 , the characteristic effective shear bearing capacity Ref,V,k can be calculated by means of the effective number nef (see page 169).
Ref,V,k
a1 a1
TIMBER | VGZ | 125
STRUCTURAL VALUES | TIMBER
CHARACTERISTIC VALUES EN 1995:2014 TENSION / COMPRESSION
total thread withdrawal
partial thread withdrawal
geometry ε=90°
ε=0°
ε=90°
estrazione filetto parziale
ε=0°
steel tension
instability ε=90°
Sg Sg,tot
L
Sg
A
A
d1
d1
L
S g,tot
A min
Rax,90,k
Rax,0,k
Sg
A min
Rax,90,k
Rax,0,k
Rtens,k
Rki,90,k
[mm]
[mm]
[mm]
[mm]
[kN]
[kN]
[mm]
[mm]
[kN]
[kN]
[kN]
[kN]
80
70
90
6,19
1,86
-
-
-
-
15,40
10,30
25,40
17,25
7
9
100
90
110
7,96
2,39
35
55
3,09
0,93
120
110
130
9,72
2,92
45
65
3,98
1,19
140
130
150
11,49
3,45
55
75
4,86
1,46
160
150
170
13,26
3,98
65
85
5,75
1,72
180
170
190
15,03
4,51
75
95
6,63
1,99
200
190
210
16,79
5,04
85
105
7,51
2,25
220
210
230
18,56
5,57
95
115
8,40
2,52
240
230
250
20,33
6,10
105
125
9,28
2,78
260
250
270
22,10
6,63
115
135
10,16
3,05
280
270
290
23,87
7,16
125
145
11,05
3,31
300
290
310
25,63
7,69
135
155
11,93
3,58
320
310
330
27,40
8,22
145
165
12,82
3,84
340
330
350
29,17
8,75
155
175
13,70
4,11
360
350
370
30,94
9,28
165
185
14,58
4,38
380
370
390
32,70
9,81
175
195
15,47
4,64
400
390
410
34,47
10,34
185
205
16,35
4,91
160
150
170
17,05
5,11
65
85
7,39
2,22
180
170
190
19,32
5,80
75
95
8,52
2,56
200
190
210
21,59
6,48
85
105
9,66
2,90
220
210
230
23,87
7,16
95
115
10,80
3,24
240
230
250
26,14
7,84
105
125
11,93
3,58
260
250
270
28,41
8,52
115
135
13,07
3,92
280
270
290
30,68
9,21
125
145
14,21
4,26
300
290
310
32,96
9,89
135
155
15,34
4,60
320
310
330
35,23
10,57
145
165
16,48
4,94
340
330
350
37,50
11,25
155
175
17,61
5,28
360
350
370
39,78
11,93
165
185
18,75
5,63
380
370
390
42,05
12,61
175
195
19,89
5,97
400
390
410
44,32
13,30
185
205
21,02
6,31
440
430
450
48,87
14,66
205
225
23,30
6,99
480
470
490
53,41
16,02
225
245
25,57
7,67
520
510
530
57,96
17,39
245
265
27,84
8,35
560
550
570
62,50
18,75
265
285
30,12
9,03
600
590
610
67,05
20,11
285
305
32,39
9,72
ε = screw-to-grain angle
126 | VGZ | TIMBER
STRUCTURAL VALUES | TIMBER
CHARACTERISTIC VALUES EN 1995:2014 TENSION / COMPRESSION
total thread withdrawal
partial thread withdrawal
geometry ε=90°
ε=0°
ε=90°
estrazione filetto parziale
ε=0°
steel tension
instability ε=90°
Sg Sg,tot
L
Sg
A
A
d1
d1
L
S g,tot
A min
Rax,90,k
Rax,0,k
Sg
A min
Rax,90,k
Rax,0,k
Rtens,k
Rki,90,k
[mm]
[mm]
[mm]
[mm]
[kN]
[kN]
[mm]
[mm]
[kN]
[kN]
[kN]
[kN]
150
140
160
19,45
5,83
60
80
8,33
2,50
38,00
21,93
200
190
210
26,39
7,92
85
105
11,81
3,54
250
240
260
33,34
10,00
110
130
15,28
4,58
275
265
285
36,81
11,04
123
143
17,01
5,10
300
290
310
40,28
12,08
135
155
18,75
5,63
325
315
335
43,75
13,13
148
168
20,49
6,15
350
340
360
47,22
14,17
160
180
22,22
6,67
375
365
385
50,70
15,21
173
193
23,96
7,19
400
390
410
54,17
16,25
185
205
25,70
7,71
11
425
415
435
57,64
17,29
198
218
27,43
8,23
450
440
460
61,11
18,33
210
230
29,17
8,75
475
465
485
64,59
19,38
223
243
30,90
9,27
500
490
510
68,06
20,42
235
255
32,64
9,79
525
515
535
71,53
21,46
248
268
34,38
10,31
550
540
560
75,00
22,50
260
280
36,11
10,83
575
565
585
78,48
23,54
273
293
37,85
11,35
600
590
610
81,95
24,58
285
305
39,59
11,88
650
640
660
88,89
26,67
310
330
43,06
12,92
700
690
710
95,84
28,75
335
355
46,53
13,96
750
740
760
102,78
30,84
360
380
50,00
15,00
800
790
810
109,73
32,92
385
405
53,48
16,04
850
840
860
116,67
35,00
410
430
56,95
17,08
900
890
910
123,62
37,09
435
455
60,42
18,13
950
940
960
130,56
39,17
460
480
63,89
19,17
1000
990
1010
137,51
41,25
485
505
67,37
20,21
ε = screw-to-grain angle
NOTES • The characteristic thread withdrawal resistances were evaluated considering both an ε angle of 90° (Rax,90,k) and of 0° (Rax,0,k) between the grains of the timber element and the connector. • For the calculation process a timber characteristic density ρk = 385 kg/m3 has been considered. For different ρk values, the strength values in the table can be converted by the kdens coefficient.
R’ax,k = kdens,ax Rax,k R’ki,k = kdens,ki Rki,k R’V,k = kdens,ax RV,k ρk
380
385
405
425
430
440
C-GL R’V,0,k = kdens,VC24 RV,0,k C30
GL24h
GL26h
GL28h
GL30h
GL32h
kdens,ax
0,92
0,98
1,00
1,04
1,08
1,09
1,11
kdens,ki
0,97
0,99
1,00
1,00
1,01
1,02
1,02
350
3] k R’[kg/m = RV,90,k V,90,k dens,V
Strength values thus determined may differ, for higher safety standards, from those resulting from an exact calculation.
GENERAL PRINCIPLES on page 143.
TIMBER | VGZ | 127
STRUCTURAL VALUES | TIMBER
CHARACTERISTIC VALUES EN 1995:2014
SLIDING geometry
timber-to-timber
S
g
A
steel tension
45°
timber-to-timber
45°
timber-to-timber ε=90°
timber-to-timber ε=0°
A
Sg
S
g
L
SHEAR
Sg
B d1
d1
L
Sg
A
Bmin
RV,k
Rtens,45,k
A
Sg
RV,90,k
RV,0,k
[mm]
[mm]
[mm]
[mm]
[mm]
[kN]
[kN]
[mm]
[mm]
[mm]
[kN]
80
-
-
-
-
40
25
2,59
1,34
100
35
40
55
2,19
50
35
2,93
1,53
120
45
45
60
2,81
60
45
3,15
1,74
7
9
140
55
55
70
3,44
70
55
3,37
1,97
160
65
60
75
4,06
80
65
3,59
2,06
180
75
70
85
4,69
90
75
3,81
2,12
200
85
75
90
5,31
100
85
4,03
2,19
220
95
85
100
5,94
240
105
90
105
6,56
10,89
110
95
4,25
2,26
120
105
4,30
2,32
260
115
95
110
7,19
130
115
4,30
2,39
280
125
105
120
7,81
140
125
4,30
2,46
300
135
110
125
8,44
150
135
4,30
2,52
320
145
120
135
9,06
160
145
4,30
2,59
340
155
125
140
9,69
170
155
4,30
2,65
360
165
130
145
10,31
180
165
4,30
2,72
380
175
140
155
10,94
190
175
4,30
2,79
400
185
145
160
11,56
200
185
4,30
2,85
160
65
60
75
5,22
80
65
5,10
2,81
180
75
70
85
6,03
90
75
5,38
3,08
200
85
75
90
6,83
100
85
5,67
3,18
220
95
85
100
7,63
110
95
5,95
3,27
240
105
90
105
8,44
120
105
6,23
3,35
260
115
95
110
9,24
130
115
6,50
3,44
280
125
105
120
10,04
140
125
6,50
3,52
300
135
110
125
10,85
150
135
6,50
3,61
320
145
120
135
11,65
340
155
125
140
12,46
160
145
6,50
3,69
170
155
6,50
3,78
360
165
130
145
380
175
140
155
13,26
180
165
6,50
3,86
14,06
190
175
6,50
3,95
17,96
400
185
145
160
14,87
200
185
6,50
4,03
440
205
160
175
16,47
220
205
6,50
4,21
480
225
175
190
18,08
240
225
6,50
4,38
520
245
190
205
19,69
260
245
6,50
4,55
560
265
205
220
21,29
280
265
6,50
4,72
600
285
215
230
22,90
300
285
6,50
4,89
ε = screw-to-grain angle
128 | VGZ | TIMBER
STRUCTURAL VALUES | TIMBER
CHARACTERISTIC VALUES EN 1995:2014
SLIDING geometry
SHEAR
timber-to-timber
S
g
A
45°
timber-to-timber
45°
timber-to-timber ε=90°
timber-to-timber ε=0°
A
Sg
S
g
L
steel tension
Sg
B d1
d1
L
Sg
A
Bmin
RV,k
Rtens,45,k
A
Sg
RV,90,k
RV,0,k
[mm]
[mm]
[mm]
[mm]
[mm]
[kN]
[kN]
[mm]
[mm]
[mm]
[kN] 3,33
150
60
60
75
5,89
75
60
6,61
200
85
75
90
8,35
100
85
7,48
4,10
250
110
95
110
10,80
125
110
8,35
4,57
275
123
100
115
12,03
138
123
8,79
4,70
300
135
110
125
13,26
150
135
9,06
4,83
325
148
120
135
14,49
163
148
9,06
4,96
350
160
130
145
15,71
175
160
9,06
5,09
375
173
140
155
16,94
188
173
9,06
5,22
400
185
145
160
18,17
200
185
9,06
5,35 5,48
11
425
198
155
170
19,40
213
198
9,06
450
210
165
180
20,63
225
210
9,06
5,61
475
223
175
190
21,85
238
223
9,06
5,74
500
235
180
195
23,08
250
235
9,06
5,87
525
248
190
205
24,31
263
248
9,06
6,00
550
260
200
215
25,54
275
260
9,06
6,13
26,87
575
273
210
225
26,76
288
273
9,06
6,26
600
285
215
230
27,99
300
285
9,06
6,39
650
310
235
250
30,45
325
310
9,06
6,65
700
335
250
265
32,90
350
335
9,06
6,85
750
360
270
285
35,36
375
360
9,06
6,85
800
385
290
305
37,81
400
385
9,06
6,85
850
410
305
320
40,27
425
410
9,06
6,85
900
435
325
340
42,72
450
435
9,06
6,85
950
460
340
355
45,18
475
460
9,06
6,85
1000
485
360
375
47,63
500
485
9,06
6,85
ε = screw-to-grain angle
NOTES • The characteristic sliding strengths were evaluated by considering an angle ε of 45° between the grains of the timber element and the connector. • The characteristic timber-to-timber shear strengths were evaluated considering both an ε angle of 90° (RV,90,k) and 0° (RV,0,k) between the grains of the second element and the connector.
R’
=k
R
dens,ax ax,kprocess a timber characteristic density ρ = 385 kg/m3 has been considered. • Forax,k the calculation k For ρk R values, the strength values in the table can be converted by the kdens coefficient. R’ different = k ki,k
dens,ki
ki,k
R’V,k = kdens,ax RV,k R’V,90,k = kdens,V RV,90,k R’V,0,k = kdens,V RV,0,k ρk
350
380
385
405
425
430
440
C-GL kdens,ax
C24
C30
GL24h
GL26h
GL28h
GL30h
GL32h
0,92
0,98
1,00
1,04
1,08
1,09
1,11
kdens,v
0,90
0,98
1,00
1,02
1,05
1,05
1,07
[kg/m3 ]
Strength values thus determined may differ, for higher safety standards, from those resulting from an exact calculation.
GENERAL PRINCIPLES on page 143.
TIMBER | VGZ | 129
STRUCTURAL VALUES | CROSSED CONNECTORS
CHARACTERISTIC VALUES EN 1995:2014
MAIN BEAM-SECONDARY BEAM SHEAR CONNECTION main beam secondary beam
geometry
1 pair
2 pairs
3 pairs
90° m
m
S
g
90° 90°
45°
S
hNT
HHT
bNT
bNT
g
L
bNT
90°
d1 BHT
d1
L
BHT,min
HHT,min hNT,min
Sg
[mm]
[mm]
[mm]
[mm]
[mm] [mm]
7
9
m
bNT,min
RV1,k
RV2,k
bNT,min
RV1,k
RV2,k
bNT,min
RV1,k
RV2,k
[mm]
[kN]
[kN]
[mm]
[kN]
[kN]
[mm]
[kN]
[kN]
160
75
130
65
60
53
8,13
88
15,16
123
21,84
180
80
140
75
67
53
9,38
88
17,49
123
25,20
200
90
155
85
74
53
10,63
88
19,83
123
28,56
220
95
170
95
81
53
11,88
88
22,16
123
31,92
240
100
185
105
88
53
13,13
88
24,49
123
35,28
260
110
200
115
95
53
14,38
88
26,82
280
115
210
125
102
53
15,63
88
29,16
13,63
25,44
123
38,64
123
42,00
300
125
225
135
109
53
16,88
88
31,49
123
45,36
320
130
240
145
116
53
18,13
88
33,82
123
48,72
340
140
255
155
123
53
19,38
88
36,16
123
52,08
360
145
270
165
130
53
20,63
88
38,49
123
55,44
380
150
285
175
137
53
21,78
88
40,64
123
58,54
400
160
295
185
144
53
21,78
88
40,64
123
58,54
200
90
155
85
74
68
13,66
113
25,49
158
36,72
220
95
170
95
81
68
15,27
113
28,49
158
41,04
240
100
185
105
88
68
16,88
113
31,49
158
45,36
260
110
200
115
95
68
18,48
113
34,49
158
49,68
280
115
210
125
102
68
20,09
113
37,49
158
54,00
300
125
225
135
109
68
21,70
113
40,49
158
58,32
320
130
240
145
116
68
23,30
113
43,49
158
62,64
340
140
255
155
123
68
24,91
113
46,49
360
145
270
165
130
68
26,52
113
49,48
22,88
42,69
158
66,96
158
71,28
380
150
285
175
137
68
28,13
113
52,48
158
75,60
400
160
295
185
144
68
29,73
113
55,48
158
79,92
440
175
325
205
159
68
32,95
113
61,48
158
88,56
480
185
355
225
173
68
35,92
113
67,03
158
96,55
520
200
380
245
187
68
35,92
113
67,03
158
96,55
560
215
410
265
201
68
35,92
113
67,03
158
96,55
600
230
440
285
215
68
35,92
113
67,03
158
96,55
130 | VGZ | TIMBER
36,64
61,50
STRUCTURAL VALUES | CROSSED CONNECTORS
CHARACTERISTIC VALUES EN 1995:2014
MAIN BEAM-SECONDARY BEAM SHEAR CONNECTION main beam secondary beam
geometry
1 pair
2 pairs
3 pairs
90° m
m
S
g
90° 90°
45°
S
hNT
HHT
bNT
bNT
g
L
bNT
90°
d1 BHT
d1
L
BHT,min
HHT,min hNT,min
Sg
[mm]
[mm]
[mm]
[mm]
[mm] [mm]
250
105
190
110
91
83
275
115
210
125
102
83
300
125
225
135
109
83
325
135
250
150
120
83
350
140
260
160
127
83
m
bNT,min
RV1,k
RV2,k
bNT,min
RV1,k
RV2,k
bNT,min
RV1,k
RV2,k
[mm]
[kN]
[kN]
[mm]
[kN]
[kN]
[mm]
[kN]
[kN]
21,61
138
40,32
193
58,08
24,55
138
45,82
193
66,00
26,52
138
49,48
193
71,28
29,46
138
54,98
193
79,20
31,43
138
58,65
193
84,48 92,40
375
150
285
175
137
83
34,38
138
64,15
193
400
160
295
185
144
83
36,34
138
67,81
193
97,68
425
170
320
200
155
83
39,29
138
73,31
193
105,60
450
175
335
210
162
83
41,25
138
76,98
193
110,88
475
185
355
225
173
83
44,20
138
82,47
193
118,80
11
500
195
370
235
180
83
46,16
525
205
390
250
190
83
49,11
138
86,14
138
91,64
550
210
405
260
197
83
51,07
138
29,15
193
124,08
193
131,99
95,30
193
137,27
54,40
575
225
425
275
208
83
53,74
138
100,28
193
144,45
600
230
440
285
215
83
53,74
138
100,28
193
144,45
650
245
475
310
233
83
53,74
138
100,28
193
144,45
700
265
510
335
251
83
53,74
138
100,28
193
144,45
750
285
545
360
268
83
53,74
138
100,28
193
144,45
800
300
580
385
286
83
53,74
138
100,28
193
144,45
850
320
615
410
304
83
53,74
138
100,28
193
144,45
900
335
650
435
321
83
53,74
138
100,28
193
144,45
950
355
685
460
339
83
53,74
138
100,28
193
144,45
1000
370
720
485
357
83
53,74
138
100,28
193
144,45
78,35
NOTES • The compression design strength of the connectors is the lower between the withdrawal-side design strength (RV1,d) and the instability design strength (RV2,d).
RV,d = min
RV1,k kmod γM RV2,k γM1
• The assembly figure (m) is valid in the case of symmetrical installation of the connectors flush over the elements. • The connectors must be inserted at 45° with respect to the shear plane. • The strength values in the table for connections with several pairs of crossed screws are already inclusive of nef,ax.
GENERAL PRINCIPLES on page 143.
• The values given are calculated considering a distance a1,CG ≥ 5d. • For the calculation process a timber characteristic density ρk = 385 kg/m3 has been considered. For different ρk values, the strength values in the table can be converted by the kdens coefficients previously indicated:
R’V1,k = kdens,ax RV1,k R’V2,k = kdens,ki RV2,k Strength values thus determined may differ, for higher safety standards, from those resulting from an exact calculation.
TIMBER | VGZ | 131
MINIMUM DISTANCES FOR CROSSED CONNECTORS screws inserted WITH and WITHOUT pre-drilled hole
d1
[mm]
7
a2,CG
[mm]
3∙d
21
aCROSS
[mm]
1,5∙d
11
e
3,5∙d
[mm]
9
25
11
d1
[mm]
27
33
a2,CG
[mm]
14
17
aCROSS [mm]
39
e
3,5∙d
32
[mm]
9
11
3∙d
27
33
1,5∙d
14
17
32
39
d = d1 = nominal screw diameter
m N T
m
90° 90°
S
g
45°
a2,CG
HT
a2,CG
S
g
hNT
HHT
aCROSS
aCROSS bNT
bNT
e
a2,CG
aCROSS a2,CG
90° BHT
BHT
section
BHT
plan - 1 PAIR
plan - 2 OR MORE PAIRS
NOTES • For main beam-secondary beam joints with VGZ screws d = 7 mm inclined or crossed, inserted at an angle of 45° to the secondary beam head, with a minimum secondary beam height of 18 d, the minimum distance a1,CG can be taken equal to 8∙d1 anc the minimum distance a2,CG equal to 3∙d1 .
• For 3 THORNS tip and self-drilling tip screws, the minimum distances in the table are derived from experimental tests; alternatively, adopt a1,CG = 10∙d and a2,CG = 4∙d in accordance with EN1995:2014.
EFFECTIVE NUMBER FOR AXIALLY STRESSED CONNECTOR PAIRS The load-bearing capacity of a connection made with several screws, all of the same type and size, may be lower than the sum of the load-bearing capacities of the individual connection system. For a connection with n pairs of crossed screws, the characteristic effective load-bearing capacity is equal to: Ref,V,k = nef,ax RV,k
The nef value is given in the table below as a function of n (number of pairs). nPAIRS
2
3
4
5
6
7
8
9
10
nef,ax
1,87
2,70
3,60
4,50
5,40
6,30
7,20
8,10
9,00
Complete calculation reports for designing in wood? Download MyProject and simplify your work!
132 | VGZ | TIMBER
INSTALLATION SUGGESTIONS TIMBER-TO-TIMBER JOINT WITH CROSSED CONNECTORS TIGHTENING THE JOINT
For correct installation of the joint, we recommend tightening the elements before inserting the connectors.
Insert a partially threaded screw (e.g. HBS680) to bring the elements closer together.
The HBS screw eliminated the initial gap between the elements. After positioning the VGZ connectors, it can be removed.
After tightening about one third of the screw, remove the JIGVGZ45 template and continue with the installation.
Repeat the procedure to install the inserted screw from the main beam to the secondary beam.
INSERTION OF CONNECTORS
To ensure the correct positioning and inclination of the VGZ screws, we recommend using the JIGVGZ45 template.
JOINT BETWEEN CLT PANELS WITH CONNECTORS INCLINED IN BOTH DIRECTIONS (45°-45°)
To ensure the correct positioning and inclination of the VGZ screws, we recommend using the JIGVGZ45 template positioned at 45° to the panel head.
After tightening about one third of the screw, remove the JIGVGZ45 template and continue with the installation.
Repeat the procedure to install the screw in the adjoining panel and continue this alternating sequence according to the distances provided in the design.
RELATED PRODUCTS
HBS page 30
CATCH page 408
BIT page 417
JIG VGZ 45° page 409
TIMBER | VGZ | 133
STRUCTURAL VALUES | CLT
CHARACTERISTIC VALUES EN 1995:2014 TENSION
total thread withdrawal
partial thread withdrawal
geometry
steel tension lateral
narrow
lateral
narrow
Sg L
Sg,tot Sg
A
A
d1
d1
L
S g,tot
A min
Rax,90,k
Rax,0,k
Sg
A min
Rax,90,k
Rax,0,k
Rtens,k
[mm]
[mm]
[mm]
[mm]
[kN]
[kN]
[mm]
[mm]
[kN]
[kN]
[kN]
7
9
80
70
90
5,73
4,34
-
-
-
-
100
90
110
7,37
5,44
35
55
2,87
2,33
120
110
130
9,01
6,52
45
65
3,69
2,92
140
130
150
10,65
7,58
55
75
4,50
3,49
160
150
170
12,29
8,62
65
85
5,32
4,06
180
170
190
13,92
9,65
75
95
6,14
4,62
200
190
210
15,56
10,67
85
105
6,96
5,17
220
210
230
17,20
11,67
95
115
7,78
5,72
240
230
250
18,84
12,67
105
125
8,60
6,25
260
250
270
20,48
13,65
115
135
9,42
6,79
280
270
290
22,11
14,63
125
145
10,24
7,32
300
290
310
23,75
15,61
135
155
11,06
7,84
320
310
330
25,39
16,57
145
165
11,88
8,36
340
330
350
27,03
17,53
155
175
12,69
8,88
360
350
370
28,67
18,48
165
185
13,51
9,39
380
370
390
30,30
19,43
175
195
14,33
9,90
400
390
410
31,94
20,37
185
205
15,15
10,41
160
150
170
15,80
10,54
65
85
6,84
4,97
180
170
190
17,90
11,80
75
95
7,90
5,65
200
190
210
20,01
13,04
85
105
8,95
6,32
220
210
230
22,11
14,27
95
115
10,00
6,99
240
230
250
24,22
15,49
105
125
11,06
7,65
260
250
270
26,33
16,69
115
135
12,11
8,30
280
270
290
28,43
17,89
125
145
13,16
8,95
300
290
310
30,54
19,08
135
155
14,22
9,59
320
310
330
32,64
20,26
145
165
15,27
10,22
340
330
350
34,75
21,43
155
175
16,32
10,86
360
350
370
36,86
22,60
165
185
17,37
11,49
380
370
390
38,96
23,76
175
195
18,43
12,11
400
390
410
41,07
24,91
185
205
19,48
12,73
440
430
450
45,28
27,20
205
225
21,59
13,96
480
470
490
49,49
29,47
225
245
23,69
15,18
520
510
530
53,70
31,71
245
265
25,80
16,39
560
550
570
57,92
33,94
265
285
27,90
17,59
600
590
610
62,13
36,16
285
305
30,01
18,78
134 | VGZ | TIMBER
15,40
25,40
STRUCTURAL VALUES | CLT
CHARACTERISTIC VALUES EN 1995:2014 TENSION
total thread withdrawal
partial thread withdrawal
geometry
steel tension lateral
narrow
lateral
narrow
Sg L
Sg,tot Sg
A
A
d1
d1
L
S g,tot
A min
Rax,90,k
Rax,0,k
Sg
A min
Rax,90,k
Rax,0,k
Rtens,k
[mm]
[mm]
[mm]
[mm]
[kN]
[kN]
[mm]
[mm]
[kN]
[kN]
[kN]
11
150
140
160
18,02
11,63
60
80
7,72
5,43
200
190
210
24,45
15,31
85
105
10,94
7,42
250
240
260
30,89
18,89
110
130
14,16
9,36
275
265
285
34,11
20,66
123
143
15,77
10,31
300
290
310
37,32
22,40
135
155
17,37
11,26
325
315
335
40,54
24,13
148
168
18,98
12,19
350
340
360
43,76
25,85
160
180
20,59
13,12
375
365
385
46,98
27,56
173
193
22,20
14,04
400
390
410
50,19
29,25
185
205
23,81
14,95
425
415
435
53,41
30,93
198
218
25,42
15,85
450
440
460
56,63
32,60
210
230
27,03
16,75
475
465
485
59,85
34,27
223
243
28,64
17,65
500
490
510
63,06
35,92
235
255
30,24
18,54
525
515
535
66,28
37,56
248
268
31,85
19,43
550
540
560
69,50
39,20
260
280
33,46
20,31
575
565
585
72,72
40,83
273
293
35,07
21,18
600
590
610
75,93
42,45
285
305
36,68
22,05
650
640
660
82,37
45,68
310
330
39,90
23,79
700
690
710
88,80
48,88
335
355
43,11
25,51
750
740
760
95,24
52,05
360
380
46,33
27,22
800
790
810
101,67
55,21
385
405
49,55
28,91
850
840
860
108,11
58,34
410
430
52,77
30,59
900
890
910
114,54
61,46
435
455
55,98
32,27
950
940
960
120,98
64,56
460
480
59,20
33,93
1000
990
1010
127,41
67,64
485
505
62,42
35,59
38,00
NOTES and GENERAL PRINCIPLES on page 143.
TIMBER | VGZ | 135
STRUCTURAL VALUES | CLT SLIDING geometry
CLT - CLT 45° + 45°
CLT - CLT
45°
L
Sg
A
CLT - timber
45°
Sg
Sg
45°
Sg
A
45°
H
A d1
Sg
A min
RV,k
Rtens,45+45,k
A
RV,k
Rtens,45,k
A
Hmin
RV,k
Rtens,45,k
[mm] [mm] [mm]
d1
[mm]
[kN]
[kN]
[mm]
[kN]
[kN]
[mm]
[mm]
[kN]
[kN]
80
25
65
0,86
35
1,22
35
50
1,45
100
35
80
1,16
40
1,65
40
55
2,03
120
45
95
1,46
45
2,06
45
60
2,61
7
9
L
140
55
110
1,75
55
2,47
55
70
3,19
160
65
125
2,03
60
2,87
60
75
3,76
180
75
135
2,31
70
3,27
70
85
4,34
200
85
150
2,59
75
3,66
75
90
4,92
85
100
5,50
90
105
6,08
220
95
165
2,86
240
105
180
3,13
7,70
85
4,04
90
4,42
10,89
260
115
195
3,39
95
4,80
95
110
6,66
280
125
210
3,66
105
5,17
105
120
7,24
300
135
220
3,92
110
5,54
110
125
7,82
320
145
235
4,18
120
5,91
120
135
8,40
340
155
250
4,44
125
6,28
125
140
8,98
360
165
265
4,70
130
6,64
130
145
9,56
380
175
280
4,95
140
7,00
140
155
10,13
400
185
295
5,21
145
7,36
145
160
10,71
160
65
125
2,48
60
3,51
60
75
4,84
180
75
135
2,82
70
3,99
70
85
5,58
200
85
150
3,16
75
4,47
75
90
6,33
220
95
165
3,49
85
4,94
85
100
7,07
240
105
180
3,82
90
5,41
90
105
7,82
260
115
195
4,15
95
5,87
95
110
8,56
280
125
210
4,47
105
6,33
105
120
9,31
300
135
220
4,79
110
6,78
110
125
10,05
120
135
10,80
125
140
11,54
320
145
235
5,11
340
155
250
5,43
360
165
265
5,74
130
8,12
130
145
12,29
380
175
280
6,06
140
8,56
140
155
13,03
12,70
120
7,23
125
7,68
17,96
400
185
295
6,37
145
9,00
145
160
13,77
440
205
320
6,98
160
9,87
160
175
15,26
480
225
350
7,59
175
10,74
175
190
16,75
520
245
380
8,20
190
11,59
190
205
18,24
560
265
405
8,80
205
12,44
205
220
19,73
600
285
435
9,39
215
13,28
215
230
21,22
136 | VGZ | TIMBER
10,89
17,96
STRUCTURAL VALUES | CLT
CHARACTERISTIC VALUES EN 1995:2014 SLIDING
geometry
CLT - CLT 45° + 45°
CLT - CLT
45°
L
Sg
A
CLT - timber
45°
Sg
Sg
45°
Sg
A
45°
H
A d1
Sg
A min
RV,k
Rtens,45+45,k
A
RV,k
Rtens,45,k
A
Hmin
RV,k
Rtens,45,k
[mm] [mm] [mm]
d1
[mm]
[kN]
[kN]
[mm]
[kN]
[kN]
[mm]
[mm]
[kN]
[kN]
150
60
115
2,71
60
3,84
60
75
5,46
200
85
150
3,71
75
5,25
75
90
7,74
250
110
185
4,68
95
6,62
95
110
10,01
275
123
205
5,16
100
7,29
100
115
11,15
300
135
220
5,63
110
7,96
110
125
12,29
325
148
240
6,10
120
8,62
120
135
13,42
350
160
255
6,56
130
9,28
130
145
14,56
11
L
375
173
275
7,02
140
9,93
140
155
15,70
400
185
295
7,47
145
10,57
145
160
16,84
425
198
310
7,93
155
11,21
155
170
17,97
450
210
330
8,38
165
11,85
165
180
19,11
475
223
345
8,82
175
12,48
175
190
20,25
19,00
26,87
500
235
365
9,27
180
13,11
180
195
21,39
525
248
380
9,71
190
13,74
190
205
22,52
550
260
400
10,15
200
14,36
200
215
23,66
575
273
415
10,59
210
14,98
210
225
24,80
600
285
435
11,03
215
15,60
215
230
25,94
650
310
470
11,89
235
16,82
235
250
28,21
700
335
505
12,75
250
18,04
250
265
30,49
750
360
540
13,61
270
19,24
270
285
32,76
800
385
575
14,46
290
20,44
290
305
35,04
850
410
610
15,30
305
21,63
305
320
37,31
900
435
645
16,13
325
22,82
325
340
39,59
950
460
680
16,97
340
23,99
340
355
41,86
1000 485
715
17,79
360
25,16
360
375
44,14
26,87
NOTES | CLT • The characteristic values are according to the national specifications ÖNORM EN 1995 - Annex K. • For the calculation process, a mass density of ρ k = 350 kg/m3 has been considered for CLT elements and a mass density of ρ k = 385 kg/m3 has been considered for timber elements. • The axial thread withdrawal resistance in the narrow face is valid for minimum CLT thickness tCLT,min = 10∙d1 and minimum screw pull-through depth tpen = 10∙d1 . • The characteristic sliding strengths of the connectors inserted in the lateral face of the CLT panel were evaluated considering an angle ε of 45° between the grains and the connector, since it was not possible to define the thickness and orientation of the individual layers in advance.
• The characteristic sliding strengths of the connectors inserted with double inclination (45°-45°) were evaluated considering an ε angle of 60° between the grains and the connector; in fact, the geometry of the joint requires that the connectors have to be inserted at an angle of 45° with respect to the face of the CLT panel and at an angle of 45° with respect to the shear plane between the two panels. The use of the JIG VGZ 45 template is recommended for professional installation of the connectors in this application. • Connectors instability must be verified separately.
GENERAL PRINCIPLES on page 143.
TIMBER | VGZ | 137
STRUCTURAL VALUES | LVL
CHARACTERISTIC VALUES EN 1995:2014 TENSION
total thread withdrawal
partial thread withdrawal
geometry
steel tension wide
edge
L
wide
edge
Sg A
Sg
Sg
d1
A
d1
L
S g,tot
A min
Rax,90,k
Rax,0,k
Sg
A min
Rax,90,k
Rax,0,k
Rtens,k
[mm]
[mm]
[mm]
[mm]
[kN]
[kN]
[mm]
[mm]
[kN]
[kN]
[kN]
80
70
90
7,11
4,74
-
-
-
-
7
9
100
90
110
9,15
5,44
35
55
3,56
2,37
120
110
130
11,18
6,52
45
65
4,57
3,05
140
130
150
13,21
7,58
55
75
5,59
3,73
160
150
170
15,24
8,62
65
85
6,61
4,40
180
170
190
17,28
9,65
75
95
7,62
5,08
200
190
210
19,31
10,67
85
105
8,64
5,76
220
210
230
21,34
11,67
95
115
9,65
6,44
240
230
250
23,37
12,67
105
125
10,67
7,11
260
250
270
25,41
13,65
115
135
11,69
7,79
280
270
290
27,44
14,63
125
145
12,70
8,47
300
290
310
29,47
15,61
135
155
13,72
9,15
320
310
330
31,50
16,57
145
165
14,74
9,82
340
330
350
33,54
17,53
155
175
15,75
10,50
360
350
370
35,57
18,48
165
185
16,77
11,18
380
370
390
37,60
19,43
175
195
17,78
11,86
400
390
410
39,63
20,37
185
205
18,80
12,53
160
150
170
19,60
10,54
65
85
8,49
5,66
180
170
190
22,21
11,80
75
95
9,80
6,53
200
190
210
24,83
13,04
85
105
11,11
7,40
220
210
230
27,44
14,27
95
115
12,41
8,28
240
230
250
30,05
15,49
105
125
13,72
9,15
260
250
270
32,67
16,69
115
135
15,03
10,02
280
270
290
35,28
17,89
125
145
16,33
10,89
300
290
310
37,89
19,08
135
155
17,64
11,76
320
310
330
40,51
20,26
145
165
18,95
12,63
340
330
350
43,12
21,43
155
175
20,25
13,50
360
350
370
45,73
22,60
165
185
21,56
14,37
380
370
390
48,35
23,76
175
195
22,87
15,24
400
390
410
50,96
24,91
185
205
24,17
16,12
440
430
450
56,18
27,20
205
225
26,79
17,86
480
470
490
61,41
29,47
225
245
29,40
19,60
520
510
530
66,64
31,71
245
265
32,01
21,34
560
550
570
71,86
33,94
265
285
34,63
23,08
600
590
610
77,09
36,16
285
305
37,24
24,83
138 | VGZ | TIMBER
15,40
25,40
STRUCTURAL VALUES | LVL
CHARACTERISTIC VALUES EN 1995:2014 TENSION
total thread withdrawal
partial thread withdrawal
geometry
steel tension wide
edge
L
wide
edge
Sg A
Sg
Sg
d1
A
d1
L
S g,tot
A min
Rax,90,k
Rax,0,k
Sg
A min
Rax,90,k
Rax,0,k
Rtens,k
[mm]
[mm]
[mm]
[mm]
[kN]
[kN]
[mm]
[mm]
[kN]
[kN]
[kN]
150
140
160
22,36
11,63
60
80
9,58
6,39
11
200
190
210
30,34
15,31
85
105
13,57
9,05
250
240
260
38,33
18,89
110
130
17,57
11,71
275
265
285
42,32
20,66
123
143
19,56
13,04
300
290
310
46,31
22,40
135
155
21,56
14,37
325
315
335
50,31
24,13
148
168
23,56
15,70
350
340
360
54,30
25,85
160
180
25,55
17,03
375
365
385
58,29
27,56
173
193
27,55
18,37
400
390
410
62,28
29,25
185
205
29,54
19,70
425
415
435
66,27
30,93
198
218
31,54
21,03
450
440
460
70,27
32,60
210
230
33,54
22,36
475
465
485
74,26
34,27
223
243
35,53
23,69
500
490
510
78,25
35,92
235
255
37,53
25,02
525
515
535
82,24
37,56
248
268
39,53
26,35
550
540
560
86,24
39,20
260
280
41,52
27,68
575
565
585
90,23
40,83
273
293
43,52
29,01
600
590
610
94,22
42,45
285
305
45,51
30,34
650
640
660
102,21
45,68
310
330
49,51
33,00
700
690
710
110,19
48,88
335
355
53,50
35,67
750
740
760
118,18
52,05
360
380
57,49
38,33
800
790
810
126,16
55,21
385
405
61,48
40,99
850
840
860
134,15
58,34
410
430
65,48
43,65
900
890
910
142,13
61,46
435
455
69,47
46,31
950
940
960
150,12
64,56
460
480
73,46
48,97
1000
990
1010
158,10
67,64
485
505
77,45
51,64
38,00
NOTES and GENERAL PRINCIPLES on page 143.
TIMBER | VGZ | 139
STRUCTURAL VALUES | LVL
CHARACTERISTIC VALUES EN 1995:2014 SLIDING
geometry
SHEAR
LVL-LVL
Sg
A L
LVL-LVL wide
LVL-timber
Sg
A
45°
Sg
Sg B
Sg
A
45°
Sg
H
d1
d1
L
Sg
A
[mm] [mm] [mm] [mm]
7
9
Bmin
RV,k
Rtens,45,k
A
Hmin
RV,k
Rtens,45,k
A
RV,90,k
[mm]
[kN]
[kN]
[mm]
[mm]
[kN]
[kN]
[mm]
[kN]
45
2,01
50
3,29
100
35
40
55
2,01
40
120
45
45
60
2,59
45
50
2,59
60
3,55
140
55
55
70
3,16
55
60
3,16
70
3,80
160
65
60
75
3,74
60
65
3,74
80
4,05
180
75
70
85
4,31
70
75
4,31
90
4,31
200
85
75
90
4,89
75
80
4,89
100
4,56
220
95
85
100
5,46
85
90
5,46
110
4,81
90
95
6,04
120
4,81
95
100
6,61
130
4,81
240
105
90
105
6,04
260
115
95
110
6,61
10,89
10,89
280
125
105
120
7,19
105
110
7,19
140
4,81
300
135
110
125
7,76
110
115
7,76
150
4,81
320
145
120
135
8,34
120
125
8,34
160
4,81
340
155
125
140
8,91
125
130
8,91
170
4,81
360
165
130
145
9,49
130
135
9,49
180
4,81
380
175
140
155
10,06
140
145
10,06
190
4,81
400
185
145
160
10,64
145
150
10,64
200
4,81
160
65
60
75
4,80
60
65
4,80
80
5,75
180
75
70
85
5,54
70
75
5,54
90
6,08
200
85
75
90
6,28
75
80
6,28
100
6,41
220
95
85
100
7,02
85
90
7,02
110
6,73
240
105
90
105
7,76
90
95
7,76
120
7,06
260
115
95
110
8,50
95
100
8,50
130
7,26
280
125
105
120
9,24
105
110
9,24
140
7,26
300
135
110
125
9,98
110
115
9,98
150
7,26
320
145
120
135
10,72
120
125
10,72
160
7,26
17,96
340
155
125
140
11,46
125
130
11,46
360
165
130
145
12,20
130
135
12,20
17,96
170
7,26
180
7,26
380
175
140
155
12,93
140
145
12,93
190
7,26
400
185
145
160
13,67
145
150
13,67
200
7,26
440
205
160
175
15,15
160
165
15,15
220
7,26
480
225
175
190
16,63
175
180
16,63
240
7,26
520
245
190
205
18,11
190
195
18,11
260
7,26
560
265
205
220
19,59
205
210
19,59
280
7,26
600
285
215
230
21,07
215
220
21,07
300
7,26
140 | VGZ | TIMBER
STRUCTURAL VALUES | LVL
CHARACTERISTIC VALUES EN 1995:2014 SLIDING
geometry
SHEAR
LVL-LVL
Sg
A L
LVL-LVL wide
LVL-timber
Sg
A
45°
Sg
Sg B
Sg
A
45°
Sg
H
d1
d1
L
Sg
A
[mm] [mm] [mm] [mm] 150
11
60
60
Bmin
RV,k
Rtens,45,k
A
Hmin
RV,k
Rtens,45,k
A
RV,90,k
[mm]
[kN]
[kN]
[mm]
[mm]
[kN]
[kN]
[mm]
[kN]
75
5,42
60
65
5,42
75
7,46
200
85
75
90
7,68
75
80
7,68
100
8,45
250
110
95
110
9,94
95
100
9,94
125
9,45
275
123
100
115
11,07
100
105
11,07
138
9,95
300
135
110
125
12,20
110
115
12,20
150
10,12
325
148
120
135
13,33
120
125
13,33
163
10,12
350
160
130
145
14,45
130
135
14,45
175
10,12
375
173
140
155
15,58
140
145
15,58
188
10,12
400
185
145
160
16,71
145
150
16,71
200
10,12
425
198
155
170
17,84
155
160
17,84
213
10,12
450
210
165
180
18,97
165
170
18,97
225
10,12
475
223
175
190
20,10
175
180
20,10
238
10,12
500
235
180
195
21,23
180
185
21,23
525
248
190
205
22,36
190
195
22,36
550
260
200
215
23,49
200
205
23,49
275
10,12
575
273
210
225
24,62
210
215
24,62
288
10,12
600
285
215
230
25,75
215
220
25,75
300
10,12
650
310
235
250
28,01
235
240
28,01
325
10,12
700
335
250
265
30,26
250
255
30,26
350
10,12
750
360
270
285
32,52
270
275
32,52
375
10,12
800
385
290
305
34,78
290
295
34,78
400
10,12
850
410
305
320
37,04
305
310
37,04
425
10,12
26,87
26,87
250
10,12
263
10,12
900
435
325
340
39,30
325
330
39,30
450
10,12
950
460
340
355
41,56
340
345
41,56
475
10,12
1000 485
360
375
43,81
360
365
43,81
500
10,12
NOTES • For the calculation process, a mass density of ρk = 480 kg/m3 has been considered for the softwood LVL elements and a mass density of ρk = 385 kg/m3 has been considered for timber elements.
• The characteristic sliding strengths were evaluated by considering, for individual timber elements, a 45° angle between the connector and the grain and a 45° angle between the connector and the side face of the LVL element.
• The axial "wide"thread withdrawal resistance was evaluated considering an angle of 90° between the fibers and the connector and is valid in application with LVLs in both parallel and cross grain veneer beams.
• The characteristic shear strengths were evaluated by considering, for individual timber elements, a 90° angle between the connector and the grain, a 90° angle between the connector and the side face of the LVL element and a 0° angle between the force and the grain.
• The axial "edge" thread withdrawal resistance was evaluated considering an angle of 90° between the fibers and the connector and is valid in application with parallel veneer LVLs. • Minimum height LVL hLVL,min= 100 mm for VGZ connectors Ø7 and hLVL,min = 120 mm for VGZ connectors Ø9.
• Connectors instability must be verified separately.
GENERAL PRINCIPLES on page 143.
TIMBER | VGZ | 141
MINIMUM DISTANCES FOR SHEAR AND AXIAL LOADS | CLT screws inserted WITHOUT pre-drilled hole
lateral face d1 a1 a2 a3,t a3,c a4,t a4,c
[mm] [mm] [mm] [mm] [mm] [mm] [mm]
narrow face
7 28 18 42 42 42 18
4∙d 2,5∙d 6∙d 6∙d 6∙d 2,5∙d
9 36 23 54 54 54 23
11 44 28 66 66 66 28
d1 a1 a2 a3,t a3,c a4,t a4,c
[mm] [mm] [mm] [mm] [mm] [mm] [mm]
7 70 28 84 49 42 21
10∙d 4∙d 12∙d 7∙d 6∙d 3∙d
9 90 36 108 63 54 27
11 110 44 132 77 66 33
d = d1 = nominal screw diameter
a3,c
a4,t
a2 a2
α
F
a3,t
F
a4,c
a4,c α
a1
a3,c
a3,t
F a3,c a4,c a4,t
a4,c
F
tCLT
tCLT
NOTES • The minimum distances are compliant with ETA-11/0030 and are to be considered valid unless otherwise specified in the technical documents for the CLT panels.
• The minimum distances referred to "narrow face" are valid for minimum screw pull-through depth tpen = 10∙d1 .
• Minimum distances are valid for minimum CLT thickness tCLT,min =10∙d1 .
MINIMUM DISTANCES FOR SHEAR LOADS | LVL screws inserted WITHOUT pre-drilled hole
F
d1 a1 a2 a3,t a3,c a4,t a4,c
[mm] [mm] [mm] [mm] [mm] [mm] [mm]
7 105 49 140 105 49 49
15∙d 7∙d 20∙d 15∙d 7∙d 7∙d
F
α=0°
9 135 63 180 135 63 63
11 165 77 220 165 77 77
d1 a1 a2 a3,t a3,c a4,t a4,c
[mm] [mm] [mm] [mm] [mm] [mm] [mm]
α=90°
7 49 49 105 105 84 49
7∙d 7∙d 15∙d 15∙d 12∙d 7∙d
9 63 63 135 135 108 63
11 77 77 165 165 132 77
α = load-to-grain angle d = d1 = nominal screw diameter
a2 a2
a1
a4,t F
α
α
a3,t
α
a3,c
NOTES • Minimum distances are obtained from experimental tests carried out at Eurofins Expert Services Oy, Espoo, Finland (Report EUFI29-19000819-T1/T2).
142 | VGZ | TIMBER
F
a4,c
F F α
MINIMUM DISTANCES FOR AXIAL STRESSES | LVL screws inserted WITHOUT pre-drilled hole
wide face d1 a1 a2 a1,CG a2,CG
[mm] [mm] [mm] [mm] [mm]
5∙d 5∙d 10∙d 4∙d
edge face
7 35 35 70 28
9 45 45 90 36
11 55 55 110 44
d1 a1 a2 a1,CG a2,CG
[mm] [mm] [mm] [mm] [mm]
7 70 35 84 21
10∙d 5∙d 12∙d 3∙d
9 90 45 108 27
11 110 55 132 33
d = d1 = nominal screw diameter
SCREWS INSERTED WITH α = 90° ANGLE WITH RESPECT TO THE GRAIN (wide face)
SCREWS INSERTED WITH α = 90° ANGLE WITH RESPECT TO THE GRAIN (edge face)
a2,CG a2 a2,CG
a1,CG
plan
a1
a1
a1,CG
a1
a1,CG
plan a1,CG
a1
a1,CG
a1
a1,CG
a2,CG
t
a1
front h
NOTES • The minimum distances for Ø7 and Ø9 screws with 3 THORNS bit are compliant with ETA11/0030 and are to be considered valid unless otherwise specified in the technical documents for the LVL panels. For Ø11 or self-drilling bit screws, the minimum distances are obtained from experimental tests carried out at Eurofins Expert Services Oy, Espoo, Finland (Report EUFI29-19000819-T1/T2).
l
front
• The minimum distances referred to edge face for screws d = 7 mm are valid for minimum thickness LVL tLVL,min = 45 mm and minimum height LVL hLVL,min = 100 mm. The minimum distances referred to edge face for screws d = 9 mm are valid for minimum thickness LVL tLVL,min = 57 mm and minimum height LVL hLVL,min = 120 mm.
STRUCTURAL VALUES GENERAL PRINCIPLES • Characteristic values comply with the EN 1995:2014 standard in accordance with ETA-11/0030. • The tensile design strength of the connector is the lower between the timber-side design strength (Rax,d) and the steel-side design strength (Rtens,d).
Rax,d = min
Rax,k kmod γM Rtens,k γM2
• The compression design strength of the connector is the lower between the timber-side design strength (Rax,d) and the instability design strength (Rki,d).
Rax,d = min
Rax,k kmod γM Rki,k γM1
• The design sliding strength of the joint is either the timber-side design strength (RV,d) and the design strength on the steel side projected at 45°. (Rtens,45,d), whichever is lower:
RV,d = min
RV,k kmod γM Rtens,45,k γM2
• The design shear strength of the connector is obtained from the characteristic value as follows:
RV,d =
RV,k kmod γM
• The coefficients γM and kmod should be taken according to the current regulations used for the calculation. • For the mechanical resistance values and the geometry of the screws, reference was made to ETA-11/0030. • Dimensioning and verification of the timber elements must be carried out separately. • The screws must be positioned in accordance with the minimum distances. • The characteristic thread withdrawal strengths were evaluated considering a penetration length of Sg,tot or Sg, as shown in the table. For intermediate values of Sg it is possible to linearly interpolate. A minimum penetration length of 4-d1 is considered. • The shear srength and sliding values were evaluated considering the centre of gravity of the connector placed in correspondence with the shear plane. • The characteristic shear resistances are calculated for screws inserted without pre-drilling hole. In the case of screws inserted with pre-drilling hole, greater resistance values can be obtained. • For different calculation configurations, the MyProject software is available (www.rothoblaas.com).
TIMBER | VGZ | 143
VGZ EVO
ETA-11/0030
UKTA-0836 22/6195
AC233 | AC257 ESR-4645
FULLY THREADED SCREW WITH CYLINDRICAL HEAD C4 EVO COATING Multilayer coating with a surface treatment of epoxy resin and aluminium flakes. No rust after 1440 hours of salt spray exposure test, as per ISO 9227. Can be used in service class 3 outdoor applications and under class C4 atmospheric corrosion conditions.
AUTOCLAVE-TREATED TIMBER The C4 EVO coating has been certified according to US acceptance criterion AC257 for outdoor use with ACQ-treated timber.
STRUCTURAL APPLICATIONS Deep thread and high resistance steel (fy,k = 1000 N/mm2) for excellent tensile performance. Approved for structural applications subject to stresses in any direction vs the grain (0° - 90°). Reduced minimum distances.
CYLINDRICAL HEAD It allows the screw to penetrate and pass through the surface of the wood substrate. Ideal for concealed joints, timber couplings and structural reinforcements. It is the right choice for increased fire performance.
BIT INCLUDED
DIAMETER [mm]
vgz evo
5 5
11 11
LENGTH [mm]
80 80
SERVICE CLASS
SC1
SC2
SC3
SC4
ATMOSPHERIC CORROSIVITY
C1
C2
C3
C4
C5
WOOD CORROSIVITY
T1
T2
T3
T4
T5
MATERIAL
C4
EVO COATING
600
1000
carbon steel with C4 EVO coating
FIELDS OF USE • • • • •
144 | VGZ EVO | TIMBER
timber based panels solid timber and glulam CLT and LVL high density woods ACQ, CCA treated timber
ETA-11/0030
TRUSS & RAFTER JOINTS Ideal for joining small timber elements such as the crossbeams and uprights of light frame structures. Certified for application parallel to the grain and with reduced minimum distances.
TIMBER STUDS Values also tested, certified and calculated for CLT and high density woods such as Microllam® LVL. Ideal for fastening I-Joist beams.
TIMBER | VGZ EVO | 145
Fastening Wood Trusses outdoors.
Fastening the uprights of light frame structures with VGZ EVO Ø5 mm.
d2 d1
XXX
dK
VGZ
GEOMETRY AND MECHANICAL CHARACTERISTICS
b L
GEOMETRY Nominal diameter
d1
[mm]
5,3
5,6
7
9
11
Head diameter
dK
[mm]
8,00
8,00
9,50
11,50
13,50
Thread diameter
d2
[mm]
3,60
3,80
4,60
5,90
6,60
Pre-drilling hole diameter(1)
dV,S
[mm]
3,5
3,5
4,0
5,0
6,0
Pre-drilling hole diameter(2)
dV,H
[mm]
4,0
4,0
5,0
6,0
7,0
(1) Pre-drilling valid for softwood. (2) Pre-drilling valid for hardwood and beech LVL.
CHARACTERISTIC MECHANICAL PARAMETERS Nominal diameter
d1
[mm]
5,3
5,6
7
9
11
Tensile strength
ftens,k
[kN]
11,0
12,3
15,4
25,4
38,0
Yield strength
fy,k
[N/mm2]
1000
1000
1000
1000
1000
Yield moment
My,k
[Nm]
9,2
10,6
14,2
27,2
45,9
softwood (softwood)
LVL softwood (LVL softwood)
pre-drilled beech LVL (beech LVL predrilled)
11,7
15,0
29,0
Withdrawal resistance parameter
fax,k
[N/mm2]
Associated density
ρa
[kg/m3]
350
500
730
Calculation density
ρk
[kg/m3]
≤ 440
410 ÷ 550
590 ÷ 750
For applications with different materials please see ETA-11/0030.
146 | VGZ EVO | TIMBER
CODES AND DIMENSIONS L
b
[mm]
d1
CODE
[mm]
[mm]
pcs
d1
CODE
VGZEVO580 5,3 VGZEVO5100 TX 25 VGZEVO5120
80
70
50
VGZEVO11250
250
240
25
100
90
50
VGZEVO11300
300
290
25
120
110
50
VGZEVO11350
350
340
25
VGZEVO5140 5,6 VGZEVO5150 TX 25 VGZEVO5160
140
130
50
390
25
140
50
VGZEVO11400 11 TX 50 VGZEVO11450
400
150
450
440
25
160
150
50
VGZEVO11500
500
490
25
VGZEVO780
80
70
25
VGZEVO11550
550
540
25
VGZEVO7100
100
90
25
VGZEVO11600
600
590
25
[mm]
VGZEVO7120
120
110
25
VGZEVO7140
140
130
25
VGZEVO7160
160
150
25
VGZEVO7180
180
170
25
VGZEVO7200 7 TX 30 VGZEVO7220
200
190
25
220
210
25
VGZEVO7240
240
230
25
VGZEVO7260
260
250
25
VGZEVO7280
280
270
25
VGZEVO7300
300
290
25
VGZEVO7340
340
330
25
VGZEVO7380
380
370
25
VGZEVO9160
160
150
25
VGZEVO9180
180
170
25
VGZEVO9200
200
190
25
VGZEVO9220
220
210
25
VGZEVO9240
240
230
25
VGZEVO9260
260
250
25
VGZEVO9280
280
270
25
VGZEVO9300
9 TX 40 VGZEVO9320
300
290
25
320
310
25
VGZEVO9340
340
330
25
VGZEVO9360
360
350
25
VGZEVO9380
380
370
25
VGZEVO9400
400
390
25
VGZEVO9440
440
430
25
VGZEVO9480
480
470
25
VGZEVO9520
520
510
25
L
b
[mm]
[mm]
pcs
RELATED PRODUCTS JIG VGZ 45° TEMPLATE FOR 45° SCREWS
page 409
OUTDOOR STRUCTURAL PERFORMANCE Values also tested, certified and calculated for CLT and high density woods such as Microllam® LVL. Ideal for fastening timber-framed panels and lattice beams (Rafter, Truss).
TIMBER | VGZ EVO | 147
MINIMUM DISTANCES FOR AXIAL STRESSES screws inserted WITH and WITHOUT pre-drilled hole d1
[mm]
5,3
5,6
7
9
11
a1
[mm]
a2
[mm]
5∙d
27
28
35
45
55
5∙d
27
28
35
45
55
a2,LIM
[mm]
2,5∙d
13
a1,CG
[mm]
8∙d
42
14
18
23
28
45
56
72
88
a2,CG
[mm]
3∙d
16
aCROSS [mm]
1,5∙d
8
17
21
27
33
8
11
14
17
SCREWS UNDER TENSION INSERTED WITH AN ANGLE α WITH RESPECT TO THE GRAIN
a2,CG a2,CG
a2,CG a2 a2,CG
a2
a2,CG
a2,CG a1,CG
1
a1
a
a2,CG a1,CG
a1,CG
a2,CG a1,CG
plan
front
plan
SCREWS INSERTED WITH α = 90° ANGLE WITH RESPECT TO THE GRAIN
front
CROSSED SCREWS INSERTED WITH AN ANGLE α WITH RESPECT TO THE GRAIN
a2,CG
45°
a2 a2,CG
a2,CG a1,CG
aCROSS a2,CG
a1 a1,CG
plan
a1
front
plan
front
NOTES • Minimum distances according to ETA-11/0030. • The minimum distances are independent of the insertion angle of the connector and the angle of the force with respect to the grain.
• For 3 THORNS tip the minimum distances in the table are derived from experimental tests; alternatively, adopt a1,CG = 10∙d and a2,CG = 4∙d in accordance with EN 1995:2014.
• The axial distance a2 can be reduced down to a2,LIM if for each connector a “joint surface” a1 a2 = 25 d1 2 is maintained. • For main beam-secondary beam joints with VGZ screws d = 7 mm inclined or crossed, inserted at an angle of 45° to the secondary beam head, with a minimum secondary beam height of 18 d, the minimum distance a1,CG can be taken equal to 8∙d1 anc the minimum distance a2,CG equal to 3∙d1 .
EFFECTIVE THREAD USED IN CALCULATION 10
Sg
Tol.
b L
148 | VGZ EVO | TIMBER
Sg
10
b = S g,tot = L - 10 mm
represents the entire length of the threaded part
S g = (L - 10 mm - 10 mm - Tol.)/ 2 represents the partial length of the threaded part net of a laying tolerance (Tol.) of 10 mm
STRUCTURAL VALUES
CHARACTERISTIC VALUES EN 1995:2014 TENSION / COMPRESSION
total thread withdrawal
partial thread withdrawal
geometry ε=90°
ε=0°
ε=90°
estrazione filetto parziale
ε=0°
steel tension
instability ε=90°
Sg Sg,tot
L
Sg
A
A
d1
d1
L
S g,tot
A min
Rax,90,k
Rax,0,k
Sg
A min
Rax,90,k
Rax,0,k
Rtens,k
Rki,90,k
[mm]
[mm]
[mm]
[mm]
[kN]
[kN]
[mm]
[mm]
[kN]
[kN]
[kN]
[kN]
80 100 120 140 150 160 80 100 120 140 160 180 200 220 240 260 280 300 340 380 160 180 200 220 240 260 280 300 320 340 360 380 400 440 480 520 250 300 350 400 450 500 550 600
70 90 110 130 150 150 70 90 110 130 150 170 190 210 230 250 270 290 330 370 150 170 190 210 230 250 270 290 310 330 350 370 390 430 470 510 240 290 340 390 440 490 540 590
90 110 130 150 170 170 90 110 130 150 170 190 210 230 250 270 290 310 350 390 170 190 210 230 250 270 290 310 330 350 370 390 410 450 490 530 260 310 360 410 460 510 560 610
4,68 6,02 7,36 9,19 10,61 10,61 6,19 7,96 9,72 11,49 13,26 15,03 16,79 18,56 20,33 22,10 23,87 25,63 29,17 32,70 17,05 19,32 21,59 23,87 26,14 28,41 30,68 32,96 35,23 37,50 39,78 42,05 44,32 48,87 53,41 57,96 33,34 40,28 47,22 54,17 61,11 68,06 75,00 81,95
1,41 1,81 2,21 2,76 2,97 3,18 1,86 2,39 2,92 3,45 3,98 4,51 5,04 5,57 6,10 6,63 7,16 7,69 8,75 9,81 5,11 5,80 6,48 7,16 7,84 8,52 9,21 9,89 10,57 11,25 11,93 12,61 13,30 14,66 16,02 17,39 10,00 12,08 14,17 16,25 18,33 20,42 22,50 24,58
25 35 45 55 65 65 25 35 45 55 65 75 85 95 105 115 125 135 155 175 65 75 85 95 105 115 125 135 145 155 165 175 185 205 225 245 110 135 160 185 210 235 260 285
45 55 65 75 85 85 45 55 65 75 85 95 105 115 125 135 145 155 175 195 85 95 105 115 125 135 145 155 165 175 185 195 205 225 245 265 130 155 180 205 230 255 280 305
1,67 2,34 3,01 3,89 4,60 4,60 2,21 3,09 3,98 4,86 5,75 6,63 7,51 8,40 9,28 10,16 11,05 11,93 13,70 15,47 7,39 8,52 9,66 10,80 11,93 13,07 14,21 15,34 16,48 17,61 18,75 19,89 21,02 23,30 25,57 27,84 15,28 18,75 22,22 25,70 29,17 32,64 36,11 39,59
0,50 0,70 0,90 1,17 1,27 1,38 0,66 0,93 1,19 1,46 1,72 1,99 2,25 2,52 2,78 3,05 3,31 3,58 4,11 4,64 2,22 2,56 2,90 3,24 3,58 3,92 4,26 4,60 4,94 5,28 5,63 5,97 6,31 6,99 7,67 8,35 4,58 5,63 6,67 7,71 8,75 9,79 10,83 11,88
11,00
6,20
12,30
6,93
15,40
10,30
25,40
17,25
38,00
21,93
5,3
5,6
7
9
11
ε = screw-to-grain angle
NOTES and GENERAL PRINCIPLES on page 151.
TIMBER | VGZ EVO | 149
STRUCTURAL VALUES | TIMBER
CHARACTERISTIC VALUES EN 1995:2014
SLIDING geometry
timber-to-timber
S
g
A
steel tension
45°
timber-to-timber
45°
timber-to-timber ε=90°
timber-to-timber ε=0°
A
Sg
S
g
L
SHEAR
Sg
B d1
d1
L
Sg
A
Bmin
RV,k
Rtens,45,k
A
Sg
RV,90,k
RV,0,k
[mm]
[mm]
[mm]
[mm]
[mm]
[kN]
[kN]
[mm]
[mm]
[mm]
[kN]
80 100 120 140 150 160 80 100 120 140 160 180 200 220 240 260 280 300 340 380 160 180 200 220 240 260 280 300 320 340 360 380 400 440 480 520 250 300 350 400 450 500 550 600
25 35 45 55 65 65 25 35 45 55 65 75 85 95 105 115 125 135 155 175 65 75 85 95 105 115 125 135 145 155 165 175 185 205 225 245 110 135 160 185 210 235 260 285
35 40 45 55 60 60 35 40 45 55 60 70 75 85 90 95 105 110 125 140 60 70 75 85 90 95 105 110 120 125 130 140 145 160 175 190 95 110 130 145 165 180 200 215
50 55 60 70 75 75 50 55 60 70 75 85 90 100 105 110 120 125 140 155 75 85 90 100 105 110 120 125 135 140 145 155 160 175 190 205 110 125 145 160 180 195 215 230
1,18 1,66 2,13 2,75 3,25 3,25 1,56 2,19 2,81 3,44 4,06 4,69 5,31 5,94 6,56 7,19 7,81 8,44 9,69 10,94 5,22 6,03 6,83 7,63 8,44 9,24 10,04 10,85 11,65 12,46 13,26 14,06 14,87 16,47 18,08 19,69 10,80 13,26 15,71 18,17 20,63 23,08 25,54 27,99
40 50 60 70 80 80 40 50 60 70 80 90 100 110 120 130 140 150 170 190 80 90 100 110 120 130 140 150 160 170 180 190 200 220 240 260 125 150 175 200 225 250 275 300
25 35 45 55 65 65 25 35 45 55 65 75 85 95 105 115 125 135 155 175 65 75 85 95 105 115 125 135 145 155 165 175 185 205 225 245 110 135 160 185 210 235 260 285
1,99 2,16 2,32 2,69 2,87 2,87 2,59 2,93 3,15 3,37 3,59 3,81 4,03 4,25 4,30 4,30 4,30 4,30 4,30 4,30 5,10 5,38 5,67 5,95 6,23 6,50 6,50 6,50 6,50 6,50 6,50 6,50 6,50 6,50 6,50 6,50 8,35 9,06 9,06 9,06 9,06 9,06 9,06 9,06
1,03 1,19 1,37 1,59 1,62 1,64 1,34 1,53 1,74 1,97 2,06 2,12 2,19 2,26 2,32 2,39 2,46 2,52 2,65 2,79 2,81 3,08 3,18 3,27 3,35 3,44 3,52 3,61 3,69 3,78 3,86 3,95 4,03 4,21 4,38 4,55 4,57 4,83 5,09 5,35 5,61 5,87 6,13 6,39
5,3
5,6
7
9
11
ε = screw-to-grain angle
NOTES and GENERAL PRINCIPLES on page 151.
150 | VGZ EVO | TIMBER
7,78
8,70
10,89
17,96
26,87
STRUCTURAL VALUES | FURTHER APPLICATIONS SHEAR CONNECTION WITH CROSSED CONNECTORS
CONNECTIONS WITH CLT AND LVL ELEMENTS
VGZ EVO Ø7-9-11 mm
VGZ EVO Ø7-9-11 mm
45°
45°
45°
90°
STRUCTURAL VALUES on page 130.
STRUCTURAL VALUES on page 134.
STRUCTURAL VALUES GENERAL PRINCIPLES
NOTES
• Characteristic values comply with the EN 1995:2014 standard in accordance with ETA-11/0030.
• The characteristic thread withdrawal resistances were evaluated considering both an ε angle of 90° (Rax,90,k) and of 0° (Rax,0,k) between the grains of the timber element and the connector.
• The tensile design strength of the connector is the lower between the timber-side design strength (Rax,d) and the steel-side design strength (Rtens,d).
Rax,d = min
Rax,k kmod γM Rtens,k γM2
• The compression design strength of the connector is the lower between the timber-side design strength (Rax,d) and the instability design strength (Rki,d).
Rax,d = min
Rax,k kmod γM Rki,k γM1
• The design sliding strength of the joint is either the timber-side design strength (RV,d) and the design strength on the steel side projected at 45°. (Rtens,45,d), whichever is lower:
RV,d = min
RV,k kmod γM Rtens,45,k γM2
• The design shear strength of the connector is obtained from the characteristic value as follows:
RV,d =
• The characteristic sliding strengths were evaluated by considering an angle ε of 45° between the grains of the timber element and the connector. • The characteristic timber-to-timber shear strengths were evaluated considering both an ε angle of 90° (RV,90,k) and 0° (RV,0,k) between the grains of the second element and the connector. • For the calculation process a timber characteristic density ρk = 385 kg/m3 has been considered. For different ρk values, the strength values in the table (withdrawal, compression, sliding and shear) can be converted via the kdens coefficient.
R’ax,k = kdens,ax Rax,k R’ki,k = kdens,ki Rki,k R’V,k = kdens,ax RV,k R’V,90,k = kdens,V RV,90,k R’V,0,k = kdens,V RV,0,k ρk
350
C-GL kdens,ax kdens,ki kdens,v
[kg/m3 ]
380
385
405
425
430
440
C24
C30
GL24h
GL26h
GL28h
GL30h
GL32h
0,92
0,98
1,00
1,04
1,08
1,09
1,11
0,97
0,99
1,00
1,00
1,01
1,02
1,02
0,90
0,98
1,00
1,02
1,05
1,05
1,07
Strength values thus determined may differ, for higher safety standards, from those resulting from an exact calculation.
RV,k kmod γM
• The coefficients γM and kmod should be taken according to the current regulations used for the calculation. • For the mechanical resistance values and the geometry of the screws, reference was made to ETA-11/0030. • Dimensioning and verification of the timber elements must be carried out separately. • The screws must be positioned in accordance with the minimum distances. • The characteristic thread withdrawal strengths were evaluated considering a penetration length of Sg,tot or Sg, as shown in the table. For intermediate values of Sg it is possible to linearly interpolate. A minimum penetration length of 4-d1 is considered. • The shear srength and sliding values were evaluated considering the centre of gravity of the connector placed in correspondence with the shear plane. • The characteristic shear resistances are calculated for screws inserted without pre-drilling hole. In the case of screws inserted with pre-drilling hole, greater resistance values can be obtained. • For different calculation configurations, the MyProject software is available (www.rothoblaas.com).
TIMBER | VGZ EVO | 151
VGZ EVO C5
AC233 ESR-4645
ETA-11/0030
FULLY THREADED SCREW WITH CYLINDRICAL HEAD C5 ATMOSPHERIC CORROSIVITY Multi-layer coating capable of withstanding outdoor environments classified C5 according to ISO 9223. Salt Spray Test (SST) with exposure time greater than 3000 h carried out on screws previously screwed and unscrewed in Douglas fir timber.
3 THORNS TIP Thanks to the 3 THORNS tip, minimum installation distances are reduced. More screws can be used in less space and larger screws in smaller elements. Costs and time for project implementation are reduced.
MAXIMUM STRENGTH It is the screw of choice if high mechanical performance is required under very adverse atmospheric corrosive conditions. The cylindrical head makes it ideal for concealed joints, timber couplings and structural reinforcements.
BIT INCLUDED
LENGTH [mm] 5
7
9
11
DIAMETER [mm] 80
140
360
SERVICE CLASS SC1
SC2
SC3
SC4
ATMOSPHERIC CORROSIVITY C1
C2
C3
C4
C5
WOOD CORROSIVITY T1
T2
T3
T4
T5
MATERIAL
C5
C5
EVO COATING
carbon steel with C5 EVO coating with very high corrosion resistance
FIELDS OF USE • • • •
152 | VGZ EVO C5 | TIMBER
timber based panels solid timber and glulam CLT and LVL high density woods
1000
CODES AND DIMENSIONS d1
CODE
[mm] VGZEVO7140C5 7 TX 30
L
b
pcs
[mm]
[mm]
140
130
25
d1
CODE
L
b
[mm]
[mm]
200
190
25
VGZEVO9240C5
240
230
25
VGZEVO9280C5
280
270
25
[mm]
VGZEVO7180C5
180
170
25
VGZEVO7220C5
220
210
25
VGZEVO9200C5 9 TX 40
pcs
VGZEVO7260C5
260
250
25
VGZEVO9320C5
320
310
25
VGZEVO7300C5
300
290
25
VGZEVO9360C5
360
350
25
d 2 d1
XXX
dK
VGZ
GEOMETRY AND MECHANICAL CHARACTERISTICS
b L
GEOMETRY Nominal diameter Head diameter Thread diameter Pre-drilling hole diameter(1) Pre-drilling hole diameter(2)
d1 dK d2 dV,S dV,H
[mm] [mm] [mm] [mm] [mm]
7 9,50 4,60 4,0 5,0
9 11,50 5,90 5,0 6,0
7 15,4 1000 14,2
9 25,4 1000 27,2
(1) Pre-drilling valid for softwood. (2) Pre-drilling valid for hardwood and beech LVL.
CHARACTERISTIC MECHANICAL PARAMETERS Nominal diameter Tensile strength Yield strength Yield moment
d1 ftens,k fy,k My,k
[mm] [kN] [N/mm2] [Nm]
softwood (softwood)
LVL softwood (LVL softwood)
pre-drilled beech LVL (beech LVL predrilled)
11,7
15,0
29,0
Withdrawal resistance parameter
fax,k
[N/mm2]
Associated density
ρa
[kg/m3]
350
500
730
Calculation density
ρk
[kg/m3]
≤ 440
410 ÷ 550
590 ÷ 750
For applications with different materials please see ETA-11/0030.
SEASIDE BUILDINGS Ideal for fastening elements with small cross-sections close to the sea. Certified for application parallel to the grain and with reduced minimum distances.
THE HIGHEST PERFORMANCE The strength and robustness of a VGZ combined with the best anti-corrosion performance.
TIMBER | VGZ EVO C5 | 153
VGZ HARDWOOD
ETA-11/0030
UKTA-0836 22/6195
ETA-11/0030
FULLY THREADED SCREW FOR HARDWOODS HARDWOOD CERTIFICATION Special tip with diamond geometry and notched, serrated thread. ETA11/0030 certification for use with high-density wood without pre-drilling hole or with an appropriate pilot hole. Approved for structural applications subject to stresses in any direction vs the grain (0° ÷ 90°).
HYBRID SOFTWOOD-HARDWOOD The high-strength steel and the increased screw diameter allow excellent tensile and torsional performance to be achieved, thus ensuring safe screwing in high-density wood.
INCREASED DIAMETER Deep thread and high resistance steel for excellent tensile performance. Characteristics that, together with an excellent torsional moment value, guarantee screwing in the highest densities of wood.
CYLINDRICAL HEAD Ideal for concealed joints, timber couplings and structural reinforcements. Improved performance in fire conditions compared to countersunk head.
BIT INCLUDED
DIAMETER [mm]
5
LENGTH [mm]
80
6
8 140
11 440
SERVICE CLASS
SC1
SC2
SC3
SC4
ATMOSPHERIC CORROSIVITY
C1
C2
C3
C4
C5
WOOD CORROSIVITY
T1
T2
T3
T4
T5
MATERIAL
Zn
ELECTRO PLATED
1000
electrogalvanized carbon steel
FIELDS OF USE • • • • •
timber based panels solid timber and glulam CLT and LVL high density woods hybrid engineered timbers (softwood-hardwood) • beech, oak, cypress, ash, eucalyptus, bamboo
154 | VGZ HARDWOOD | TIMBER
HARDWOOD PERFORMANCE Geometry developed for high performance and use without pre-drilling on structural woods such as beech, oak, cypress, ash, eucalyptus, bamboo.
BEECH LVL Values also tested, certified and calculated for high density woods such as beechwood Microllam® LVL. Certified for use for densities of up to 800 kg/m3.
TIMBER | VGZ HARDWOOD | 155
CODES AND DIMENSIONS d1
CODE
L
b
[mm]
[mm]
VGZH6140
140
130
25
VGZH8200
200
190
25
VGZH6180
180
170
25
VGZH8240
240
230
25
VGZH8280
280
270
25
VGZH8320
320
310
25
[mm]
6 TX30
pcs
d1
CODE
[mm]
L
b
[mm]
[mm]
pcs
VGZH6220
220
210
25
VGZH6260
260
250
25
VGZH6280
280
270
25
VGZH8360
360
350
25
VGZH6320
320
310
25
VGZH8400
400
390
25
VGZH6420
420
410
25
VGZH8440
440
430
25
8 TX 40
NOTES: upon request, EVO version is available.
GEOMETRY AND MECHANICAL CHARACTERISTICS
X
d2 d1
H
X
V
G
X
Z
dK
b L
GEOMETRY Nominal diameter
d1
[mm]
6
8
Head diameter
dK
[mm]
9,50
11,50
Thread diameter
d2
[mm]
4,50
5,90
Pre-drilling hole diameter(1)
dV,S
[mm]
4,0
5,0
Pre-drilling hole diameter(2)
dV,H
[mm]
4,0
6,0
(1) Pre-drilling valid for softwood. (2) Pre-drilling valid for hardwood and beech LVL.
CHARACTERISTIC MECHANICAL PARAMETERS Nominal diameter
d1
[mm]
6
8
Tensile strength
ftens,k
[kN]
18,0
38,0
Yield strength
fy,k
[N/mm2]
1000
1000
Yield moment
My,k
[Nm]
15,8
33,4
softwood (softwood)
oak, beech (hardwood)
ash (hardwood)
beech LVL (Beech LVL)
11,7
22,0
30,0
42,0
Withdrawal resistance parameter
fax,k
[N/mm2]
Associated density
ρa
[kg/m3]
350
530
530
730
Calculation density
ρk
[kg/m3]
≤ 440
≤ 590
≤ 590
590 ÷ 750
For applications with different materials please see ETA-11/0030.
156 | VGZ HARDWOOD | TIMBER
MINIMUM DISTANCES FOR AXIAL STRESSES screws inserted WITH and WITHOUT pre-drilled hole d1
[mm]
a1
[mm]
6
8
5∙d
30
40
a2 a2,LIM
[mm]
5∙d
30
40
[mm]
2,5∙d
15
20
a1,CG
[mm]
10∙d
60
80
a2,CG
[mm]
4∙d
24
32
aCROSS [mm]
1,5∙d
9
12
SCREWS UNDER TENSION INSERTED WITH AN ANGLE α WITH RESPECT TO THE GRAIN a2,CG a2,CG
a2,CG a2 a2,CG
a2
a2,CG
a2,CG a1,CG
1
a1
a
a2,CG a1,CG
a1,CG
a2,CG a1,CG
plan
front
plan
SCREWS INSERTED WITH α = 90° ANGLE WITH RESPECT TO THE GRAIN
front
CROSS SCREWS INSERTED WITH AN ANGLE α WITH RESPECT TO THE GRAIN
a2,CG
45°
a2 a2,CG
a2,CG a1,CG
aCROSS a2,CG
a1 a1,CG
plan
a1
front
plan
front
NOTES • Minimum distances according to ETA-11/0030. • The minimum distances are independent of the insertion angle of the connector and the angle of the force with respect to the grain.
• The axial distance a2 can be reduced down to a2,LIM if for each connector a “joint surface” a1 a2 = 25 d1 2 is maintained.
EFFECTIVE THREAD USED IN CALCULATION 10
Sg
Tol.
b L
Sg
10
b = S g,tot = L - 10 mm
represents the entire length of the threaded part
S g = (L - 10 mm - 10 mm - Tol.)/ 2
represents the partial length of the threaded part net of a laying tolerance (Tol.) of 10 mm
TIMBER | VGZ HARDWOOD | 157
MINIMUM DISTANCES FOR SHEAR LOADS | TIMBER ρk > 420 kg/m3
screws inserted WITHOUT pre-drilled hole
α=0°
F
d1
[mm]
a1
[mm]
a2
[mm]
5∙d
35
45
a3,t
[mm]
15∙d
105
135
a3,c [mm]
10∙d
70
90
a4,t
[mm]
5∙d
35
45
a4,c [mm]
5∙d
35
45
12∙d
F
α=90°
7
9
11
d1
[mm]
84
108
132
a1
[mm]
55
a2
[mm]
5∙d
35
45
55
165
a3,t
[mm]
10∙d
70
90
110
110
a3,c [mm]
10∙d
70
90
110
55
a4,t
[mm]
10∙d
70
90
110
55
a4,c [mm]
5∙d
35
45
55
5∙d
7
9
11
35
45
55
α = load-to-grain angle d = d1 = nominal screw diameter
screws inserted WITH pre-drilled hole
α=0°
F
F
d1
[mm]
a1
[mm]
a2
[mm]
3∙d
21
a3,t
[mm]
12∙d
84
a3,c [mm]
7∙d
49
63
a4,t
[mm]
3∙d
21
27
a4,c [mm]
3∙d
21
27
33
5∙d
7
9
11
d1
[mm]
35
45
55
a1
[mm]
4∙d
27
33
a2
[mm]
4∙d
108
132
a3,t
[mm]
7∙d
77
a3,c [mm]
7∙d
33
a4,t
[mm]
7∙d
a4,c [mm]
3∙d
α=90° 7
9
11
28
36
44
28
36
44
49
63
77
49
63
77
49
63
77
21
27
33
α = load-to-grain angle d = d1 = nominal screw diameter
stressed end -90° < α < 90°
a2 a2 a1 a1
unloaded end 90° < α < 270°
F α
α F a3,t
stressed edge 0° < α < 180°
unload edge 180° < α < 360°
α F α
a4,t
F a4,c
a3,c
NOTES • The minimum distances are in accordance with the EN 1995:2014 standard, according to ETA-11/0030, considering a timber characteristic density of 420 < ρk ≤ 500 kg/m3.
• The minimum spacing for all panel-to-timber connections (a1 , a2) can be multiplied by a coefficient of 0,85.
EFFECTIVE NUMBER FOR SHEAR LOADS The load-bearing capacity of a connection made with several screws, all of the same type and size, may be lower than the sum of the load-bearing capacities of the individual connection system. For a row of n screws arranged parallel to the direction of the grain at a distance a1 , the characteristic effective shear bearing capacity Ref,V,k can be calculated by means of the effective number nef (see page 169).
158 | VGZ HARDWOOD | TIMBER
Ref,V,k
a1 a1
STRUCTURAL VALUES | TIMBER(SOFTWOOD)
CHARACTERISTIC VALUES EN 1995:2014 TENSION
total thread withdrawal
partial thread withdrawal
geometry ε=90°
ε=0°
ε=90°
ε=0°
estrazione filetto parziale
steel tension
Sg L
Sg,tot Sg
A
A
d1
d1
L
S g,tot
A min
Rax,90,k
Rax,0,k
Sg
A min
Rax,90,k
Rax,0,k
Rtens,k
[mm]
[mm]
[mm]
[mm]
[kN]
[kN]
[mm]
[mm]
[kN]
[kN]
[kN]
140 180 220 260 280 320 420 200 240 280 320 360 400 440
130 170 210 250 270 310 410 190 230 270 310 350 390 430
150 190 230 270 290 330 430 210 250 290 330 370 410 450
9,85 12,88 15,91 18,94 20,46 23,49 31,06 19,19 23,23 27,27 31,31 35,36 39,40 43,44
2,95 3,86 4,77 5,68 6,14 7,05 9,32 5,76 6,97 8,18 9,39 10,61 11,82 13,03
55 75 95 115 125 145 195 85 105 125 145 165 185 205
75 95 115 135 145 165 215 105 125 145 165 185 205 225
4,17 5,68 7,20 8,71 9,47 10,99 14,77 8,59 10,61 12,63 14,65 16,67 18,69 20,71
1,25 1,70 2,16 2,61 2,84 3,30 4,43 2,58 3,18 3,79 4,39 5,00 5,61 6,21
6
8
18,00
32,00
ε = screw-to-grain angle SLIDING geometry
timber-to-timber
S
g
A
steel tension
45°
timber-to-timber
45°
timber-to-timber ε=90°
timber-to-timber ε=0°
RV,0,k
A
Sg
S
g
L
SHEAR
Sg
B d1
d1
L
Sg
A
Bmin
[mm]
[mm]
[mm]
[mm]
140 180 220 260 280 320 420 200 240 280 320 360 400 440
55 75 95 115 125 145 195 85 105 125 145 165 185 205
55 70 85 95 105 120 155 75 90 105 120 130 145 160
6
8
RV,k
Rtens,45,k
Sg
A
RV,90,k
[mm]
[kN]
[kN]
[mm]
[mm]
[mm]
[kN]
70 85 100 110 120 135 170 90 105 120 135 145 160 175
2,95 4,02 5,09 6,16 6,70 7,77 10,45 6,07 7,50 8,93 10,36 11,79 13,21 14,64
55 75 95 115 125 145 195 85 105 125 145 165 185 205
70 90 110 130 140 160 210 100 120 140 160 180 200 220
3,19 3,57 3,95 4,30 4,30 4,30 4,30 5,60 6,11 6,61 6,92 6,92 6,92 6,92
1,80 2,05 2,17 2,28 2,34 2,45 2,73 3,17 3,41 3,56 3,71 3,86 4,02 4,17
12,73
22,63
ε = screw-to-grain angle NOTES and GENERAL PRINCIPLES on page 163.
TIMBER | VGZ HARDWOOD | 159
STRUCTURAL VALUES | HARDWOOD
CHARACTERISTIC VALUES EN 1995:2014 TENSION
total thread withdrawal
partial thread withdrawal
geometry ε=90°
ε=0°
ε=90°
ε=0°
estrazione filetto parziale
steel tension
Sg Sg,tot
L
Sg
A
A
d1
d1
L
S g,tot
A min
Rax,90,k
Rax,0,k
Sg
A min
Rax,90,k
Rax,0,k
Rtens,k
[mm]
[mm]
[mm]
[mm]
[kN]
[kN]
[mm]
[mm]
[kN]
[kN]
[kN]
140
130
150
17,68
5,30
55
75
7,48
2,24
6
8
180
170
190
23,11
6,93
75
95
10,20
3,06
220
210
230
28,55
8,57
95
115
12,92
3,88
260
250
270
33,99
10,20
115
135
15,64
4,69
280
270
290
36,71
11,01
125
145
17,00
5,10
320
310
330
42,15
12,65
145
165
19,72
5,91
200
190
210
34,45
10,33
85
105
15,41
4,62
240
230
250
41,70
12,51
105
125
19,04
5,71
280
270
290
48,95
14,68
125
145
22,66
6,80
320
310
330
56,20
16,86
145
165
26,29
7,89
360
350
370
63,45
19,04
165
185
29,91
8,97
18,00
32,00
ε = screw-to-grain angle SLIDING geometry
hardwood-hardwood
S
g
A
steel tension
45°
45°
hardwood-hardwood ε=90°
hardwood-hardwood ε=0°
RV,0,k
A
Sg
S
g
L
SHEAR
Sg
B d1
d1
L
Sg
A
Bmin
[mm]
[mm]
[mm]
[mm]
140
55
55
180
75
6
8
RV,k
Rtens,45,k
Sg
A
RV,90,k
[mm]
[kN]
[kN]
[mm]
[mm]
[mm]
[kN]
70
5,29
55
70
4,44
2,50
70
85
7,21
75
90
5,12
2,71
220
95
85
100
9,13
260
115
95
110
11,06
95
110
5,14
2,91
115
130
5,14
3,12
280
125
105
120
320
145
120
135
12,02
125
140
5,14
3,22
13,94
145
160
5,14
3,42
12,73
200
85
75
90
10,90
85
100
7,99
4,28
240
105
90
105
13,46
105
120
8,27
4,55
280
125
105
120
16,02
125
140
8,27
4,82
320
145
120
135
18,59
145
160
8,27
5,10
360
165
130
145
21,15
165
180
8,27
5,37
ε = screw-to-grain angle NOTES and GENERAL PRINCIPLES on page 163.
160 | VGZ HARDWOOD | TIMBER
22,63
STRUCTURAL VALUES | BEECH LVL
CHARACTERISTIC VALUES EN 1995:2014 TENSION total thread withdrawal
geometry
steel tension wide
edge
Sg,tot
L
A
A
d1
d1 [mm]
6
8
L [mm] 140 180 220 260 280 320 420 200 240 280 320 360 400 440
S g,tot [mm] 130 170 210 250 270 310 410 190 230 270 310 350 390 430
without pre-drilled hole Rax,90,k [kN] 32,76 42,84 52,92 63,00 68,04 78,12 63,84 77,28 90,72 104,16 117,60 -
A min [mm] 150 190 230 270 290 330 430 210 250 290 330 370 410 450
with pre-drilled hole Rax,90,k [kN] 22,62 29,58 36,54 43,50 46,98 53,94 71,34 44,08 53,36 62,64 71,92 81,20 90,48 99,76
without pre-drilled hole Rax,0,k [kN] 21,84 28,56 35,28 42,00 45,36 52,08 42,56 51,52 60,48 69,44 78,40 -
with pre-drilled hole Rax,0,k [kN] 15,08 19,72 24,36 29,00 31,32 35,96 47,56 29,39 35,57 41,76 47,95 54,13 60,32 66,51
Rtens,k [kN]
18,00
32,00
TENSION partial thread withdrawal geometry
steel tension wide
edge
estrazione filetto parziale
Sg L Sg
A
A
d1
d1 [mm]
6
8
L [mm] 140 180 220 260 280 320 420 200 240 280 320 360 400 440
Sg [mm] 55 75 95 115 125 145 195 85 105 125 145 165 185 205
A min [mm] 75 95 115 135 145 165 215 105 125 145 165 185 205 225
without pre-drilled hole Rax,90,k [kN] 13,86 18,90 23,94 28,98 31,50 36,54 28,56 35,28 42,00 48,72 55,44 -
with pre-drilled hole Rax,90,k [kN] 9,57 13,05 16,53 20,01 21,75 25,23 33,93 19,72 24,36 29,00 33,64 38,28 42,92 47,56
without pre-drilled hole Rax,0,k [kN] 9,24 12,60 15,96 19,32 21,00 24,36 19,04 23,52 28,00 32,48 36,96 -
with pre-drilled hole Rax,0,k [kN] 6,38 8,70 11,02 13,34 14,50 16,82 22,62 13,15 16,24 19,33 22,43 25,52 28,61 31,71
Rtens,k [kN]
18,00
32,00
NOTES and GENERAL PRINCIPLES on page 163.
TIMBER | VGZ HARDWOOD | 161
STRUCTURAL VALUES | BEECH LVL
CHARACTERISTIC VALUES EN 1995:2014
SLIDING geometry
SHEAR
beech LVL-beech LVL
S
g
A
45°
beech LVL-beech LVL
Sg
45°
S
g
L
steel tension
Sg
B d1
d1 [mm]
6
8
L Sg A Bmin [mm] [mm] [mm] [mm] 140 55 55 70 180 75 70 85 220 95 85 100 260 115 95 110 280 125 105 120 320 145 120 135 420 195 155 170 200 85 75 90 240 105 90 105 280 125 105 120 320 145 120 135 360 165 130 145 400 185 145 160 440 205 160 175
without pre-drilled hole RV,k [kN] 7,84 10,69 13,54 16,39 17,82 20,67 16,16 19,96 23,76 27,56 31,36 -
with pre-drilled hole RV,k [kN] 5,41 7,38 9,35 11,32 12,30 14,27 19,19 11,16 13,78 16,40 19,03 21,65 24,28 26,90
Rtens,45,k [kN]
Sg A [mm] [mm] 55 70 75 90 95 110 115 130 125 140 145 160 195 210 85 100 105 120 125 140 145 160 165 180 185 200 205 220
12,73
22,63
without pre-drilled hole RV,90,k [kN] 6,77 6,77 6,77 6,77 6,77 6,77 11,13 11,13 11,13 11,13 11,13 -
with pre-drilled hole RV,90,k [kN] 5,78 6,65 6,77 6,77 6,77 6,77 6,77 10,50 11,13 11,13 11,13 11,13 11,13 11,13
STRUCTURAL VALUES | HYBRID CONNECTIONS SLIDING geometry
timber-beech LVL
timber-hardwood
Sg
A L
Sg
A
45°
steel tension
45°
45°
Sg
Sg
B
B
d1
d1
L
S g,A
A
S g,B
Bmin
RV,k
S g,A
A
S g,B
Bmin
RV,k
Rtens,45,k
[mm]
[mm]
[mm]
[mm]
[mm]
[mm]
[kN]
[mm]
[mm]
[mm]
[mm]
[kN]
[kN]
140 180 220 260 280 320 420 200 240 280 320 360 400 440
70 110 130 170 170 205 305 120 150 180 210 235 265 305
65 90 105 135 135 160 230 100 120 140 160 180 200 230
40 40 60 60 80 85 85 50 60 70 80 95 105 105
45 45 60 60 75 75 75 50 60 65 75 85 90 90
3,75 5,83 6,96 8,74 9,11 10,98 12,38 8,57 10,71 12,86 15,00 16,79 18,93 20,39
65 95 125 150 160 185 270 110 135 160 185 210 250 265
60 80 100 120 125 145 205 90 110 125 145 160 190 200
45 55 65 80 90 105 120 60 75 90 105 120 120 145
50 55 65 75 80 90 100 60 70 80 90 100 100 120
3,21 4,23 5,00 6,15 6,70 7,77 9,23 6,15 7,69 8,93 10,36 11,43 12,31 14,29
6
8
NOTES and GENERAL PRINCIPLES on page 163.
162 | VGZ HARDWOOD | TIMBER
12,73
22,63
STRUCTURAL VALUES GENERAL PRINCIPLES
NOTES | HARDWOOD
• Characteristic values comply with the EN 1995:2014 standard in accordance with ETA-11/0030.
• The characteristic thread withdrawal resistances were evaluated considering both an ε angle of 90° (Rax,90,k) and of 0° (Rax,0,k) between the grains of the timber element and the connector.
• The tensile design strength of the connector is the lower between the timber-side design strength (Rax,d) and the steel-side design strength (Rtens,d).
Rax,d = min
Rax,k kmod γM Rtens,k γM2
• The design sliding strength of the joint is either the timber-side design strength (RV,d) and the design strength on the steel side projected at 45°. (Rtens,45,d), whichever is lower:
RV,d = min
RV,k kmod γM Rtens,45,k γM2
• The design shear strength of the connector is obtained from the characteristic value as follows:
RV,d =
RV,k kmod γM
• The coefficients γM and kmod should be taken according to the current regulations used for the calculation. • For the mechanical resistance values and the geometry of the screws, reference was made to ETA-11/0030. • Dimensioning and verification of the timber elements must be carried out separately. • The screws must be positioned in accordance with the minimum distances.
• The characteristic sliding strengths were evaluated by considering an angle ε of 45° between the grains of the timber element and the connector. • The characteristic timber-to-timber shear strengths were evaluated considering both an ε angle of 90° (RV,90,k) and 0° (RV,0,k) between the grains of the second element and the connector. • The characteristic strength are calculated for screws inserted without pre-drilling hole. • For the calculation process a mass density equal to ρk = 550 kg/m3 has been considered for hardwood (oak) elements. • Screws longer than the maximum value in the table do not comply with the installation requirements and are therefore not reported.
NOTES | BEECH LVL • The characteristic sliding strengths were evaluated by considering, for individual timber elements, a 45° angle between the connector and the grain and a 45° angle between the connector and the side face of the LVL element. • The characteristic shear strengths were evaluated by considering, for individual timber elements, a 90° angle between the connector and the grain, a 90° angle between the connector and the side face of the LVL element and a 0° angle between the force and the grain. • For the calculation process a mass density equal to ρk = 730 kg/m3 has been considered for LVL beech elements. • The characteristic strength are calculated for screws inserted without and with pre-drilling hole. • Screws longer than the maximum value in the table do not comply with the installation requirements and are therefore not reported.
• A suitable pilot hole may be required for the insertion of some connectors. For further details please see ETA-11/0030.
NOTES | HYBRID
• The characteristic thread withdrawal strengths were evaluated considering a penetration length of Sg,TOT or Sg, as shown in the table. For intermediate values of Sg it is possible to linearly interpolate.
• The characteristic sliding strengths were evaluated by considering, for individual timber elements, a 45° angle between the connector and the grain and a 45° angle between the connector and the side face of the LVL element.
• The shear srength and sliding values were evaluated considering the centre of gravity of the connector placed in correspondence with the shear plane, unless otherwise specified.
• The characteristic strength are calculated for screws inserted without pre-drilling hole.
• Connectors instability must be verified separately.
• The geometry of the connection is designed to ensure balanced strengths between the two timber elements.
NOTES | TIMBER • The characteristic thread withdrawal resistances were evaluated considering both an ε angle of 90° (Rax,90,k) and of 0° (Rax,0,k) between the grains of the timber element and the connector. • The characteristic sliding strengths were evaluated by considering an angle ε of 45° between the grains of the timber element and the connector. • The characteristic timber-to-timber shear strengths were evaluated considering both an ε angle of 90° (RV,90,k) and 0° (RV,0,k) between the grains of the second element and the connector. • The characteristic shear resistances are calculated for screws inserted without pre-drilling hole. In the case of screws inserted with pre-drilling hole, greater resistance values can be obtained. • For the calculation process a timber characteristic density ρk = 385 kg/m3 has been considered. For different ρk values, the strength values in the table can be converted by the kdens coefficient (see page 127).
TIMBER | VGZ HARDWOOD | 163
VGS
ETA-11/0030
UKTA-0836 22/6195
AC233 ESR-4645
ETA-11/0030
FULLY THREADED SCREW WITH COUNTERSUNK OR HEXAGONAL HEAD 3 THORNS TIP Thanks to the 3 THORNS tip, minimum installation distances are reduced. More screws can be used in less space and larger screws in smaller elements. Costs and time for project implementation are reduced.
CERTIFICATION FOR TIMBER AND CONCRETE Structural connector approved for timber applications according to ETA-11/0030 and for timber-concrete applications according to ETA-22/0806.
TENSILE STRENGTH Deep thread and high strength steel for excellent tensile or sliding performance. Approved for structural applications subject to stresses in any direction vs the grain (0° ÷ 90°). Can be used on steel plates in combination with the VGU and HUS washers.
COUNTERSUNK OR HEXAGONAL HEAD Countersunk head up to L = 600 mm, ideal for use on plates or for concealed reinforcements. Hexagonal head L > 600 mm to facilitate gripping with screwdriver.
BIT INCLUDED
LENGTH [mm]
80 80
2000 2000
SERVICE CLASS
SC1
SC2
SC3
SC4
ATMOSPHERIC CORROSIVITY
C1
C2
C3
C4
T5
X
S
X
G
T4
G
T3
X
T2
V
X
T1
V
S X
V
S
G
X
X
V
G
X
X
S
X
X
TORQUE LIMITER
X
N
electrogalvanized carbon steel
X
Zn
ELECTRO PLATED
G
V
MATERIAL
Mins,rec Mins,rec
FIELDS OF USE • • • • •
164 | VGS | TIMBER
timber based panels solid timber glulam (Glued Laminated Timber) CLT and LVL high density woods
X
V
X S
Mins,rec
X
METAL-to-TIMBER recommended use:
X
WOOD CORROSIVITY
C5
S
15 15
X
9 9
G
DIAMETER [mm]
TC FUSION The ETA-22/0806 approval of the TC FUSION system allows the VGS screws to be used together with the reinforcements in the concrete so that the panel floor slabs and the bracing core can be bonded together with a small integration of the casting.
TIMBER | VGS | 165
GEOMETRY AND MECHANICAL CHARACTERISTICS L ≤ 520 mm
45°
dK
d2 d1 90° SW
45°
b L
XXX
tS
45°
90°
VGS
b L
b L
45°
Nominal diameter
b L
dK
90°
VGS
VGS
XXX
SW
dK
d2 d 1
XXX
d2 d 1
90°
t1
t1
VGS
XXX
VGS
t1
XXX
dK
dK
VGS
L > 600 mm tS XXX
XXX
90°
t 1 tS
90° 90°
45°
VGS Ø15 VGS
VGS VGS
VGS
VGS
VGS
XXX
SW
b L
dKdK
90°
VGS
XXX
VGS
2
b L
b L
XXX
dK90° d d1
90°
L > 600 mm
XXX
dK
45°
t1 t1
t1 XXX XXX
90°
XXX
dK
VGS
XXX
VGS
t1
tS
t1 XXX
XXX
90°
tS
SW 45°
t1
250 mm < L ≤ 600 mm
L ≤ 250 mm t1
dK
90° d2 d1 SW
45°
b L
VGS Ø13 t1
dK
90° 90°
VGS
SW
b L
dKdK
90°
VGS VGS
VGS
VGS
VGS
XXX
VGS
2
VGS
XXX
dK90° d d1
t 1 tS XXX
dK
b L
L > 600 mm
t1 t1 XXX XXX
90°
VGS
XXX
dK
SW 45°
dK
250 mm < L ≤ 600 mm
t1
t1 XXX
VGS
tS
t1 XXX
XXX
90°
tS
45° b L
L ≤ 250 mm t1
d
90°
45°
b L
VGS Ø11 t1
dK
d1 90° d2 90°
VGS
45°
b L
90°
VGS VGS
VGS
VGS
VGS
d1
2
t1 dK
XXX
90°
t1 t1 dKdK
XXX
45°
dKd
XXX XXX
90° 90°
L > 520 mm
t1 XXX
dK
XXX
VGS
t1
XXX
dK
XXX
dK
t1
XXX
t1
VGS
VGS Ø9 t1
90°
SW
b L
d1
[mm]
45°
b L
9
11
11
13
13
15
Length
L
[mm]
-
≤ 600 mm
> 600 mm
≤ 600 mm
> 600 mm
-
Countersunk head diameter
dK
[mm]
16,00
19,30
-
22,00
-
-
Countersunk head thickness
t1
[mm]
6,50
8,20
-
9,40
-
-
Wrench size
SW
-
-
-
SW 17
-
SW 19
SW22 8,80
Hexagonal head thickness
ts
[mm]
-
-
6,40
-
7,50
Thread diameter
d2
[mm]
5,90
6,60
6,60
8,00
8,00
9,10
Pre-drilling hole diameter(1)
dV,S
[mm]
5,0
6,0
6,0
8,0
8,0
9,00
Pre-drilling hole diameter(2)
dV,H
[mm]
6,0
7,0
7,0
9,0
9,0
10,00
ftens,k [kN]
25,4
38,0
38,0
53,0
53,0
65,0
My,k
[Nm]
27,2
45,9
45,9
70,9
70,9
95,0
fy,k
[N/mm2]
1000
1000
1000
1000
1000
1000
Characteristic tensile strength Characteristic yield moment Characteristic yield strength
(1) Pre-drilling valid for softwood. (2) Pre-drilling valid for hardwood and beech LVL.
The mechanical parameters for VGS Ø15 are obtained analytically and validated by experimental tests.
softwood (softwood)
LVL softwood (LVL softwood)
pre-drilled beech LVL (beech LVL predrilled)
11,7
15,0
29,0
Withdrawal resistance parameter
fax,k
[N/mm2]
Associated density
ρa
[kg/m3]
350
500
730
Calculation density
ρk
[kg/m3]
≤ 440
410 ÷ 550
590 ÷ 750
For applications with different materials please see ETA-11/0030.
TC FUSION SYSTEM FOR TIMBER-CONCRETE APPLICATION Nominal diameter
d1
[mm]
9
11
13
15
Tangential strength of adhesion in concrete C25/30
fb,k
[N/mm2]
12,5
12,5
12,5
-
For applications with different materials please see ETA-22/0806
166 | VGS | TIMBER
CODES AND DIMENSIONS b
[mm]
[mm]
[mm]
100
90
25
VGS1380
80
VGS9120
120
110
25
VGS13100
100
pcs
70 tS
25
VGS9140
140
130
25
VGS13150
150
XXX
140
VGS9160
160
150
25
VGS13200
SW 200
190
25
250
240
25
VGS
XXX
180
170
25
VGS9200
200
190
25
280
25
220
210
25
VGS13300 13 TX 50 VGS13350
300
VGS9220
350
330
25
VGS9240
240
230
25
VGS13400
400
380
25
VGS9260
260
250
VGS13450
450
430
VGS9280 9 VGS9300 TX40 VGS9320
280
270
300
290
25
320
310
25
VGS9340
340
330
25
VGS13650
VGS9360
360
350
25
VGS13700
VGS
VGS
45°
25
VGS
dK
t1
VGS13500
500
480
VGS13550
550 b
530
25
VGS13600
L
580
25
650
630
25
700
680
25
600
VGS9380
380
370
25
VGS13750
750
730
25
400
390
25
VGS13800
800
780
25
VGS9440
440
430
25
VGS13850
850
830
25
tS
VGS13900 13 90° VGS13950 SW 19 t TX 50 45° VGS131000
900
880
25
950
930
25
1000b
980
25 SW
VGS131100
L
1100
1080
25
VGS131200
b 1200 L
1180
25
560
SW 550
25
b
VGS1180
80 L
VGS11100 VGS11125
90°
VGS
45°
100
90
25
VGS131300
1300
1280
25
125
115
25
VGS131400
1400
1380
25
140
25
dK
175
165
200
190
25
SW
t1
t1
25
dK
90°
VGS
tS
150
VGS
25
VGS
90° 45°
45°
tS VGS
t1 dK
d2 d1
VGS131500
1500
1480
25
VGS15600
600
580
25
VGS15700
b 700 L
680
25
225
215
25
VGS15800
800
780
25
VGS11250
250
240
25
VGS15900
900
880
25
VGS11275
275
265
1000
980
25
VGS11300
300
290
25
VGS11325
11 TX 50 VGS11350
325
315
25
15 VGS151000 90° SW 21 VGS151200 TX 50 45° VGS151400
350
340
25
VGS11375
375
365
25
VGS11400
400
390
25
VGS11425
425
415
25
VGS11450
450
440
VGS11475
475
465
25
VGS11500
500
490
25
VGS11525
525
515
25
VGS11550
550
540
25
VGS11575
575
565
25
VGS11600
600
590
25
VGS11650
650
630
25
TORQUE LIMITER TORQUE LIMITER
780
25
850
830
25
880
25
VGS
XXX
b
900L
VGS11950
950
930
25
VGS111000
1000
980
25
VGS
VGS
VGS
25
VGS151600
1600
1580
25
VGS151800
1800
1780
25
VGS152000
2000
1980
25
SW
d2 d1
RELATED PRODUCTS 45° VGU page 190
tS VGS
SW
d2 d 1
t1
t1 dK
90°
dK
VGS
800
t1
25
1380
t1 dK
d2 d1
45° WASHER FOR VGS
VGS
VGS
25
11 VGS11800 90° SW 17 TX 50 VGS11850 45° VGS11900
1180
b
tS VGS
b L
XXX
XXX
25
680
90°
1200 1400L
XXX
680
750
XXX
700
VGS11750
dK
90°
XXX
VGS11700
t1 XXX
25
dK
90°
t1
XXX
dK
dK
XXX
SW
t1
t1
25
XXX
tS
90°
d2 d 1
VGS11225
VGS
90°
d2 d1
70
XXX
VGS11200
1
dK
d2 d 1 90°
XXX
VGS11175
25
XXX
VGS11150
590
VGS
XXX
600
XXX
VGS9600
dK
t1
dK
90°
VGS
VGS9560
dK
VGS
25
25
VGS
page 408 d2 d1
90° 45°
90°
XXX
510
dK
XXX
470
520
XXX
480
XXX
VGS9480 VGS9520
t1
t1
t1
90°
d2 d1 25
VGS9400
XXX
VGS
90°
90°
90° 45°
XXX
t1 dK
90°
XXX
25
XXX
XXX
90°
t1
25 dK
dK
XXX
VGS9180
t1
t1
25
dK
XXX
VGS
25
90
VGS
[mm]
L
VGS
CODE
[mm]
45°
dK
d1
VGS9100
t1
t1
pcs
VGS13250
t1
dK
b
VGS
[mm]
L
VGS
CODE
XXX
d1
WASP b L
HOOK FOR TIMBER ELEMENTS TRANSPORT
page 413
TIMBER | VGS | 167
MINIMUM DISTANCES FOR AXIAL STRESSES screws inserted WITH and WITHOUT pre-drilled hole
d1
[mm]
a1
[mm]
a2
[mm]
9
11
d1
[mm]
5∙d
45
55
a1
[mm]
5∙d
45
55
a2
[mm]
13
d1
[mm]
5∙d
65
a1
[mm]
5∙d
65
a2
[mm]
9
11
13
15
5∙d
45
55
65
75
5∙d
45
55
65
75
a2,LIM
[mm] 2,5∙d
23
28
a2,LIM
[mm] 2,5∙d
33
a2,LIM
[mm] 2,5∙d
23
28
33
38
a1,CG
[mm]
8∙d
72
88
a1,CG
[mm]
8∙d
104
a1,CG
[mm]
5∙d
45
55
65
150
a2,CG
[mm]
3∙d
27
33
a2,CG
[mm]
3∙d
39
a2,CG
[mm]
3∙d
27
33
39
60
aCROSS [mm] 1,5∙d
14
17
aCROSS [mm] 1,5∙d
20
aCROSS [mm] 1,5∙d
14
17
20
23
SCREWS UNDER TENSION INSERTED WITH AN ANGLE α WITH RESPECT TO THE GRAIN
a2,CG a2,CG
a2,CG a2 a2,CG
a2
a2,CG
a2,CG a1,CG
1
a1
a
a2,CG a1,CG
a1,CG
a2,CG a1,CG
plan
front
plan
SCREWS INSERTED WITH α = 90° ANGLE WITH RESPECT TO THE GRAIN
front
CROSS SCREWS INSERTED WITH AN ANGLE α WITH RESPECT TO THE GRAIN
a2,CG 45°
a2 a2,CG
a2,CG a1,CG
aCROSS a2,CG
a1 a1,CG
plan
a1
front
plan
front
NOTES • Minimum distances according to ETA-11/0030. • The minimum distances are independent of the insertion angle of the connector and the angle of the force with respect to the grain.
• For 3 THORNS tip, RBSN and self-drilling tip screws, the minimum distances in the table are derived from experimental tests; alternatively, adopt a1,CG = 10∙d and a2,CG = 4∙d in accordance with EN 1995:2014.
• The axial distance a2 can be reduced down to a2,LIM if for each connector a “joint surface” a1∙a2 = 25∙d1 2 is maintained.
EFFECTIVE THREAD USED IN CALCULATION tK
Sg
Tol.
Sg
10
b = S g,tot = L - tK
represents the entire length of the threaded part
S g = (L - tK - 10 mm - Tol.)/2
represents the partial length of the threaded part net of a laying tolerance (Tol.) of 10 mm
b L
168 | VGS | TIMBER
tK = 10 mm (countersunk head) tK = 20 mm (hexagonal head)
MINIMUM DISTANCES FOR SHEAR LOADS ρk ≤ 420 kg/m3
screws inserted WITHOUT pre-drilled hole
α=0°
F
d1 a1 a2 a3,t a3,c a4,t a4,c
[mm] [mm] [mm] [mm] [mm] [mm] [mm]
10∙d 5∙d 15∙d 10∙d 5∙d 5∙d
9 90 45 135 90 45 45
11 110 55 165 110 55 55
F
13 130 65 195 130 65 65
15 150 75 225 150 75 75
d1 a1 a2 a3,t a3,c a4,t a4,c
[mm] [mm] [mm] [mm] [mm] [mm] [mm]
α=90° 9 45 45 90 90 90 45
5∙d 5∙d 10∙d 10∙d 10∙d 5∙d
11 55 55 110 110 110 55
13 65 65 130 130 130 65
15 75 75 150 150 150 75
13 52 52 91 91 91 39
15 60 60 105 105 105 45
screws inserted WITH pre-drilled hole
α=0°
F
d1 a1 a2 a3,t a3,c a4,t a4,c
[mm] [mm] [mm] [mm] [mm] [mm] [mm]
5∙d 3∙d 12∙d 7∙d 3∙d 3∙d
9 45 27 108 63 27 27
11 55 33 132 77 33 33
F
13 65 39 156 91 39 39
15 75 45 180 105 45 45
d1 a1 a2 a3,t a3,c a4,t a4,c
[mm] [mm] [mm] [mm] [mm] [mm] [mm]
4∙d 4∙d 7∙d 7∙d 7∙d 3∙d
α=90° 9 36 36 63 63 63 27
11 44 44 77 77 77 33
α = load-to-grain angle d = d1 = nominal screw diameter stressed end -90° < α < 90°
a2 a2
unloaded end 90° < α < 270°
F a3,t
unload edge 180° < α < 360°
α
F α
α
a1 a1
stressed edge 0° < α < 180°
F α
a4,t
F a4,c
a3,c
NOTES • Minimum distances are in accordance with EN 1995:2014 as per ETA11/0030 considering a timber characteristic density of ρk ≤ 420 kg/m3. • The minimum spacing for all steel-to-timber connections (a1 , a2) can be multiplied by a coefficient of 0,7.
• The spacing a1 in the table for screws with 3 THORNS tip inserted without pre-drilling hole in timber elements with density ρk ≤ 420 kg/m3 and loadto-grain angle α=0° was assumed to be 10∙d based on experimental tests; alternatively, adopt 12∙d in accordance with EN 1995:2014.
• The minimum spacing for all panel-to-timber connections (a1 , a2) can be multiplied by a coefficient of 0,85.
EFFECTIVE NUMBER FOR SHEAR LOADS The load-bearing capacity of a connection made with several screws, all of the same type and size, may be lower than the sum of the load-bearing capacities of the individual connection system. For a row of n screws arranged parallel to the direction of the grain at a distance a1 , the characteristic effective load-bearing capacity is equal to:
Ref,V,k
a1 a1
Ref,V,k = nef RV,k
The nef value is given in the table below as a function of n and a1 .
n
2 3 4 5
4∙d 1,41 1,73 2,00 2,24
5∙d 1,48 1,86 2,19 2,49
6∙d 1,55 2,01 2,41 2,77
7∙d 1,62 2,16 2,64 3,09
8∙d 1,68 2,28 2,83 3,34
a 1( * ) 9∙d 1,74 2,41 3,03 3,62
10∙d 1,80 2,54 3,25 3,93
11∙d 1,85 2,65 3,42 4,17
12∙d 1,90 2,76 3,61 4,43
13∙d 1,95 2,88 3,80 4,71
≥ 14∙d 2,00 3,00 4,00 5,00
( * ) For intermediate a values a linear interpolation is possible. 1
TIMBER | VGS | 169
STRUCTURAL VALUES | TIMBER
CHARACTERISTIC VALUES EN 1995:2014 TENSION / COMPRESSION
total thread withdrawal
partial thread withdrawal
geometry ε=90°
ε=0°
ε=90°
estrazione filetto parziale
ε=0°
steel tension
instability ε=90°
Sg Sg,tot
L
Sg
A
A
d1
d1
L
S g,tot
A min
Rax,90,k
Rax,0,k
Sg
A min
Rax,90,k
Rax,0,k
Rtens,k
Rki,90,k
[mm]
[mm]
[mm]
[mm]
[kN]
[kN]
[mm]
[mm]
[kN]
[kN]
[kN]
[kN]
100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 440 480 520 560 600 80 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500 525 550 575 600 650 700 750 800 850 900 950 1000
90 110 130 150 170 190 210 230 250 270 290 310 330 350 370 390 430 470 510 550 590 70 90 115 140 165 190 215 240 265 290 315 340 365 390 415 440 465 490 515 540 565 590 630 680 680 780 830 880 930 980
110 130 150 170 190 210 230 250 270 290 310 330 350 370 390 410 450 490 530 570 610 90 110 135 160 185 210 235 260 285 310 335 360 385 410 435 460 485 510 535 560 585 610 660 710 760 810 860 910 960 1010
10,23 12,50 14,77 17,05 19,32 21,59 23,87 26,14 28,41 30,68 32,96 35,23 37,50 39,78 42,05 44,32 48,87 53,41 57,96 62,50 67,05 9,72 12,50 15,97 19,45 22,92 26,39 29,86 33,34 36,81 40,28 43,75 47,22 50,70 54,17 57,64 61,11 64,59 68,06 71,53 75,00 78,48 81,95 87,51 94,45 94,45 108,34 115,28 122,23 129,17 136,12
3,07 3,75 4,43 5,11 5,80 6,48 7,16 7,84 8,52 9,21 9,89 10,57 11,25 11,93 12,61 13,30 14,66 16,02 17,39 18,75 20,11 2,92 3,75 4,79 5,83 6,88 7,92 8,96 10,00 11,04 12,08 13,13 14,17 15,21 16,25 17,29 18,33 19,38 20,42 21,46 22,50 23,54 24,58 26,25 28,33 28,33 32,50 34,59 36,67 38,75 40,84
35 45 55 65 75 85 95 105 115 125 135 145 155 165 175 185 205 225 245 265 285 25 35 48 60 73 85 98 110 123 135 148 160 173 185 198 210 223 235 248 260 273 285 305 330 330 380 405 430 455 480
55 65 75 85 95 105 115 125 135 145 155 165 175 185 195 205 225 245 265 285 305 45 55 68 80 93 105 118 130 143 155 168 180 193 205 218 230 243 255 268 280 293 305 325 350 350 400 425 450 475 500
3,98 5,11 6,25 7,39 8,52 9,66 10,80 11,93 13,07 14,21 15,34 16,48 17,61 18,75 19,89 21,02 23,30 25,57 27,84 30,12 32,39 3,47 4,86 6,60 8,33 10,07 11,81 13,54 15,28 17,01 18,75 20,49 22,22 23,96 25,70 27,43 29,17 30,90 32,64 34,38 36,11 37,85 39,59 42,36 45,84 45,84 52,78 56,25 59,73 63,20 66,67
1,19 1,53 1,88 2,22 2,56 2,90 3,24 3,58 3,92 4,26 4,60 4,94 5,28 5,63 5,97 6,31 6,99 7,67 8,35 9,03 9,72 1,04 1,46 1,98 2,50 3,02 3,54 4,06 4,58 5,10 5,63 6,15 6,67 7,19 7,71 8,23 8,75 9,27 9,79 10,31 10,83 11,35 11,88 12,71 13,75 13,75 15,83 16,88 17,92 18,96 20,00
25,40
17,25
38,00
21,93
9
11
170 | VGS | TIMBER
STRUCTURAL VALUES | TIMBER
CHARACTERISTIC VALUES EN 1995:2014 TENSION / COMPRESSION
total thread withdrawal
partial thread withdrawal
geometry ε=90°
ε=0°
ε=90°
estrazione filetto parziale
ε=0°
steel tension
instability ε=90°
Sg Sg,tot
L
Sg
A
A
d1
d1
L
S g,tot
A min
Rax,90,k
Rax,0,k
Sg
A min
Rax,90,k
Rax,0,k
Rtens,k
Rki,90,k
[mm]
[mm]
[mm]
[mm]
[kN]
[kN]
[mm]
[mm]
[kN]
[kN]
[kN]
[kN]
80 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 1100 1200 1300 1400 1500 600 700 800 900 1000 1200 1400 1600 1800 2000
70 90 140 190 240 280 330 380 430 480 530 580 630 680 730 780 830 880 930 980 1080 1180 1280 1380 1480 580 680 780 880 980 1180 1380 1580 1780 1980
90 110 160 210 260 310 360 410 460 510 560 610 660 710 760 810 860 910 960 1010 1110 1210 1310 1410 1510 610 710 810 910 1010 1210 1410 1610 1810 2010
11,49 14,77 22,98 31,19 39,40 45,96 54,17 62,38 70,58 78,79 87,00 95,21 103,42 111,62 119,83 128,04 136,25 144,45 152,66 160,87 177,28 193,70 210,11 226,53 242,94 109,85 128,80 147,74 166,68 185,62 223,50 261,38 299,26 337,14 375,02
3,45 4,43 6,89 9,36 11,82 13,79 16,25 18,71 21,18 23,64 26,10 28,56 31,02 33,49 35,95 38,41 40,87 43,34 45,80 48,26 53,18 58,11 63,03 67,96 72,88 32,96 38,64 44,32 50,00 55,69 67,05 78,41 89,78 101,14 112,51
25 35 60 85 110 130 155 180 205 230 255 280 305 330 355 380 405 430 455 480 530 580 630 680 730 280 330 380 430 480 580 680 780 880 980
45 55 80 105 130 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500 550 600 650 700 750 300 350 400 450 500 600 700 800 900 1000
4,10 5,75 9,85 13,95 18,06 21,34 25,44 29,55 33,65 37,75 41,86 45,96 50,07 54,17 58,27 62,38 66,48 70,58 74,69 78,79 87,00 95,21 103,42 111,62 119,83 53,03 62,50 71,97 81,44 90,91 109,85 128,80 147,74 166,68 185,62
1,23 1,72 2,95 4,19 5,42 6,40 7,63 8,86 10,10 11,33 12,56 13,79 15,02 16,25 17,48 18,71 19,94 21,18 22,41 23,64 26,10 28,56 31,02 33,49 35,95 15,91 18,75 21,59 24,43 27,27 32,96 38,64 44,32 50,00 55,69
53,00
32,69
65,00
42,86
13
15
ε = screw-to-grain angle
NOTES and GENERAL PRINCIPLES on page 176.
TIMBER | VGS | 171
STRUCTURAL VALUES | TIMBER
CHARACTERISTIC VALUES EN 1995:2014 SLIDING
timber-to-timber
S
g
A
timber-to-timber timber-to-timber ε=90° ε=0°
steel tension
45° A
45°
Sg
S
g
S
g
L
45°
steel-to-timber
SPLATE
geometry
SHEAR
A
Sg
B d1
d1 [mm]
9
11
Bmin
RV,k
SPLATE
A min
RV,k
Rtens,45,k
Sg
A
RV,90,k
RV,0,k
[mm] [mm] [mm] [mm]
L
Sg
[kN]
[mm] [mm] [mm]
[kN]
[kN]
[mm]
[mm]
[mm]
[kN]
100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 440 480 520 560 600 80 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500 525 550 575 600 650 700 750 800 850 900 950 1000
2,81 3,62 4,42 5,22 6,03 6,83 7,63 8,44 9,24 10,04 10,85 11,65 12,46 13,26 14,06 14,87 16,47 18,08 19,69 21,29 22,90 2,46 3,44 4,67 5,89 7,12 8,35 9,58 10,80 12,03 13,26 14,49 15,71 16,94 18,17 19,40 20,63 21,85 23,08 24,31 25,54 26,76 27,99 29,96 32,41 32,41 37,32 39,78 42,23 44,69 47,14
85 105 125 145 165 185 205 225 245 265 285 305 325 345 365 385 425 465 505 545 585 60 80 105 130 155 180 205 230 255 280 305 330 355 380 405 430 455 480 505 530 555 580 -
6,83 8,44 10,04 11,65 13,26 14,87 16,47 18,08 19,69 21,29 22,90 24,51 26,12 27,72 29,33 30,94 34,15 37,37 40,58 43,79 47,01 5,89 7,86 10,31 12,77 15,22 17,68 20,13 22,59 25,04 27,50 29,96 32,41 34,87 37,32 39,78 42,23 44,69 47,14 49,60 52,05 54,51 56,96 -
35 45 55 65 75 85 95 105 115 125 135 145 155 165 175 185 205 225 245 265 285 25 35 48 60 73 85 98 110 123 135 148 160 173 185 198 210 223 235 248 260 273 285 305 330 330 380 405 430 455 480
50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 220 240 260 280 300 40 50 63 75 88 100 113 125 138 150 163 175 188 200 213 225 238 250 263 275 288 300 320 345 345 395 420 445 470 495
4,04 4,53 4,81 5,10 5,38 5,67 5,95 6,23 6,50 6,50 6,50 6,50 6,50 6,50 6,50 6,50 6,50 6,50 6,50 6,50 6,50 3,67 4,72 6,03 6,61 7,05 7,48 7,92 8,35 8,79 9,06 9,06 9,06 9,06 9,06 9,06 9,06 9,06 9,06 9,06 9,06 9,06 9,06 9,06 9,06 9,06 9,06 9,06 9,06 9,06 9,06
2,07 2,30 2,55 2,81 3,08 3,18 3,27 3,35 3,44 3,52 3,61 3,69 3,78 3,86 3,95 4,03 4,21 4,38 4,55 4,72 4,89 2,16 2,69 2,99 3,33 3,71 4,10 4,44 4,57 4,70 4,83 4,96 5,09 5,22 5,35 5,48 5,61 5,74 5,87 6,00 6,13 6,26 6,39 6,60 6,85 6,85 6,85 6,85 6,85 6,85 6,85
35 45 55 65 75 85 95 105 115 125 135 145 155 165 175 185 205 225 245 265 285 25 35 48 60 73 85 98 110 123 135 148 160 173 185 198 210 223 235 248 260 273 285 305 330 330 380 405 430 455 480
A
40 55 45 60 55 70 60 75 70 85 75 90 85 100 90 105 95 110 105 120 110 125 120 135 125 140 130 145 140 155 145 160 160 175 175 190 190 205 205 220 215 230 35 50 40 55 50 65 60 75 65 80 75 90 85 100 95 110 100 115 110 125 120 135 130 145 140 155 145 160 155 170 165 180 175 190 180 195 190 205 200 215 210 225 215 230 230 245 250 265 250 265 285 300 300 315 320 335 335 350 355 370
172 | VGS | TIMBER
15
18
Sg
80 95 110 125 135 150 165 180 195 205 220 235 250 265 280 290 320 350 375 405 435 60 75 95 110 130 145 165 185 200 220 235 255 270 290 305 325 340 360 375 395 410 430 -
17,96
26,87
STRUCTURAL VALUES | TIMBER
CHARACTERISTIC VALUES EN 1995:2014 SLIDING
timber-to-timber
S
45°
timber-to-timber timber-to-timber ε=90° ε=0°
steel tension
45° A
45°
Sg
S
g
S
g
L
g
A
steel-to-timber
SPLATE
geometry
SHEAR
A
Sg
B d1
d1 [mm]
13
15
Bmin
RV,k
SPLATE
A min
RV,k
Rtens,45,k
Sg
A
RV,90,k
RV,0,k
[mm] [mm] [mm] [mm]
L
Sg
[kN]
[mm] [mm] [mm]
[kN]
[kN]
[mm]
[mm]
[mm]
[kN]
80 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 1100 1200 1300 1400 1500 600 700 800 900 1000 1200 1400 1600 1800 2000
2,90 4,06 6,96 9,87 12,77 15,09 17,99 20,89 23,79 26,70 29,60 32,50 35,40 38,30 41,21 44,11 47,01 49,91 52,81 55,71 61,52 67,32 73,13 78,93 84,73 37,50 44,20 50,89 57,59 64,29 77,68 91,07 104,47 117,86 131,25
60 80 130 180 230 280 330 380 430 480 530 580 -
6,96 9,29 15,09 20,89 26,70 32,50 38,30 44,11 49,91 55,71 61,52 67,32 -
25 35 60 85 110 130 155 180 205 230 255 280 305 330 355 380 405 430 455 480 530 580 630 680 730 280 330 380 430 480 580 680 780 880 980
40 50 75 100 125 145 170 195 220 245 270 295 320 345 370 395 420 445 470 495 545 595 645 695 745 295 345 395 445 495 595 695 795 895 995
4,18 5,37 8,37 9,46 10,49 11,31 11,94 11,94 11,94 11,94 11,94 11,94 11,94 11,94 11,94 11,94 11,94 11,94 11,94 11,94 11,94 11,94 11,94 11,94 11,94 14,53 14,53 14,53 14,53 14,53 14,53 14,53 14,53 14,53 14,53
2,44 3,10 4,06 4,88 5,77 6,11 6,42 6,73 7,04 7,35 7,65 7,96 8,27 8,58 8,88 9,03 9,03 9,03 9,03 9,03 9,03 9,03 9,03 9,03 9,03 9,47 10,18 10,89 10,99 10,99 10,99 10,99 10,99 10,99 10,99
25 35 60 85 110 130 155 180 205 230 255 280 305 330 355 380 405 430 455 480 530 580 630 680 730 280 330 380 430 480 580 680 780 880 980
A 35 40 60 75 95 110 125 145 160 180 195 215 230 250 265 285 300 320 335 355 390 425 460 495 530 215 250 285 320 355 425 495 565 640 710
50 55 75 90 110 125 140 160 175 195 210 230 245 265 280 300 315 335 350 370 405 440 475 510 545 230 265 300 335 370 440 510 580 655 725
20
-
Sg
60 75 110 145 185 220 255 290 325 360 395 430 -
37,48
45,96
ε = screw-to-grain angle
NOTES and GENERAL PRINCIPLES on page 176.
TIMBER | VGS | 173
STRUCTURAL VALUES | FURTHER APPLICATIONS SHEAR CONNECTION WITH CROSSED CONNECTORS
SLIDING CONNECTION WITH VGU WASHER
VGS Ø9 - 11 mm
VGS Ø9 - 11 - 13 mm
45°
45°
90°
STRUCTURAL VALUES on page 130.
STRUCTURAL VALUES on page 192.
CONNECTIONS WITH CLT ELEMENTS
CONNECTIONS WITH LVL ELEMENTS
VGS Ø9 - 11 mm
VGS Ø9 - 11 mm
45°
45°
STRUCTURAL VALUES on page 134.
STRUCTURAL VALUES on page 138.
EFFECTIVE NUMBER FOR AXIAL STRESSES The load-bearing capacity of a connection made with several screws, all of the same type and size, may be lower than the sum of the load-bearing capacities of the individual connection system. X
X
X
S G X
X
S
X
X
X
V
S
G
G
X
V
For a connection with inclined screws, the characteristic effective sliding load-bearing capacity for a row of n screws is equal to:
V
X
X
X
S
V
G
X
X
X
S G X
X
S
V
G
Ref,V,k = nef,ax RV,k
V
X
The nef value is given in the table below as a function of n (number of screws in a row). n nef,ax
2
3
4
5
6
7
8
9
10
1,87
2,70
3,60
4,50
5,40
6,30
7,20
8,10
9,00
Complete calculation reports for designing in wood? Download MyProject and simplify your work!
174 | VGS | TIMBER
STRUCTURAL VALUES | TC FUSION
CHARACTERISTIC VALUES EN 1995:2014
TENSILE CONNECTION CLT - CONCRETE geometry
TENSILE CONNECTION CLT - CONCRETE
CLT
concrete
lb,d
geometry
lb,d
CLT
concrete
lb,d
L
lb,d
L Sg
Sg
Sg
d1
Sg d1
Rax,0,k
lb,d
Rax,C,k
d1
L
Sg
[mm]
[kN]
[mm]
[kN]
[mm]
[mm]
85 105 125 145 165 185 205 225 245 265 285 325 365 405 445 485 110 135 160 185 210 235 260 285 310 335 360 385 410 435 460 485 535 585 635 685 735 785 835 885
6,32 7,65 8,95 10,22 11,49 12,73 13,96 15,18 16,39 17,59 18,78 21,14 23,47 25,40 25,40 25,40 9,36 11,26 13,12 14,95 16,75 18,54 20,31 22,05 23,79 25,51 27,22 28,91 30,59 32,27 33,93 35,59 38,00 38,00 38,00 38,00 38,00 38,00 38,00 38,00
100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
13
300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 1100 1200 1300 1400 1500
L
Sg
[mm]
[mm] 200 220 240 260 280 300 320 340 360 380 400 440 480 520 560 600 225 250 275 300 325 350 375 400 425 450 475 500 525 550 575 600 650 700 750 800 850 900 950 1000
11
Sg
d1
d1
d1
9
Sg
35,34
Rax,0,k
lb,d
Rax,C,k
[mm]
[kN]
[mm]
[kN]
165 215 265 315 365 415 465 515 565 615 665 715 765 815 865 965 1065 1165 1265 1365
15,41 19,56 23,61 27,58 31,50 35,35 39,16 42,93 46,67 50,37 53,00 53,00 53,00 53,00 53,00 53,00 53,00 53,00 53,00 53,00
120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120
61,26
43,20
NOTES and GENERAL PRINCIPLES on page 176.
TC FUSION TIMBER-TO-CONCRETE JOINT SYSTEM The innovation of VGS, VGZ and RTR all-thread connectors for timber-concrete applications. Find it out on page 270.
TIMBER | VGS | 175
STRUCTURAL VALUES GENERAL PRINCIPLES
NOTES | TIMBER
• Characteristic values comply with the EN 1995:2014 standard in accordance with ETA-11/0030.
• The characteristic thread withdrawal resistances were evaluated considering both an ε angle of 90° (Rax,90,k) and of 0° (Rax,0,k) between the grains of the timber element and the connector.
• The tensile design strength of the connector is the lower between the timber-side design strength (Rax,d) and the steel-side design strength (Rtens,d).
Rax,d = min
Rax,k kmod γM Rtens,k γM2
• The plate thickness (SPLATE) are understood to be the minimum values to allow the countersunk head of the screw to be accommodated. • The characteristic timber-to-timber shear strengths were evaluated considering both an ε angle of 90° (RV,90,k) and 0° (RV,0,k) between the grains of the second element and the connector.
• The compression design strength of the connector is the lower between the timber-side design strength (Rax,d) and the instability design strength (Rki,d).
Rax,d = min
• The characteristic sliding strengths were evaluated by considering an angle ε of 45° between the grains of the timber element and the connector.
Rax,k kmod γM Rki,k γM1
• For the calculation process a timber characteristic density ρk = 385 kg/m3 has been considered. For different ρk values, the strength values in the table (withdrawal, compression, sliding and shear) can be converted via the kdens coefficient.
R’ax,k = kdens,ax Rax,k R’ki,k = kdens,ki Rki,k R’V,k = kdens,ax RV,k R’V,90,k = kdens,V RV,90,k
• The design sliding strength of the joint is either the timber-side design strength (RV,d) and the design strength on the steel side projected (Rtens,45,d), whichever is lower:
RV,d = min
R’V,0,k = kdens,V RV,0,k
RV,k kmod γM Rtens,45,k γM2
ρk
350
C-GL kdens,ax kdens,ki kdens,v
[kg/m3 ]
• The design shear strength of the connector is obtained from the characteristic value as follows:
R k RV,d = V,k mod γM • The coefficients γM and kmod should be taken according to the current regulations used for the calculation. • For the mechanical resistance values and the geometry of the screws, reference was made to ETA-11/0030. • Dimensioning and verification of the timber elements must be carried out separately. • The screws must be positioned in accordance with the minimum distances. • The characteristic thread withdrawal strengths were evaluated considering a penetration length of Sg,tot or Sg, as shown in the table. For intermediate values of Sg it is possible to linearly interpolate. • The shear srength and sliding values were evaluated considering the centre of gravity of the connector placed in correspondence with the shear plane.
• For different calculation configurations, the MyProject software is available (www.rothoblaas.com).
385
405
425
430
440
C24
C30
GL24h
GL26h
GL28h
GL30h
GL32h
0,92
0,98
1,00
1,04
1,08
1,09
1,11
0,97
0,99
1,00
1,00
1,01
1,02
1,02
0,90
0,98
1,00
1,02
1,05
1,05
1,07
Strength values thus determined may differ, for higher safety standards, from those resulting from an exact calculation.
NOTES | TC FUSION • Characteristic values according to ETA-22/0806. • The axial thread withdrawal resistance in the narrow face is valid for minimum CLT thickness tCLT,min = 10∙d1 and minimum screw pull-through depth tpen = 10∙d1 . • Connectors with shorter lengths than those in the table do not comply with the minimum penetration depth requirements and are not reported. • A concrete grade of C25/30 was considered in the calculation. For applications with different materials please see ETA-22/0806. • The tensile design strength of the connector is the lower between the timber-side design strength (Rax,d) and the concrete-side design strength (Rax,C,d).
• The characteristic shear resistances are calculated for screws inserted without pre-drilling hole. In the case of screws inserted with pre-drilling hole, greater resistance values can be obtained. • The values in the table are evaluated considering mechanical strength parameters of the Ø15 VGS screws obtained analytically and validated by experimental tests.
380
Rax,d = min
Rax,0,k kmod γM Rax,C,k γM,concrete
• The concrete element must have adequate reinforcement bars. • The connectors must be arranged at a maximum distance of 300 mm.
RELATED PRODUCTS
JIG VGU page 409
176 | VGS | TIMBER
LEWIS page 414
CATCH page 408
TORQUE LIMITER page 408
B 13 B page 405
INSTALLATION SUGGESTIONS LONG SCREWS
VGS + VGU
Thanks to CATCH, even longer screws can be screwed on quickly and safely without the risk of the bit slipping. Can be combined with TORQUE LIMITER.
The JIG VGU template makes it easy to prepare a 45° angle pre-drill, thus facilitating subsequent tightening of the VGS screws inside the washer. A pre-drill length of at least 20 mm is recommended.
To ensure control of the applied torque, the correct TORQUE LIMITER model must be used depending on the chosen connector.
VGS +WASPL
Insert the screw so that the head protrudes 15 mm and engage the WASPL hook.
After lifting, the WASPL hook releases quickly and easily ready for use again.
IMPORTANCE OF THE PILOT HOLE
pilot hole
insertion with pilot hole
insertion without pilot hole
Deviation of the screw from the direction of screwing often occurs during installation. This phenomenon is linked to the very conformation of the wood material, which is inhomogeneous and non-uniform, e.g. due to the localised presence of knots or physical properties dependent on grain direction. The operator's skill also plays an important role. The use of pilot holes facilitates the insertion of screws, particularly long ones, allowing a very precise insertion direction.
TIMBER | VGS | 177
INSTALLATION INSTRUCTIONS
X
X
G
S X
V
X
V
S
G
X
X
V
G
S
X
X
X
P
X
X
X
X
X
V
X X
G V
G
V
S
G
X S
1x
G
S
α V
S
X
X
X
X
In the case of installation of screws used in timber-to-timber (softwood) structural connections, a pulse screw gun/screwdriver can also be used.
Respect the insertion angle with the help of a pilot hole and/or installation template.
In general, it is recommended to install the connector in a single operation, without stopping and restarting which could create additional stress in the screw.
Do not hammer the screw tips into the timber. The screw cannot be reused.
STEEL-TO-TIMBER APPLICATION
S
X
S G
X
G
S X
X
S
X
G
G
V
X
11
40
13
50
V
G
30
S
11
S
V
G
X
X
S
V
X
G
S X
Ø11
X
mm
V
L < 400 mm X
X
X
V
S X
X
X
510
X
G
X
X
Ø11
N
L ≥ 400 mm
Ø13
X
V
G
X
X
X
G
X
V
V
G V
G
X
V
X
X
S
X
S
V
G
G
V
X
X
G X
X
X
S
S
X
S
G
G
X
X
X
V
S
X
X
V
X
V
S
X
X
X S
X
S
S
X X
After installation, the fasteners can be inspected using a torque wrench.
X
S
α
X
X
X
X
Ensure correct tightening. We recommend the use of torque-controlled screwdrivers, e.g. with TORQUE LIMITER. Alternatively, tighten with a torque wrench.
X
The use of pulse screw guns/impact wrenches is not permitted.
G
V
G
X
X
X
S G
V
X
X
X
V
S
V
G
V
G
S
G
X
S
X
X
X X
X
The installation of multiple screws must be performed to guarantee that loads are distributed evenly to all fasteners.
Shrinkage or swelling of timber elements due to changes in moisture content must be avoided.
SHAPED PLATE
Avoid dimensional changes in the metal, e.g. due to large temperature fluctuations.
WASHERS
V
G
S
Avoid bending.
X
V
X
G
V
X
X
S
G
X
V
S
S
Cylindrical hole.
X
178 | VGS | TIMBER
X
X
Countersunk hole.
X
G
X
S
X
V
X
X
G
X
Inclined countersunk hole.
Cylindrical hole with countersunk washer HUS.
X
V
V
X
Mins
X
V
X S
X
Ø9
G
Mins,rec
V
G
20
S
V
9
X
X
[Nm]
X
[mm]
X
X
Mins,rec
X
Mins
d1
X
VGS
X
G
2 3 45 1 6 12 7 11 8 10 9
Slotted hole with VGU washer.
X
APPLICATION EXAMPLES: REINFORCEMENT
TAPERED BEAMS apex tension reinforcement perpendicular to grain
HANGING LOAD tension reinforcement perpendicular to grain
front
section
NOTCH tension reinforcement perpendicular to grain
front
section
SUPPORT compression reinforcement perpendicular to grain
plan
plan
section
section
TIMBER | VGS | 179
VGS EVO
ETA-11/0030
UKTA-0836 22/6195
AC233 | AC257 ESR-4645
ETA-11/0030
FULLY THREADED SCREW WITH COUNTERSUNK OR HEXAGONAL HEAD C4 EVO COATING Surface treatment of epoxy resin and aluminium flakes. No rust after 1440 hours of salt spray exposure test, as per ISO 9227. Can be used in service class 3 outdoor applications and under class C4 atmospheric corrosion conditions.
STRUCTURAL APPLICATIONS Approved for structural applications subject to stresses in any direction vs the grain (0° - 90°). Safety certified by numerous tests carried out for any direction of insertion. Cyclical SEISMIC-REV tests according to EN 12512. Countersunk head up to L = 600 mm, ideal for use on plates or for concealed reinforcements.
AUTOCLAVE-TREATED TIMBER The C4 EVO coating has been certified according to US acceptance criterion AC257 for outdoor use with ACQ-treated timber.
3 THORNS TIP Thanks to the 3 THORNS tip, minimum installation distances are reduced. More screws can be used in less space and larger screws in smaller elements.
BIT INCLUDED
15
LENGTH [mm]
80
800
2000
100
SERVICE CLASS
SC1
SC2
SC3
SC4
ATMOSPHERIC CORROSIVITY
C1
C2
C3
C4
T5
X
S
X
G
T4
G
T3
X
T2
V
X
T1
V V
S
G
X
X
V
G
X
X
S
180 | VGS EVO | TIMBER
timber based panels solid timber and glulam CLT and LVL high density woods ACQ, CCA treated timber
X
X
FIELDS OF USE • • • • •
S X
TORQUE LIMITER
X
N
carbon steel with C4 EVO coating
X
C4
EVO COATING
G
V
MATERIAL
Mins,rec Mins,rec
X
V
X S
Mins,rec
X
METAL-to-TIMBER recommended use:
X
WOOD CORROSIVITY
C5
S
13
X
9 9
G
DIAMETER [mm]
OUTDOOR STRUCTURAL PERFORMANCE Ideal for fastening timber framed panels and trusses (Rafter, Truss). Values also tested, certified and calculated for high density woods. Ideal for fastening timber-framed panels and lattice beams (Rafter, Truss).
CLT & LVL Values also tested, certified and calculated for CLT and high density woods such as Microllam® LVL.
TIMBER | VGS EVO | 181
CODES AND DIMENSIONS
240
230
25
dK
XXX
25
310
tS
VGSEVO9360
360
350
25
190
250
240
dK
25
VGS
200
dK
25
dK
90°
dK
90°
290
25
350
340
25
45°
XXX
400
390
VGSEVO11500
500
490
25
VGSEVO11600
600
590
25
VGS
25
XXX
dK
t1
45°
t1 dK
d2 d190°
25
580
90°
90° 45°
25 tS
700
680
25
800
780
25 SW
b L
t1
VGS
t1 dK
d2 d1
90°
d2 d 1
RELATED PRODUCTS b L
t1 dK
90°
XXX
VGSEVO11400
dK
480
600
L
13 VGSEVO13700 90° SW 19 TX 50 VGSEVO13800 45°
90°
25
300
b VGSEVO13600
t1
t1 VGS
XXX
140
S
25
t1
XXX
VGSEVO11250 11 VGSEVO11300 TX 50 VGSEVO11350
SW
150
380
45°
XXX
VGSEVO11200
VGS
90°
t1
25 XXX
VGSEVO11150
dK
90°
25
VGS
90 SW
25
XXX
270
320 100 t
280
XXX
280
VGSEVO9320 VGSEVO11100
VGSEVO13300 SW 300 t 13 400 TX 50 VGSEVO13400 VGSEVO13500 500 1
VGS
9 VGSEVO9240 TX 40 VGSEVO9280
t1
dK
90°
VGS
25
25
dK
VGS
190
t1
t1
VGS
200
190
VGS
VGS
VGSEVO9200
200
VGSEVO13200
VGS
25 VGS
25
150
[mm]
[mm]
pcs
XXX
110
160
b
[mm]tS
XXX
120
VGSEVO9160
L
XXX
VGSEVO9120
CODE
XXX
[mm]
XXX
[mm]
d1
VGS
pcs
VGS
[mm]
b
VGS
L
XXX
CODE
XXX
d1
d2 d1
90° 45°
VGU EVO b page 190 L
TORQUE LIMITER page 408
GEOMETRY AND MECHANICAL CHARACTERISTICS VGS Ø11
VGS Ø11
120 mm ≤ L ≤ 360 mm
L ≤ 250 mm
250 mm < L ≤ 600 mm
90°
dKdK
45°
b L
VGS
VGS
dK
90° 90°
SW
45°
dK
d2 d1 90° 45°
d1
[mm]
9
11
13
13
Length
L
-
-
≤ 600 mm
> 600 mm
Countersunk head diameter
dK
[mm] [mm]
16,00
19,30
22,00
-
Countersunk head thickness
t1
[mm]
6,50
8,20
9,40
-
Wrench size
SW
-
-
-
-
SW 19
Hexagonal head thickness
ts
[mm]
-
-
-
7,50
Thread diameter
d2
[mm]
5,90
6,60
8,00
8,00
Pre-drilling hole diameter(1)
dV,S
[mm]
5,0
6,0
8,0
8,0
dV,H
[mm]
6,0
7,0
9,0
9,0
ftens,k
[kN]
25,4
38,0
53,0
53,0
My,k
[Nm]
27,2
45,9
70,9
70,9
fy,k
[N/mm2]
1000
1000
1000
1000
Characteristic tensile strength Characteristic yield moment Characteristic yield strength
(1) Pre-drilling valid for softwood. (2) Pre-drilling valid for hardwood and beech LVL.
softwood (softwood)
LVL softwood (LVL softwood)
pre-drilled beech LVL (beech LVL predrilled)
11,7
15,0
29,0
Withdrawal resistance parameter
fax,k
[N/mm2]
Associated density
ρa
[kg/m3]
350
500
730
Calculation density
ρk
[kg/m3]
≤ 440
410 ÷ 550
590 ÷ 750
For applications with different materials please see ETA-11/0030.
182 | VGS EVO | TIMBER
b L
90° b L
b L
Nominal diameter
Pre-drilling hole diameter(2)
VGS
VGS
VGS
VGS
XXX
VGS
2
VGS
XXX
dK90° d d1
45°
t 1 tS XXX
dK
SW
b L
L > 600 mm
t1 t1
t1 XXX XXX
90°
XXX
SW 45°
dK
VGS
XXX
90°
VGS
VGS Ø13
250 mm < L ≤ 600 mm
t1
tS
t1 XXX
XXX
dK
tS XXX
t1
t1
VGS Ø13
L ≤ 250 mm
d
90°
45°b L
VGS Ø13
VGS VGS
VGS Ø13
dK
90°90°
45°
VGS
VGS
VGS
XXX
SW
b L
dKdK
90° 90°
XXX
45°
dd KK
90°
t1
XXX XXX
d1
2
t1 t1
t1 t1 XXX XXX
dKd
90°
XXX
XXX
dK
VGS
t1
VGS
tS
t1
XXX
t1
VGS Ø9
VGS VGS
VGS Ø9-Ø11
MINIMUM DISTANCES FOR AXIAL STRESSES screws inserted WITH and WITHOUT pre-drilled hole
d1
[mm]
9
11
d1
[mm]
a1
[mm]
a2
[mm]
13
d1
[mm]
5∙d
45
55
a1
[mm]
5∙d
45
55
a2
[mm]
a2,LIM
[mm] 2,5∙d
23
28
a2,LIM
a1,CG
[mm]
8∙d
72
88
a1,CG
a2,CG
[mm]
3∙d
27
33
a2,CG
aCROSS [mm] 1,5∙d
14
17
13
5∙d
65
a1
[mm]
5∙d
65
5∙d
65
a2
[mm]
5∙d
65
[mm] 2,5∙d
33
a2,LIM
[mm] 2,5∙d
33
[mm]
8∙d
104
a1,CG
[mm]
5∙d
65
[mm]
3∙d
39
a2,CG
[mm]
3∙d
39
aCROSS [mm] 1,5∙d
20
aCROSS [mm] 1,5∙d
20
SCREWS UNDER TENSION INSERTED WITH AN ANGLE α WITH RESPECT TO THE GRAIN
a2,CG a2,CG
a2,CG a2 a2,CG
a2
a2,CG
a2,CG a1,CG
1
a1
a
a2,CG a1,CG
a1,CG
a2,CG a1,CG
plan
front
plan
SCREWS INSERTED WITH α = 90° ANGLE WITH RESPECT TO THE GRAIN
front
CROSS SCREWS INSERTED WITH AN ANGLE α WITH RESPECT TO THE GRAIN
a2,CG 45°
a2 a2,CG
a2,CG a1,CG
aCROSS a2,CG
a1 a1,CG
plan
a1
front
plan
front
NOTES • Minimum distances according to ETA-11/0030. • The minimum distances are independent of the insertion angle of the connector and the angle of the force with respect to the grain. • The axial distance a2 can be reduced down to a2,LIM if for each connector a “joint surface” a1 a2 = 25 d1 2 is maintained.
• For 3 THORNS tip, RBSN and self-drilling tip screws, the minimum distances in the table are derived from experimental tests; alternatively, adopt a1,CG = 10∙d and a2,CG = 4∙d in accordance with EN 1995:2014. • For minimum distances for shear load screws see VGS on page 169.
EFFECTIVE THREAD USED IN CALCULATION tK
Sg
Tol.
Sg
10
b = S g,tot = L - tK
represents the entire length of the threaded part
S g = (L - tK - 10 mm - Tol.)/2
represents the partial length of the threaded part net of a laying tolerance (Tol.) of 10 mm
b L
tK = 10 mm (countersunk head) tK = 20 mm (hexagonal head)
TIMBER | VGS EVO | 183
STRUCTURAL VALUES | TIMBER
CHARACTERISTIC VALUES EN 1995:2014 TENSION / COMPRESSION
total thread withdrawal
partial thread withdrawal
geometry ε=90°
ε=0°
ε=90°
estrazione filetto parziale
ε=0°
steel tension
instability ε=90°
Sg Sg,tot
L
Sg
A
A
d1
d1
L
S g,tot
A min
Rax,90,k
Rax,0,k
Sg
A min
Rax,90,k
Rax,0,k
Rtens,k
Rki,90,k
[mm]
[mm]
[mm]
[mm]
[kN]
[kN]
[mm]
[mm]
[kN]
[kN]
[kN]
[kN]
120 160 200 240 280 320 360 100 150 200 250 300 350 400 500 600 200 300 400 500 600 700 800
110 150 190 230 270 310 350 90 140 190 240 290 340 390 490 590 190 280 380 480 580 680 780
130 170 210 250 290 330 370 110 160 210 260 310 360 410 510 610 210 310 410 510 610 710 810
12,50 17,05 21,59 26,14 30,68 35,23 39,78 12,50 19,45 26,39 33,34 40,28 47,22 54,17 68,06 81,95 31,19 45,96 62,38 78,79 95,21 111,62 128,04
3,75 5,11 6,48 7,84 9,21 10,57 11,93 3,75 5,83 7,92 10,00 12,08 14,17 16,25 20,42 24,58 9,36 13,79 18,71 23,64 28,56 33,49 38,41
45 65 85 105 125 145 165 35 60 85 110 135 160 185 235 285 85 130 180 230 280 330 380
65 85 105 125 145 165 185 55 80 105 130 155 180 205 255 305 105 150 200 250 300 350 400
5,11 7,39 9,66 11,93 14,21 16,48 18,75 4,86 8,33 11,81 15,28 18,75 22,22 25,70 32,64 39,59 13,95 21,34 29,55 37,75 45,96 54,17 62,38
1,53 2,22 2,90 3,58 4,26 4,94 5,63 1,46 2,50 3,54 4,58 5,63 6,67 7,71 9,79 11,88 4,19 6,40 8,86 11,33 13,79 16,25 18,71
25,40
17,25
38,00
21,93
53,00
32,69
9
11
13
NOTES • The characteristic thread withdrawal resistances were evaluated considering both an ε angle of 90° (Rax,90,k) and of 0° (Rax,0,k) between the grains of the timber element and the connector. • The characteristic sliding strengths were evaluated by considering an angle ε of 45° between the grains of the timber element and the connector. • The plate thickness (SPLATE) are understood to be the minimum values to allow the head of the screw to be accommodated. • The characteristic timber-to-timber shear strengths were evaluated considering both an ε angle of 90° (RV,90,k) and 0° (RV,0,k) between the grains of the second element and the connector. • For the calculation process a timber characteristic density ρk = 385 kg/m3 has been considered. For different ρk values, the strength values in the table (withdrawal, compression, sliding and shear) can be converted via the kdens coefficient.
R’ax,k = kdens,ax Rax,k R’ki,k = kdens,ki Rki,k R’V,k = kdens,ax RV,k R’V,90,k = kdens,V RV,90,k R’V,0,k = kdens,V RV,0,k ρk
350
380
385
405
425
430
440
C-GL kdens,ax
C24
C30
GL24h
GL26h
GL28h
GL30h
GL32h
0,92
0,98
1,00
1,04
1,08
1,09
1,11
kdens,ki
0,97
0,99
1,00
1,00
1,01
1,02
1,02
kdens,v
0,90
0,98
1,00
1,02
1,05
1,05
1,07
[kg/m3 ]
Strength values thus determined may differ, for higher safety standards, from those resulting from an exact calculation.
184 | VGS EVO | TIMBER
STRUCTURAL VALUES | TIMBER
CHARACTERISTIC VALUES EN 1995:2014 SLIDING
timber-to-timber
S
45°
timber-to-timber timber-to-timber ε=90° ε=0°
steel tension
45° A
45°
Sg
S
g
S
g
L
g
A
steel-to-timber
SPLATE
geometry
SHEAR
A
Sg
B d1
d1
L
[mm]
9
11
13
Bmin
RV,k
SPLATE
A min
RV,k
Rtens,45,k
Sg
A
RV,90,k
RV,0,k
[mm] [mm] [mm] [mm]
Sg
[kN]
[mm] [mm] [mm]
[kN]
[kN]
[mm]
[mm]
[mm]
[kN]
120 160 200 240 280 320 360 100 150 200 250 300 350 400 500 600 200 300 400 500 600 700 800
3,62 5,22 6,83 8,44 10,04 11,65 13,26 3,44 5,89 8,35 10,80 13,26 15,71 18,17 23,08 27,99 9,87 15,09 20,89 26,70 32,50 38,30 44,11
105 145 185 225 265 305 345 80 130 180 230 280 330 380 480 580 180 280 380 480 580 -
8,44 11,65 14,87 18,08 21,29 24,51 27,72 7,86 12,77 17,68 22,59 27,50 32,41 37,32 47,14 56,96 20,89 32,50 44,11 55,71 67,32 -
45 65 85 105 125 145 165 35 60 85 110 135 160 185 235 285 85 130 180 230 280 330 380
60 80 100 120 140 160 180 50 75 100 125 150 175 200 250 300 100 145 195 245 295 345 395
4,53 5,10 5,67 6,23 6,50 6,50 6,50 4,72 6,61 7,48 8,35 9,06 9,06 9,06 9,06 9,06 9,46 11,31 11,94 11,94 11,94 11,94 11,94
2,30 2,81 3,18 3,35 3,52 3,69 3,86 2,69 3,33 4,10 4,57 4,83 5,09 5,35 5,87 6,39 4,88 6,11 6,73 7,35 7,96 8,58 9,03
45 65 85 105 125 145 165 35 60 85 110 135 160 185 235 285 85 130 180 230 280 330 380
A 45 60 75 90 105 120 130 40 60 75 95 110 130 145 180 215 75 110 145 180 215 250 285
60 75 90 105 120 135 145 55 75 90 110 125 145 160 195 230 90 125 160 195 230 265 300
15
18
20
Sg
95 125 150 180 205 235 265 75 110 145 185 220 255 290 360 430 145 220 290 360 430 -
17,96
26,87
37,48
GENERAL PRINCIPLES • Characteristic values comply with the EN 1995:2014 standard in accordance with ETA-11/0030. • The tensile design strength of the connector is the lower between the timber-side design strength (Rax,d) and the steel-side design strength (Rtens,d).
Rax,d = min
Rax,k kmod γM Rtens,k γM2
• The compression design strength of the connector is the lower between the timber-side design strength (Rax,d) and the instability design strength (Rki,d).
Rax,d = min
Rax,k kmod γM Rki,k γM1
• The design sliding strength of the joint is either the timber-side design strength (RV,d) and the design strength on the steel side projected (Rtens,45,d), whichever is lower:
RV,d = min
RV,k kmod γM Rtens,45,k γM2
• The design shear strength of the connector is obtained from the characteristic value as follows:
RV,d =
RV,k kmod γM
• The coefficients γM and kmod should be taken according to the current regulations used for the calculation. • For the mechanical resistance values and the geometry of the screws, reference was made to ETA-11/0030. • Dimensioning and verification of the timber elements must be carried out separately. • The screws must be positioned in accordance with the minimum distances. • The characteristic thread withdrawal strengths were evaluated considering a penetration length of Sg,tot or Sg, as shown in the table. For intermediate values of Sg it is possible to linearly interpolate. • The shear srength and sliding values were evaluated considering the centre of gravity of the connector placed in correspondence with the shear plane. • The characteristic shear resistances are calculated for screws inserted without pre-drilling hole. In the case of screws inserted with pre-drilling hole, greater resistance values can be obtained. • For different calculation configurations, the MyProject software is available (www.rothoblaas.com). • For minimum distances and structural values for cross connectors in shear connection main beam - secondary beam see VGZ on page 130. • For minimum distances and structural values on CLT and LVL see VGZ on page 134.
TIMBER | VGS EVO | 185
VGS EVO C5
AC233 ESR-4645
ETA-11/0030
FULL THREAD CONNECTOR WITH COUNTERSUNK HEAD C5 ATMOSPHERIC CORROSIVITY Multi-layer coating capable of withstanding outdoor environments classified C5 according to ISO 9223. Salt Spray Test (SST) with exposure time greater than 3000 h carried out on screws previously screwed and unscrewed in Douglas fir timber.
3 THORNS TIP Thanks to the 3 THORNS tip, minimum installation distances are reduced. More screws can be used in less space and larger screws in smaller elements.
MAXIMUM STRENGTH It is the screw of choice if high mechanical performance is required under very adverse environmental and wood corrosive conditions. The cylindrical head makes it ideal for concealed joints, timber couplings and structural reinforcements.
BIT INCLUDED
LENGTH [mm] 9 9
vgs evo C5
15
DIAMETER [mm] 80
200
2000
360
SERVICE CLASS SC1
SC2
SC3
SC4
ATMOSPHERIC CORROSIVITY C1
C2
C3
C4
C5
WOOD CORROSIVITY T1
T2
T3
T4
T5
MATERIAL
C5
C5
EVO COATING
carbon steel with C5 EVO coating with very high corrosion resistance
FIELDS OF USE • • • •
186 | VGS EVO C5 | TIMBER
timber based panels solid timber and glulam CLT and LVL high density woods
CODES AND DIMENSIONS d1
CODE
[mm]
RELATED PRODUCTS
L
b
pcs
[mm]
[mm]
VGSEVO9200C5
200
190
25
VGSEVO9240C5
9 VGSEVO9280C5 TX 40 VGSEVO9320C5
240
230
25
280
270
25
320
310
25
VGSEVO9360C5
360
350
25
VGU EVO page 190
TORQUE LIMITER page 408
GEOMETRY AND MECHANICAL CHARACTERISTICS
d2 d1
XXX
dK
90°
VGS
t1
b L
45°
GEOMETRY Nominal diameter
d1
[mm]
9
Countersunk head diameter Countersunk head thickness
dK
[mm]
16,00
t1
[mm]
6,50
Thread diameter
d2
[mm]
5,90
Pre-drilling hole diameter(1)
dV,S
[mm]
5,0
Pre-drilling hole diameter(2)
dV,H
[mm]
6,0
(1) Pre-drilling valid for softwood. (2) Pre-drilling valid for hardwood and beech LVL.
CHARACTERISTIC MECHANICAL PARAMETERS Nominal diameter
d1
[mm]
9
Tensile strength
ftens,k
[kN]
25,4
Yield moment
My,k
[Nm]
27,2
fy,k
[N/mm2]
1000
Yield strength
softwood (softwood)
LVL softwood (LVL softwood)
pre-drilled beech LVL (beech LVL predrilled)
11,7
15,0
29,0
Withdrawal resistance parameter
fax,k
[N/mm2]
Associated density
ρa
[kg/m3]
350
500
730
Calculation density
ρk
[kg/m3]
≤ 440
410 ÷ 550
590 ÷ 750
For applications with different materials please see ETA-11/0030.
HYBRID STEEL-TIMBER STRUCTURES VGS EVO C5 is the ideal solution for steel structures where high-strength ad hoc connections are required, particularly in adverse climatic contexts such as the marine environment.
SWELLING OF TIMBER The application of VGS EVO C5 in combination with polymeric interlayers such as XYLOFON WASHER gives the joint a certain adaptability to mitigate stresses resulting from shrinkage/ swelling of the wood.
TIMBER | VGS EVO C5 | 187
VGS A4
AC233 ESR-4645
ETA-11/0030
FULL THREAD CONNECTOR WITH COUNTERSUNK HEAD A4 | AISI316 A4 | AISI316 austenitic stainless steel for high corrosion resistance. Ideal for environments adjacent to the sea in corrosivity class C5 and for insertion on the most aggressive timbers in class T5.
T5 TIMBER CORROSIVITY Suitable for use in applications on agressive woods with an acidity (pH) level below 4 such as oak, Douglas fir and chestnut, and in wood moisture conditions above 20%.
BIT INCLUDED
LENGTH [mm] 9 9
11
15
DIAMETER [mm] 80
100
600
SERVICE CLASS SC1
SC2
SC3
SC4
ATMOSPHERIC CORROSIVITY C1
C2
C3
C4
C5
WOOD CORROSIVITY T2
X
G
X
S
X
T1 V
X
G
S X
G
G
X
S
X
X
MATERIAL
V
S
G
V
X
V
S
G
X
X
A4
X
V
G
X
X
S
X
X
TORQUE LIMITER
X
N
T5
V
V
METAL-to-TIMBER recommended use:
T4
S
X
T3
X
X
X
Mins,rec
Mins,rec Mins,rec
AISI 316
A4 | AISI316 austenitic stainless steel (CRC III)
FIELDS OF USE • • • •
188 | VGS A4 | TIMBER
timber based panels solid timber and glulam CLT and LVL ACQ, CCA treated timber
2000
L
b
[mm]
[mm]
VGS9120A4
120
110
25
VGS9160A4
160
150
25
VGS9200A4
200
190 230
280
270
VGS9320A4
320
310
45° VGS9360A4
360 b
350
25
VGS11100A4
100
90
25
VGS11150A4
150
140
25
VGS11200A4
200
190
VGS11250A4
250
240
25
300
290
25
350
340
25
500 b
490
25
600
590
25
L
25
VGS VGS
VGS VGS
VGS11500A4 VGS11600A4
dK
VGS
VGS VGS
390
2
b L
page 409
t1 dK
90°
1
TEMPLATE FOR 45° SCREWS
t1
d2 d1
90° 45°
b L
TORQUE LIMITER
TORQUE LIMITER t1
t1 dK
d2 d 1 90°
XXX
400
JIG VGZd 45° d
90° 45°
25
45°
b L t1
dK
d2 d 1 90°
XXX
VGS11400A4
25
XXX
90°
XXX
dK
dK
d2 d1
t1
XXX
1
25 dK
page 68
90° 45°
XXX
L
dK
90°
25
XXX
90°
t1 XXX
240
11 VGS11300A4 TX 50 t VGS11350A4
t1
25
9 VGS9240A4 TX 40 t VGS9280A4 1
dK
dK
t1
XXX
t1
HUS A4 TURNED WASHER
VGS
[mm]
pcs
VGS
CODE
RELATED PRODUCTS
VGS
d1
XXX
page 408 d d
90°
2
45°
1
b L
GEOMETRY
45°
b L
V
d1
Head diameter Head thickness
d1 90° d2 90°
t1 dK
45°
b
VGS Ø11 L
L ≤ 250 mm
Nominal diameter
dK
VGS
dK
90°
VGS
VGS
VGS
VGS
d2 ddK 1
90°
t1 XXX
45°
dK
XXX
90°
t1 XXX
dK
240 mm < L ≤ 360 mm
t1 XXX
90°
VGS Ø9
L ≤ 240 mm t1
t1 XXX
XXX
SW
dK
t1 XXX
VGS
GS A4
tS
t1
VGS Ø9
VGS
VGS Ø9-Ø11
XXX
°
CODES AND DIMENSIONS
90° b L
VGS Ø11
45°
250 mm < L ≤ 600 mm
[mm]
9
11
dK
[mm]
16,00
19,30
t1
[mm]
6,50
8,20
Thread diameter
d2
[mm]
5,90
6,60
Pre-drilling hole diameter(1)
dV,S
[mm]
5,0
6,0
(1) Pre-drilling valid for softwood.
For the mechanical parameters please see ETA-11/0030.
HYBRID STEEL-TIMBER STRUCTURES Ideal for steel structures where high-strength customised connections are required, particularly in adverse climatic contexts such as the marine environment and acidic woods.
SWELLING OF TIMBER Application in combination with polymeric interlayers such as XYLOFON WASHER gives the joint a certain adaptability to mitigate stresses resulting from shrinkage/swelling of the wood.
TIMBER | VGS A4 | 189
VGU
ETA-11/0030
UKTA-0836 22/6195
AC233 ESR-4645
ETA-11/0030
45° WASHER FOR VGS SAFETY The VGU washer makes possible to install VGS screws at a 45° angle on steel plates. Washer marked CE as per ETA-11/0030.
PRACTICALITY The ergonomic shape ensures a firm, precise grip during installation. Three versions of washer, compatible with VGS in diameter 9, 11 and 13 mm, are available for plates of variable thickness. The use of the VGU allows the use of inclined screws on plate without resorting to countersunk holes on the plate, which is generally a time-consuming and costly operation.
VGU
C4 EVO COATING VGU EVO is coated with a surface treatment resistant to high atmospheric corrosivity. Compatible with VGS EVO diameter 9, 11 and 13 mm.
VGU EVO
S X
G G
X
S
X
V
G
X
S
X
X
V
X
G
V
S
SC4 T2 C3
V
G
X
X
SC3 T1 C2
S
SC2 C1
T3 C4
T4 C5
T4
Scan the QR Code and watch T5the video on our YouTube channel
X
TORQUE LIMITER
X
SC1
electrogalvanized carbon steel
S
Zn
ELECTRO PLATED
X
MATERIAL
X
N
15
X
13
X
9 9
G
V
DIAMETER [mm]
Mins,rec Mins,rec
T5
VIDEO
C4
EVO COATING
carbon steel with C4 EVO coating
SC1 C1
SC2 C2
SC3 T1 C3
SC4 T2 C4
T3 C5
FIELDS OF USE • • • • • • •
190 | VGU | TIMBER
timber based panels solid timber glulam (Glued Laminated Timber) CLT and LVL high density woods steel construction metal plates and profiles
X
V
X
Mins,rec
X
METAL-to-TIMBER recommended use:
CODES AND DIMENSIONS VGU WASHER
VGU EVO WASHER
CODE
screw
dV,S
pcs
CODE
[mm]
[mm]
VGU945
VGS Ø9
VGU1145 VGU1345
screw
dV,S
[mm]
[mm]
5
25
VGUEVO945
VGSEVO Ø9
5
25
VGS Ø11
6
25
VGUEVO1145 VGSEVO Ø11
6
25
VGS Ø13
8
25
VGUEVO1345 VGSEVO Ø13
8
25
dV,S = pre-drilling hole diameter (softwood)
dV,S = pre-drilling hole diameter (softwood)
JIG VGU TEMPLATE
HSS WOOD DRILL BIT
CODE
washer
dh
dV
pcs
[mm]
[mm] [mm]
JIGVGU945
VGU945
5,5
5
1
F1599105
JIGVGU1145
VGU1145
6,5
6
1
JIGVGU1345
VGU1345
8,5
8
1
dh
CODE
pcs
dV
TL
SL
pcs
[mm]
[mm]
[mm]
5
150
100
1
F1599106
6
150
100
1
F1599108
8
150
100
1
LE LT
For more information see page 409.
GEOMETRY LF
D2 D1
H
BF
h SPLATE
Washer
VGU945 VGUEVO945
VGU1145 VGUEVO1145
VGU1345 VGUEVO1345
9,0
11,0
13,0
d1
[mm]
VGS screw pre-drilling hole diameter(1)
dV,S
[mm]
5,0
6,0
8,0
Internal diameter
D1
[mm]
9,70
11,80
14,00 27,40
VGS screw diameter
External diameter
D2
[mm]
19,00
23,00
Base heigth
h
[mm]
3,00
3,60
4,30
Global heigth
H
[mm]
23,00
28,00
33,00
Slotted-hole length
LF
[mm]
33,0 ÷ 34,0
41,0 ÷ 42,0
49,0 ÷ 50,0
Slotted-hole width
BF
[mm]
14,0 ÷ 15,0
17,0 ÷ 18,0
20,0 ÷ 21,0
Steel plate thickness(2)
SPLATE
[mm]
3,0 ÷ 12,0
4,0 ÷ 15,0
5,0 ÷ 15,0
(1) Pre-drilling valid for softwood. (2) For thicker plates than those indicated in the table it is necessary to carry out a countersink in the lower part of the steel plate.
Recommended Ø5 mm guide hole (of minimum length 50 mm) for VGS screws of length L > 300 mm.
HELPS WITH INSTALLATION The JIG VGU template makes it easy to prepare a 45° angle pre-drill, thus facilitating subsequent tightening of the VGS screws inside the washer. A pre-drill length of at least 20 mm is recommended.
TIMBER | VGU | 191
STRUCTURAL VALUES | STEEL-TO-TIMBER JOINT SLIDING geometry
timber
d1
steel
SPLATE
45°
L
45°
S
g
Amin
d1
VGS/VGS EVO VGU VGU EVO
d1
L
A min
RV,k
Sg
A min
RV,k
Sg
A min
RV,k
Rtens,45,k
[mm]
[mm]
[mm] [mm]
Sg
[kN]
[mm] [mm]
[kN]
[mm] [mm]
[kN]
[kN]
100
75
6,03
70
5,63
65
65
SPLATE
VGU945 9 VGUEVO945
3 mm
11 VGUEVO1145
192 | VGU | TIMBER
8 mm 70
12 mm
5,22
120
95
85
7,63
90
85
7,23
85
80
6,83
140
115
100
9,24
110
100
8,84
105
95
8,44 10,04
160
135
115
10,85
130
110
10,45
125
110
180
155
130
12,46
150
125
12,05
145
125
11,65
200
175
145
14,06
170
140
13,66
165
135
13,26
220
195
160
15,67
190
155
15,27
185
150
14,87
240
215
170
17,28
210
170
16,88
205
165
16,47
260
235
185
18,88
230
185
18,48
225
180
18,08
280
255
200
20,49
250
195
20,09
245
195
19,69
300
275
215
22,10
270
210
21,70
265
205
21,29
320
295
230
23,71
290
225
23,30
285
220
22,90
340
315
245
25,31
310
240
24,91
305
235
24,51
360
335
255
26,92
330
255
26,52
325
250
26,12
380
355
270
28,53
350
265
28,13
345
265
27,72
400
375
285
30,13
370
280
29,73
365
280
29,33 32,54
440
415
315
33,35
410
310
32,95
405
305
480
455
340
36,56
450
340
36,16
445
335
35,76
520
495
370
39,78
490
365
39,38
485
365
38,97
560
535
400
42,99
530
395
42,59
525
390
42,19
600
575
425
46,21
570
425
45,80
565
420
45,40
80
50
55
4,91
-
-
-
-
-
5,40
4 mm
SPLATE
VGU1145
75
10 mm
15 mm
17,96
-
100
70
70
6,88
60
60
5,89
55
60
125
95
85
9,33
85
80
8,35
80
75
7,86
150
120
105
11,79
110
100
10,80
105
95
10,31
175
145
125
14,24
135
115
13,26
130
110
12,77
200
170
140
16,70
160
135
15,71
155
130
15,22
225
195
160
19,15
185
150
18,17
180
145
17,68
250
220
175
21,61
210
170
20,63
205
165
20,13
275
245
195
24,06
235
185
23,08
230
185
22,59
300
270
210
26,52
260
205
25,54
255
200
25,04
325
295
230
28,97
285
220
27,99
280
220
27,50
350
320
245
31,43
310
240
30,45
305
235
29,96
375
345
265
33,88
335
255
32,90
330
255
32,41
400
370
280
36,34
360
275
35,36
355
270
34,87
425
395
300
38,79
385
290
37,81
380
290
37,32
450
420
315
41,25
410
310
40,27
405
305
39,78
475
445
335
43,71
435
330
42,72
430
325
42,23
500
470
350
46,16
460
345
45,18
455
340
44,69
525
495
370
48,62
485
365
47,63
480
360
47,14
550
520
390
51,07
510
380
50,09
505
375
49,60
575
545
405
53,53
535
400
52,55
530
395
52,05
600
570
425
55,98
560
415
55,00
555
410
54,51
26,87
STRUCTURAL VALUES | STEEL-TO-TIMBER JOINT SLIDING geometry
timber
d1
steel
SPLATE
45°
L
45°
S
g
Amin
d1
VGS/VGS EVO VGU VGU EVO
d1
L
A min
RV,k
Sg
A min
RV,k
Sg
A min
RV,k
Rtens,45,k
[mm]
[mm]
[mm] [mm]
Sg
[kN]
[mm] [mm]
[kN]
[mm] [mm]
[kN]
[kN]
100
65
65
7,54
55
SPLATE
VGU1345 13 VGUEVO1345
5 mm
10 mm
15 mm
60
6,38
-
-
-
11,61
150
115
100
13,35
105
95
12,19
100
90
200
165
135
19,15
155
130
17,99
150
125
17,41
250
215
170
24,96
205
165
23,79
200
160
23,21
300
265
205
30,76
255
200
29,60
250
195
29,02
350
315
245
36,56
305
235
35,40
300
230
34,82
400
365
280
42,37
355
270
41,21
350
265
40,63 46,43
450
415
315
48,17
405
305
47,01
400
305
500
465
350
53,97
455
340
52,81
450
340
52,23
550
515
385
59,78
505
375
58,62
500
375
58,04
600
565
420
65,58
555
410
64,42
550
410
63,84
37,48
GENERAL PRINCIPLES • Characteristic values comply with the EN 1995:2014 standard in accordance with ETA-11/0030.
For different ρk values, the strength values in the table (withdrawal, compression, sliding and shear) can be converted via the kdens coefficient.
• The design sliding strength of the joint is either the timber-side design strength (RV,d) and the design strength on the steel side projected (Rtens,45,d), whichever is lower:
R’ax,k = kdens,ax Rax,k
RV,d = min
RV,k kmod γM Rtens,45,k γM2
• The coefficients γM and kmod should be taken according to the current regulations used for the calculation.
R’ki,k = kdens,ki Rki,k ρk R’[kg/m = k3dens,ax R350 ] V,k V,k R’V,90,k = kdens,V C24 RV,90,k C-GL
380
385
405
425
430
440
C30
GL24h
GL26h
GL28h
GL30h
GL32h
R’kV,0,k = kdens,V 0,92 RV,0,k dens,ax
0,98
1,00
1,04
1,08
1,09
1,11
Strength values thus determined may differ, for higher safety standards, from those resulting from an exact calculation. • For a connection with inclined screws in a metal plate application, the characteristic effective sliding load-bearing capacity for a row of n screws is equal to:
• For the mechanical resistance values and the geometry of the screws, reference was made to ETA-11/0030.
Ref,V,k = nef,ax RV,k
• Sizing and verification of the timber elements and metal plates must be done separately.
The nef value is given in the table below as a function of n (number of screws in a row).
• The screws must be positioned in accordance with the minimum distances.
n
2
3
4
5
6
7
8
9
10
• For the correct realization of the joint, the fastener head should be fully embedded into the VGU washer.
nef,ax
1,87
2,70
3,60
4,50
5,40
6,30
7,20
8,10
9,00
• The characteristic sliding strengths were evaluated by considering a minimum penetration length of Sg, as shown in the table, considering a minimum penetration length of 4-d1 . For intermediate values of Sg or SPLATE it is possible to linearly interpolate.
• For available VGS and VGS EVO screw sizes, see pages 164 and 180.
• The characteristic sliding strengths were evaluated by considering an angle ε of 45° between the grains of the timber element and the connector. • The VGU washer is over-resistant compared to the strength of the VGS/ VGSEVO screw. • For the calculation process a timber characteristic density ρk = 385 kg/m3 has been considered.
TIMBER | VGU | 193
INSTALLATION INSTRUCTIONS
S
X
V
G
X
G
V
V
S X
G
G
G
V
X
G
V
V
G
V
X
m 510 m
S
X
X
S
G
X
X
After installation, the fasteners can be inspected using a torque wrench.
X
X
X
V
G
X
S
V
50
S
13
X
X
X
X S
X
X X
V
V X
G V
X
X
G
V
V
G
G
G X
S
X
S
V
G X
V
G
G
X X
X
S
S
X
S
X
V
X
X G
X
S
X
X
V
S
X
X
40
X
S
X
S
S
X X
11
Ensure correct tightening. We recommend the use of torque-controlled screwdrivers, e.g. with TORQUE LIMITER. Alternatively, tighten with a torque wrench.
α
X
X
X
30
X
Ø13
X
11
X
X
Ø11 L ≥ 400 mm
The use of pulse screw guns/impact wrenches is not permitted.
S
Ø11 L < 400 mm
N
X
X
S
X
X
V
X
Mins
V
G
X
X
X
S
V
G G
X
S
X
X
V
S
V
G
The installation of multiple screws must be performed to guarantee that loads are distributed evenly to all fasteners.
Shrinkage or swelling of timber elements due to changes in moisture content must be avoided.
Avoid dimensional changes in the metal, e.g. due to large temperature fluctuations.
L
V
G
INSTALLATION WITHOUT PRE-DRILL
S
Avoid bending.
X
X
X
X
X
X
45°
LF Place the steel plate on the wood and set the VGU washers in the slots provided.
X
S
X
X
S X
S X
G
V
S
X
X
S
X
510
X
X
mm
G
G
V
G
S
V
G
X
X
S X
V
G
X
X
S
G
X
V
X
V
X
X
X
V
G
V
X
Mins
Position the screw and respect the 45° angle of insertion.
Mins
2 3 45 1 6 12 7 11 8 10 9
X
V
S
G
X
X X
V
G
X
X
S X
X
X
N Screw in, ensuring correct tightening.
194 | VGU | TIMBER
X S
X S
X
Ø9
X
G
G
V
S
V
20
X
X
9
Mins,rec
X
[Nm]
X
X
Mins,rec
X
Mins
d1 [mm]
X
VGS
X
G
2 3 45 1 6 12 7 11 8 10 9
Perform the operation for all washers. The assembly must be performed so as to guarantee that the stress is evenly distributed among all the installed VGU washers.
L
INSTALLATION WITH THE AID OF A PRE-DRILL TEMPLATE
LF
V
G
Use the VGU JIG template of the correct diameter by positioning it in the VGU washer
S
Place the steel plate on the wood and set the VGU washers in the slots provided.
X
X
X
45°
Using the pre-drill template, prepare a pre-drill/guide hole (at least 50 mm length) using an appropriate tip
X
X
S
X
Mins
2 3 45 1 6 12 7 11 8 10 9
S X
S X
G
V
S
X
X
S
X
510
X
X
mm
G
G
V
G
S
V
G
X
X
S X
V
G
X
X
S
G
X
V
X
V
X
X
X
V
G
V
X
Mins
Position the screw and respect the 45° angle of insertion.
X
V
S
G
X
X X
V
G
X
X
S X
X
X
N Screw in, ensuring correct tightening.
Perform the operation for all washers. The assembly must be performed so as to guarantee that the stress is evenly distributed among all the installed VGU washers.
Theory, practice and experimental campaigns: our experience is in your hands. Download the SMARTBOOK TIMBER SCREWS.
TIMBER | VGU | 195
RTR
ETA-11/0030
UKTA-0836 22/6195
STRUCTURAL REINFORCEMENT SYSTEM CERTIFICATION FOR TIMBER AND CONCRETE Structural connector approved for timber applications according to ETA11/0030 and for timber-concrete applications according to ETA-22/0806.
RAPID DRY SYSTEM Available in diameters 16 and 20 mm, it is used to reinforce and connect large elements. The timber thread allows application without the need for resins or adhesives.
STRUCTURAL REINFORCEMENT The high-performance tensile steel (fy,k = 640 N/mm2) and the large dimensions available make RTR ideal for structural reinforcement applications.
LARGE SPANS The system, developed for applications on large span elements, allows fast and secure reinforcement and connections on any beam size due to the considerable length of the bars. Ideal for factory installations.
BIT INCLUDED
DIAMETER [mm]
16 16
20 20 2200
LENGTH [mm] SERVICE CLASS
SC1
SC2
SC3
SC4
ATMOSPHERIC CORROSIVITY
C1
C2
C3
C4
C5
WOOD CORROSIVITY
T1
T2
T3
T4
T5
MATERIAL
Zn
ELECTRO PLATED
electrogalvanized carbon steel
FIELDS OF USE • • • •
196 | RTR | TIMBER
timber based panels solid timber glulam (Glued Laminated Timber) CLT, LVL
ETA-11/0030
CODES AND DIMENSIONS d1
RELATED PRODUCTS
CODE
[mm]
L
D 38 RLE
pcs
[mm]
4-SPEED DRILL DRIVER
16
RTR162200
2200
10
20
RTR202200
2200
5
page 407
GEOMETRY AND MECHANICAL CHARACTERISTICS d2 d1
L Nominal diameter
d1
[mm]
16
20
Thread diameter
d2
[mm]
12,00
15,00
Pre-drilling hole diameter(1)
dV,S
[mm]
13,0
16,0
ftens,k
[kN]
100,0
145,0
My,k
[Nm]
200,0
350,0
fy,k
[N/mm2]
640
640
Characteristic tensile strength Characteristic yield moment Characteristic yield strength (1) Pre-drilling valid for softwood.
CHARACTERISTIC MECHANICAL PARAMETERS softwood (softwood) Withdrawal resistance parameter
fax,k
[N/mm2]
Associated density
ρa
[kg/m3]
350
Calculation density
ρk
[kg/m3]
≤ 440
9,0
For applications with different materials please see ETA-11/0030.
TC FUSION SYSTEM FOR TIMBER-CONCRETE APPLICATION Nominal diameter
d1
[mm]
16
20
Tangential strength of adhesion in concrete C25/30
fb,k
[N/mm2]
9,0
-
For applications with different materials please see ETA-22/0806
TC FUSION The ETA-22/0806 approval of the TC FUSION system allows the RTR threaded rods to be used together with the reinforcements in the concrete so that the panel floor slabs and the bracing core can be bonded together with a small integration of the casting.
TIMBER | RTR | 197
MINIMUM DISTANCES FOR AXIAL STRESSES rods inserted WITH pre-drilled hole d1
[mm]
16
20
a1
[mm]
5∙d
80
100
a2
[mm]
5∙d
80
100
a1,CG
[mm]
10∙d
160
200
a2,CG
[mm]
4∙d
64
80
d = d1 = nominal rod diameter
a2,CG a2 a2,CG a1,CG
a1
a1,CG
a1
MINIMUM DISTANCES FOR SHEAR LOADS rods inserted WITH pre-drilled hole
α=0°
F
d1
[mm]
a1
[mm]
a2
[mm]
3∙d
a3,t
[mm]
12∙d
a3,c [mm]
7∙d
a4,t
[mm]
3∙d
a4,c [mm]
3∙d
5∙d
F
α=90°
16
20
d1
[mm]
80
100
a1
[mm]
4∙d
16
20
64
80
48
60
a2
[mm]
4∙d
64
80
192
240
a3,t
[mm]
7∙d
112
140
112
140
a3,c [mm]
7∙d
112
140
48
60
a4,t
[mm]
7∙d
112
140
48
60
a4,c [mm]
3∙d
48
60
α = load-to-grain angle d = d1 = nominal rod diameter stressed end -90° < α < 90°
a2 a2 a1 a1
unloaded end 90° < α < 270°
F α
α F a3,t
stressed edge 0° < α < 180°
unload edge 180° < α < 360°
α F α
a4,t
F a4,c
a3,c
NOTES • Minimum distances according to ETA-11/0030. • The minimum distances for shear-stressed bars are in accordance with EN 1995:2014.
198 | RTR | TIMBER
• The minimum distances for axially stressed connectors are independent of the insertion angle of the connector and the angle of the force with respect to the grain.
STRUCTURAL VALUES | TIMBER
CHARACTERISTIC VALUES EN 1995:2014
TENSION / COMPRESSION thread withdrawal ε=90°
geometry
steel tension
SLIDING instability ε=90°
timber-to-timber
S
g
A
steel tension
45°
S
g
45°
Sg
B
Amin
d1
d1 [mm]
Sg [mm] 200 300 400 500 600 700 800 900 1000 1200 200 300 400 500 600 700 800 1000 1200 1400
16
20
A min [mm] 210 310 410 510 610 710 810 910 1010 1210 210 310 410 510 610 710 810 1010 1210 1410
Rax,90,k [kN] 31,08 46,62 62,16 77,70 93,25 108,79 124,33 139,87 155,41 186,49 38,85 58,28 77,70 97,13 116,56 135,98 155,41 194,26 233,11 271,97
Rtens,k [kN]
Rki,90,k [kN]
100
55,16
145
87,46
Sg [mm] 100 150 200 250 300 350 400 450 500 600 100 150 200 250 300 350 400 500 600 700
A [mm] 80 115 150 185 220 255 290 325 360 430 80 115 150 185 220 255 290 360 430 500
Bmin [mm] 90 125 160 195 230 265 300 335 370 440 90 125 160 195 230 265 300 370 440 510
RV,k [kN] 10,99 16,48 21,98 27,47 32,97 38,46 43,96 49,45 54,95 65,93 13,74 20,60 27,47 34,34 41,21 48,08 54,95 68,68 82,42 96,15
Rtens,45,k [kN]
70,71
102,53
ε = screw-to-grain angle
SHEAR timber-to-timber ε=90°
geometry
NOTES | TIMBER A
Sg L Sg d1
d1
L
Sg
A
[mm]
[mm]
[mm]
[mm]
[mm]
100 200 300 400 500 600 ≥ 800 100 200 300 400 500 600 800 ≥ 1000
50 100 150 200 250 300 ≥ 400 50 100 150 200 250 300 400 ≥ 500
50 100 150 200 250 300 ≥ 400 50 100 150 200 250 300 400 ≥ 500
10,73 18,87 20,81 22,75 24,69 26,64 29,96 12,89 25,78 28,91 31,34 33,77 36,19 41,05 43,25
16
20
RV,90,k
• The characteristic thread withdrawal strenghts were evaluated by considering an angle ε of 90° (Rax,90,k) between the grains of the timber element and the connector. • The characteristic sliding strengths were evaluated by considering an angle ε of 45° between the grains of the timber element and the connector. • The characteristic timber-to-timber shear strengths were evaluated considering an angle ε of 90° (RV,90,k) between the grains of the second element and the connector. • For the calculation process a timber characteristic density ρ k = 385 kg/m3 has been considered. For different ρk values, the strength values in the table (withdrawal, compression, sliding and shear) can be converted via the kdens coefficient.
R’ax,k = kdens,ax Rax,k R’ki,k = kdens,ki Rki,k R’V,k = kdens,ax RV,k R’V,90,k = kdens,V RV,90,k R’V,0,k = kdens,V RV,0,k ρk
350
380
385
405
425
430
440
C-GL kdens,ax
C24
C30
GL24h
GL26h
GL28h
GL30h
GL32h
0,92
0,98
1,00
1,04
1,08
1,09
1,11
kdens,ki
0,97
0,99
1,00
1,00
1,01
1,02
1,02
kdens,v
0,90
0,98
1,00
1,02
1,05
1,05
1,07
[kg/m3 ]
Strength values thus determined may differ, for higher safety standards, from those resulting from an exact calculation.
GENERAL PRINCIPLES on page 200.
TIMBER | RTR | 199
STRUCTURAL VALUES | TC FUSION
CHARACTERISTIC VALUES EN 1995:2014
TENSILE CONNECTION CLT - CONCRETE geometry
CLT
concrete
lb,d
lb,d
L
Sg
Sg
NOTES | TC FUSION • Characteristic values according to ETA-22/0806. • The axial thread withdrawal resistance in the narrow face is valid for minimum CLT thickness tCLT,min = 10∙d1 and minimum screw pull-through depth tpen = 10∙d1 . Connectors with shorter lengths than those in the table do not comply with the minimum penetration depth requirements and are not reported.
d1
d1
L min
Sg
Rax,0,k
lb,d
Rax,C,k
[mm]
[mm]
[mm]
[kN]
[mm]
[kN]
16
400 500 600 700 800 900 1000 1100 1200 1300 1400
240 340 440 540 640 740 840 940 1040 1140 1240
25,50 34,89 44,00 52,90 61,64 70,25 78,74 87,12 95,42 100,00 100,00
150 150 150 150 150 150 150 150 150 150 150
• A concrete grade of C25/30 was considered in the calculation. For applications with different materials please see ETA-22/0806. • The tensile design strength of the connector is the lower between the timber-side design strength (Rax,d) and the concrete-side design strength (Rax,C,d).
67,86
Rax,d = min
Rax,0,k kmod γM Rax,C,k γM,concrete
• The concrete element must have adequate reinforcement bars. • The connectors must be arranged at a maximum distance of 300 mm.
TC FUSION TIMBER-TO-CONCRETE JOINT SYSTEM The innovation of VGS, VGZ and RTR all-thread connectors for timber-concrete applications. Find it out on page 270.
STRUCTURAL VALUES GENERAL PRINCIPLES • Characteristic values comply with the EN 1995:2014 standard in accordance with ETA-11/0030. • The tensile design strength of the connector is the lower between the timber-side design strength (Rax,d) and the steel-side design strength (Rtens,d).
Rax,d = min
Rax,k kmod γM Rtens,k γM2
• The compression design strength of the connector is the lower between the timber-side design strength (Rax,d) and the instability design strength (Rki,d).
Rax,d = min
Rax,k kmod γM Rki,k γM1
• The design sliding strength of the joint is either the timber-side design strength (RV,d) and the design strength on the steel side projected (Rtens,45,d), whichever is lower:
RV,d = min
RV,k kmod γM Rtens,45,k γM2
200 | RTR | TIMBER
• The design shear strength of the connector is obtained from the characteristic value as follows:
RV,d =
RV,k kmod γM
• The coefficients γM and kmod should be taken according to the current regulations used for the calculation. • For the mechanical resistance values and the geometry of the rods, reference was made to ETA-11/0030. • Dimensioning and verification of the timber elements must be carried out separately. • The rods must be positioned in accordance with the minimum distances. • The characteristic thread withdrawal resistances were evaluated considering a penetration length of Sg as shown in the table. For intermediate values of Sg it is possible to linearly interpolate.
INSTALLATION SUGGESTIONS
1
For a better finish, it is recommended to drill a hole through BORMAX to accommodate the timber end cap.
2
3
Pre-drill the hole inside the timber element, ensuring that it is straight. The use of COLUMN ensures better accuracy.
Cut the RTR threaded rod to the desired length, ensuring that it is less than the depth of the pre-drilling.
4
5
Assemble the sleeve (ATCS007 or ATCS008) onto the adapter with safety clutch (DUVSKU). Alternatively, a simple adapter (ATCS2010) can be used.
Insert the sleeve into the threaded rod and the adapter into the screwdriver. We recommend the use of the handle (DUD38SH) for more control and stability when screwing.
6
7
8
Screw up to the length defined in the design. We recommend limiting the insertion moment value to 200 Nm (RTR 16) and 300 Nm (RTR 20).
Unscrew the sleeve from the bar.
If provided, insert a TAP cap to conceal the threaded rod and ensure better aesthetic finish and fire strength.
RELATED PRODUCTS
VGS page 164
LEWIS page 414
D 38 RLE page 407
COLUMN page 411
TIMBER | RTR | 201
DGZ
ETA-11/0030
UKTA-0836 22/6195
AC233 ESR-4645
DOUBLE THREADED SCREW FOR INSULATION CONTINUOUS INSULATION Allows continuous, uninterrupted fastening of roof insulation package. Limits thermal bridges in compliance with energy saving regulations. The cylindrical head is ideal for hidden insertion in the batten. Screw also certified in versions with flange head (DGT) and countersunk head (DGS).
CERTIFICATION Connector for hard and soft insulation, for roofing and façade applications, CE certified according to ETA-11/0030. Available in two diameters (7 and 9 mm) to optimize the number of fasteners.
MYPROJECT Free MyProject software for customized fastening calculation, accompanied by a calculation report.
3 THORNS TIP Thanks to the 3 THORNS tip, minimum installation distances are reduced. More screws can be used in less space and larger screws in smaller elements. Costs and time for project implementation are reduced.
BIT INCLUDED
DIAMETER [mm]
6
LENGTH [mm]
80
7
9 9 220
520 520
SERVICE CLASS
SC1
SC2
SC3
SC4
ATMOSPHERIC CORROSIVITY
C1
C2
C3
C4
C5
WOOD CORROSIVITY
T1
T2
T3
T4
T5
MATERIAL
Zn
ELECTRO PLATED
electrogalvanized carbon steel
FIELDS OF USE • • • • •
202 | DGZ | TIMBER
timber based panels solid timber glulam (Glued Laminated Timber) CLT, LVL engineered timbers
ETA-11/0030
THERMAL BRIDGES Thanks to the double thread, the roof insulation package can be fixed to the supporting structure without any interruptions, thus limiting thermal bridges. Certification specific for fastening on both hard and soft insulation.
VENTILATED FAÇADES Also tested, certified and calculated on façade joists and with engineered woods such as Microllam® LVL.
TIMBER | DGZ | 203
CODES AND DIMENSIONS d1
CODE
L
[mm]
pcs
d1
[mm]
CODE
L
[mm]
pcs
[mm]
DGZ7220
220
50
DGZ9240
240
50
DGZ7260 7 DGZ7300 TX 30 DGZ7340
260
50
DGZ9280
280
50
300
50
DGZ9320
320
50
340
50
DGZ9360
50
DGZ7380
380
50
9 TX 40 DGZ9400
360 400
50
DGZ9440
440
50
DGZ9480
480
50
DGZ9520
520
50
NOTES: upon request, EVO version is available.
d2 d1
XXX
dK
DGZ
GEOMETRY AND MECHANICAL CHARACTERISTICS
dS
60
100 L
GEOMETRY Nominal diameter
d1
[mm]
7
9
Head diameter
dK
[mm]
9,50
11,50
Thread diameter
d2
[mm]
4,60
5,90
Shank diameter
dS
[mm]
5,00
6,50
CHARACTERISTIC MECHANICAL PARAMETERS Nominal diameter
d1
[mm]
7
9
Tensile strength
ftens,k
[kN]
15,4
25,4
Yield moment
My,k
[Nm]
14,2
27,2
Refer to ETA-11/0030 for the instability resistance values of screws as a function of their effective length. softwood (softwood)
LVL softwood (LVL softwood)
Withdrawal resistance parameter
fax,k
[N/mm2]
11,7
15,0
Associated density
ρa
[kg/m3]
350
500
Calculation density
ρk
[kg/m3]
≤ 440
410 ÷ 550
For applications with different materials please see ETA-11/0030.
Complete calculation reports for designing in wood? Download MyProject and simplify your work!
204 | DGZ | TIMBER
SCREW SELECTION MINIMUM SCREW LENGTH DGZ Ø7 batten height(*)
insulation + wooden planking thickness t
A DGZ at 60°
B DGZ at 90°
A DGZ at 60°
B DGZ at 90°
A DGZ at 60°
B DGZ at 90°
A DGZ at 60°
B DGZ at 90°
A DGZ at 60°
B DGZ at 90°
[mm]
Lmin [mm]
Lmin [mm]
Lmin [mm]
Lmin [mm]
Lmin [mm]
Lmin [mm]
Lmin [mm]
Lmin [mm]
Lmin [mm]
Lmin [mm]
s = 30 mm
s = 40 mm
s = 50 mm
s = 60 mm
s = 80 mm
60
220
220
220
220
220
220
220
220
260
220
80
220
220
220
220
220
220
260
220
260
220
100
220
220
260
220
260
220
260
220
300
260
120
260
220
260
220
260
260
300
260
300
260
140
260
260
300
260
300
260
300
260
340
300
160
300
260
300
260
340
300
340
300
340
300
180
340
300
340
300
340
300
340
300
380
340
200
340
300
340
300
380
340
380
340
-
340
220
380
340
380
340
380
340
380
340
-
380
240
380
340
380
340
-
380
-
380
-
380
260
-
380
-
380
-
380
-
380
-
-
280
-
380
-
380
-
-
-
-
-
-
(*) Minimum batten thicknesses: DGZ Ø7 mm: base/height = 50/30 mm.
MINIMUM SCREW LENGTH DGZ Ø9 batten height(*) s = 50 mm
insulation + wooden planking thickness t
A DGZ at 60°
B DGZ at 90°
A DGZ at 60°
B DGZ at 90°
A DGZ at 60°
B DGZ at 90°
A DGZ at 60°
B DGZ at 90°
A DGZ at 60°
B DGZ at 90°
[mm]
Lmin [mm]
Lmin [mm]
Lmin [mm]
Lmin [mm]
Lmin [mm]
Lmin [mm]
Lmin [mm]
Lmin [mm]
Lmin [mm]
Lmin [mm]
s = 30 mm
s = 40 mm
s = 60 mm
s = 80 mm
60
-
-
240
240
240
240
240
240
240
240
80
-
-
240
240
240
240
240
240
280
240
100
-
-
240
240
240
240
280
240
280
240
120
-
-
280
240
280
240
280
240
320
280
140
-
-
280
240
320
280
320
280
320
280
160
-
-
320
280
320
280
320
280
360
320
180
-
-
320
280
360
320
360
320
400
320
200
-
-
360
320
360
320
400
320
400
360
220
-
-
400
320
400
360
400
360
440
360
240
-
-
400
360
400
360
440
360
440
400 400
260
-
-
440
360
440
400
440
400
480
280
-
-
440
400
480
400
480
400
480
440
300
-
-
480
400
480
400
480
440
520
440
320
-
-
520
440
520
440
520
480
520
480
340
-
-
520
480
520
480
-
-
-
-
(*) Minimum batten thicknesses: DGZ Ø9 mm: base/height = 60/40 mm.
s
t
A
60° A
90°
s
s t
60° 90°
A B
A
60°
t
A
90°
A
A
A A B
B
RIGID ROOF INSULATION σ(10%) ≥ 50 kPa (EN826)
SOFT ROOF INSULATION σ(10%) < 50 kPa (EN826)
90° B A 60°
B
FACADE INSULATION
NOTE: Check that the screw length is compatible with the size of the structural timber element and that the tip does not protrude from the beam bottom.
TIMBER | DGZ | 205
MINIMUM DISTANCES FOR AXIAL STRESSES (1) screws inserted WITH and WITHOUT pre-drilled hole d1 a1 a2 a1,CG a2,CG
[mm] [mm] [mm] [mm] [mm]
7 35 35 56 21
5∙d 5∙d 8∙d 3∙d
9 45 45 72 27
d = d1 = nominal screw diameter
a2,CG 1
a
a2 a2,CG a1,CG
a1,CG
NOTES: (1) T he minimum distances for axially loaded connectors are independent of
the insertion angle of the connector and the angle of the force with respect to the grain, in accordance with ETA-11/0030.
• For 3 THORNS tip the minimum distances in the table are derived from experimental tests; alternatively, adopt a1,CG = 10∙d and a2,CG = 4∙d in accordance with EN 1995:2014.
RESEARCH & DEVELOPMENT INSULATION AND INFLUENCE OF THERMAL BRIDGES CONTINUOUS INSULATION
INTERRUPTED INSULATION U
[W/m2K] 5,0 °C 7,5 °C
5,0 °C 7,5 °C
10,0 °C 12,5 °C 15,0 °C
10,0 °C 12,5 °C 15,0 °C
17,5 °C
17,5 °C
1
2
ΔU 10÷15%
1
2
The use of continuous insulation helps to limit the presence of thermal bridges. If the fastening of the package requires rigid elements within the insulation, there is a drop in thermal performance due to the presence of a thermal bridge distributed along the entire axis of the interposed secondary joists. Moreover, in the case of interrupted insulation, local discontinuities between the elements present may be more frequent during installation, further aggravating the thermal bridge. FASTENING OF CONTINUOUS INSULATION WITH DGZ A
A
5,0 °C 7,5 °C 10,0 °C 12,5 °C 15,0 °C
A
17,5 °C
A Section A-A
The use of the DGZ screw allows the installation of continuous insulation, without interruptions and discontinuities. In this case, the thermal bridge is localised and concentrated only at the connectors and therefore has an irrelevant contribution to the thermal performance of the package, which is therefore maintained. Excessive anchoring or incorrect arrangements should be avoided in order not to compromise the thermal performance of the package. Calculation performed by EURAC Research as part of MEZeroE project that has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 953157. For more info www.mezeroe.eu
206 | DGZ | TIMBER
CALCULATION EXAMPLE: FASTENING OF CONTINUOUS INSULATION WITH DGZ The number and placement of the fastenings depends on the geometry of the surfaces, the type of insulation and the loads acting on them.
PROJECT DATA Roof loads Permanent load
gk
0,45 kN/m2
Snow load
s
1,70 kN/m2
Positive wind pressure
we
0,30 kN/m2
Negative wind pressure
we
-0,30 kN/m2
Ridge piece height
z
8,00 m
Building length
L
11,50 m
Building width
B
8,00 m
Layer slope
α
30% = 16,7°
Ridge piece position
L1
5,00 m
Building dimensions
Roof geometry
INSULATION PACKAGE FIGURES Joists GL24h
bt x ht
120 x 160 mm
Wooden planking
S1
20.00 mm
Tile support battens
eb
0,33 m
Insulation layer
S2
160.00 mm
bL x hL
60 x 40 mm
C24 battens
Spacing
i
0,70 m
Wood grain (soft)
σ(10%)
0,03 N/mm2
Commercial length
LL
4,00 m
CONNECTOR SELECTION - OPTION 1 - DGZ Ø7
CONNECTOR SELECTION - OPTION 2 - DGZ Ø9
Screw under tension
7 x 300 mm
60° angle: 126 pcs
Screw under tension
Compressed screw
7 x 300 mm
60° angle: 126 pcs
Perpendicular screw
7 x 260 mm
90° angle: 72 pcs
Connector placement diagram.
9 x 320 mm
60° angle: 108 pcs
Compressed screw
9 x 320 mm
60° angle: 108 pcs
Perpendicular screw
9 x 280 mm
90° angle: 36 pcs
Roof batten calculation.
TIMBER | DGZ | 207
DRS TIMBER-TO-TIMBER SPACER SCREW DOUBLE THREAD, DIFFERENTIATED Underhead thread with specially designed geometry to create and regulate a space between the fastenable thicknesses.
VENTILATED FACADES The differentiated double thread is ideal for regulating the position of the battens on the facade and to create proper verticality. Ideal for levelling panelling, battens, ceilings and paving.
DIAMETER [mm] 6 6
9
LENGTH [mm] 80 80
145
520
SERVICE CLASS SC1
SC2
SC3
SC4
ATMOSPHERIC CORROSIVITY C1
C2
C3
C4
C5
WOOD CORROSIVITY T1
T2
T3
T4
T5
MATERIAL
Zn
ELECTRO PLATED
electrogalvanized carbon steel
FIELDS OF USE Thanks to the possibility to create a distance between pieces of wood, it is possible to create versatile fastenings quickly and safely, without the need for any interposed element.
208 | DRS | TIMBER
CODES AND DIMENSIONS d1
CODE
L
b
[mm]
[mm]
DRS680
80
40
[mm]
6 TX 30
pcs 100
DRS6100
100
60
100
DRS6120
120
60
100
DRS6145
145
60
100
GEOMETRY d3
dS d2 d1
dK b
b1 L Nominal diameter
d1
[mm]
6
Head diameter
dK
[mm]
12,00
Thread diameter
d2
[mm]
3,80
Shank diameter
dS
[mm]
4,35
Underhead thread diameter
d3
[mm]
6,80
Length head + rings
b1
[mm]
24,0
INSTALLATION Select the screw length so that the thread is completely inserted in the timber support.
01
02
03
04
Position the DRS screw.
Attach the batten, screwing in the screw so that the head is flush with the timber.
Loosen the screw based on the desired distance.
Adjust the other screws in a similar manner to level the structure.
TIMBER | DRS | 209
DRT TIMBER-BRICKWORK SPACER SCREW DOUBLE THREAD, DIFFERENTIATED Underhead thread with specially designed geometry to create and regulate a space between the fastenable thicknesses.
FASTENING TO BRICKWORK Underhead thread with a greater diameter to allow fastening to brickwork through the addition of a plastic dowel.
DIAMETER [mm] 6 6
9
LENGTH [mm] 80 80
120
520
SERVICE CLASS SC1
SC2
SC3
SC4
ATMOSPHERIC CORROSIVITY C1
C2
C3
C4
C5
WOOD CORROSIVITY T1
T2
T3
T4
T5
MATERIAL
Zn
ELECTRO PLATED
electrogalvanized carbon steel
FIELDS OF USE The differentiated double thread is ideal for adjusting the position of timber elements on brickwork supports (using the plastic screw anchor) and to create the proper verticality. Ideal for levelling panels on walls, paving and ceilings.
210 | DRT | TIMBER
CODES AND DIMENSIONS d1
CODE
[mm] 6 TX 30
NDK GL NYLON SCREW ANCHOR
L
b
pcs
CODE
d0
L
[mm]
[mm]
8
40
pcs
[mm]
[mm]
DRT680
80
50
100
NDKG840
DRT6100
100
70
100
DRT6120
120
70
100
For fastening on concrete or brickwork, use of the NDK GL nylon screw anchor is recommended.
100
GEOMETRY d3
dS d2 d1
dK b
b1 L Nominal diameter Head diameter Thread diameter Shank diameter Underhead thread diameter Length head + rings Diameter of concrete/brickwork opening
d1 dK d2 dS d3 b1 dV
[mm] [mm] [mm] [mm] [mm] [mm] [mm]
6 12,00 3,90 4,35 9,50 20,0 8,0
INSTALLATION Select the screw length so that the thread is completely inserted in the concrete/brickwork support.
01
02
03
04
Drill the elements with a dV= 8,0 mm diameter.
Place the NDK GL nylon screw anchor inside the support.
Position the DRT screw.
Attach the batten, screwing in the screw so that the head is flush with the timber.
05
06
Loosen the screw based on the desired distance.
Adjust the other screws in a similar manner to level the structure.
TIMBER | DRT | 211
HBS PLATE
AC233 ESR-4645
ETA-11/0030
PAN HEAD SCREW FOR PLATES NEW GEOMETRY The inner core diameter of the Ø8, Ø10 and Ø12 mm screws has been increased to ensure higher performance in thick plate applications. In steel-timber connections, the new geometry achieves a strength increase of more than 15%.
PLATE FASTENING The under-head shoulder achieves an interlocking effect with the circular hole in the plate, thus guaranteeing excellent static performance. The edgeless geometry of the head reduces stress concentration points and gives the screw strength.
3 THORNS TIP Thanks to the 3 THORNS tip, minimum installation distances are reduced. More screws can be used in less space and larger screws in smaller elements. Costs and time for project implementation are reduced.
BIT INCLUDED
DIAMETER [mm]
3
LENGTH [mm]
25
8
12 12
60
200 200
SERVICE CLASS
SC1
SC2
SC3
SC4
ATMOSPHERIC CORROSIVITY
C1
C2
C3
C4
C5
WOOD CORROSIVITY
T1
T2
T3
T4
T5
MATERIAL
Zn
ELECTRO PLATED
METAL-to-TIMBER recommended use:
N
electrogalvanized carbon steel
TORQUE LIMITER
Mins,rec Mins,rec
FIELDS OF USE • • • • •
212 | HBS PLATE | TIMBER
timber based panels solid timber glulam (Glued Laminated Timber) CLT and LVL high density woods
MULTISTOREY Ideal for steel-to-timber joints with large customized plates, designed for multi-story timber buildings.
TITAN Values also tested, certified and calculated for fastening standard Rothoblaas plates.
TIMBER | HBS PLATE | 213
CODES AND DIMENSIONS d1
CODE
L
b
AP
[mm]
[mm]
[mm]
HBSPL860
60
52
1÷10
100
HBSPL12100
100
75
1÷15
25
HBSPL880
80
55
1÷15
100
HBSPL12120
120
90
1÷20
25
HBSPL8100
100
75
1÷15
100
HBSPL12140
140
110
1÷20
25
HBSPL8120
120
95
1÷15
100
HBSPL12160
160
120
1÷30
25
HBSPL8140
140
110
1÷20
100
HBSPL12180
180
140
1÷30
25
HBSPL8160
160
130
1÷20
100
HBSPL12200
200
160
1÷30
25
HBSPL1080
80
60
1÷10
50
HBSPL10100
100
75
1÷15
50
HBSPL10120
120
95
1÷15
50
HBSPL10140
140
110
1÷20
50
HBSPL10160
160
130
1÷20
50
HBSPL10180
180
150
1÷20
50
[mm]
8 TX 40
10 TX 40
pcs
d1
CODE
[mm]
12 TX 50
L
b
AP
[mm]
[mm]
[mm]
pcs
RELATED PRODUCTS TORQUE LIMITER TORQUE LIMITER
page 408
GEOMETRY AND MECHANICAL CHARACTERISTICS AP
XXX
dK
S HB P
tK d2 d1
dV,steel dUK
t1
dS
b L
GEOMETRY Nominal diameter
d1
[mm]
8
10
12
Head diameter
dK
[mm]
13,50
16,50
18,50
Thread diameter
d2
[mm]
5,90
6,60
7,30
Shank diameter
dS
[mm]
6,30
7,20
8,55
Head thickness
t1
[mm]
13,50
16,50
19,50
Washer thickness
tK
[mm]
4,50
5,00
5,50
Underhead diameter
dUK
[mm]
10,00
12,00
13,00
Hole diameter on steel plate
dV,steel [mm]
11,0
13,0
14,0
Pre-drilling hole diameter(1)
dV,S
[mm]
5,0
6,0
7,0
Pre-drilling hole diameter(2)
dV,H
[mm]
6,0
7,0
8,0
(1) Pre-drilling valid for softwood. (2) Pre-drilling valid for hardwood and beech LVL.
CHARACTERISTIC MECHANICAL PARAMETERS Nominal diameter
d1
[mm]
8
10
12
Tensile strength
ftens,k
[kN]
32,0
40,0
48,0
Yield moment
My,k
[Nm]
33,4
45,0
55,0
The mechanical parameters are obtained analytically and validated by experimental tests (HBS PLATE Ø10 and Ø12) .
softwood (softwood)
LVL softwood (LVL softwood)
pre-drilled beech LVL (beech LVL predrilled)
Withdrawal resistance parameter
fax,k
[N/mm2]
11,7
15,0
29,0
Head-pull-through parameter
fhead,k [N/mm2]
10,5
20,0
-
Associated density
ρa
[kg/m3]
350
500
730
Calculation density
ρk
[kg/m3]
≤ 440
410 ÷ 550
590 ÷ 750
For applications with different materials please see ETA-11/0030.
214 | HBS PLATE | TIMBER
MINIMUM DISTANCES FOR SHEAR LOADS | STEEL-TO-TIMBER ρk ≤ 420 kg/m3
screws inserted WITHOUT pre-drilled hole
α=0°
F
F
α=90°
d1
[mm]
8
10
12
d1
[mm]
a1
[mm] 10∙d∙0,7
56
70
84
a1
[mm]
5∙d∙0,7
8
10
12
28
35
42
a2
[mm]
5∙d∙0,7
28
35
42
a2
[mm]
5∙d∙0,7
28
35
42
a3,t
[mm]
15∙d
120
150
180
a3,t
[mm]
10∙d
80
100
120
a3,c
[mm]
10∙d
80
100
120
a3,c
[mm]
10∙d
80
100
120
a4,t
[mm]
5∙d
40
50
60
a4,t
[mm]
10∙d
80
100
120
a4,c
[mm]
5∙d
40
50
60
a4,c
[mm]
5∙d
40
50
60
α = load-to-grain angle d = d1 = nominal screw diameter
screws inserted WITH pre-drilled hole
α=0°
F
d1
[mm]
a1
[mm]
5∙d∙0,7
a2
[mm]
3∙d∙0,7
17
21
a3,t
[mm]
12∙d
96
120
a3,c
[mm]
7∙d
56
70
a4,t
[mm]
3∙d
24
30
a4,c
[mm]
3∙d
24
30
F
8
10
12
d1
[mm]
28
35
42
a1
[mm]
4∙d∙0,7
25
a2
[mm]
144
a3,t
[mm]
84
a3,c
36
a4,t
36
a4,c
α=90° 8
10
12
22
28
34
4∙d∙0,7
22
28
34
7∙d
56
70
84
[mm]
7∙d
56
70
84
[mm]
7∙d
56
70
84
[mm]
3∙d
24
30
36
α = load-to-grain angle d = d1 = nominal screw diameter stressed end -90° < α < 90°
a2 a2
unloaded end 90° < α < 270°
F a3,t
unload edge 180° < α < 360°
α
F α
α
a1 a1
stressed edge 0° < α < 180°
F α
a4,t
F a4,c
a3,c
NOTE on page 221.
EFFECTIVE NUMBER FOR SHEAR LOADS The load-bearing capacity of a connection made with several screws, all of the same type and size, may be lower than the sum of the load-bearing capacities of the individual connection system. For a row of n screws arranged parallel to the direction of the grain at a distance a1 , the characteristic effective load-bearing capacity is equal to:
Ref,V,k
a1 a1
Ref,V,k = nef RV,k
The nef value is given in the table below as a function of n and a1 .
n
2 3 4 5
4∙d 1,41 1,73 2,00 2,24
5∙d 1,48 1,86 2,19 2,49
6∙d 1,55 2,01 2,41 2,77
7∙d 1,62 2,16 2,64 3,09
8∙d 1,68 2,28 2,83 3,34
a 1( * ) 9∙d 1,74 2,41 3,03 3,62
10∙d 1,80 2,54 3,25 3,93
11∙d 1,85 2,65 3,42 4,17
12∙d 1,90 2,76 3,61 4,43
13∙d 1,95 2,88 3,80 4,71
≥ 14∙d 2,00 3,00 4,00 5,00
( * ) For intermediate a values a linear interpolation is possible. 1
TIMBER | HBS PLATE | 215
STRUCTURAL VALUES | STEEL-TO-TIMBER
CHARACTERISTIC VALUES EN 1995:2014 SHEAR
steel-to-timber thin plate ε=90°
geometry
steel-to-timber intermediate plate ε=90°
steel-to-timber thick plate ε=90° SPLATE
SPLATE
SPLATE
A L b d1
d1
L
b
RV,90,k
RV,90,k
RV,90,k
[mm]
[mm]
[mm]
[kN]
[kN]
[kN]
SPLATE
8
2 mm
3 mm
4 mm
5 mm
6 mm
8 mm
10 mm
12 mm
60
52
3,14
3,09
3,03
3,64
4,13
5,12
5,12
5,12
80
55
4,22
4,17
4,11
4,72
5,22
6,21
6,21
6,21
100
75
5,31
5,25
5,20
5,68
6,04
6,78
6,78
6,78
120
95
5,86
5,86
5,86
6,22
6,57
7,29
7,29
7,29
140
110
6,24
6,24
6,24
6,59
6,95
7,67
7,67
7,67
160
130
6,74
6,74
6,74
7,10
7,46
8,17
8,17
8,17
3 mm
4 mm
5 mm
6 mm
8 mm
10 mm
12 mm
16 mm
60
4,87
4,81
4,75
5,42
6,50
7,58
7,58
7,58
100
75
6,14
6,08
6,01
6,61
7,56
8,50
8,50
8,50
120
95
7,34
7,34
7,28
7,70
8,42
9,14
9,14
9,14
140
110
7,81
7,81
7,81
8,17
8,89
9,61
9,61
9,61
160
130
8,44
8,44
8,44
8,80
9,52
10,24
10,24
10,24
180
150
8,68
8,68
8,68
9,12
10,00
10,87
10,87
10,87
4 mm
5 mm
6 mm
8 mm
10 mm
12 mm
16 mm
20 mm
SPLATE 80
10
SPLATE
12
100
75
6,90
6,83
6,76
7,96
9,02
10,07
10,07
10,07
120
90
8,34
8,27
8,20
9,11
9,87
10,64
10,64
10,64
140
110
9,28
9,28
9,28
9,99
10,69
11,40
11,40
11,40
160
120
9,66
9,66
9,66
10,37
11,07
11,78
11,78
11,78
180
140
10,23
10,23
10,23
11,00
11,77
12,54
12,54
12,54
200
160
10,23
10,23
10,23
11,25
12,27
13,29
13,29
13,29
ε = screw-to-grain angle
NOTES and GENERAL PRINCIPLES on page 221.
216 | HBS PLATE | TIMBER
STRUCTURAL VALUES | STEEL-TO-TIMBER
CHARACTERISTIC VALUES EN 1995:2014 SHEAR
steel-to-timber thin plate ε=0°
geometry
steel-to-timber intermediate plate ε=0°
steel-to-timber thick plate ε=0° SPLATE
SPLATE
SPLATE
A L b d1
d1
L
b
RV,0,k
RV,0,k
RV,0,k
[mm]
[mm]
[mm]
[kN]
[kN]
[kN]
SPLATE
8
2 mm
3 mm
4 mm
5 mm
6 mm
8 mm
10 mm
12 mm
60
52
1,26
1,23
1,21
1,54
1,82
2,38
2,38
2,38
80
55
1,69
1,67
1,65
1,94
2,19
2,70
2,70
2,70
100
75
2,12
2,10
2,08
2,39
2,65
3,18
3,18
3,18
120
95
2,56
2,53
2,51
2,84
3,13
3,70
3,70
3,70
140
110
2,99
2,97
2,95
3,22
3,46
3,93
3,93
3,93
160
130
3,17
3,17
3,17
3,40
3,62
4,08
4,08
4,08
3 mm
4 mm
5 mm
6 mm
8 mm
10 mm
12 mm
16 mm
60
1,95
1,92
1,90
2,22
2,77
3,32
3,32
3,32
100
75
2,46
2,43
2,41
2,73
3,28
3,83
3,83
3,83
120
95
2,96
2,94
2,91
3,26
3,84
4,43
4,43
4,43
140
110
3,47
3,44
3,42
3,76
4,34
4,92
4,92
4,92
160
130
3,97
3,95
3,92
4,20
4,66
5,11
5,11
5,11
180
150
4,17
4,17
4,17
4,39
4,85
5,30
5,30
5,30
4 mm
5 mm
6 mm
8 mm
10 mm
12 mm
16 mm
20 mm
SPLATE 80
10
SPLATE
12
100
75
2,76
2,73
2,70
3,31
3,86
4,40
4,40
4,40
120
90
3,34
3,31
3,28
3,90
4,47
5,03
5,03
5,03
140
110
3,91
3,88
3,85
4,53
5,14
5,76
5,76
5,76
160
120
4,49
4,46
4,43
4,97
5,45
5,94
5,94
5,94
180
140
4,83
4,83
4,83
5,27
5,72
6,16
6,16
6,16
200
160
5,05
5,05
5,05
5,50
5,95
6,39
6,39
6,39
ε = screw-to-grain angle
NOTES and GENERAL PRINCIPLES on page 221.
TIMBER | HBS PLATE | 217
STRUCTURAL VALUES | TIMBER
CHARACTERISTIC VALUES EN 1995:2014 SHEAR
TENSION panel-to-timber
thread withdrawal ε=90°
thread withdrawal ε=0°
head pull-through
steel tension
RV,0,k
SPAN
Rax,90,k
Rax,0,k
Rhead,k
Rtens,k
[mm]
[kN]
timber-to-timber timber-to-timber ε=90° ε=0°
geometry
SPAN
A L b d1
d1
L
b
A
RV,90,k
[mm] [mm] [mm] [mm]
8
10
12
[kN]
[kN]
60
52
8
1,62
1,35
RV,k [kN]
[kN]
[kN]
[kN]
2,40
4,85
1,45
2,07
80
55
25
2,83
1,70
2,94
5,56
1,67
2,07
100
75
25
2,83
2,13
2,94
7,58
2,27
2,07
120
95
25
2,83
2,33
2,94
9,60
2,88
2,07
140
110
30
2,93
2,42
2,94
11,11
3,33
2,07
160
130
30
2,93
2,42
2,94
13,13
3,94
2,07
80
60
20
3,16
2,07
3,76
7,58
2,27
3,09
100
75
25
3,65
2,59
3,76
9,47
2,84
3,09
3,76
12,00
3,60
3,09
3,76
13,89
4,17
3,09
22
120
95
25
3,65
3,01
140
110
30
3,75
3,11
160
130
30
3,75
3,11
3,76
16,42
4,92
3,09
180
150
30
3,75
3,11
3,76
18,94
5,68
3,09
25
100
75
25
4,34
2,99
4,39
11,36
3,41
3,88
120
90
30
4,45
3,54
4,39
13,64
4,09
3,88
4,39
16,67
5,00
3,88
4,39
18,18
5,45
3,88
140
110
30
4,45
3,70
160
120
40
4,77
4,00
180
140
40
4,77
4,00
4,39
21,21
6,36
3,88
200
160
40
4,77
4,00
4,39
24,24
7,27
3,88
ε = screw-to-grain angle
NOTES and GENERAL PRINCIPLES on page 221.
218 | HBS PLATE | TIMBER
25
32,00
40,00
48,00
STRUCTURAL VALUES | CLT
CHARACTERISTIC VALUES EN 1995:2014 SHEAR
TENSION
steel-to-CLT lateral face
geometry
thread withdrawal lateral face
steel tension
SPLATE A L b d1
d1
L
b
RV,90,k
Rax,90,k
Rtens,k
[mm]
[mm]
[mm]
[kN]
[kN]
[kN]
-
-
SPLATE
8
2 mm
3 mm
4 mm
5 mm
6 mm
8 mm 10 mm 12 mm
60
52
2,85
2,81
2,76
3,33
3,80
4,75
4,49
80
55
3,84
3,79
3,74
4,31
4,78
5,72
5,72
5,72
5,15
75
4,82
4,77
4,72
5,22
5,62
6,42
6,42
6,42
7,02
120
95
5,52
5,52
5,52
5,86
6,20
6,89
6,89
6,89
8,89
140
110
5,87
5,87
5,87
6,21
6,55
7,24
7,24
7,24
10,30
160
130
6,34
6,34
6,34
6,68
7,02
7,70
7,70
7,70
12,17
3 mm
4 mm
5 mm
6 mm
8 mm 10 mm 12 mm 16 mm
60
4,43
4,37
4,32
4,94
5,97
7,00
7,00
7,00
100
75
5,58
5,52
5,47
6,07
7,06
8,05
8,05
8,05
8,78
120
95
6,73
6,67
6,62
7,11
7,87
8,63
8,63
8,63
11,12
140
110
7,36
7,36
7,36
7,70
8,38
9,07
9,07
9,07
12,87
160
130
7,94
7,94
7,94
8,28
8,97
9,65
9,65
9,65
15,21
180
150
8,28
8,28
8,28
8,67
9,45
10,24
10,24
10,24
17,55
80
SPLATE
12
4,75
100
SPLATE
10
4,75
32,00
-
-
7,02
4 mm
5 mm
6 mm
8 mm 10 mm 12 mm 16 mm 20 mm
100
75
6,28
6,21
6,14
7,36
8,44
9,53
9,53
9,53
10,53
120
90
7,58
7,52
7,45
8,41
9,23
10,05
10,05
10,05
12,64
40,00
-
140
110
8,74
8,74
8,74
9,41
10,08
10,76
10,76
10,76
15,44
160
120
9,09
9,09
9,09
9,76
10,43
11,11
11,11
11,11
16,85
180
140
9,75
9,75
9,75
10,44
11,12
11,81
11,81
11,81
19,66
200
160
9,75
9,75
9,75
10,67
11,59
12,51
12,51
12,51
22,46
-
48,00
MINIMUM DISTANCES FOR SHEAR AND AXIAL LOADS | CLT screws inserted WITHOUT pre-drilled hole
lateral face d1
[mm]
8
10
12
a1
[mm]
a2
[mm]
4∙d
32
40
48
2,5∙d
20
25
30
a3,t
[mm]
6∙d
48
60
72
a3,c
[mm]
6∙d
48
60
72
a4,t a4,c
[mm]
6∙d
48
60
72
[mm]
2,5∙d
20
25
30
a2 a2
a1
a4,t F
α
α
a3,t
F
a4,c
a3,c
d = d1 = nominal screw diameter
NOTES and GENERAL PRINCIPLES on page 221.
TIMBER | HBS PLATE | 219
INSTALLATION HBSPL
d1
Mins,rec
[mm]
[Nm]
Ø8
8
18
Ø10
10
25
Ø12
12
40
2 3 45 1 6 12 7 11 8 10 9
2 3 45 1 6 12 7 11 8 10 9
Mins
Mins
5-10 mm
Mins
The use of pulse screw guns/impact wrenches is not permitted.
Ensure correct tightening. We recommend the use of torque-controlled screwdrivers, e.g. with TORQUE LIMITER. Alternatively, tighten with a torque wrench.
Mins S
B
X
X
H
X
X
Avoid bending.
S
B
STOP
X
H
Respect the insertion angle. For very precise inclinations, the use of guide holes or pre-drilling is recommended.
X
90°
Ensure full contact between the entire surface of the screw head and the metal element
After installation, the fasteners can be inspected using a torque wrench.
STOP P
1x
Stop installation if damage to the fastener or timber is noticed.
Stop installation if damage to the fastener or metal plates is noticed.
Do not hammer the screw tips into the timber.
Install screws in one continuous stroke.
Avoid accidental stress during installation.
Protect the connection and avoid moisture changes and shrinkage and swelling of the timber.
Use not permitted for dynamic loads.
Avoid dimensional changes to the metal.
220 | HBS PLATE | TIMBER
STRUCTURAL VALUES GENERAL PRINCIPLES
NOTES | TIMBER
• Characteristic values comply with the EN 1995:2014 standard in accordance with ETA-11/0030.
• The characteristic timber-to-timber shear strengths were evaluated considering both an ε angle of 90° (RV,90,k) and 0° (RV,0,k) between the grains of the second element and the connector.
• Design values can be obtained from characteristic values as follows:
Rd =
Rk kmod γM
The coefficients γM and kmod should be taken according to the current regulations used for the calculation. • The tensile design strength of the connector is the lower between the timber-side design strength (Rax,d) and the steel-side design strength (Rtens,d).
Rax,d = min
Rax,k kmod γM Rtens,k γM2
• For the mechanical resistance values and the geometry of the screws, reference was made to ETA-11/0030. • Sizing and verification of the timber elements and metal plates must be done separately. • The screws must be positioned in accordance with the minimum distances. • The characteristic shear resistances are calculated for screws inserted without pre-drilling hole. In the case of screws inserted with pre-drilling hole, greater resistance values can be obtained. • Shear strengths were calculated considering the threaded part fully inserted in the second element. • The characteristic shear-strength value has been evaluated for plates with thickness = SPLATE , and considering the thin (SPLATE ≤ 0,5 d1), intermediate (0,5 d1 < SPLATE < d1) or thick (SPLATE ≥ d1) plate case scenario. • In the case of combined shear and tensile stress, the following verification must be satisfied:
Fv,d Rv,d
2
+
Fax,d Rax,d
2
≥ 1
• The characteristic thread withdrawal resistances were evaluated considering both an ε angle of 90° (Rax,90,k) and of 0° (Rax,0,k) between the grains and the connector. • For the calculation process a timber characteristic density ρk = 385 kg/m3 has been considered. For different ρk values, the strength values in the table can be converted by the kdens coefficient.
R’V,k = kdens,v RV,k R’ax,k = kdens,ax Rax,k R’head,k = kdens,ax Rhead,k ρk
350
380
385
405
425
430
440
C-GL
C24
C30
GL24h
GL26h
GL28h
GL30h
GL32h
kdens,v
0,90
0,98
1,00
1,02
1,05
1,05
1,07
kdens,ax
0,92
0,98
1,00
1,04
1,08
1,09
1,11
[kg/m3 ]
Strength values thus determined may differ, for higher safety standards, from those resulting from an exact calculation.
NOTES | CLT • The characteristic values are according to the national specifications ÖNORM EN 1995 - Annex K. • For the calculation process a mass density ρk = 350 kg/m3 has been considered for CLT elements. • The characteristics shear resistance are calculated considering a minimum fixing length of 4 d1 . • The characteristic shear strength is independent from the direction of the grain of the CLT panels outer layer.
• In the case of steel-to-timber connections, generally the steel tensile strength is binding with respect to head separation or pull-through. • The thread withdrawal characteristic strength has been evaluated considering a fixing length equal to b. • In the case of steel-to-timber connections with a thick plate, it is necessary to assess the effects of timber deformation and install the connectors according to the assembly instructions. • The values in the table are evaluated considering mechanical strength parameters of the Ø10 and Ø12 HBS PLATE screws obtained analytically and validated by experimental tests. • For different calculation configurations, the MyProject software is available (www.rothoblaas.com).
MINIMUM DISTANCES NOTES | TIMBER
NOTES | CLT
• The minimum distances comply with the EN 1995:2014 standard in accordance with ETA-11/0030.
• The minimum distances are compliant with ETA-11/0030 and are to be considered valid unless otherwise specified in the technical documents for the CLT panels.
• In the case of timber-to-timber joints, the minimum spacing (a1 , a2) can be multiplied by a coefficient of 1,5. • In the case of joints with elements in Douglas fir (Pseudotsuga menziesii), the minimum spacing and distances parallel to the grain must be multiplied by a coefficient of 1.5.
• Minimum distances are valid for minimum CLT thickness tCLT,min =10∙d1 . • Minimum distances for narrow face application can be found on page 39.
• The spacing a1 in the table for screws with 3 THORNS tip inserted without pre-drilling hole in timber elements with density ρk ≤ 420 kg/m3 and loadto-grain angle α=0° was assumed to be 10∙d based on experimental tests; alternatively, adopt 12∙d in accordance with EN 1995:2014.
Theory, practice and experimental campaigns: our experience is in your hands. Download the SMARTBOOK TIMBER SCREWS.
TIMBER | HBS PLATE | 221
HBS PLATE EVO
AC233 | AC257 ESR-4645
ETA-11/0030
PAN HEAD SCREW C4 EVO COATING HBS PLATE EVO version designed for steel-timber joints outdoors. Atmospheric corrosion resistance class (C4) tested by the Research Institutes of Sweden - RISE. Coating suitable for use in applications on wood with an acidity level (pH) greater than 4, such as spruce, larch and pine (see page 314).
NEW GEOMETRY The inner core diameter of the Ø8, Ø10 and Ø12 mm screws has been increased to ensure higher performance in thick plate applications. In steel-timber connections, the new geometry achieves a strength increase of more than 15%.
PLATE FASTENING The under-head shoulder achieves an interlocking effect with the circular hole in the plate, thus guaranteeing excellent static performance. The edgeless geometry of the head reduces stress concentration points and gives the screw strength. BIT INCLUDED
DIAMETER [mm] HBS PLATE EVO 3,5
12 12
5
LENGTH [mm] 25
50
200 200
SERVICE CLASS SC1
HBS P EVO 5,0 | 6,0 mm
HBS PLATE EVO 8,0 | 10,0 | 12,0 mm
SC2
SC3
SC4
ATMOSPHERIC CORROSIVITY C1
C2
C3
C4
C5
WOOD CORROSIVITY T1
T2
T3
T4
T5
MATERIAL
C4
EVO COATING
carbon steel with C4 EVO coating
FIELDS OF USE • • • • •
222 | HBS PLATE EVO | TIMBER
timber based panels solid timber and glulam CLT and LVL high density woods ACQ, CCA treated timber
CODES AND DIMENSIONS HBS P EVO d1
HBS PLATE EVO CODE
L
b
AT
AP
[mm]
[mm] [mm] [mm] [mm]
HBSPEVO550 HBSPEVO560 5 TX 25 HBSPEVO570 HBSPEVO580
50 60 70 80 80 90
HBSPEVO680 6 TX 30 HBSPEVO690
pcs
30 35 40 50
20 25 30 30
1÷10 1÷10 1÷10 1÷10
200 200 100 100
50 55
30 35
1÷10 1÷10
100 100
d1
RAPTOR TRANSPORT PLATE FOR TIMBER ELEMENTS
page 413 METAL-to-TIMBER recommended use:
N
TORQUE LIMITER
Mins,rec
CODE
L
b
AP
[mm]
[mm] [mm] [mm] [mm]
HBSPLEVO840 HBSPLEVO860 HBSPLEVO880 8 HBSPLEVO8100 TX 40 HBSPLEVO8120 HBSPLEVO8140 HBSPLEVO8160
40 60 80 100 120 140 160
HBSPLEVO1060 HBSPLEVO1080 HBSPLEVO10100 10 HBSPLEVO10120 TX 40 HBSPLEVO10140 HBSPLEVO10160 HBSPLEVO10180
60 80 100 120 140 160 180
32 52 55 75 95 110 130 52 60 75 95 110 130 150 90 110 120 140 160
HBSPLEVO12120 120 HBSPLEVO12140 140 12 HBSPLEVO12160 160 TX 50 HBSPLEVO12180 180 HBSPLEVO12200 200
Mins,rec
AT
pcs
8 8 25 25 25 30 30
1÷10 1÷15 1÷15 1÷15 1÷15 1÷20 1÷20
100 100 100 100 100 100 100
8 20 25 25 30 30 30
1÷15 1÷15 1÷15 1÷15 1÷20 1÷20 1÷20
50 50 50 50 50 50 50
30 30 40 40 40
1÷15 1÷20 1÷20 1÷30 1÷30
25 25 25 25 25
GEOMETRY AND MECHANICAL CHARACTERISTICS HBS PLATE EVO - 8,0 | 10,0 | 12,0 mm
HBS P EVO - 5,0 | 6,0 mm
AP
AT
dUK
dS
S HB P
S HB P
t1
dK
XXX
d2 d1
XXX
dK
dV,steel
tK
tK
d2 d1 t1
b
dUK
dS
b L
L
Nominal diameter Head diameter Thread diameter Shank diameter Head thickness Washer thickness Underhead diameter Hole diameter on steel plate Pre-drilling hole diameter(1) Pre-drilling hole diameter(2) Characteristic tensile strength Characteristic yield moment
d1 dK d2 dS t1 tK dUK dV,steel dV,S dV,H ftens,k My,k
[mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm] [kN] [Nm]
5 9,65 3,40 3,65 5,50 1,00 6,00 7,0 3,0 4,0 7,9 5,4
6 12,00 3,95 4,30 6,50 1,50 8,00 9,0 4,0 5,0 11,3 9,5
8 13,50 5,90 6,30 13,50 4,50 10,00 11,0 5,0 6,0 32,0 33,4
10 16,50 6,60 7,20 16,50 5,00 12,00 13,0 6,0 7,0 40,0 45,0
12 18,50 7,30 8,55 19,50 5,50 13,00 14,0 7,0 8,0 48,0 55,0
(1) Pre-drilling valid for softwood. (2) Pre-drilling valid for hardwood and beech LVL.
The mechanical parameters are obtained analytically and validated by experimental tests (HBS PLATE EVO Ø10 and Ø12).
softwood (softwood)
LVL softwood (LVL softwood)
pre-drilled beech LVL (beech LVL predrilled)
Withdrawal resistance parameter
fax,k
[N/mm2]
11,7
15,0
29,0
Head-pull-through parameter
fhead,k [N/mm2]
10,5
20,0
-
Associated density
ρa
[kg/m3]
350
500
730
Calculation density
ρk
[kg/m3]
≤ 440
410 ÷ 550
590 ÷ 750
For applications with different materials please see ETA-11/0030.
TIMBER | HBS PLATE EVO | 223
MINIMUM DISTANCES FOR SHEAR LOADS ρk ≤ 420 kg/m3
screws inserted WITHOUT pre-drilled hole
α=0°
F
d1
[mm]
a1
[mm]
a2
[mm]
F
5
6
8
10
12
d1
[mm]
10∙d
50
60
80
100
5∙d
25
30
40
50
120
a1
[mm]
60
a2
[mm]
α=90°
5
6
8
10
12
5∙d
25
30
40
50
60
5∙d
25
30
40
50
60
a3,t
[mm]
15∙d
75
90
120
150
180
a3,t
[mm]
10∙d
50
60
80
100
120
a3,c
[mm]
10∙d
50
60
80
100
120
a3,c
[mm]
10∙d
50
60
80
100
120
a4,t
[mm]
5∙d
25
30
40
50
60
a4,t
[mm]
10∙d
50
60
80
100
120
a4,c
[mm]
5∙d
25
30
40
50
60
a4,c
[mm]
5∙d
25
30
40
50
60
420 kg/m3 < ρk ≤ 500 kg/m3
screws inserted WITHOUT pre-drilled hole
α=0°
F
F
d1
[mm]
a1
[mm]
a2
[mm]
7∙d
35
42
56
70
a3,t
[mm]
20∙d
100
120
160
200
a3,c
[mm]
15∙d
75
90
120
150
a4,t
[mm]
7∙d
35
42
56
70
a4,c
[mm]
7∙d
35
42
56
70
15∙d
5
6
8
10
12
d1
[mm]
75
90
120
150
180
a1
[mm]
84
a2
240
a3,t
180 84 84
α=90°
5
6
8
10
12
7∙d
35
42
56
70
84
[mm]
7∙d
35
42
56
70
84
[mm]
15∙d
75
90
120
150
180
a3,c
[mm]
15∙d
75
90
120
150
180
a4,t
[mm]
12∙d
60
72
96
120
144
a4,c
[mm]
7∙d
35
42
56
70
84
screws inserted WITH pre-drilled hole
α=0°
F
F
d1
[mm]
a1
[mm]
a2
[mm]
3∙d
15
18
24
a3,t
[mm]
12∙d
60
72
96
a3,c
[mm]
7∙d
35
42
56
70
a4,t
[mm]
3∙d
15
18
24
30
a4,c
[mm]
3∙d
15
18
24
30
5∙d
α=90°
5
6
8
10
12
d1
[mm]
5
6
8
10
12
25
30
40
50
60
a1
[mm]
4∙d
20
24
32
40
48
30
36
a2
[mm]
4∙d
20
24
32
40
48
120
144
a3,t
[mm]
7∙d
35
42
56
70
84
84
a3,c
[mm]
7∙d
35
42
56
70
84
36
a4,t
[mm]
7∙d
35
42
56
70
84
36
a4,c
[mm]
3∙d
15
18
24
30
36
α = load-to-grain angle d = d1 = nominal screw diameter stressed end -90° < α < 90°
a2 a2 a1 a1
unloaded end 90° < α < 270°
F α
α F a3,t
stressed edge 0° < α < 180°
unload edge 180° < α < 360°
α F α
a4,t
F a4,c
a3,c
NOTES • The minimum distances comply with the EN 1995:2014 standard in accordance with ETA-11/0030. • The minimum spacing for all steel-to-timber connections (a1 , a2) can be multiplied by a coefficient of 0,7. • The minimum spacing for all panel-to-timber connections (a1 , a2) can be multiplied by a coefficient of 0,85.
224 | HBS PLATE EVO | TIMBER
• In the case of joints with elements in Douglas fir (Pseudotsuga menziesii), the minimum spacing and distances parallel to the grain must be multiplied by a coefficient of 1.5. • The spacing a1 in the table for screws with 3 THORNS tip inserted without pre-drilling hole in timber elements with density ρk ≤ 420 kg/m3 and loadto-grain angle α=0° was assumed to be 10∙d based on experimental tests; alternatively, adopt 12∙d in accordance with EN 1995:2014.
STRUCTURAL VALUES
CHARACTERISTIC VALUES EN 1995:2014 SHEAR steel-to-timber thin plate
thread withdrawal ε=90°
thread withdrawal ε=0°
head pull-through
Rax,90,k
Rax,0,k
Rhead,k
SPAN
A
steel-to-timber thick plate
SPLATE
panel-to-timber
SPLATE
timber-to-timber ε=90°
geometry
TENSION
L b d1
d1
L
b
A
[mm] [mm] [mm] [mm] 50 60 70 80 80 90
5
6
30 35 40 50 50 55
20 25 30 30 30 35
RV,k
SPAN
RV,k
SPLATE
[kN]
[mm]
[kN]
[mm]
1,20 1,33 1,44 1,44 1,88 2,03
1,10 1,10 1,10 1,10 1,55 1,55
12
15
2,5
3
RV,k
SPLATE
[kN]
[mm]
1,65 1,73 1,81 1,97 2,61 2,71
5
6
RV,k [kN]
[kN]
[kN]
[kN]
2,14 2,22 2,30 2,46 3,31 3,40
1,89 2,21 2,53 3,16 3,79 4,17
0,57 0,66 0,76 0,95 1,14 1,25
1,06 1,06 1,06 1,06 1,63 1,63
SHEAR steel-to-timber thin plate
A
steel-to-timber thick plate
thread withdrawal ε=90°
thread withdrawal ε=0°
head pull-through
SPLATE
timber-to-timber ε=0°
SPLATE
timber-to-timber ε=90°
geometry
TENSION
L b d1
d1
L
b
A
[mm] [mm] [mm] [mm]
8
10
12
40 60 80 100 120 140 160 60 80 100 120 140 160 180 120 140 160 180 200
32 52 55 75 95 110 130 52 60 75 95 110 130 150 90 110 120 140 160
8 8 25 25 25 30 30 8 20 25 25 30 30 30 30 30 40 40 40
RV,k
RV,k
SPLATE
RV,k
SPLATE
RV,k
Rax,90,k
Rax,0,k
Rhead,k
[kN]
[kN]
[mm]
[kN]
[mm]
[kN]
[kN]
[kN]
[kN]
1,62 1,62 2,83 2,83 2,83 2,93 2,93 2,37 3,16 3,65 3,65 3,75 3,75 3,75 4,45 4,45 4,77 4,77 4,77
0,85 1,35 1,70 2,13 2,33 2,42 2,42 1,56 2,07 2,59 3,01 3,11 3,11 3,11 3,54 3,70 4,00 4,00 4,00
3,83 5,00 6,07 6,78 7,29 7,67 8,17 5,91 7,37 8,50 9,14 9,61 10,24 10,87 10,64 11,40 11,78 12,54 13,29
2,83 4,85 5,56 7,58 9,60 11,11 13,13 5,68 7,58 9,47 12,00 13,89 16,42 18,94 13,64 16,67 18,18 21,21 24,24
0,85 1,45 1,67 2,27 2,88 3,33 3,94 1,70 2,27 2,84 3,60 4,17 4,92 5,68 4,09 5,00 5,45 6,36 7,27
2,07 2,07 2,07 2,07 2,07 2,07 2,07 3,09 3,09 3,09 3,09 3,09 3,09 3,09 3,88 3,88 3,88 3,88 3,88
4
5
6
1,95 3,03 4,11 5,20 5,86 6,24 6,74 3,48 4,75 6,01 7,28 7,81 8,44 8,68 8,20 9,28 9,66 10,23 10,23
8
10
12
ε = screw-to-grain angle
NOTES and GENERAL PRINCIPLES on page 226.
TIMBER | HBS PLATE EVO | 225
INSTALLATION 2 3 45 1 6 12 7 11 8 10 9
Mins
2 3 45 1 6 12 7 11 8 10 9
Mins
5-10 mm
Mins
The use of pulse screw guns/impact wrenches is not permitted.
HBSP HBSPL
d1
Mins,rec
[mm]
[Nm]
Ø8
8
18
Ø10
10
25
Ø12
12
40
Ensure correct tightening. We recommend the use of torque-controlled screwdrivers, e.g. with TORQUE LIMITER. Alternatively, tighten with a torque wrench.
Mins S
B
X
X
H
X
S
B
X
H
X
Respect the insertion angle. For very precise inclinations, the use of guide holes or pre-drilling is recommended.
X
90°
Ensure full contact between the entire surface of the screw head and the metal element.
After installation, the fasteners can be inspected using a torque wrench.
Avoid dimensional changes to the metal and shrinkage and swelling of timber.
STRUCTURAL VALUES GENERAL PRINCIPLES • Characteristic values comply with the EN 1995:2014 standard in accordance with ETA-11/0030. • Design values can be obtained from characteristic values as follows:
Rd =
• The values in the table are evaluated considering mechanical strength parameters of the HBS PLATE EVO Ø10 and Ø12 screws obtained analytically and validated by experimental tests.
Rk kmod γM
• The coefficients γM and kmod should be taken according to the current regulations used for the calculation. • For the mechanical resistance values and the geometry of the screws, reference was made to ETA-11/0030. • Sizing and verification of the timber elements, panels and metal plates must be done separately. • The screws must be positioned in accordance with the minimum distances. • The characteristic shear resistances are calculated for screws inserted without pre-drilling hole. In the case of screws inserted with pre-drilling hole, greater resistance values can be obtained. • Shear strengths were calculated considering the threaded part fully inserted in the second element. • The characteristic panel-timber shear strengths are calculated considering an OSB3 or OSB4 panel, as per EN 300, or a particle board panel, as per EN 312, with thickness SPAN and density ρk = 500 kg/m3. • The thread withdrawal characteristic strength has been evaluated considering a fixing length equal to b. • The head pull-through characteristic strength was calculated using timber elements. In the case of steel-to-timber connections, generally the steel tensile strength is binding with respect to head separation or pull-through. • In the case of combined shear and tensile stress, the following verification must be satisfied:
Fv,d Rv,d
2
+
Fax,d Rax,d
• In the case of steel-to-timber connections with a thick plate, it is necessary to assess the effects of timber deformation and install the connectors according to the assembly instructions.
2
≥ 1
226 | HBS PLATE EVO | TIMBER
• For different calculation configurations, the MyProject software is available (www.rothoblaas.com).
NOTES • The characteristic timber-to-timber shear strengths were evaluated considering both an ε angle of 90° (RV,90,k) and 0° (RV,0,k) between the grains of the second element and the connector. • The characteristic panel-timber and steel-timber shear strengths were evaluated by considering an ε angle of 90° between the grains of the timber element and the connector. • The characteristic plate shear strengths are evaluated considering the case of thin plate (SPLATE = 0.5 d1) and thick plate (SPLATE = d1). • The characteristic thread withdrawal resistances were evaluated considering both an ε angle of 90° (Rax,90,k) and of 0° (Rax,0,k) between the grains of the timber element and the connector. • For the calculation process a timber characteristic density ρk = 385 kg/m3 has been considered. For different values of ρk , the strength values in the table (timber-to-timber shear, steel-to-timber shear and tensile) can be converted by means of the coefficient kdens (see page 215). • For further calculation configurations and for applications on different materials, see page 212.
HBS PLATE A4
AC233 ESR-4645
ETA-11/0030
PAN HEAD SCREW FOR PLATES A4 | AISI316 HBS PLATE version in A4 | AISI316 austenitic stainless steel for high corrosion resistance. Ideal for environments adjacent to the sea in corrosivity class C5 and for insertion on the most aggressive timbers in class T5.
STEEL-TIMBER CONNECTIONS The under-head shoulder achieves an interlocking effect with the circular hole in the plate, thus guaranteeing excellent static performance. The edgeless geometry of the head reduces stress concentration points and gives the screw strength.
T5 TIMBER CORROSIVITY Suitable for use in applications on agressive woods with an acidity (pH) level below 4 such as oak, Douglas fir and chestnut, and in wood moisture conditions above 20%.
BIT INCLUDED
CODES AND DIMENSIONS
GEOMETRY AP
d1
CODE
b
AP
pcs
[mm]
[mm]
60
52
1÷10
100
HBSPL880A4
80
55
1÷15
100
HBSPL8100A4 8 TX 40 HBSPL8120A4
100
75
1÷15
100
DIAMETER [mm]
120
95
1÷15
100
3,5
HBSPL8140A4
140
110
1÷20
100
LENGTH [mm]
HBSPL8160A4
160
130
1÷20
100
HBSPL1080A4
80
60
1÷10
50
HBSPL10100A4
100
75
1÷15
50
SERVICE CLASS
HBSPL10120A4 10 TX 40 HBSPL10140A4
120
95
1÷15
50
SC1
140
110
1÷20
50
HBSPL10160A4
160
130
1÷20
50
HBSPL10180A4
180
150
1÷20
50
S HB P
[mm] HBSPL860A4
HBSPL12100A4
100
75
1÷15
25
HBSPL12120A4
120
90
1÷20
25
HBSPL12140A4 12 TX 50 HBSPL12160A4
140
110
1÷20
25
160
120
1÷30
25
HBSPL12180A4
180
140
1÷30
25
HBSPL12200A4
200
160
1÷30
25
d1
XXX
[mm]
L
b L
8
25
60
SC2
SC3
12 12
200 200
SC4
ATMOSPHERIC CORROSIVITY C1
C2
C3
C4
C5
WOOD CORROSIVITY T1
T2
T3
T4
T5
MATERIAL
A4
AISI 316
A4 | AISI316 austenitic stainless steel (CRC III)
TIMBER | HBS PLATE A4 | 227
LBS
ETA-11/0030
UKTA-0836 22/6195
AC233 ESR-4645
ETA-11/0030
ROUND HEAD SCREW FOR PLATES SCREW FOR PERFORATED PLATES Cylindrical shoulder designed for fastening metal elements. Achieves an interlocking effect with the hole in the plate, thus guaranteeing excellent static performance.
STATICS These can be calculated according to Eurocode 5 under thick steel-timber plate connections, even with thin metal elements. Excellent shear strength values.
NEW-GENERATION WOODS Tested and certified for use on a wide variety of engineered timbers such as CLT, GL, LVL, OSB and Beech LVL. The LBS5 version up to a length of 40 mm is approved completely without pre-drilling hole on Beech LVL.
DUCTILITY Excellent ductility behaviour as evidenced by SEISMIC-REV cyclic tests according to EN 12512.
BIT INCLUDED
DIAMETER [mm] 3,5
5
12
7
LENGTH [mm] 25 25
100
SERVICE CLASS SC1
SC2
SC3
SC4
ATMOSPHERIC CORROSIVITY C1
C2
C3
C4
C5
WOOD CORROSIVITY T1
T2
T3
T4
T5
MATERIAL
Zn
ELECTRO PLATED
electrogalvanized carbon steel
FIELDS OF USE • • • • •
228 | LBS | TIMBER
timber based panels solid timber glulam (Glued Laminated Timber) CLT and LVL high density woods
200
LBS HARDWOOD EVO
CODES AND DIMENSIONS d1
CODE
[mm]
5 TX 20
7 TX 30
L
b
ROUND HEAD SCREW FOR PLATES ON HARDWOODS
pcs
[mm]
[mm]
LBS525
25
21
500
LBS540
40
36
500
LBS550
50
46
200
LBS560
60
56
200
LBS570
70
66
200
DIAMETER [mm]
3
LBS760
60
55
100
LENGTH [mm]
25
LBS780
80
75
100
LBS7100
100
95
100
5
7
12
60
200 200
Also available in the LBS HARDWOOD EVO version, L from 80 to 200 mm, diameter Ø5 and Ø7 mm, see page 244.
GEOMETRY AND MECHANICAL CHARACTERISTICS dUK d2 d1
dV,steel
dK
b L
t1
GEOMETRY Nominal diameter
d1
[mm]
5
7
Head diameter
dK
[mm]
7,80
11,00
Thread diameter
d2
[mm]
3,00
4,40
Underhead diameter
dUK
[mm]
4,90
7,00
Head thickness
t1
[mm]
2,40
3,50
Hole diameter on steel plate
dV,steel
[mm]
5,0÷5,5
7,5÷8,0
Pre-drilling hole diameter(1)
dV,S
[mm]
3,0
4,0
Pre-drilling hole diameter(2)
dV,H
[mm]
3,5
5,0
Nominal diameter
d1
[mm]
5
7
Tensile strength
ftens,k
[kN]
7,9
15,4
Yield moment
My,k
[Nm]
5,4
14,2
softwood (softwood)
LVL softwood (LVL softwood)
pre-drilled beech LVL (beech LVL predrilled)
LVL beech (3) (beech LVL)
[N/mm2]
11,7
15,0
29,0
42,0
fhead,k [N/mm2]
10,5
20,0
-
-
(1) Pre-drilling valid for softwood. (2) Pre-drilling valid for hardwood and beech LVL.
CHARACTERISTIC MECHANICAL PARAMETERS
Characteristic withdrawal-resistance parameter Characteristic head-pull-through parameter
fax,k
Associated density
ρa
[kg/m3]
350
500
730
730
Calculation density
ρk
[kg/m3]
≤ 440
410 ÷ 550
590 ÷ 750
590 ÷ 750
(3)Valid for d = 5 mm and l ≤ 34 mm 1 ef For applications with different materials please see ETA-11/0030.
TIMBER | LBS | 229
MINIMUM DISTANCES FOR SHEAR LOADS | STEEL-TO-TIMBER ρk ≤ 420 kg/m3
screws inserted WITHOUT pre-drilled hole
α=0°
F
d1 a1 a2 a3,t a3,c a4,t a4,c
[mm] [mm] [mm] [mm] [mm] [mm] [mm]
F
5 42 18 75 50 25 25
12∙d∙0,7 5∙d∙0,7 15∙d 10∙d 5∙d 5∙d
7 59 25 105 70 35 35
d1 a1 a2 a3,t a3,c a4,t a4,c
[mm] [mm] [mm] [mm] [mm] [mm] [mm]
α=90° 5 18 18 50 50 50 25
5∙d∙0,7 5∙d∙0,7 10∙d 10∙d 10∙d 5∙d
7 25 25 70 70 70 35
screws inserted WITH pre-drilled hole
α=0°
F
d1 a1 a2 a3,t a3,c a4,t a4,c
[mm] [mm] [mm] [mm] [mm] [mm] [mm]
F
5 18 11 60 35 15 15
5∙d∙0,7 3∙d∙0,7 12∙d 7∙d 3∙d 3∙d
7 25 15 84 49 21 21
d1 a1 a2 a3,t a3,c a4,t a4,c
[mm] [mm] [mm] [mm] [mm] [mm] [mm]
α=90° 5 14 14 35 35 35 15
4∙d∙0,7 4∙d∙0,7 7∙d 7∙d 7∙d 3∙d
7 20 20 49 49 49 21
α = load-to-grain angle d = d1 = nominal screw diameter stressed end -90° < α < 90°
a2 a2
unloaded end 90° < α < 270°
F a3,t
unload edge 180° < α < 360°
α
F α
α
a1 a1
stressed edge 0° < α < 180°
F α
a4,t
F a4,c
a3,c
NOTES • The minimum distances comply with the EN 1995:2014 standard in accordance with ETA-11/0030. • In the case of timber-to-timber joints, the minimum spacing (a1 , a2) can be multiplied by a coefficient of 1,5.
• In the case of joints with elements in Douglas fir (Pseudotsuga menziesii), the minimum spacing and distances parallel to the grain must be multiplied by a coefficient of 1.5.
EFFECTIVE NUMBER FOR SHEAR LOADS The load-bearing capacity of a connection made with several screws, all of the same type and size, may be lower than the sum of the load-bearing capacities of the individual connection system. For a row of n screws arranged parallel to the direction of the grain at a distance a1 , the characteristic effective load-bearing capacity is equal to:
Ref,V,k
a1 a1
Ref,V,k = nef RV,k
The nef value is given in the table below as a function of n and a1 .
n
2 3 4 5
4∙d 1,41 1,73 2,00 2,24
5∙d 1,48 1,86 2,19 2,49
6∙d 1,55 2,01 2,41 2,77
7∙d 1,62 2,16 2,64 3,09
( * ) For intermediate a values a linear interpolation is possible. 1
230 | LBS | TIMBER
8∙d 1,68 2,28 2,83 3,34
a 1( * ) 9∙d 1,74 2,41 3,03 3,62
10∙d 1,80 2,54 3,25 3,93
11∙d 1,85 2,65 3,42 4,17
12∙d 1,90 2,76 3,61 4,43
13∙d 1,95 2,88 3,80 4,71
≥ 14∙d 2,00 3,00 4,00 5,00
STRUCTURAL VALUES | TIMBER
CHARACTERISTIC VALUES EN 1995:2014
geometry
SHEAR
TENSION
steel-to-timber ε=90°
thread withdrawal ε=90°
SPLATE L
b
d1
d1
L
b
RV,90,k
[mm]
[mm] SPLATE
[mm]
[kN]
5
1,5 mm
2,5 mm
[kN]
3,0 mm
4,0 mm
5,0 mm
6,0 mm
-
25
21
1,59
1,58
1,56
-
-
-
-
1,33
40
36
2,24
2,24
2,24
2,24
2,23
2,18
2,13
2,27
50
46
2,39
2,39
2,39
2,39
2,39
2,38
2,36
2,90
60
56
2,55
2,55
2,55
2,55
2,55
2,54
2,52
3,54
70
66
2,71
2,71
2,71
2,71
2,71
2,69
2,68
4,17
3,0 mm
4,0 mm
5,0 mm
6,0 mm
8,0 mm
10,0 mm
12,0 mm
-
SPLATE 7
2,0 mm
Rax,90,k
60
55
2,81
2,98
3,37
3,80
4,18
4,05
3,92
4,86
80
75
3,80
3,88
4,13
4,40
4,63
4,59
4,55
6,63
100
95
4,25
4,38
4,63
4,87
5,08
5,03
4,99
8,40
ε = screw-to-grain angle
geometry
SHEAR
TENSION
steel-to-timber ε=0°
thread withdrawal ε=0°
SPLATE L
b
d1
d1
L
b
RV,0,k
Rax,0,k
[mm]
[mm] SPLATE
[mm]
[kN]
[kN]
1,5 mm
2,0 mm
2,5 mm
3,0 mm
4,0 mm
5,0 mm
6,0 mm
-
25
21
0,77
0,77
0,77
0,76
0,76
0,75
0,74
0,40
40
36
0,98
0,98
0,97
0,96
0,95
0,94
0,92
0,68
50
46
1,15
1,15
1,14
1,13
1,12
1,10
1,09
0,87
60
56
1,32
1,32
1,32
1,32
1,30
1,28
1,27
1,06
70
66
1,37
1,37
1,37
1,37
1,37
1,36
1,36
1,25
3,0 mm
4,0 mm
5,0 mm
6,0 mm
8,0 mm
10,0 mm
12,0 mm
-
5
SPLATE 7
60
55
1,12
1,21
1,41
1,60
1,77
1,73
1,69
1,46
80
75
1,52
1,61
1,83
2,04
2,22
2,17
2,13
1,99
100
95
1,91
1,99
2,17
2,35
2,53
2,52
2,51
2,52
ε = screw-to-grain angle
NOTES and GENERAL PRINCIPLES on page 233.
TIMBER | LBS | 231
STRUCTURAL VALUES | CLT
CHARACTERISTIC VALUES EN 1995:2014
geometry
L
SHEAR
TENSION
steel-to-CLT lateral face
thread withdrawal lateral face
SPLATE
b
d1
d1
L
b
RV,90,k
[mm]
[mm] SPLATE
[mm]
25 40 50 60 70
4,0 mm 1,42 2,05 2,26 2,41 2,56
5,0 mm 1,38 2,01 2,25 2,39 2,54
6,0 mm 1,35 1,96 2,23 2,38 2,53
[kN] 1,23 2,11 2,69 3,28 3,86
8,0 mm 3,86 4,38 4,79
10,0 mm 3,74 4,33 4,74
12,0 mm 3,62 4,29 4,70
4,50 6,14 7,78
5
21 36 46 56 66
1,5 mm 1,48 2,12 2,26 2,41 2,56
2,0 mm 1,47 2,12 2,26 2,41 2,56
2,5 mm 1,45 2,10 2,26 2,41 2,56
[kN] 3,0 mm 1,44 2,09 2,26 2,41 2,56
55 75 95
3,0 mm 2,55 3,45 4,00
4,0 mm 2,77 3,59 4,12
5,0 mm 3,13 3,82 4,36
6,0 mm 3,53 4,10 4,58
SPLATE 60 80 100
7
Rax,90,k
NOTES and GENERAL PRINCIPLES on page 233.
MINIMUM DISTANCES FOR SHEAR AND AXIAL LOADS | CLT screws inserted WITHOUT pre-drilled hole
lateral face d1
[mm]
5
7
a1
[mm]
4∙d
20
28
a2
[mm]
2,5∙d
13
18
a3,t
[mm]
6∙d
30
42
a3,c
[mm]
6∙d
30
42
a4,t
[mm]
6∙d
30
42
a4,c
[mm]
2,5∙d
13
18
d = d1 = nominal screw diameter
a1 a3,t
α F
F α
α a3,c
F
F α tCLT
a2
a4,t
a4,c
NOTES • The minimum distances are compliant with ETA-11/0030 and are to be considered valid unless otherwise specified in the technical documents for the CLT panels.
232 | LBS | TIMBER
• Minimum distances are valid for minimum CLT thickness tCLT,min =10∙d1 .
STRUCTURAL VALUES | LVL
CHARACTERISTIC VALUES EN 1995:2014
geometry
SHEAR
TENSION
steel-LVL
thread withdrawal flat SPLATE
L
b
d1
d1
L
b
RV,90,k
[mm]
[mm] SPLATE
[mm]
[kN]
25 40 50 60 70
5
7
[kN]
1,5 mm
2,0 mm
2,5 mm
3,0 mm
4,0 mm
5,0 mm
6,0 mm
-
21 36 46 56 66
1,59 2,24 2,39 2,55 2,71
1,58 2,24 2,39 2,55 2,71
1,56 2,24 2,39 2,55 2,71
2,24 2,39 2,55 2,71
2,23 2,39 2,55 2,71
2,18 2,38 2,54 2,69
2,13 2,36 2,52 2,68
1,33 2,27 2,90 3,54 4,17
55 75 95
3,0 mm 2,81 3,80 4,25
4,0 mm 2,98 3,88 4,38
5,0 mm 3,37 4,13 4,63
6,0 mm 3,80 4,40 4,87
8,0 mm 4,18 4,63 5,08
10,0 mm 4,05 4,59 5,03
12,0 mm 3,92 4,55 4,99
4,86 6,63 8,40
SPLATE 60 80 100
Rax,90,k
STRUCTURAL VALUES GENERAL PRINCIPLES • Characteristic values comply with the EN 1995:2014 standard in accordance with ETA-11/0030. • Design values can be obtained from characteristic values as follows:
Rd =
Rk kmod γM
• For the calculation process a timber characteristic density ρk = 385 kg/m3 has been considered. For different values of ρk , the strength values in the table (timber-to-timber shear, steel-to-timber shear and tensile) can be converted by means of the coefficient kdens.
R’V,k = kdens,v RV,k
The coefficients γM and kmod should be taken according to the current regulations used for the calculation. • For the mechanical resistance values and the geometry of the screws, reference was made to ETA-11/0030. • Sizing and verification of the timber elements and metal plates must be done separately. • The characteristic shear resistances are calculated for screws inserted without pre-drilling hole. In the case of screws inserted with pre-drilling hole, greater resistance values can be obtained.
R’ax,k = kdens,ax Rax,k R’head,k ρ = kdens,ax Rhead,k k
[kg/m3 ]
350
380
385
405
425
430
440
C-GL
C24
C30
GL24h
GL26h
GL28h
GL30h
GL32h
kdens,v
0,90
0,98
1,00
1,02
1,05
1,05
1,07
kdens,ax
0,92
0,98
1,00
1,04
1,08
1,09
1,11
Strength values thus determined may differ, for higher safety standards, from those resulting from an exact calculation.
• The screws must be positioned in accordance with the minimum distances. • The thread withdrawal characteristic strength has been evaluated considering a fixing length equal to b. • The characteristic shear-strength value for LBS Ø5 nails has been evaluated assuming a plate thickness = SPLATE, always considering the case of thick plate according to ETA-11/0030 (SPLATE ≥ 1,5 mm). • The characteristic shear-strength value for LBS Ø7 screws has been evaluated assuming a plate thickness = SPLATE, and considering the thin (SPLATE ≤ 3,5 mm) intermediate (3,5 mm < SPLATE < 7,0 mm) or thick (SPLATE ≥ 7 mm) plate case. • In the case of combined shear and tensile stress, the following verification must be satisfied:
Fv,d Rv,d
2
+
Fax,d Rax,d
2
NOTES | CLT • The characteristic values are according to the national specifications ÖNORM EN 1995 - Annex K. • For the calculation process a mass density ρk = 350 kg/m3 has been considered for CLT elements. • The characteristics shear resistance are calculated considering a minimum fixing length of 4 d1 . • The characteristic shear strength is independent from the direction of the grain of the CLT panels outer layer. • The axial thread withdrawal strength is valid for minimum CLT thickness tCLT,min = 10∙d1 .
≥ 1
• In the case of steel-to-timber connections with a thick plate, it is necessary to assess the effects of timber deformation and install the connectors according to the assembly instructions.
NOTES | TIMBER • The characteristic steel-timber shear strengths were evaluated considering both an ε angle of 90° (RV,90,k) and 0° (RV,0,k) between the grains of the timber element and the connector.
NOTES | LVL • For the calculation process a mass density equal to ρk = 480 kg/m3 has been considered for softwood LVL elements. • The axial thread-withdrawal resistance was calculated considering a 90° angle between the grains and the connector. • The characteristic shear strengths are evaluated for connectors inserted on the side face (wide face) considering, for individual timber elements, a 90° angle between the connector and the grain, a 90° angle between the connector and the side face of the LVL element and a 0° angle between the force and the grain.
• Characteristic timber-to-timber shear strengths can be found on page 237. • The characteristic thread withdrawal resistances were evaluated considering both an ε angle of 90° (Rax,90,k) and of 0° (Rax,0,k) between the grains and the connector.
TIMBER | LBS | 233
LBS EVO
AC233 | AC257 ESR-4645
ETA-11/0030
ROUND HEAD SCREW FOR PLATES SCREW FOR PERFORATED PLATES FOR OUTDOOR USE LBS EVO version designed for steel-timber joints for outdoor use. Achieves an interlocking effect with the hole in the plate, thus guaranteeing excellent static performance.
C4 EVO COATING The atmospheric corrosion strength class (C4) of the C4 EVO coating was tested by the Research Institutes of Sweden - RISE. Coating suitable for use in applications on wood with an acidity level (pH) greater than 4, such as spruce, larch and pine (see page 314).
STATICS These can be calculated according to Eurocode 5 under thick steel-timber plate connections, even with thin metal elements. Excellent shear strength values.
BIT INCLUDED
DIAMETER [mm] 3,5
5
7
12
LENGTH [mm] 25
40
100
SERVICE CLASS SC1
SC2
SC3
SC4
ATMOSPHERIC CORROSIVITY C1
C2
C3
C4
C5
WOOD CORROSIVITY T1
T2
T3
T4
T5
MATERIAL
C4
EVO COATING
carbon steel with C4 EVO coating
FIELDS OF USE • • • • •
234 | LBS EVO | TIMBER
timber based panels solid timber and glulam CLT and LVL high density woods ACQ, CCA treated timber
200
CODES AND DIMENSIONS d1
CODE
[mm] 5 TX 20
L
b
[mm]
[mm]
40 50 60 70
36 46 56 66
LBSEVO540 LBSEVO550 LBSEVO560 LBSEVO570
pcs
d1
CODE
[mm] 500 200 200 200
7 TX 30
LBSEVO780 LBSEVO7100
L
b
[mm]
[mm]
pcs
80 100
75 95
100 100
GEOMETRY AND MECHANICAL CHARACTERISTICS dUK d2 d1
dV,steel
dK
b L
t1
Nominal diameter
d1
[mm]
5
7
Head diameter
dK
[mm]
7,80
11,00
Thread diameter
d2
[mm]
3,00
4,40
Underhead diameter
dUK
[mm]
4,90
7,00
Head thickness
t1
[mm]
2,40
3,50
Hole diameter on steel plate
dV,steel
[mm]
5,0÷5,5
7,5÷8,0 4,0
Pre-drilling hole diameter(1)
dV,S
[mm]
3,0
Pre-drilling hole diameter(2)
dV,H
[mm]
3,5
5,0
Characteristic tensile strength
ftens,k
[kN]
7,9
15,4
Characteristic yield moment
My,k
[Nm]
5,4
14,2
(1) Pre-drilling valid for softwood. (2) Pre-drilling valid for hardwood and beech LVL.
softwood (softwood)
LVL softwood (LVL softwood)
pre-drilled beech LVL (beech LVL predrilled)
LVL beech (3) (Beech LVL)
Characteristic withdrawal-resistance parameter
fax,k
[N/mm2]
11,7
15,0
29,0
42,0
Characteristic head-pull-through parameter
fhead,k [N/mm2]
10,5
20,0
-
-
Associated density
ρa
[kg/m3]
350
500
730
730
Calculation density
ρk
[kg/m3]
≤ 440
410 ÷ 550
590 ÷ 750
590 ÷ 750
(3)Valid for d = 5 mm and l ≤ 34 mm 1 ef
For applications with different materials please see ETA-11/0030.
T3 TIMBER CORROSIVITY Coating suitable for use in applications on wood with an acidity level (pH) greater than 4, such as spruce, larch, pine, ash and birch (see page 314).
STEEL-TO-TIMBER APPLICATION The LBSEVO screw with diameter 7 is particularly suitable for custom-designed connections, which are characteristic of steel structures.
TIMBER | LBS EVO | 235
MINIMUM DISTANCES FOR SHEAR LOADS | STEEL-TO-TIMBER ρk ≤ 420 kg/m3
screws inserted WITHOUT pre-drilled hole
α=0°
F
d1
[mm]
a1
[mm]
a2
[mm]
F
5
7
d1
[mm]
12∙d∙0,7
42
59
a1
[mm]
5∙d∙0,7
18
25
a2
[mm]
α=90° 5
7
5∙d∙0,7
18
25
5∙d∙0,7
18
25
a3,t
[mm]
15∙d
75
105
a3,t
[mm]
10∙d
50
70
a3,c
[mm]
10∙d
50
70
a3,c
[mm]
10∙d
50
70
a4,t
[mm]
5∙d
25
35
a4,t
[mm]
10∙d
50
70
a4,c
[mm]
5∙d
25
35
a4,c
[mm]
5∙d
25
35 420 kg/m3 < ρk ≤ 500 kg/m3
screws inserted WITHOUT pre-drilled hole
α=0°
F
d1
[mm]
a1
[mm]
15∙d∙0,7
a2
[mm]
7∙d∙0,7
25
a3,t
[mm]
20∙d
100
a3,c
[mm]
15∙d
75
a4,t
[mm]
7∙d
35
a4,c
[mm]
7∙d
35
F
α=90°
5
7
d1
[mm]
5
7
53
74
a1
[mm]
7∙d∙0,7
25
34
34
a2
[mm]
7∙d∙0,7
25
34
140
a3,t
[mm]
15∙d
75
105
105
a3,c
[mm]
15∙d
75
105
49
a4,t
[mm]
12∙d
60
84
49
a4,c
[mm]
7∙d
35
49
screws inserted WITH pre-drilled hole
α=0°
F
d1
[mm]
a1
[mm]
5∙d∙0,7
a2
[mm]
3∙d∙0,7
a3,t
[mm]
12∙d
a3,c
[mm]
7∙d
a4,t
[mm]
3∙d
a4,c
[mm]
3∙d
F
α=90°
5
7
d1
[mm]
18
25
a1
[mm]
4∙d∙0,7
5
7
14
20
11
15
a2
[mm]
4∙d∙0,7
14
20
60
84
a3,t
[mm]
7∙d
35
49
35
49
a3,c
[mm]
7∙d
35
49
15
21
a4,t
[mm]
7∙d
35
49
15
21
a4,c
[mm]
3∙d
15
21
α = load-to-grain angle d = d1 = nominal screw diameter stressed end -90° < α < 90°
a2 a2 a1 a1
unloaded end 90° < α < 270°
F α
α F a3,t
stressed edge 0° < α < 180°
unload edge 180° < α < 360°
α F α
a4,t
F a4,c
a3,c
NOTES • The minimum distances comply with the EN 1995:2014 standard in accordance with ETA-11/0030. • In the case of timber-to-timber joints, the minimum spacing (a1 , a2) can be multiplied by a coefficient of 1,5.
236 | LBS EVO | TIMBER
• In the case of joints with elements in Douglas fir (Pseudotsuga menziesii), the minimum spacing and distances parallel to the grain must be multiplied by a coefficient of 1.5.
STRUCTURAL VALUES | TIMBER geometry
CHARACTERISTIC VALUES EN 1995:2014 SHEAR
SHEAR
steel-to-timber ε=90°
steel-to-timber ε=0° SPLATE
SPLATE L
b
d1
d1 [mm]
L
b
RV,90,k
[mm]
[mm]
SPLATE [mm] 40 50 60 70
5
7
[kN]
[kN]
1,5
2,0
2,5
3,0
4,0
5,0
6,0
1,5
2,0
2,5
3,0
4,0
5,0
6,0
36 46 56 66
2,24 2,39 2,55 2,71
2,24 2,39 2,55 2,71
2,24 2,39 2,55 2,71
2,24 2,39 2,55 2,71
2,23 2,39 2,55 2,71
2,18 2,38 2,54 2,69
2,13 2,36 2,52 2,68
0,98 1,15 1,32 1,37
0,98 1,15 1,32 1,37
0,97 1,14 1,32 1,37
0,96 1,13 1,32 1,37
0,95 1,12 1,30 1,37
0,94 1,10 1,28 1,36
0,92 1,09 1,27 1,36
3,0
4,0
5,0
6,0
8,0
10,0
12,0
3,0
4,0
5,0
6,0
8,0
10,0
12,0
75 95
3,80 4,25
3,88 4,38
4,13 4,63
4,40 4,87
4,63 5,08
4,59 5,03
4,55 4,99
1,52 1,91
1,61 1,99
1,83 2,17
2,04 2,35
2,22 2,53
2,17 2,52
2,13 2,51
S PLATE [mm] 80 100
RV,0,k
SHEAR geometry
L
TENSION
timber-to-timber ε=90°
timber-to-timber ε=0°
thread withdrawal ε=90°
thread withdrawal ε=0°
A b
d1
d1
L
b
A
RV,90,k
RV,0,k
Rax,90,k
Rax,0,k
[mm]
[mm] 40 50 60 70 80 100
[mm] 36 46 56 66 75 95
[mm] 20 25 30 35 45
[kN] 1,01 1,19 1,40 1,59 2,57 3,04
[kN] 0,59 0,75 0,88 0,96 1,54 1,74
[kN] 2,27 2,90 3,54 4,17 6,63 8,40
[kN] 0,68 0,87 1,06 1,25 1,99 2,52
5
7
ε = screw-to-grain angle GENERAL PRINCIPLES
NOTES
• Characteristic values comply with the EN 1995:2014 standard in accordance with ETA-11/0030.
• The characteristic shear strengths were evaluated considering both an ε-angle of 90° (RV,90,k) and of 0° (RV,0,k) between the grains of the timber elements and the connector.
• Design values can be obtained from characteristic values as follows:
Rd =
Rk kmod γM
The coefficients γM and kmod should be taken according to the current regulations used for the calculation. • For the mechanical resistance values and the geometry of the screws, reference was made to ETA-11/0030. • Sizing and verification of the timber elements and metal plates must be done separately. • The characteristic shear resistances are calculated for screws inserted without pre-drilling hole. In the case of screws inserted with pre-drilling hole, greater resistance values can be obtained. • The screws must be positioned in accordance with the minimum distances. • The thread withdrawal characteristic strength has been evaluated considering a fixing length equal to b. • The characteristic shear-strength value for LBS Ø5 nails has been evaluated assuming a plate thickness = SPLATE, always considering the case of thick plate according to ETA-11/0030 (SPLATE ≥ 1,5 mm). • The characteristic shear-strength value for LBS Ø7 screws has been evaluated assuming a plate thickness = SPLATE, and considering the thin (SPLATE ≤ 3,5 mm) intermediate (3,5 mm < SPLATE < 7,0 mm) or thick (SPLATE ≥ 7 mm) plate case.
• The characteristic thread withdrawal resistances were evaluated considering both an ε angle of 90° (Rax,90,k) and of 0° (Rax,0,k) between the grains and the connector. • For the calculation process a timber characteristic density ρk = 385 kg/m3 has been considered. For different ρk values, the strength values in the table can be converted by the kdens coefficient.
R’V,k = kdens,v RV,k R’ax,k = kdens,ax Rax,k R’head,k = kdens,ax Rhead,k ρ k
[kg/m3 ]
350
380
385
405
425
430
440
C-GL
C24
C30
GL24h
GL26h
GL28h
GL30h
GL32h
kdens,v
0,90
0,98
1,00
1,02
1,05
1,05
1,07
kdens,ax
0,92
0,98
1,00
1,04
1,08
1,09
1,11
Strength values thus determined may differ, for higher safety standards, from those resulting from an exact calculation. • For a row of n screws arranged parallel to the direction of the grain at a distance a1 , the characteristic effective shear bearing capacity Ref,V,k can be calculated by means of the effective number nef (see page 230).
TIMBER | LBS EVO | 237
LBS HARDWOOD
ETA-11/0030
UKTA-0836 22/6195
ETA-11/0030
ROUND HEAD SCREW FOR PLATES ON HARDWOODS HARDWOOD CERTIFICATION Special tip with embossed slit elements. ETA-11/0030 certification allows for use with high density timber without any pre-drill. Approved for structural applications subject to stresses in any direction vs the grain.
LARGER DIAMETER Internal thread diameter increased compared to the LBS version to ensure tightening in the highest density woods. In steel-timber connections, an increase in strength of more than 15 % can be achieved.
SCREW FOR PERFORATED PLATES Cylindrical shoulder designed for fastening metal elements. Achieves an interlocking effect with the hole in the plate, thus guaranteeing excellent static performance.
BIT INCLUDED
DIAMETER [mm] 3,5
12
5
LENGTH [mm] 25
40
70
200
SERVICE CLASS SC1
SC2
SC3
SC4
ATMOSPHERIC CORROSIVITY C1
C2
C3
C4
C5
WOOD CORROSIVITY T1
T2
T3
T4
T5
MATERIAL
Zn
ELECTRO PLATED
electrogalvanized carbon steel
FIELDS OF USE • • • • •
238 | LBS HARDWOOD | TIMBER
timber based panels solid timber and glulam CLT and LVL high density woods beech, oak, cypress, ash, eucalyptus, bamboo
LBS HARDWOOD EVO
CODES AND DIMENSIONS d1
CODE
[mm]
5 TX 20
L
b
ROUND HEAD SCREW FOR PLATES ON HARDWOODS
pcs
[mm]
[mm]
LBSH540
40
36
500
LBSH550
50
46
200
LBSH560
60
56
200
LBSH570
70
66
200
DIAMETER [mm]
3
LENGTH [mm]
25
5
7
12
60
200 200
Also available in the LBS HARDWOOD EVO version, L from 80 to 200 mm, diameter Ø5 and Ø7 mm, see page 244.
GEOMETRY AND MECHANICAL CHARACTERISTICS dUK dK
d2 d1
dV,steel t1
b L
Nominal diameter
d1
[mm]
5
Head diameter
dK
[mm]
7,80
Thread diameter
d2
[mm]
3,48
Underhead diameter
dUK
[mm]
4,90
Head thickness
t1
[mm]
2,45
Hole diameter on steel plate
dV,steel
[mm]
5,0÷5,5
Pre-drilling hole diameter(1)
3,0
dV,S
[mm]
Pre-drilling hole diameter(2)
dV,H
[mm]
3,5
Characteristic tensile strength
ftens,k
[kN]
11,5
Characteristic yield moment
My,k
[Nm]
9,0
(1) Pre-drilling valid for softwood. (2) Pre-drilling valid for hardwood and beech LVL.
softwood (softwood)
oak, beech (hardwood)
ash (hardwood)
beech LVL (Beech LVL)
Characteristic withdrawal-resistance parameter
fax,k
[N/mm2]
11,7
22,0
30,0
42,0
Characteristic head-pull-through parameter
fhead,k [N/mm2]
10,5
-
-
-
Associated density
ρa
[kg/m3]
350
530
530
730
Calculation density
ρk
[kg/m3]
≤ 440
≤ 590
≤ 590
590 ÷ 750
For applications with different materials please see ETA-11/0030.
HARDWOOD PERFORMANCE Geometry developed for high performance and use without pre-drill hole on structural woods such as beech, oak, cypress, ash, eucalyptus, bamboo.
BEECH LVL Values also tested, certified and calculated for high density woods such as beechwood Microllam® LVL. Certified for use without pre-drilling, for densities of up to 800 kg/m3.
TIMBER | LBS HARDWOOD | 239
MINIMUM DISTANCES FOR SHEAR LOADS | STEEL-TO-TIMBER ρk > 420 kg/m3
screws inserted WITHOUT pre-drilled hole
α=0°
F
d1
[mm]
a1
[mm]
15∙d∙0,7
a2
[mm]
a3,t
[mm]
a3,c
F
α=90°
5
d1
[mm]
53
a1
[mm]
7∙d∙0,7
25
5
7∙d∙0,7
25
a2
[mm]
7∙d∙0,7
25
20∙d
100
a3,t
[mm]
15∙d
75
[mm]
15∙d
75
a3,c
[mm]
15∙d
75
a4,t
[mm]
7∙d
35
a4,t
[mm]
12∙d
60
a4,c
[mm]
7∙d
35
a4,c
[mm]
7∙d
35
screws inserted WITH pre-drilled hole
α=0°
F
d1
[mm]
a1
[mm]
5∙d∙0,7
a2
[mm]
a3,t
[mm]
a3,c a4,t a4,c
F
α=90°
5
d1
[mm]
18
a1
[mm]
4∙d∙0,7
5
3∙d∙0,7
11
a2
[mm]
4∙d∙0,7
14
12∙d
60
a3,t
[mm]
7∙d
35
[mm]
7∙d
35
a3,c
[mm]
7∙d
35
[mm]
3∙d
15
a4,t
[mm]
7∙d
35
[mm]
3∙d
15
a4,c
[mm]
3∙d
15
stressed edge 0° < α < 180°
unload edge 180° < α < 360°
14
α = load-to-grain angle d = d1 = nominal screw diameter stressed end -90° < α < 90°
a2 a2
unloaded end 90° < α < 270°
F
a1 a1
α
F α
α a3,t
F α
a4,t
F a4,c
a3,c
NOTE on page 243.
EFFECTIVE NUMBER FOR SHEAR LOADS The load-bearing capacity of a connection made with several screws, all of the same type and size, may be lower than the sum of the load-bearing capacities of the individual connection system. For a row of n screws arranged parallel to the direction of the grain at a distance a1 , the characteristic effective load-bearing capacity is equal to:
Ref,V,k
a1 a1
Ref,V,k = nef RV,k
The nef value is given in the table below as a function of n and a1 .
n
2 3 4 5
4∙d 1,41 1,73 2,00 2,24
5∙d 1,48 1,86 2,19 2,49
6∙d 1,55 2,01 2,41 2,77
7∙d 1,62 2,16 2,64 3,09
( * ) For intermediate a values a linear interpolation is possible. 1
240 | LBS HARDWOOD | TIMBER
8∙d 1,68 2,28 2,83 3,34
a 1( * ) 9∙d 1,74 2,41 3,03 3,62
10∙d 1,80 2,54 3,25 3,93
11∙d 1,85 2,65 3,42 4,17
12∙d 1,90 2,76 3,61 4,43
13∙d 1,95 2,88 3,80 4,71
≥ 14∙d 2,00 3,00 4,00 5,00
STRUCTURAL VALUES | TIMBER(SOFTWOOD)
CHARACTERISTIC VALUES EN 1995:2014
SHEAR
TENSION
steel-to-timber ε=90°
geometry
thread withdrawal ε=90°
steel tension
SPLATE
L b
d1
d1
L
b
RV,90,k
Rax,90,k
Rtens,k
[mm]
[mm] SPLATE
[mm]
[kN]
[kN]
[kN]
1,5 mm 2,0 mm 2,5 mm 3,0 mm 4,0 mm 5,0 mm 6,0 mm
-
-
5
40
36
2,44
2,43
2,41
2,39
2,36
2,32
2,27
2,27
50
46
2,88
2,88
2,88
2,88
2,85
2,80
2,75
2,90
60
56
3,04
3,04
3,04
3,04
3,04
3,02
3,01
3,54
70
66
3,20
3,20
3,20
3,20
3,20
3,18
3,16
4,17
11,50
ε = screw-to-grain angle SHEAR
TENSION
steel-to-timber ε=0°
thread withdrawal ε=0°
steel tension
RV,0,k
Rax,0,k
Rtens,k
[kN]
[kN]
[kN]
1,5 mm 2,0 mm 2,5 mm 3,0 mm 4,0 mm 5,0 mm 6,0 mm
-
-
geometry
SPLATE
L b
d1
d1
L
b
[mm]
[mm] SPLATE
[mm]
40
36
5
1,10
1,10
1,09
1,09
1,08
1,07
1,05
0,68
50
46
1,25
1,25
1,24
1,23
1,22
1,21
1,19
0,87
60
56
1,42
1,41
1,41
1,40
1,39
1,37
1,35
1,06
70
66
1,60
1,59
1,59
1,58
1,57
1,55
1,53
1,25
11,50
ε = screw-to-grain angle
NOTES and GENERAL PRINCIPLES on page 243.
TIMBER | LBS HARDWOOD | 241
STRUCTURAL VALUES | HARDWOOD
CHARACTERISTIC VALUES EN 1995:2014 SHEAR
TENSION
steel-hardwood ε=90°
geometry
thread withdrawal ε=90°
steel tension
SPLATE
L b
d1
d1
L
b
RV,90,k
Rax,90,k
Rtens,k
[mm]
[mm] SPLATE
[mm]
[kN]
[kN]
[kN]
1,5 mm 2,0 mm 2,5 mm 3,0 mm 4,0 mm 5,0 mm 6,0 mm
-
-
40 50 60 70
36 46 56 66
4,08 5,21 6,35 7,48
11,50
5
3,56 3,88 4,16 4,44
3,54 3,88 4,16 4,44
3,51 3,88 4,16 4,44
3,49 3,88 4,16 4,44
3,44 3,88 4,16 4,44
3,36 3,85 4,13 4,42
3,29 3,82 4,10 4,39
SHEAR
TENSION
steel-hardwood ε=0°
geometry
thread withdrawal ε=0°
steel tension
SPLATE
L b
d1
d1
L
b
RV,0,k
Rax,0,k
Rtens,k
[mm]
[mm] SPLATE
[mm]
[kN]
[kN]
[kN]
1,5 mm 2,0 mm 2,5 mm 3,0 mm 4,0 mm 5,0 mm 6,0 mm
-
-
40 50 60 70
36 46 56 66
1,22 1,56 1,90 2,24
11,50
5
1,51 1,76 2,04 2,19
1,50 1,75 2,03 2,19
1,49 1,74 2,02 2,19
1,48 1,74 2,01 2,19
1,47 1,72 1,99 2,19
1,45 1,69 1,96 2,18
1,42 1,67 1,93 2,17
ε = screw-to-grain angle
STRUCTURAL VALUES | BEECH LVL SHEAR geometry
TENSION
steel-beech LVL
thread withdrawal flat
steel tension
SPLATE
L b
d1
d1
L
b
RV,90,k
Rax,90,k
Rtens,k
[mm]
[mm] SPLATE
[mm]
[kN]
[kN]
[kN]
-
-
40 50 60 70
36 46 56 66
7,56 9,66 11,76 13,86
11,50
5
1,5 mm 2,0 mm 2,5 mm 3,0 mm 4,0 mm 5,0 mm 6,0 mm 5,24 5,76 6,22 6,22
5,24 5,76 6,22 6,22
NOTES and GENERAL PRINCIPLES on page 243.
242 | LBS HARDWOOD | TIMBER
5,24 5,76 6,22 6,22
5,24 5,76 6,22 6,22
5,24 5,76 6,22 6,22
5,18 5,71 6,22 6,22
5,13 5,66 6,18 6,22
STRUCTURAL VALUES GENERAL PRINCIPLES
NOTES | TIMBER (SOFTWOOD)
• Characteristic values comply with the EN 1995:2014 standard in accordance with ETA-11/0030.
• The characteristic steel-timber shear strengths were evaluated considering both an ε angle of 90° (RV,90,k) and 0° (RV,0,k) between the grains of the second element and the connector.
• Design values can be obtained from characteristic values as follows:
Rd =
Rk kmod γM
The coefficients γM and kmod should be taken according to the current regulations used for the calculation. • The tensile design strength of the connector is the lower between the timber-side design strength (Rax,d) and the steel-side design strength (Rtens,d).
Rax,d = min
Rax,k kmod γM Rtens,k γM2
• For the mechanical resistance values and the geometry of the screws, reference was made to ETA-11/0030. • Sizing and verification of the timber elements and metal plates must be done separately. • The characteristic shear strength are calculated for screws inserted without pre-drilling hole.
• The characteristic thread withdrawal resistances were evaluated considering both an ε angle of 90° (Rax,90,k) and of 0° (Rax,0,k) between the grains and the connector. • For the calculation process a timber characteristic density ρk = 385 kg/m3 has been considered. For different values of ρk , the strength values in the table (timber-to-timber shear, steel-to-timber shear and tensile) can be converted by means of the coefficient kdens.
R’V,k = kdens,v RV,k R’ax,k = kdens,ax Rax,k R’head,k ρ = kdens,ax Rhead,k k
350
380
385
405
425
430
440
C-GL
C24
C30
GL24h
GL26h
GL28h
GL30h
GL32h
kdens,v
0,90
0,98
1,00
1,02
1,05
1,05
1,07
kdens,ax
0,92
0,98
1,00
1,04
1,08
1,09
1,11
[kg/m3 ]
Strength values thus determined may differ, for higher safety standards, from those resulting from an exact calculation.
• The screws must be positioned in accordance with the minimum distances. • The thread withdrawal characteristic strength has been evaluated considering a fixing length equal to b. • The characteristic shear-strength value for LBSH Ø5 nails has been evaluated assuming a plate thickness = SPLATE, always considering the case of thick plate according to ETA-11/0030 (SPLATE ≥ 1,5 mm). • In the case of combined shear and tensile stress, the following verification must be satisfied:
Fv,d Rv,d
2
+
Fax,d Rax,d
NOTES | BEECH LVL • For the calculation process a mass density equal to ρk = 730 kg/m3 has been considered for LVL beech elements. • A 90° angle between the connector and the fiber, a 90° angle between the connector and the side face of the LVL element, and a 0° angle between the force and the fiber were considered for individual timber elements in the calculation.
2
≥ 1
• In the case of steel-to-timber connections with a thick plate, it is necessary to assess the effects of timber deformation and install the connectors according to the assembly instructions.
NOTES | HARDWOOD • The characteristic steel-timber shear strengths were evaluated considering both an ε angle of 90° (RV,90,k) and 0° (RV,0,k) between the grains of the second element and the connector. • In the case of screws inserted with pre-drilling hole, higher strength values can be achieved. • The characteristic thread withdrawal resistances were evaluated considering both an ε angle of 90° (Rax,90,k) and of 0° (Rax,0,k) between the grains and the connector. • For the calculation process a mass density equal to ρk = 550 kg/m3 has been considered for hardwood (oak) elements.
MINIMUM DISTANCES NOTES | TIMBER • The minimum distances comply with EN 1995:2014, according to ETA-11/0030, considering a timber element mass density of 420 kg/m3 < ρk ≤ 500 kg/m3. • In the case of timber-to-timber joints, the minimum spacing (a1 , a2) can be multiplied by a coefficient of 1,5.
• In the case of joints with elements in Douglas fir (Pseudotsuga menziesii), the minimum spacing and distances parallel to the grain must be multiplied by a coefficient of 1.5.
TIMBER | LBS HARDWOOD | 243
LBS HARDWOOD EVO
ETA-11/0030
ROUND HEAD SCREW FOR PLATES ON HARDWOODS C4 EVO COATING The atmospheric corrosion strength class (C4) of the C4 EVO coating was tested by the Research Institutes of Sweden - RISE. Coating suitable for use in applications on wood with an acidity level (pH) greater than 4, such as spruce, larch and pine (see page 314).
HARDWOOD CERTIFICATION Special tip with embossed slit elements. ETA-11/0030 certification allows for use with high density timber without any pre-drill. Approved for structural applications subject to stresses in any direction vs the grain.
ROBUSTNESS The inner core diameter of the screw has been enlarged compared to the LBS version to ensure screwing in higher density woods. The cylindrical under head is designed for fastening mechanical elements and producing an interlocking effect with the plate hole that provides excellent static perfornances. BIT INCLUDED
DIAMETER [mm] lbsh evo 3,5
5
12
7
LENGTH [mm] 25
60
200 200
SERVICE CLASS SC1
SC2
SC3
SC4
ATMOSPHERIC CORROSIVITY C1
C2
C3
C4
C5
WOOD CORROSIVITY T1
T2
T3
T4
T5
MATERIAL
C4
EVO COATING
carbon steel with C4 EVO coating
FIELDS OF USE • • • • •
244 | LBS HARDWOOD EVO | TIMBER
timber based panels solid timber and glulam CLT and LVL high density woods ACQ, CCA treated timber
CODES AND DIMENSIONS d1
CODE
[mm] 5 TX 20
L
b
[mm]
[mm]
d1
pcs
CODE
[mm]
L
b
[mm]
[mm]
pcs
LBSHEVO580
80
76
200
LBSHEVO760
60
55
100
LBSHEVO5100
100
96
200
LBSHEVO780
80
75
100
LBSHEVO5120
120
116
200
LBSHEVO7100
100
95
100
LBSHEVO7120
120
115
100
7 TX 30
LBSHEVO7160
160
155
100
LBSHEVO7200
200
195
100
GEOMETRY AND MECHANICAL CHARACTERISTICS dUK dK
d2 d1
dV,steel t1
Nominal diameter Head diameter Thread diameter Underhead diameter Head thickness Hole diameter on steel plate Pre-drilling hole diameter(1) Pre-drilling hole diameter(2) Characteristic tensile strength Characteristic yield moment
b L d1 dK d2 dUK t1 dV,steel dV,S dV,H ftens,k My,k
[mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm] [kN] [Nm]
5 7,80 3,48 4,90 2,45 5,0÷5,5 3,0 3,5 11,5 9,0
7 11,00 4,85 7,00 3,50 7,5÷8,0 4,0 5,0 21,5 21,5
(1) Pre-drilling valid for softwood. (2) Pre-drilling valid for hardwood and beech LVL.
The mechanical parameters are obtained analytically and validated by experimental tests (LBS H EVO Ø7) .
softwood (softwood)
oak, beech (hardwood)
ash (hardwood)
beech LVL (Beech LVL)
Withdrawal resistance parameter
fax,k
[N/mm2]
11,7
22,0
30,0
42,0
Head-pull-through parameter
fhead,k [N/mm2]
10,5
-
-
-
Associated density
ρa
[kg/m3]
350
530
530
730
Calculation density
ρk
[kg/m3]
≤ 440
≤ 590
≤ 590
590 ÷ 750
For applications with different materials please see ETA-11/0030.
HYBRID STEEL-TIMBER STRUCTURES The LBSHEVO Ø7 mm screws are suitable for custom-designed connections, which are characteristic of steel structures. Maximum performance in hardwoods combined with the strengths of steel plates.
T3 TIMBER CORROSIVITY Coating suitable for use in applications on wood with an acidity level (pH) greater than 4, such as spruce, larch, pine, ash and birch (see page 314).
TIMBER | LBS HARDWOOD EVO | 245
MINIMUM DISTANCES FOR SHEAR LOADS | STEEL-TO-TIMBER ρk > 420 kg/m3
screws inserted WITHOUT pre-drilled hole
α=0°
F
d1 a1 a2 a3,t a3,c a4,t a4,c
[mm] [mm] [mm] [mm] [mm] [mm] [mm]
F
5 53 25 100 75 35 35
15∙d∙0,7 7∙d∙0,7 20∙d 15∙d 7∙d 7∙d
7 74 34 140 105 49 49
d1 a1 a2 a3,t a3,c a4,t a4,c
[mm] [mm] [mm] [mm] [mm] [mm] [mm]
α=90° 5 25 25 75 75 60 35
7∙d∙0,7 7∙d∙0,7 15∙d 15∙d 12∙d 7∙d
7 34 34 105 105 84 49
screws inserted WITH pre-drilled hole
α=0°
F
d1 a1 a2 a3,t a3,c a4,t a4,c
[mm] [mm] [mm] [mm] [mm] [mm] [mm]
F
5 18 11 60 35 15 15
5∙d∙0,7 3∙d∙0,7 12∙d 7∙d 3∙d 3∙d
7 25 15 84 49 21 21
d1 a1 a2 a3,t a3,c a4,t a4,c
[mm] [mm] [mm] [mm] [mm] [mm] [mm]
α=90° 5 14 14 35 35 35 15
4∙d∙0,7 4∙d∙0,7 7∙d 7∙d 7∙d 3∙d
7 20 20 49 49 49 21
α = load-to-grain angle d = d1 = nominal screw diameter stressed end -90° < α < 90°
a2 a2
unloaded end 90° < α < 270°
F a3,t
unload edge 180° < α < 360°
α
F α
α
a1 a1
stressed edge 0° < α < 180°
F α
a4,t
F a4,c
a3,c
NOTES • The minimum distances comply with EN 1995:2014, according to ETA-11/0030, considering a timber element mass density of 420 kg/m3 < ρk ≤ 500 kg/m3. • In the case of timber-to-timber joints, the minimum spacing (a1 , a2) can be multiplied by a coefficient of 1,5.
• In the case of joints with elements in Douglas fir (Pseudotsuga menziesii), the minimum spacing and distances parallel to the grain must be multiplied by a coefficient of 1.5.
EFFECTIVE NUMBER FOR SHEAR LOADS The load-bearing capacity of a connection made with several screws, all of the same type and size, may be lower than the sum of the load-bearing capacities of the individual connection system. For a row of n screws arranged parallel to the direction of the grain at a distance a1 , the characteristic effective load-bearing capacity is equal to:
Ref,V,k
a1 a1
Ref,V,k = nef RV,k
The nef value is given in the table below as a function of n and a1 .
n
2 3 4 5
4∙d 1,41 1,73 2,00 2,24
5∙d 1,48 1,86 2,19 2,49
6∙d 1,55 2,01 2,41 2,77
7∙d 1,62 2,16 2,64 3,09
( * ) For intermediate a values a linear interpolation is possible. 1
246 | LBS HARDWOOD EVO | TIMBER
8∙d 1,68 2,28 2,83 3,34
a 1( * ) 9∙d 1,74 2,41 3,03 3,62
10∙d 1,80 2,54 3,25 3,93
11∙d 1,85 2,65 3,42 4,17
12∙d 1,90 2,76 3,61 4,43
13∙d 1,95 2,88 3,80 4,71
≥ 14∙d 2,00 3,00 4,00 5,00
STRUCTURAL VALUES | TIMBER
CHARACTERISTIC VALUES EN 1995:2014 SHEAR
TENSION
steel-to-timber ε=90°
geometry
thread withdrawal ε=90°
steel tension
SPLATE
L b
d1
d1
L
b
RV,90,k
Rax,90,k
Rtens,k
[mm]
[mm] SPLATE
[mm]
[kN]
[kN]
[kN]
6,0 mm
-
-
5
2,0 mm
2,5 mm
3,0 mm
4,0 mm
5,0 mm
80
76
3,35
3,35
3,35
3,35
3,35
3,34
3,32
4,80
100
96
3,67
3,67
3,67
3,67
3,67
3,65
3,64
6,06
120
116
3,98
3,98
3,98
3,98
3,98
3,97
3,95
7,32
SPLATE
7
1,5 mm
3,0 mm
4,0 mm
5,0 mm
6,0 mm
60
55
2,81
3,02
3,50
3,99
8,0 mm 10,0 mm 12,0 mm 4,37
4,25
4,12
4,86
80
75
3,80
3,98
4,43
4,90
5,34
5,29
5,25
6,63
100
95
4,75
4,89
5,18
5,50
5,78
5,73
5,69
8,40
120
115
5,19
5,35
5,66
5,96
6,22
6,17
6,13
10,16
11,50
-
160
155
5,30
5,56
6,10
6,62
7,10
7,06
7,01
13,70
200
195
5,30
5,61
6,24
6,86
7,49
7,49
7,49
17,24
-
21,50
ε = screw-to-grain angle SHEAR
TENSION
steel-to-timber ε=0°
geometry
thread withdrawal ε=0°
steel tension
SPLATE
L b
d1
d1
L
b
RV,90,k
Rax,90,k
Rtens,k
[mm]
[mm] SPLATE
[mm]
[kN]
[kN]
[kN] -
80 5
1,5 mm
2,0 mm
2,5 mm
3,0 mm
4,0 mm
5,0 mm
6,0 mm
-
76
1,72
1,72
1,72
1,72
1,72
1,72
1,71
1,44
100
96
1,82
1,82
1,82
1,82
1,82
1,81
1,81
1,82
120
116
1,91
1,91
1,91
1,91
1,91
1,91
1,90
2,20
3,0 mm
4,0 mm
5,0 mm
6,0 mm
SPLATE
7
8,0 mm 10,0 mm 12,0 mm
-
60
55
1,12
1,23
1,48
1,73
1,95
1,92
1,88
1,46
80
75
1,52
1,63
1,88
2,14
2,35
2,31
2,27
1,99
100
95
1,91
2,04
2,31
2,58
2,81
2,76
2,72
2,52
120
115
2,31
2,41
2,64
2,88
3,11
3,10
3,08
3,05
160
155
2,70
2,80
3,00
3,19
3,38
3,36
3,35
4,11
200
195
2,97
3,07
3,26
3,46
3,64
3,63
3,61
5,17
11,50
-
21,50
ε = screw-to-grain angle NOTES and GENERAL PRINCIPLES on page 249.
TIMBER | LBS HARDWOOD EVO | 247
STRUCTURAL VALUES | HARDWOOD
CHARACTERISTIC VALUES EN 1995:2014 SHEAR
TENSION
steel-to-timber ε=90°
geometry
thread withdrawal ε=90°
steel tension
SPLATE
L b
d1
d1
L
b
RV,90,k
Rax,90,k
Rtens,k
[mm]
[mm] SPLATE
[mm]
[kN]
[kN]
[kN]
-
-
5
2,0 mm
2,5 mm
3,0 mm
4,0 mm
5,0 mm
6,0 mm
80
76
4,73
4,73
4,73
4,73
4,73
4,70
4,67
8,61
100
96
5,15
5,15
5,15
5,15
5,15
5,15
5,15
10,88
120
116
5,15
5,15
5,15
5,15
5,15
5,15
5,15
13,14
3,0 mm
4,0 mm
5,0 mm
6,0 mm
4,01
4,33
5,07
5,83
SPLATE 60
7
1,5 mm
55
8,0 mm 10,0 mm 12,0 mm 6,43
6,22
11,50
-
6,02
8,72
80
75
5,42
5,65
6,21
6,80
7,33
7,25
7,17
11,90
100
95
6,33
6,60
7,15
7,67
8,12
8,04
7,97
15,07
120
115
6,33
6,70
7,45
8,20
8,92
8,84
8,76
18,24
160
155
6,33
6,70
7,45
8,20
8,95
8,95
8,95
24,59
200
195
6,33
6,70
7,45
8,20
8,95
8,95
8,95
30,93
-
21,50
ε = screw-to-grain angle
SHEAR
TENSION
steel-to-timber ε=0°
geometry
thread withdrawal ε=0°
steel tension
SPLATE
L b
d1
d1
L
b
RV,90,k
Rax,90,k
Rtens,k
[mm]
[mm] SPLATE
[mm]
[kN]
[kN]
[kN] -
80 5
1,5 mm
2,0 mm
2,5 mm
3,0 mm
4,0 mm
5,0 mm
6,0 mm
-
76
2,27
2,27
2,27
2,27
2,27
2,27
2,26
2,58
100
96
2,44
2,44
2,44
2,44
2,44
2,44
2,43
3,26
120
116
2,61
2,61
2,61
2,61
2,61
2,61
2,60
3,94
3,0 mm
4,0 mm
5,0 mm
6,0 mm
SPLATE
7
8,0 mm 10,0 mm 12,0 mm
-
60
55
1,61
1,75
2,08
2,41
2,69
2,63
2,57
2,62
80
75
2,17
2,34
2,70
3,06
3,37
3,30
3,23
3,57
100
95
2,73
2,88
3,23
3,59
3,92
3,90
3,88
4,52
120
115
3,30
3,40
3,65
3,92
4,16
4,14
4,12
5,47
160
155
3,85
3,96
4,20
4,43
4,64
4,62
4,59
7,38
200
195
4,00
4,17
4,49
4,81
5,11
5,09
5,07
9,28
ε = screw-to-grain angle
248 | LBS HARDWOOD EVO | TIMBER
11,50
-
21,50
STRUCTURAL VALUES | BEECH LVL
CHARACTERISTIC VALUES EN 1995:2014 SHEAR
geometry
TENSION
steel-beech LVL
thread withdrawal flat
steel tension
SPLATE
L b
d1
d1
L
b
RV,90,k
Rax,90,k
Rtens,k
[mm]
[mm] SPLATE
[mm]
[kN]
[kN]
[kN]
80 100 120
76 96 116
5
SPLATE 60 80 100 120 160 200
7
55 75 95 115 155 195
1,5 mm
2,0 mm
2,5 mm
3,0 mm
4,0 mm
5,0 mm
6,0 mm
-
-
6,22 6,22 6,22
6,22 6,22 6,22
6,22 6,22 6,22
6,22 6,22 6,22
6,22 6,22 6,22
6,22 6,22 6,22
6,22 6,22 6,22
15,96 20,16 24,36
11,50
3,0 mm
4,0 mm
5,0 mm
6,0 mm
8,0 mm 10,0 mm 12,0 mm
-
-
7,14 8,44 8,44 8,44 8,44 8,44
7,44 8,85 8,85 8,85 8,85 8,85
8,22 9,68 9,68 9,68 9,68 9,68
9,06 10,51 10,51 10,51 10,51 10,51
9,79 11,26 11,34 11,34 11,34 11,34
16,17 22,05 27,93 33,81 45,57 57,33
21,50
9,64 11,11 11,93 11,93 11,93 11,93
9,49 10,96 11,93 11,93 11,93 11,93
ε = screw-to-grain angle
STRUCTURAL VALUES GENERAL PRINCIPLES • Characteristic values comply with the EN 1995:2014 standard in accordance with ETA-11/0030. • Design values can be obtained from characteristic values as follows:
Rd =
Rk kmod γM
• The values in the table are evaluated considering mechanical strength parameters of the Ø7 EVO screws obtained analytically and validated by experimental tests.
NOTES | TIMBER
The coefficients γM and kmod should be taken according to the current regulations used for the calculation.
• The characteristic timber-to-timber shear strengths were evaluated considering both an ε angle of 90° (RV,90,k) and 0° (RV,0,k) between the grains of the second element and the connector.
• The tensile design strength of the connector is the lower between the timber-side design strength (Rax,d) and the steel-side design strength (Rtens,d).
• In the case of screws inserted with pre-drilling hole, higher strength values can be achieved.
Rax,d = min
Rax,k kmod γM Rtens,k γM2
• For the mechanical resistance values and the geometry of the screws, reference was made to ETA-11/0030. • Sizing and verification of the timber elements and metal plates must be done separately. • The characteristic shear strength are calculated for screws inserted without pre-drilling hole. • The screws must be positioned in accordance with the minimum distances. • The thread withdrawal characteristic strength has been evaluated considering a fixing length equal to b. • The characteristic shear-strength value for LBSH EVO Ø5 nails has been evaluated assuming a plate thickness = SPLATE, always considering the case of thick plates according to ETA-11/0030 (SPLATE ≥ 1,5 mm). • The characteristic shear-strength value for LBSH EVO Ø7 screws has been evaluated assuming a plate thickness = SPLATE, and considering the thin (SPLATE ≤ 3,5 mm) intermediate (3,5 mm < SPLATE < 7,0 mm) or thick (SPLATE ≥ 7 mm) plate case.
• The characteristic thread withdrawal resistances were evaluated considering both an ε angle of 90° (Rax,90,k) and of 0° (Rax,0,k) between the grains and the connector. • For the calculation process a timber characteristic density ρk = 385 kg/m3 has been considered. For different values of ρk , the strength values in the table (timber-to-timber shear, steel-to-timber shear and tensile) can be converted by means of the coefficient kdens (see page 243).
NOTES | HARDWOOD • For the calculation process a mass density equal to ρk = 550 kg/m3 has been considered for hardwood (oak) elements.
NOTES | BEECH LVL • For the calculation process a mass density equal to ρk = 730 kg/m3 has been considered for LVL beech elements. • A 90° angle between the connector and the fiber, a 90° angle between the connector and the side face of the LVL element, and a 0° angle between the force and the fiber were considered for individual timber elements in the calculation.
• In the case of combined shear and tensile stress, the following verification must be satisfied:
Fv,d Rv,d
2
+
Fax,d Rax,d
2
≥ 1
• In the case of steel-to-timber connections with a thick plate, it is necessary to assess the effects of timber deformation and install the connectors according to the assembly instructions.
TIMBER | LBS HARDWOOD EVO | 249
LBA
ETA-22/0002
HIGH BOND NAIL EXCELLENT PERFORMANCE The new LBA nails have shear strength values among the highest on the market and make it possible to certify characteristic nail strengths that more closely approximate actual experimental strengths.
CERTIFIED ON CLT AND LVL Tested and certified values for plates on CLT substrates. Its use is also certified on LVL.
25°
LBA 25 PLA
LBA BINDED The nail is also available in a bound version with the same ETA certification and therefore the same high performance.
STAINLESS STEEL VERSION The nails are also available with the same certification from ETA in A4|AISI316 stainless steel for outdoor applications, with very high strength values.
34°
LBA 34 PLA
DIAMETER [mm]
3
LENGTH [mm]
25
4
12
6 40
100
200
MATERIAL
Zn
electrogalvanized carbon steel
A4
SC1 III) SC2 C1 T1 C2 A4 | AISI316 austenitic stainless steel (CRC
ELECTRO PLATED
AISI 316
SC1
SC2 C1
SC3 T1 C2
SC4 T2 C3
SC3 T2 C3
SC4 T3 C4
T4 C5
T5
T3 C4
T4 C5
T5
LBA COIL
FIELDS OF USE • • • • •
250 | LBA | TIMBER
timber based panels fibreboard and MDF panels solid timber glulam (Glued Laminated Timber) CLT, LVL
CAPACITY DESIGN The strength values are much closer to the actual experimental strengths, so capacity design can be performed more reliably.
WKR Values also tested, certified and calculated for fastening standard Rothoblaas plates. Using the nailer speeds up and facilitates installation.
TIMBER | LBA | 251
Use with NINO angle brackets allows for some of the most versatile applications: even for beam-to-beam joints.
LBA achieves the highest performance together with the WKR angle brackets with the specific strength values on CLT.
GEOMETRY AND MECHANICAL CHARACTERISTICS
d1 dE
dV,steel
dK
b
t1
L
LBA
LBAI
Nominal diameter
d1
[mm]
4
6
4
Head diameter
dK
[mm]
8,00
12,00
8,00
External diameter
dE
[mm]
4,40
6,60
4,40
Head thickness
t1
[mm]
1,50
2,00
1,50
Hole diameter on steel plate
dV,steel
[mm]
5,0÷5,5
7,0÷7,5
5,0÷5,5
Pre-drilling hole diameter(1)
dV
[mm]
3,0
4,5
3,0
Characteristic yield moment
My,k
[Nm]
6,68
20,20
7,18
fax,k
[N/mm2]
6,43
8,37
6,42
ftens,k
[kN]
6,5
17,0
6,5
Characteristic withdrawal-resistance parameter(2) (3) Characteristic tensile strength
(1) Pre-drilling valid for softwood. (2) Valid for softwood - maximum density 500 kg/m3. Associated density ρ = 350 kg/m3. a (3) Valid for LBA460 | LBA680 | LBAI450. For other nail lengths refer to ETA-22/0002.
252 | LBA | TIMBER
CODES AND DIMENSIONS Zn
LOOSE NAILS LBA d1
ELECTRO PLATED
CODE
[mm]
4
6
L
b
pcs
[mm]
[mm]
LBA440
40
30
250
LBA450
50
40
250
LBA460
60
50
250
75
65
250
LBA4100
100
85
250
LBA660
60
50
250
LBA680
80
70
250
LBA6100
100
85
250
L
4 d1
25°
4
CODE
L
b
[mm]
[mm]
40
30
2000
LBA25PLA450
50
40
2000
LBA25PLA460
60
50
2000
d1
40
250
ELECTRO PLATED
CODE
4
L
L
b
[mm]
[mm]
pcs
LBA34PLA440
40
30
2000
LBA34PLA450
50
40
2000
LBA34PLA460
60
50
2000
34° Compatible with 34° strip magazine nailgun
d1
ATEU0116 and gas nailgun HH12100700.
Zn
ELECTRO PLATED
CODE
L
b
[mm]
[mm]
40
30
LBACOIL450
50
40
1600
LBACOIL460
60
50
1600
[mm] LBACOIL440
d1
[mm]
50
[mm]
LBA COIL - 15° plastic roll binding
4
[mm]
pcs
LBA 34 PLA - plastic stick binding 34°
ROLL-BOUND NAILS
L
b
LBAI450
pcs
LBA25PLA440
d1
L
Zn
ELECTRO PLATED
Compatible with Anker 25° nailgun HH3522.
15°
CODE
Zn
STRIP-BOUND NAILS LBA 25 PLA - plastic stick binding 25° [mm]
d1 [mm]
LBA475
d1
A4
AISI 316
LBAI A4 | AISI316
pcs 1600
Compatible with nailgun TJ100091.
NOTE: LBA, LBA 25 PLA, LBA 34 PLA and LBA COIL available in hot-dip galvanised version on request.
RELATED PRODUCTS CODE
description
d1 NAIL
LNAIL
HH3731
palm nailer
HH3522 ATEU0116
pcs
[mm]
[mm]
4÷6
-
1
Anker 25° nailgun
4
40÷60
1
strip magazine nailgun 34°
4
40÷60
1
HH12100700
Anker 34°gas nailgun
4
40÷60
1
TJ100091
Anker coil nailgun 15°
4
40÷60
1
For more information about nailguns see page 406.
HH3731
HH3522
ATEU0116
HH12100700
TJ100091
TIMBER | LBA | 253
MINIMUM DISTANCES FOR NAILS SUBJECT TO SHEAR | STEEL-TO-TIMBER ρk ≤ 420 kg/m3
nails inserted WITHOUT pre-drilled hole
α=0°
F
d1 a1 a2 a3,t a3,c a4,t a4,c
[mm] [mm] [mm] [mm] [mm] [mm] [mm]
4 28 14 60 40 20 20
10∙d∙0,7 5∙d∙0,7 15∙d 10∙d 5∙d 5∙d
F
12∙d∙0,7 5∙d∙0,7 15∙d 10∙d 5∙d 5∙d
6 50 21 90 60 30 30
d1 a1 a2 a3,t a3,c a4,t a4,c
[mm] [mm] [mm] [mm] [mm] [mm] [mm]
α=90° 4 14 14 40 40 28 20
5∙d∙0,7 5∙d∙0,7 10∙d 10∙d 7∙d 5∙d
6 21 21 60 60 60 30
5∙d∙0,7 5∙d∙0,7 10∙d 10∙d 10∙d 5∙d
nails inserted WITH pre-drilled hole
α=0°
F
d1 a1 a2 a3,t a3,c a4,t a4,c
[mm] [mm] [mm] [mm] [mm] [mm] [mm]
4 14 8 48 28 12 12
5∙d∙0,7 3∙d∙0,7 12∙d 7∙d 3∙d 3∙d
F
6 21 13 72 42 18 18
5∙d∙0,7 3∙d∙0,7 12∙d 7∙d 3∙d 3∙d
d1 a1 a2 a3,t a3,c a4,t a4,c
[mm] [mm] [mm] [mm] [mm] [mm] [mm]
α=90° 4 11 11 28 28 20 12
4∙d∙0,7 4∙d∙0,7 7∙d 7∙d 5∙d 3∙d
6 17 17 42 42 42 18
4∙d∙0,7 4∙d∙0,7 7∙d 7∙d 7∙d 3∙d
α = load-to-grain angle d = d1 = nominal nail diameter stressed end -90° < α < 90°
a2 a2
unloaded end 90° < α < 270°
F a3,t
unload edge 180° < α < 360°
α
F α
α
a1 a1
stressed edge 0° < α < 180°
F α
a4,t
F a4,c
a3,c
NOTES • The minimum distances comply with the EN 1995:2014 standard in accordance with ETA-22/0002.
• In the case of timber-to-timber joints, the minimum spacing (a1 , a2) can be multiplied by a coefficient of 1,5.
EFFECTIVE NUMBER FOR SHEAR-STRESSED NAILS The load-bearing capacity of a connection made with several nails, all of the same type and size, may be lower than the sum of the load-bearing capacities of the individual connection system. For a row of n nails arranged parallel to the direction of the grain at a distance a1 , the characteristic effective load-bearing capacity is equal to:
Ref,V,k
a1 a1
Ref,V,k = nef RV,k
The nef value is given in the table below as a function of n and a1 .
n
2 3 4 5
4∙d 1,41 1,73 2,00 2,24
5∙d 1,48 1,86 2,19 2,49
6∙d 1,55 2,01 2,41 2,77
7∙d 1,62 2,16 2,64 3,09
( * ) For intermediate a values a linear interpolation is possible. 1
254 | LBA | TIMBER
8∙d 1,68 2,28 2,83 3,34
a 1( * ) 9∙d 1,74 2,41 3,03 3,62
10∙d 1,80 2,54 3,25 3,93
11∙d 1,85 2,65 3,42 4,17
12∙d 1,90 2,76 3,61 4,43
13∙d 1,95 2,88 3,80 4,71
≥ 14∙d 2,00 3,00 4,00 5,00
STRUCTURAL VALUES | STEEL-TO-TIMBER
CHARACTERISTIC VALUES EN 1995:2014
LBA Ø4-Ø6
geometry
SHEAR
TENSION
steel-to-timber
thread withdrawal
SPLATE L b
d1
d1
L
b
RV,k
[mm]
[mm] SPLATE
[mm]
[kN]
4
1,5 mm
2,5 mm
[kN]
3,0 mm
4,0 mm
5,0 mm
6,0 mm
-
40
30
2,19
2,17
2,16
2,14
2,11
2,09
2,06
0,77
50
40
2,58
2,58
2,58
2,58
2,58
2,58
2,58
1,08
60
50
2,83
2,83
2,83
2,83
2,83
2,83
2,83
1,39
75
65
3,20
3,20
3,20
3,20
3,20
3,20
3,20
1,85
100
85
3,69
3,69
3,69
3,69
3,69
3,69
3,69
2,47
3,0 mm
4,0 mm
5,0 mm
6,0 mm
8,0 mm
10,0 mm
12,0 mm
-
SPLATE 6
2,0 mm
Rax,k
60
50
4,63
4,59
4,55
4,52
4,44
4,37
4,24
2,45
80
70
5,72
5,72
5,72
5,72
5,72
5,72
5,65
3,69
100
85
6,27
6,27
6,27
6,27
6,27
6,27
6,27
4,72
LBAI Ø4
geometry
SHEAR
TENSION
steel-to-timber
thread withdrawal
SPLATE L b
d1
d1
L
b
RV,k
[mm]
[mm] SPLATE
[mm]
[kN]
50
40
4
Rax,k [kN]
1,5 mm
2,0 mm
2,5 mm
3,0 mm
4,0 mm
5,0 mm
6,0 mm
-
2,67
2,67
2,67
2,67
2,67
2,66
2,63
1,11
NOTES • For the calculation process a timber characteristic density ρk = 385 kg/m3 has been considered. For different ρk values, the strength values in the table can be converted by the kdens coefficient.
R’V,k = kdens,v RV,k R’ax,k = kdens,ax Rax,k R’head,k ρ = kdens,ax Rhead,k k
[kg/m3 ]
350
380
385
405
425
430
440
C-GL
C24
C30
GL24h
GL26h
GL28h
GL30h
GL32h
kdens,v
0,90
0,98
1,00
1,02
1,05
1,05
1,07
kdens,ax
0,92
0,98
1,00
1,04
1,08
1,09
1,11
Strength values thus determined may differ, for higher safety standards, from those resulting from an exact calculation.
GENERAL PRINCIPLES on page 257.
TIMBER | LBA | 255
STRUCTURAL VALUES | STEEL-TO-CLT
CHARACTERISTIC VALUES EN 1995:2014
LBA Ø4-Ø6
geometry
SHEAR
TENSION
steel-to-CLT
thread withdrawal
SPLATE L b
d1
d1
L
b
RV,k
[mm]
[mm] SPLATE
[mm]
[kN]
4
1,5 mm
2,5 mm
3,0 mm
[kN] 4,0 mm
5,0 mm
6,0 mm
-
40
30
2,19
2,17
2,16
2,14
2,11
2,09
2,06
0,77
50
40
2,58
2,58
2,58
2,58
2,58
2,58
2,58
1,08
60
50
2,83
2,83
2,83
2,83
2,83
2,83
2,83
1,39
75
65
3,20
3,20
3,20
3,20
3,20
3,20
3,20
1,85
100
85
3,69
3,69
3,69
3,69
3,69
3,69
3,69
2,47
3,0 mm
4,0 mm
5,0 mm
6,0 mm
8,0 mm
10,0 mm
12,0 mm
-
SPLATE 6
2,0 mm
Rax,k
60
50
4,63
4,59
4,55
4,52
4,44
4,37
4,24
2,45
80
70
5,72
5,72
5,72
5,72
5,72
5,72
5,65
3,69
100
85
6,27
6,27
6,27
6,27
6,27
6,27
6,27
4,72
LBAI Ø4
geometry
SHEAR
TENSION
steel-to-CLT
thread withdrawal
SPLATE L b
d1
d1
L
b
RV,k
Rax,k
[mm]
[mm] SPLATE
[mm]
[kN]
[kN]
4
50
40
1,5 mm
2,0 mm
2,5 mm
3,0 mm
4,0 mm
5,0 mm
6,0 mm
-
2,67
2,67
2,67
2,67
2,67
2,66
2,63
1,11
NOTES | CLT • The characteristic values are according to the national specifications ÖNORM EN 1995 - Annex K.
• The characteristic strengths in the table are valid for nails inserted into the side face of the CLT panel (wide face) penetrating more than one layer.
• For the calculation process a mass density ρ k = 350 kg/m3 has been considered for of the boards constituting the CLT panel.
GENERAL PRINCIPLES on page 257.
256 | LBA | TIMBER
MINIMUM DISTANCES FOR NAILS SUBJECT TO SHEAR | CLT nails inserted WITHOUT pre-drilled hole
α=0°
F
F
lateral face d1
[mm]
a1
[mm]
a2
[mm]
a3,t
α=90° lateral face
4
6
d1
[mm]
4
6
6∙d
24
36
a1
[mm]
3∙d
12
18
a2
[mm]
3∙d
12
18
3∙d
12
18
[mm]
10∙d
40
60
a3,t
[mm]
7∙d
28
42
a3,c
[mm]
6∙d
24
36
a4,t
[mm]
3∙d
12
18
a3,c
[mm]
6∙d
24
36
a4,t
[mm]
7∙d
28
a4,c
[mm]
3∙d
12
18
42
a4,c
[mm]
3∙d
12
18
α = angle between force and direction of the grain of the CLT panel outer layer. d = d1 = nominal nail diameter
ti a1 a3,t
α F
F α
α a3,c
F
F α tCLT
a2
a4,t
a4,c
NOTES • The minimum distances are compliant with national specification ÖNORM EN 1995-1-1 - Annex K and are to be considered valid unless otherwise specified in the technical documents for the CLT panels.
• The minimum distances are valid for minimum CLT thickness tCLT,min = 10∙d1 and for minimum individual layer thickness ti,min = 9 mm.
STRUCTURAL VALUES GENERAL PRINCIPLES • Characteristic values comply with the EN 1995:2014 standard in accordance with ETA-22/0002. • Design values can be obtained from characteristic values as follows:
Rd =
Rk kmod γM
The coefficients γM and kmod should be taken according to the current regulations used for the calculation. • For the mechanical strength values and the geometry of the nails, reference was made to ETA-22/0002. • Sizing and verification of the timber elements and metal plates must be done separately. • The characteristic shear strength are calculated for nails inserted without pre-drilled hole.
• The values in the table are independent of the load-to-grain angle. • The axial withdrawal resistance values were calculated considering a 90° ε angle between the grains and the connector and a penetration length of b. • The characteristic shear-strength value for LBA/LBAI Ø4 nails has been evaluated assuming a plate thickness = SPLATE, always considering the case of thick plates according to ETA-22/0002 (SPLATE ≥ 1,5 mm). • The characteristic shear-strength value for LBA Ø6 nails has been evaluated assuming a plate thickness = SPLATE, always considering the case of thick plate according to ETA-22/0002 (SPLATE ≥ 2,0 mm). • In the case of combined shear and tensile stress, the following verification must be satisfied:
Fv,d Rv,d
2
+
Fax,d Rax,d
2
≥ 1
• The nails must be positioned in accordance with the minimum distances.
TIMBER | LBA | 257
STRUCTURAL VALUES | STEEL-TO-LVL
CHARACTERISTIC VALUES EN 1995:2014
LBA Ø4-Ø6
geometry
SHEAR
TENSION
steel-LVL
thread withdrawal
SPLATE L b
d1
d1
L
b
RV,90,k
[mm]
[mm] SPLATE
[mm]
[kN]
4
1,5 mm
[kN]
2,0 mm
2,5 mm
3,0 mm
4,0 mm
5,0 mm
6,0 mm
-
40
30
2,63
2,61
2,60
2,58
2,54
2,51
2,47
0,92
50
40
2,95
2,95
2,95
2,95
2,95
2,95
2,95
1,29
60
50
3,24
3,24
3,24
3,24
3,24
3,24
3,24
1,66
75
65
3,68
3,68
3,68
3,68
3,68
3,68
3,68
2,21
100
85
4,27
4,27
4,27
4,27
4,27
4,27
4,27
2,94
3,0 mm
4,0 mm
5,0 mm
6,0 mm
8,0 mm
10,0 mm
12,0 mm
-
SPLATE 6
Rax,90,k
60
50
5,57
5,52
5,47
5,43
5,33
5,24
5,07
3,04
80
70
6,56
6,56
6,56
6,56
6,56
6,56
6,48
4,53
100
85
7,22
7,22
7,22
7,22
7,22
7,22
7,22
5,63
LBAI Ø4
geometry
SHEAR
TENSION
steel-LVL
thread withdrawal
SPLATE L b
d1
d1
L
b
RV,0,k
Rax,0,k
[mm]
[mm] SPLATE
[mm]
[kN]
[kN]
4
50
40
1,5 mm
2,0 mm
2,5 mm
3,0 mm
4,0 mm
5,0 mm
6,0 mm
-
3,04
3,04
3,04
3,04
3,04
3,04
3,04
1,32
NOTES | LVL • For the calculation process a mass density equal to ρk = 480 kg/m3 has been considered for softwood LVL elements.
258 | LBA | TIMBER
GENERAL PRINCIPLES on page 257.
DWS DRYWALL SCREW OPTIMISED GEOMETRY Bugle head and phosphate-coated steel; ideal for fastening sheets of drywall.
FULLY FINE THREADED Fully fine threaded screw, ideal for fastening on sheet metal supports.
DWS STRIP
bound version
CODES AND DIMENSIONS
GEOMETRY
DWS - bulk screws d1
CODE
[mm]
4,2 PH 2
description
L
25
FE620005
35
FE620010
45
FE620015
55
FE620020
65
1000 sheet metal substructure
1000 500 500
sheet metal substructure
200
CODE
[mm] 3,9 PH 2 3,9 PH 2 3,9 PH 2
DIAMETER [mm] 3,5 3,5
12
4
LENGTH [mm] 25 25
65
200
SERVICE CLASS
DWS STRIP - bound screws d1
d1
pcs
[mm] FE620001
3,5 PH 2
L
L
description
pcs
[mm] HH10600404
30
HH10600405
35
SC1
SC2
SC3
SC4
ATMOSPHERIC CORROSIVITY 10000 timber substructure
10000
HH10600406
45
10000
HH10600401
30
10000
HH10600402
35
HH10600403
45
sheet-metal substructure 10000 max 0,75 10000
HH10600397
30
10000
HH10600398
35
fermacell
Compatible with nailgun HH3371, see page 405.
10000
C1
C2
C3
C4
C5
WOOD CORROSIVITY T1
T2
T3
T4
T5
MATERIAL
PO
PHOSPHATED
phosphate-coated carbon steel
TIMBER | DWS | 259
CONCRETE
CONCRETE
CTC CONNECTOR FORTIMBER-TO-CONCRETE FLOORS. . . . . . . . . 262
TC FUSION TIMBER-TO-CONCRETE JOINT SYSTEM . . . . . . . . . . . . . . . . . . . 270
MBS | MBZ SELF-TAPPING SCREW FOR MASONRY. . . . . . . . . . . . . . . . . . . . . 274
SKR EVO | SKS EVO SCREW ANCHOR FOR CONCRETE. . . . . . . . . . . . . . . . . . . . . . . . . 276
SKR | SKS | SKP SCREW ANCHOR FOR CONCRETE CE1. . . . . . . . . . . . . . . . . . . . . 278
CONCRETE | 261
CTC
AC233 ESR-4645
ETA-19/0244
CONNECTOR FOR TIMBER-TO-CONCRETE FLOORS CERTIFICATION Timber-to-concrete fastener with specific CE certification according to ETA-19/0244. Tested and calculated with parallel and crossed arrangement of 45° and 30° connectors, with and without wooden planking.
RAPID DRY SYSTEM Approved system, self-drilling, reversible, fast and minimally invasive. Optimum static and noise performances, both for new projects and structural restoration.
COMPLETE RANGE Self-perforating tip with notch and countersunk cylindrical head. Available in two diameters (7 and 9 mm) and two lengths (160 and 240 mm) to optimize the number of fasteners.
INSTALLATION INDICATOR During installation, the under head counter-thread serves as “correct installation” indicator and increases the fastener tightness inside the concrete.
BIT INCLUDED
DIAMETER [mm]
6
LENGTH [mm]
52
7
9
16 160 240
SERVICE CLASS
SC1
SC2
SC3
SC4
ATMOSPHERIC CORROSIVITY
C1
C2
C3
C4
C5
WOOD CORROSIVITY
T1
T2
T3
T4
T5
MATERIAL
Zn
ELECTRO PLATED
400
electrogalvanized carbon steel
FIELDS OF USE • • • • • • • •
262 | CTC | CONCRETE
timber based panels solid timber glulam (Glued Laminated Timber) CLT and LVL high density woods concrete EN 206-1 lightweight concrete EN 206-1 lightened concrete based on silicates
TIMBER-TO-CONCRETE Ideal for composite floors and for renovation of existing floors. Stiffness values also calculated in the presence of vapour barrier sheet or soundproofing layer.
STRUCTURAL RESTORATION Values also tested, certified and calculated for high density woods. Certification specific for application in timber-concrete structures.
CONCRETE | CTC | 263
Composite timber-concrete floors on CLT panel with 45° connectors arranged in a single row.
Composite timber-concrete floors with 30° connectors arranged in a double row.
GEOMETRY AND MECHANICAL CHARACTERISTICS
dS d2 d1
XXX
dK
CTC
sC
b1
b2 L
GEOMETRY Nominal diameter
d1
[mm]
7
9
Head diameter
dK
[mm]
9,50
11,50
Thread diameter
d2
[mm]
4,60
5,90
Shank diameter
dS
[mm]
5,00
6,50
Pre-drilling hole diameter(1)
dV,S
[mm]
4,0
5,0
(1) Pre-drilling valid for softwood.
CHARACTERISTIC MECHANICAL PARAMETERS Nominal diameter
d1
[mm]
7
9
Tensile strength
ftens,k
[kN]
20,0
30,0
Yield moment
My,k
[Nm]
20,0
38,0
Coefficient of friction(2)
μ
[-]
0,25
0,25
(2) The friction component µ can be considered only in arrangement with inclined non-crossed screws (30° e 45°) and without the soundproofing foil.
softwood (softwood)
concrete [EN 206-1] + soundproofing layer
concrete [EN 206-1](3)
11,3 N/mm2
10,0 kN
15,0 kN
Withdrawal resistance parameter
fax,k
-
Associated density
ρa
[kg/m3]
350
-
-
Calculation density
ρk
[kg/m3]
≤ 590
-
-
(3) Value only valid in the absence of soundproofing foil for arrangements with 45° angled, uncrossed connectors
264 | CTC | CONCRETE
CODES AND DIMENSIONS L
b1
b2
[mm]
d1
CODE
[mm]
[mm]
[mm]
pcs
CTC7160 7 TX 30 CTC7240
160
40
110
100
240
40
190
100
L
b1
b2
[mm]
d1
CODE
[mm]
[mm]
[mm]
pcs
CTC9160 9 TX 40 CTC9240
160
40
110
100
240
40
190
100
SLIP MODULUS Kser The Kser slip modulus is to be understood as relating to a single connector or a pair of crossed connectors subject to a parallel force at the slip surface. connector arrangement without soundproofing layer
Kser [N/mm] CTC Ø7
connector arrangement with soundproofing layer
Kser [N/mm]
CTC Ø9
30°
CTC Ø7
CTC Ø9
48 lef
48 lef
16 lef
22 lef
70 lef
100 lef
30°
80 lef
lef
80 lef
lef
parallel at a 30°
parallel at a 30°
45°
45°
48 lef
lef
60 lef
lef
45° parallels 45°
45° parallels 45°
45°
70 lef
lef
45°
100 lef
lef
45° crossed
45° crossed
Ief = depth of CTC connector pull-through into timber element, in millimetres. Soundproofing foil is defined as a resilient underscreed foil, in bitumen and polyester felt, like SILENT FLOOR.
MINIMUM DISTANCES FOR AXIALLY LOADED CONNECTORS d1
[mm]
7
9
a1
[mm]
130∙sin(α)
130∙sin(α)
a2
[mm]
35
45
a1,CG
[mm]
85
85
a2,CG
[mm]
32
37
aCROSS
[mm]
11
14
α = angle between connector and grain
α = 45°/30°
a1,CG
α = 45°
a1
a2,CG
parallel at 30°/45°
a2
a2,CG
a2,CG
a1
aCROSS
a2,CG
45° crossed
NOTE on page 269.
CONCRETE | CTC | 265
STRUCTURAL VALUES - CALCULATION STANDARD NTC 2018
NTC2018 UNI EN 1995:2014
PRELIMINARY SIZING OF CTC CONNECTORS FOR TIMBER-TO-CONCRETE FLOORS Solid timber C24 (EN 338:2004) - not subject to continuous monitoring
span [m]
beam section BxH [mm]
Installation at a 45° angle, without soundproofing layer.
80 x 160
120 x 120
45°
120 x 200
120 x 240
no. connectors per beam CTC distance[mm] no. of lines no. connectors/m2 no. connectors per beam CTC distance[mm] no. of lines no. connectors/m2 no. connectors per beam CTC distance[mm] no. of lines no. connectors/m2 no. connectors per beam CTC distance[mm] no. of lines no. connectors/m2
3 32 7x160 100/100 1 16,2 36 9x160 200/200 2 18,2
-
3,5 32 7x240 120/120 1 13,9 60 9x160 100/200 2 26,0 22 7x160 150/200 1 9,5
4
4,5
5
6
-
-
-
-
-
-
-
28 9x240 150/200 1 9,4 24 9x240 200/200 1 8,1
44 9x240 100/150 1 13,3 32 9x240 150/200 1 10,8
64 9x240 150/300 2 19,4
84 9x160 100/100 2 31,8 20 9x240 200/300 1 7,6 16 7x240 250/300 1 6,1
-
-
3 18 7x160 200/200 1 9,1 22 9x160 150/150 1 11,1
3,5
4
4,5
5
6
-
-
-
-
-
-
-
-
-
20 9x160 200/300 1 7,6 16 7x240 250/300 1 6,1
28 7x240 150/200 1 9,4 24 7x240 250/300 1 8,1
88 9x240 120/120 2 26,7 24 7x240 200/300 1 8,1
124 9x240 100/100 2 37,6
span [m]
beam section BxH [mm]
80 x 160
Installation at a 45° angle, with soundproofing layer.
120 x 120
45°
120 x 200
120 x 240
no. connectors per beam CTC distance[mm] no. of lines no. connectors/m2 no. connectors per beam CTC distance[mm] no. of lines no. connectors/m2 no. connectors per beam CTC distance[mm] no. of lines no. connectors/m2 no. connectors per beam CTC distance[mm] no. of lines no. connectors/m2
-
64 9x240 100/150 2 27,7 22 7x160 150/200 1 9,5
-
-
3 32 7x160 200/200 1 16,2 40 9x160 150/150 1 20,2
3,5 48 7x240 150/150 1 20,8 60 9x160 100/150 1 26,0 26 7x240 250/400 1 11,3
Crossed installation at a 45° angle, with or without soundproofing layer.
80 x 160
120 x 120
45°
45°
120 x 200
120 x 240
266 | CTC | CONCRETE
-
span [m]
beam section BxH [mm] no. connectors per beam CTC distance[mm] no. of lines no. connectors/m2 no. connectors per beam CTC distance[mm] no. of lines no. connectors/m2 no. connectors per beam CTC distance[mm] no. of lines no. connectors/m2 no. connectors per beam CTC distance[mm] no. of lines no. connectors/m2
-
-
-
-
4
4,5
5
6
-
-
-
-
-
-
-
-
32 7x240 250/250 1 12,1 24 7x240 300/400 1 9,1
48 7x240 150/300 1 16,2 32 7x240 250/350 1 10,8
68 7x240 150/150 1 20,6 52 7x240 200/200 1 17,5
-
82 9x240 120/200 1 24,8
STRUCTURAL VALUES - CALCULATION STANDARD NTC 2018
NTC2018 UNI EN 1995:2014
PRELIMINARY SIZING OF CTC CONNECTORS FOR TIMBER-TO-CONCRETE FLOORS Glulam GL24h (EN14080:2013) - subject to continuous monitoring
beam section BxH [mm]
Installation at a 45° angle, without soundproofing layer.
120 x 160
120 x 200
45°
140 x 200
140 x 240
no. connectors per beam CTC distance[mm] no. of lines no. connectors/m2 no. connectors per beam CTC distance[mm] no. of lines no. connectors/m2 no. connectors per beam CTC distance[mm] no. of lines no. connectors/m2 no. connectors per beam CTC distance[mm] no. of lines no. connectors/m2
3 10 9x160 400/400 1 5,1
-
3,5 20 7x240 150/300 1 8,7 10 7x240 400/400 1 4,3
4 26 9x240 120/250 1 9,8 16 9x240 300/300 1 6,1 18 7x240 1 250/250 6,8
-
-
-
-
-
3 10 7x160 400/400 1 5,1
3,5 14 7x160 250/400 1 6,1 10 7x160 400/400 1 4,3
4 20 7x240 200/300 1 7,6 14 7x160 300/400 1 5,3 12 7x240 400/400 1 4,5
beam section BxH [mm]
120 x 160
Installation at a 45° angle, with soundproofing layer.
120 x 200
45°
140 x 200
140 x 240
no. connectors per beam CTC distance[mm] no. of lines no. connectors/m2 no. connectors per beam CTC distance[mm] no. of lines no. connectors/m2 no. connectors per beam CTC distance[mm] no. of lines no. connectors/m2 no. connectors per beam CTC distance[mm] no. of lines no. connectors/m2
-
-
-
-
-
-
3 16 7x160 400/400 1 8,1
3,5 30 7x240 200/300 1 13,0 18 7x160 400/400 1 7,8
4 44 7x240 150/250 1 16,7 32 7x240 200/400 1 12,1 28 7x240 250/400 1 10,6
beam section BxH [mm]
Crossed installation at a 45° angle, with or without soundproofing layer.
120 x 160
120 x 200
45°
45°
140 x 200
140 x 240
no. connectors per beam CTC distance[mm] no. of lines no. connectors/m2 no. connectors per beam CTC distance[mm] no. of lines no. connectors/m2 no. connectors per beam CTC distance[mm] no. of lines no. connectors/m2 no. connectors per beam CTC distance[mm] no. of lines no. connectors/m2
-
-
-
-
-
-
span [m] 4,5 36 9x240 100/200 1 12,1 30 9x240 120/250 1 10,1 24 9x240 1 150/300 8,1 18 7x240 1 300/300 6,1 span [m] 4,5 48 7x240 100/100 1 16,2 22 7x160 200/300 1 7,4 22 7x240 200/300 1 7,4 14 7x160 400/400 1 4,7 span [m] 4,5 68 9x240 100/200 1 22,9 48 7x240 150/300 1 16,2 46 7x240 150/350 1 15,5 32 7x240 300/300 1 10,8
5
5,5
6
-
-
-
38 9x240 100/250 1 11,5 32 9x240 1 120/250 9,7 28 7x240 1 150/250 8,5
44 9x240 100/200 1 12,1 42 9x240 1 100/250 11,6 36 9x240 1 120/250 9,9
62 9x240 1 100/100 15,7 48 9x240 1 100/200 12,1
5
5,5
6
-
-
-
-
-
-
40 7x240 100/200 1 12,1 36 7x240 150/150 1 10,9 16 7x240 350/350 1 4,8
58 7x240 100/100 1 16,0 32 7x240 150/250 1 8,8
48 7x240 100/200 1 12,1
5
5,5
6
-
-
-
-
-
68 7x240 150/150 1 20,6 62 7x240 120/250 1 18,8 44 7x240 200/300 1 13,3
84 7x240 100/200 1 23,1 74 9x240 150/150 1 20,4
-
-
100 9x240 120/120 1 25,3
CONCRETE | CTC | 267
STRUCTURAL VALUES - CALCULATION STANDARD EN 1995-1-1-2014
EN 1995:2014
PRELIMINARY SIZING OF CTC CONNECTORS FOR TIMBER-TO-CONCRETE FLOORS Glulam GL24h (EN14080:2013)
beam section BxH [mm]
Installation at a 45° angle, without soundproofing layer.
120 x 160
120 x 200
45°
140 x 200
140 x 240
no. connectors per beam CTC distance[mm] no. of lines no. connectors/m2 no. connectors per beam CTC distance[mm] no. of lines no. connectors/m2 no. connectors per beam CTC distance[mm] no. of lines no. connectors/m2 no. connectors per beam CTC distance[mm] no. of lines no. connectors/m2
3 10 9x160 400/400 1 5,1
-
3,5 16 9x240 200/400 1 6,9 10 7x240 400/400 1 4,3
4 26 9x240 150/200 1 9,8 16 9x240 300/300 1 6,1 16 7x240 1 300/300 6,1
-
-
-
-
-
3 10 7x160 400/400 1 5,1
3,5 14 7x160 400/400 1 6,1 10 7x160 400/400 1 4,3
4 20 9x160 200/300 1 7,6 14 9x160 350/350 1 5,3 12 7x240 400/400 1 4,5
beam section BxH [mm]
120 x 160
Installation at a 45° angle, with soundproofing layer.
120 x 200
45°
140 x 200
140 x 240
no. connectors per beam CTC distance[mm] no. of lines no. connectors/m2 no. connectors per beam CTC distance[mm] no. of lines no. connectors/m2 no. connectors per beam CTC distance[mm] no. of lines no. connectors/m2 no. connectors per beam CTC distance[mm] no. of lines no. connectors/m2
-
-
-
-
-
-
3 16 7x160 400/400 1 8,1
3,5 28 7x160 200/350 1 12,1 18 7x160 400/400 1 7,8
4 48 9x160 150/200 1 18,2 32 7x240 200/400 1 12,1 24 9x160 300/400 1 9,1
beam section BxH [mm]
Crossed installation at a 45° angle, with or without soundproofing layer.
120 x 160
120 x 200
45°
45°
140 x 200
140 x 240
268 | CTC | CONCRETE
no. connectors per beam CTC distance[mm] no. of lines no. connectors/m2 no. connectors per beam CTC distance[mm] no. of lines no. connectors/m2 no. connectors per beam CTC distance[mm] no. of lines no. connectors/m2 no. connectors per beam CTC distance[mm] no. of lines no. connectors/m2
-
-
-
-
-
-
span [m] 4,5 32 9x240 120/200 1 10,8 24 9x240 200/200 1 8,1 24 9x240 1 200/200 8,1 18 7x240 1 300/300 6,1
span [m] 4,5 48 7x240 100/100 1 16,2 20 9x160 200/350 1 6,7 16 7x160 250/400 1 5,4 14 7x160 400/400 1 4,7
span [m] 4,5 76 9x160 100/150 1 25,6 48 7x240 150/300 1 16,2 46 7x240 150/350 1 15,5 35 7x240 350/350 1 11,8
5 44 9x240 100/150 1 13,3 38 9x240 100/250 1 11,5 32 9x240 1 150/200 9,7 28 7x240 1 200/200 8,5
5,5
6
-
-
44 9x240 100/200 1 12,1 42 9x240 1 100/250 11,6 36 9x240 1 120/250 9,9
52 9x240 1 100/150 13,1 42 9x240 1 120/200 10,6
5
5,5
6
-
-
-
-
-
-
40 7x240 100/200 1 12,1 32 7x240 150/200 1 9,7 16 7x240 350/400 1 4,8
58 7x240 100/100 1 16,0 30 7x240 150/300 1 8,3
48 7x240 100/200 1 12,1
5
5,5
6
-
-
-
-
-
68 7x240 150/150 1 20,6 60 7x240 150/200 1 18,2 44 7x240 200/300 1 13,3
74 7x240 120/200 1 20,4 66 7x240 150/200 1 18,2
-
-
82 7x240 120/200 1 20,7
EXAMPLES OF POSSIBLE CONFIGURATIONS CTC CONNECTORS ARRANGED AT 45° IN PARALLEL CONFIGURATION ON 1 ROW min pitch
max pitch
max pitch
min pitch
sC tS H
L/4
L/2
B
L/4
CTC CONNECTORS ARRANGED AT 45° IN PARALLEL CONFIGURATION IN 2 ROWS min pitch
max pitch
max pitch
min pitch
sC tS H a2,CG L/4
L/2
L/4
a2 B
a2,CG
CTC CONNECTORS ARRANGED AT 45° IN CROSSED CONFIGURATION ON 1 ROW min pitch
max pitch
min pitch
sC tS H a2,CG L/4
L/2
L/4
aCROSS B
a2,CG
STRUCTURAL VALUES GENERAL PRINCIPLES
NOTES
• For the mechanical strength values and the geometry of the screws, reference was made to ETA-19/0244.
• The pre-dimensioning of the CTC connectors was performed according to Appendix B of EN 1995-1-1:2014 and ETA-19/0244.
• The design shear strength of the single inclined connector is given by the minimum contribution between the design strength on the timber side (Rax,d), the concrete design shear strength (Rax,concrete,d) and the steel design shear strength (Rtens,d):
• The predimensioning tables for the number of connectors were calculated according to both the Italian standard NTC 2018 and the European standard EN 1995-1-1:2014, making the following assumptions: - distance between beams i = 660 mm; - class C20/25 concrete slab (Rck=25 N/mm2) with thickness sC=50 mm; - the presence of a 20 mm thick t s board with a characteristic density of 350 kg/m3; - in the concrete slab, a Ø8 electrowelded mesh with a mesh size of 200 x 200 mm is planned.
Rv,Rd =(cos α + µ sin α) min
Rax,d Rtens,d Rax,concrete,d
where α is the angle between connector and grain (45° or 30°). • Soundproofing foil is defined as a resilient underscreed foil, in bitumen and polyester felt, like SILENT FLOOR. • The friction component µ can be considered only in arrangement with inclined non-crossed screws (30° e 45°) and without the soundproofing foil. • The minimum height of the timber beam must be H ≥ 100 mm. • The concrete collaborating slab must have a thickness sc of 50 mm ≤ sC ≤ 0,7 H; however, it is recommended to limit the thickness to a maximum of 100 mm to ensure the correct distribution of forces between the slab, connector and timber beam.
• The predimensioning tables for the number of connectors were calculated according to both the Italian standard NTC 2018 and the European standard EN 1995-1-1:2014, considering the following loads as agents: - own weight gk1 (timber beam + wooden planking + concrete slab); - permanent non-structural load gk2 = 2 kN/m2; - variable load of medium duration qk = 2 kN/m2. • Pitch means the minimum and maximum spacing values at which the connectors are positioned, respectively at the sides (L/4 - minimum spacing) and in the central part of the beam (L/2 - maximum spacing). • The connectors may be arranged in several rows (1 ≤ n ≤ 3) along the beam, subject to the minimum distances. • For different calculation configurations, the MyProject software is available (www.rothoblaas.com).
Complete calculation reports for designing in wood? Download MyProject and simplify your work!
CONCRETE | CTC | 269
TC FUSION TIMBER-CONCRETE FUSION
ETA 22/0806
TIMBER-TO-CONCRETE JOINT SYSTEM HYBRID STRUCTURES The VGS, VGZ and RTR full-thread connectors are now certified for any type of application where a timber element (wall, ceiling, etc.) must transmit stresses to a concrete element (bracing core, foundation, etc.).
PREFABRICATION The concrete prefabrication combines with timber prefabrication: the reinforcing bars inserted into the concrete casting accommodate the full thread timber connectors; the supplementary casting carried out after installing the timber components completes the connection.
POST-AND-SLAB SYSTEMS It allows connections between CLT panels with exceptional strength and stiffness for shear, bending moment and axial stress: an example is its use with SPIDER and PILLAR.
VGS
RTR
FIELDS OF USE Timber-to-concrete joints: • CLT, LVL • glulam and solid timber • concrete according to EN 206-1
270 | TC FUSION | CONCRETE
SPIDER AND PILLAR TC FUSION complements the SPIDER and PILLAR systems, allowing the implementation of moment connections between panels. Rothoblaas waterproofing systems make it possible to separate timber and concrete.
CONCRETE | TC FUSION | 271
CONNECTORS type
description
d1
L
[mm]
[mm]
VGS
screw for timber
9 – 11 - 13
200 ÷ 1500
VGZ
screw for timber
9 – 11
200 ÷ 1000
RTR
threaded rod
16
2200
d1 L d1 L d1 L
FIELD OF USE ETA 22/0806 is specifically for timber-concrete applications with VGS, VGZ and RTR all-thread connectors. The calculation method for evaluating both joint strength and stiffness is made explicit. The connection allows the transfer of shear, tensile and bending moment stresses between timber elements (CLT, LVL, GL) and concrete, both at floor and wall level.
Nd Vy,d
Vy,d
Rigid joint: • cut in the panel plane (Vy) • out-of-plane cutting (Vx) • tension (N) • bending moment (M)
Nd
Hinge joint: • cut in the panel plane (Vy) • out-of-plane cutting (Vx) • tension (N) Vx,d
Md
Vx,d
EN 1995 ETA 11/0030
Md
EN 1992 EN 206-1 EN 10080
EN 1995-1 ETA CLT
ETA-22/0806 Rothoblaas FOR TIMBER-TO-CONCRETE CONNECTIONS
INSTALLATION e
l0 Sg
lbd
272 | TC FUSION | CONCRETE
APPLICATIONS | CLT-CONCRETE FLOOR-FLOOR
250 mm 250 mm
lc
lc
FLOOR-WALL
rospetto
a4t
a
a
tCLT
tCLT
a d
a4t
lc
S
V
S
0
0
0
0
G V
S
0
V 0
0
1
0
1
0
G
S
V
V
S
G
1
1
0
S
tCLT G
0
0
0
0
1
1
1
1
0
G
V
S
G
V
S
G
V
G
lc
0
WALL-FOUNDATION
WALL-WALL
VGS
RTR
FULLY THREADED SCREW WITH COUNTERSUNK OR HEXAGONAL HEAD
STRUCTURAL REINFORCEMENT SYSTEM
More information on applications with the TC FUSION system in the data sheets of the VGS and RTR connectors. Discover them on page 164 and page 196.
CONCRETE | TC FUSION | 273
MBS | MBZ SELF-TAPPING SCREW FOR MASONRY TIMBER AND PVC DOORS/WINDOWS The countersunk head (MBS) allows PVC window frames to be installed without damaging the frame. The cylindrical head (MBZ) is able to penetrate and remain embedded in timber frames.
IFT CERTIFICATION Strength values in different substrates tested in cooperation with the Institute for Window Technology (IFT) in Rosenheim.
HI-LOW THREADING The HI-LOW thread allows for safe fastening even near the edges of the support, thanks to the reduced tension induced on the material, ideal for frames.
DIAMETER [mm] 6
8
16
LENGTH [mm] 52 52
242
400
SERVICE CLASS SC1
SC2
SC3
SC4
ATMOSPHERIC CORROSIVITY C1
C2
C3
C4
C5
WOOD CORROSIVITY T1
T2
T3
T4
T5
MATERIAL
Zn
MBS
MBZ
ELECTRO PLATED
electrogalvanized carbon steel
FIELDS OF USE Fastening of timber (MBZ) and PVC (MBS) window frames on the following supports: • solid and perforated brick • solid and perforated concrete • light concrete • autoclaved aerated concrete
274 | MBS | MBZ | CONCRETE
CODES AND DIMENSIONS MBS - countersunk screw d1
MBZ - cylindrical head
CODE
L
[mm]
pcs
d1
[mm] MBS7552 MBS7572 MBS7592 MBS75112 MBS75132 MBS75152 MBS75182 MBS75212 MBS75242
7,5 TX 30
CODE
L
[mm]
52 72 92 112 132 152 182 212 242
100 100 100 100 100 100 100 100 100
7,5 TX 30
pcs
[mm] MBZ7552 MBZ7572 MBZ7592 MBZ75112 MBZ75132 MBZ75152 MBZ75182 MBZ75212 MBZ75242
52 72 92 112 132 152 182 212 242
100 100 100 100 100 100 100 100 100
GEOMETRY AND PARAMETERS OF INSTALLATION MBS d1
MBZ
dK
d1
dK
d1
L
L
MBS
MBZ
Nominal diameter
d1
[mm]
7,5
7,5
Head diameter
dk
[mm]
10,00
8,00
Diameter of pre-drilling hole concrete/brickwork
d0
[mm]
6,0
6,0
Pre-drilling hole diameter in the timber element
dV
[mm]
6,2
6,2
Hole diameter in the PVC element
dF
[mm]
7,5
-
dK
dK dF
d1 MBS
dK
hnom
d1
dO
MBZ
hnom
d1 dK d0 dV dF hnom
screw diameter head diameter diameter of pre-drilling hole concrete/brickwork pre-drilling hole diameter in the timber element hole diameter in the PVC element nominal anchoring depth
dO
STRUCTURAL VALUES WITHDRAWAL RESISTANCE Type of support Concrete Solid brick Hollow brick Light concrete
hnom,min
Nrec(1)
[mm]
[kN]
30
0,89
40
0,65
80
1,18
40
0,12
60
0,24
80
0,17
hnom
(1)The recommended withdrawal values are obtained considering a safety coefficient of 3.
INSTALLATION dV
01a
MBS
02a
MBS
01b
MBZ
02b
MBZ
CONCRETE | MBS | MBZ | 275
SKR EVO | SKS EVO SCREW ANCHOR FOR CONCRETE RAPID DRY SYSTEM Fast and easy operation. The special threading requires a small predrill and guarantees fastening on concrete without creating expansion stresses in the concrete. Reduced minimum distances.
C4 EVO COATING Inorganic-based multilayer coating with a functional outer layer of epoxy matrix with aluminium flakes. Suitability for atmospheric corrosivity class C4 and service class 3.
LARGER HEAD Robust and easy to install, thanks to the increased geometry of the SKR hexagonal head.
DIAMETER [mm]
6
LENGTH [mm]
52
7,5
12
16
60
400 400
SERVICE CLASS
SC1
SC2
SC3
SC4
ATMOSPHERIC CORROSIVITY
C1
C2
C3
C4
C5
WOOD CORROSIVITY
T1
T2
T3
T4
T5
MATERIAL
C4
EVO COATING
carbon steel with C4 EVO coating SKR EVO
SKS EVO
FIELDS OF USE Fastening of timber or steel elements to concrete supports.
276 | SKR EVO | SKS EVO | CONCRETE
CODES AND DIMENSIONS SKR EVO - hexagonal head CODE
d1
L
tfix
h1,min
hnom
d0
dF,timber
dF,steel
SW
Tinst
[mm]
[mm]
[mm]
[mm]
[mm]
[mm]
[mm]
[mm]
[mm]
[Nm]
60
10
60
50
6
8
8-10
13
15
50
SKREVO7560 SKREVO7580
7,5
pcs
80
30
60
50
6
8
8-10
13
15
50
100
20
90
80
6
8
8-10
13
15
50
SKREVO1080
80
30
65
50
8
10
10-12
16
25
50
SKREVO10100
100
20
95
80
8
10
10-12
16
25
25
SKREVO75100
SKREVO10120
10
SKREVO10140
120
40
95
80
8
10
10-12
16
25
25
140
60
95
80
8
10
10-12
16
25
25
SKREVO10160
160
80
95
80
8
10
10-12
16
25
25
SKREVO12100
100
20
100
80
10
12
12-14
18
50
25
SKREVO12120
120
40
100
80
10
12
12-14
18
50
25
SKREVO12140
140
60
100
80
10
12
12-14
18
50
25
SKREVO12160
160
80
100
80
10
12
12-14
18
50
25
SKREVO12200
12
200
120
100
80
10
12
12-14
18
50
25
SKREVO12240
240
160
100
80
10
12
12-14
18
50
25
SKREVO12280
280
200
100
80
10
12
12-14
18
50
25
SKREVO12320
320
240
100
80
10
12
12-14
18
50
25
SKREVO12400
400
320
100
80
10
12
12-14
18
50
25
TX
Tinst
pcs
SKS EVO - countersunk head CODE
d1
L
tfix
h1,min
hnom
d0
dF,timber
dK
[mm]
[mm]
[mm]
[mm]
[mm]
[mm]
[mm]
[mm]
[Nm]
SKSEVO7560
60
10
60
50
6
8
13
TX40
-
50
SKSEVO7580
80
30
60
50
6
8
13
TX40
-
50
SKSEVO75100 SKSEVO75120
7,5
100
20
90
80
6
8
13
TX40
-
50
120
40
90
80
6
8
13
TX40
-
50
SKSEVO75140
140
60
90
80
6
8
13
TX40
-
50
SKSEVO75160
160
80
90
80
6
8
13
TX40
-
50
ADDITIONAL PRODUCTS - ACCESSORIES CODE
description
pcs
SOCKET13
SW 13 bushing 1/2” connection
1
SOCKET16
SW 16 bushing 1/2” connection
1
SOCKET18
SW 18 bushing 1/2” connection
1
GEOMETRY SKR EVO
Tinst tfix L
SKS EVO SW
dF d1 d0
hnom
h1
dK
external diameter of anchor d1 L anchor length t fix maximum fastening thickness h1 minimum hole depth hnom nominal anchoring depth d0 hole diameter in the concrete support dF maximum hole diameter in the element to be fastened SW wrench size dK head diameter T inst tightening torque
CONCRETE | SKR EVO | SKS EVO | 277
SKR | SKS | SKP
R120
SEISMIC C2
ETA
SCREW ANCHOR FOR CONCRETE CE1 SEISMIC PERFORMANCE Certified for applications on cracked and non-cracked concrete and in performance class for seismic actions C1 (M10-M16) and C2 (M12-M16).
IMMEDIATE STRENGTH Its operating principle allows the load to be applied after zero waiting times.
OPERATION BY SHAPE The stresses acting on the anchor are transmitted to the substrate predominantly through the interaction of the geometric conformation of the anchor, in particular, diameter and thread; allowing it to lock into the substrate and guaranteeing the seal. SKR
SKS
DIAMETER [mm]
6 6
LENGTH [mm]
52
16 16
60
290
SERVICE CLASS
SC1
SC2
SC3
SC4
ATMOSPHERIC CORROSIVITY
C1
C2
C3
C4
C5
WOOD CORROSIVITY
T1
T2
T3
T4
T5
MATERIAL
Zn
ELECTRO PLATED
400
electrogalvanized carbon steel
SKP
FIELDS OF USE Fastening of timber or steel elements to supports: • concrete according to EN 206:2013 • cracked and uncracked concrete
278 | SKR | SKS | SKP | CONCRETE
CODES AND DIMENSIONS SKR - hexagonal head with mock washer d1
CODE
[mm] 8 10
12
16
L
tfix
h1,min
hnom
hef
d0
dF
SW
Tinst
[mm]
[mm]
[mm]
[mm]
[mm]
[mm]
[mm]
[mm]
[Nm]
pcs
SKR8100
100
40
75
60
48
6
9
10
20
50
SKR1080
80
10
85
70
56
8
12
13
50
50
SKR10100
100
30
85
70
56
8
12
13
50
25
SKR10120
120
50
85
70
56
8
12
13
50
25
SKR1290
90
10
100
80
64
10
14
15
80
25
SKR12110
110
30
100
80
64
10
14
15
80
25
SKR12150
150
70
100
80
64
10
14
15
80
25
SKR12210
210
130
100
80
64
10
14
15
80
20
SKR12250
250
170
100
80
64
10
14
15
80
15
SKR12290
290
210
100
80
64
10
14
15
80
15
SKR16130
130
20
140
110
85
14
18
21
160
10
TX
pcs
SKS - countersunk head d1
CODE
L
tfix
h1,min
hnom
hef
d0
dF
dK
[mm]
[mm]
[mm]
[mm]
[mm]
[mm]
[mm]
[mm]
SKS660
60
10
55
50
38
5
7
11
TX 30
100
SKS860
60
10
75
50
38
6
9
14
TX 30
50
[mm] 6 8 10
SKS880
80
20
75
60
48
6
9
14
TX 30
50
SKS8100
100
40
75
60
48
6
9
14
TX 30
50
SKS10100
100
30
85
70
56
8
12
20
TX 40
50
L
tfix
h1,min
hnom
hef
d0
dF
dK
TX
pcs
SKP - convex head d1
CODE
[mm] 6
[mm]
[mm]
[mm]
[mm]
[mm]
[mm]
[mm]
[mm]
SKP680
80
30
55
50
38
5
7
12
TX 30
50
SKP6100
100
50
55
50
38
5
7
12
TX 30
50
ADDITIONAL PRODUCTS - ACCESSORIES CODE
description
pcs
SOCKET10
SW 10 bushing 1/2” connection
1
SOCKET13
SW 13 bushing 1/2” connection
1
SOCKET15
SW 15 bushing 1/2” connection
1
SOCKET21
SW 21 bushing 1/2” connection
1
GEOMETRY SKR
Tinst
SKS SW
tfix
dF
L d1 d0
hef
hnom h
1
SKP dK
dK
d1 external diameter of anchor L anchor length t fix maximum fastening thickness h1 minimum hole depth hnom nominal anchoring depth hef effective anchor depth d0 hole diameter in the concrete support dF maximum hole diameter in the element to be fastened SW wrench size dK head diameter T inst tightening torque
CONCRETE | SKR | SKS | SKP | 279
METAL
METAL
SBD SELF-DRILLING DOWEL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284
SBS SELF-DRILLING TIMBER-TO-METAL SCREW . . . . . . . . . . . . . . . . 292
SBS A2 | AISI304 SELF-DRILLING TIMBER-TO-METAL SCREW . . . . . . . . . . . . . . . . 296
SPP SELF-DRILLING TIMBER-TO-METAL SCREW . . . . . . . . . . . . . . . . 298
SBN - SBN A2 | AISI304 SELF-DRILLING METAL SCREW. . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
SAR SELF-DRILLING SCREW FOR STEEL, HEXAGONAL HEAD. . . . . . 304
MCS A2 | AISI304 SCREW WITH WASHER FOR METAL SHEET. . . . . . . . . . . . . . . . . . 306
MTS A2 | AISI304 SCREWS FOR METAL SHEET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
CPL PRE-PAINTED METAL SHEET CAP WITH PE GASKET. . . . . . . . . . 309
WBAZ STAINLESS STEEL WASHER WITH SEALING GASKET. . . . . . . . . . 310
METAL | 281
TIMBER-TO-METAL DRILLING METAL Timber-metal screws have a special tip that allows the hole to be drilled into the metal elements directly during installation of the screw. Their operation follows the same principles as drill and cut bits. Metal drilling produces much heat around the working area: 80% of this heat is contained in the steel shavings generated during the process. It is essential to keep drilling waste away from the drill in order to preserve its pull-through capabilities.
Generally, wood-metal screw tips are made of carbon steel, which is less stable than drill steel tips (SNAIL METAL) when subjected to high temperatures. In extreme situations, the heat generated can reach such high levels that the tip melts and burns in the wood. Waste chips produced during drilling.
In timber, milling greater than the depth of the plate facilitates the removal of drilling residues and helps to maintain an acceptable temperature near the tip.
The temperature of the tip depends proportionally on: SCREWDRIVER REVOLUTIONS [RPM] We recommend the use of screwdrivers with speed control, equipped with a clutch or torque control (e.g. Mafel A 18M BL).
[kg]
APPLIED FORCE [kg] This is the force with which the operator pushes the screw during installation. PLATE HARDNESS It is the metal's strength to drilling or cutting, which does not depend so much on the material class as on the heat treatment to which the metal has been subjected (e.g. quenching/ tempering).
In general, a lower applied force and lower screwing speed is required to drill aluminium than steel, precisely because of its lower hardness. Insertion tests of self-drilling dowels in timber-steel applications with controlled force.
The table shows the balanced combinations of screwdriver RPM and force (Fappl) to be used to easily drill steel depending on the nominal diameter of the screw/dowel. The applied force can be decreased, as long as the number of screwdriver revolutions is increased proportionally (and vice versa). In the case of particularly hard steels, reducing the screwdriver revolutions and increasing the applied force can help.
d1
(RPM + Fappl) rec
[mm]
[RPM]
[kg]
3,5 4,2 4,8 5,5 6,3 7,5
2200 1900 1600 1400 1200 1100
35 40 47 53 60 68
RPM-Fappl combination to be applied depending on d1 .
282 | TIMBER-TO-METAL | METAL
SBD head
TIMBER-TO-METAL TIPS AND SCREWS HOW DO TIMBER-TO-METAL SCREWS WORK? The shape of the tip favours cleaning the hole, pushing steel shavings away from the hole. The narrowing at the tip of the SBD serves precisely to create space for cutting waste away from the drilling area.
SBN thread
Amax
The maximum fixable thickness (A max) corresponds to the length of the screw minus the tip and 3 thread turns. 3 thread turns are in fact the ideal length for gripping the screw in the metal plate. SBS
Lp must be long enough to channel the residues. If the thread makes contact with the plate before drilling is complete, the connector may break.
s
Lp
tip
The length of the tip Lp determines the maximum thickness that can be drilled.
fins
TIMBER-METAL TIP WITH FINS In applications where the thickness of the timber element to be fixed (A) is much greater than that of the metal plate (s), fins are used at the tip. The fins protect the thread, ensuring that it does not come into contact with the timber element.
By creating an enlarged hole, the fins do not damage the thread and allow it to reach the plate intact. Once they come into contact with the plate, the fins break, allowing the thread to grip the plate.
SBS screw before and after installation
An enlarged hole prevents the timber element from lifting from the base metal during metal drilling.
METAL | TIMBER-TO-METAL | 283
SBD
EN 14592
SELF-DRILLING DOWEL TAPERED TIP The new tapered self-perforating tip minimises insertion times in timber-to-metal connection systems and guarantees applications in hardto-reach positions (reduced application force).
GREATER STRENGTH Higher shear strengths than the previous version. The 7.5 mm diameter ensures higher shear strengths than other solutions on the market and enables optimisation of the number of fasteners.
DOUBLE THREAD The thread close to the tip (b1) facilitates screwing. The longer under-head thread (b2) allows quick and precise closing of the joint.
CYLINDRICAL HEAD It allows the dowel to penetrate beyond the surface of the timber substrate. It ensures an optimal appearance and meets fire-strength requisites.
BIT INCLUDED
DIAMETER [mm] LENGTH [mm]
SBD 3,5
7,5
25
95
235 240
SERVICE CLASS
SC1
SC2
SC3
SC4
ATMOSPHERIC CORROSIVITY
C1
C2
C3
C4
C5
WOOD CORROSIVITY
T1
T2
T3
T4
T5
MATERIAL
Zn
ELECTRO PLATED
8
electrogalvanized carbon steel
VIDEO Scan the QR Code and watch the video on our YouTube channel
FIELDS OF USE Self-drilling system for concealed timber-to. steel joints. It can be used with screw guns running at 6002100 rpm, minimum applied force 25 kg, with: • steel S235 ≤ 10.0 mm • steel S275 ≤ 10.0 mm • steel S355 ≤ 10.0 mm • ALUMINI, ALUMIDI and ALUMAXI brackets
284 | SBD | METAL
MOMENT RESTORING It restores shear and moment forces in concealed centreline joints of large beams.
EXCEPTIONAL SPEED The only dowel that drills a 5 mm thick S355 plate in 20 seconds (horizontal application with an applied force of 25 kg). No self-drilling pin exceeds the application speed of the SBD with its new tip.
METAL | SBD | 285
Fastening of Rothoblaas pillar-holder with internal knife plate F70.
Rigid ”knee“ joint with double internal plate (LVL).
CODES AND DIMENSIONS SBD L ≥ 95 mm d1
SBD L ≤ 75 mm CODE
[mm]
b2
L
b1
b2
[mm]
[mm]
[mm]
pcs
SBDS7595
95
40
10
50
SBDS75115
115
40
10
50
SBDS75135
135
40
10
50
SBDS75155
7,5 TX 40 SBDS75175
155
40
20
50
175
40
40
50
SBDS75195
195
40
40
50
b1
SBDS75215
215
40
40
50
SBDS75235
235
40
40
50
d1
b2
b1
L
b1
b2
[mm]
CODE
[mm]
[mm]
[mm]
7,5 SBD7555 TX 40 SBD7575
55
-
10
50
75
30
10
50
b1
Lp
GEOMETRY AND MECHANICAL CHARACTERISTICS SBD L ≥ 95 mm
SBD L ≤ 75 mm
S
S dK
dK d1 b2
b1
d1
Lp
b2 L
L SBD L ≥ 95 mm
SBD L ≤ 75 mm
Nominal diameter
d1
[mm]
7,5
7,5
Head diameter
dK
[mm]
11,00
11,00
Tip length
Lp
[mm]
20,0
24,0
Effective length
Leff
[mm]
L-15,0
L-8,0
Characteristic yield moment
My,k
[Nm]
75,0
42,0
286 | SBD | METAL
pcs
INSTALLATION | ALUMINIUM PLATE plate
single plate [mm]
ALUMINI ALUMIDI ALUMAXI
6 6 10
It is suggested to have a milling in the wood equal to the thickness of the plate increased by at least 1 mm.
40 kg
ta
s
B
ta
25 kg
s pressure to be applied
40 kg
pressure to be applied
recommended screwdriver
Mafell A 18M BL
recommended screwdriver
recommended speed
1st gear (600-1000 rpm)
recommended speed
t25 a kg
ta B
Mafell A 18M BL 1st gear (600-1000 rpm)
INSTALLATION | STEEL PLATE plate S235 steel S275 steel S355 steel
single plate
double plate
[mm]
[mm]
10 10 10
8 6 5
It is suggested to have a milling in the wood equal to the thickness of the plate increased by at least 1 mm.
40 kg
25 kg
B
s
ti
B
s
ta
ta
ta
s
25 kg
ta
40 kg
s
s
s
ta
ti
Mafell A 18M BL
B
ta
pressure to be applied
40 kg Mafell A 18M BL
ta ta pressure to be applied B recommended screwdriver
25 kg
recommended screwdriver recommended speed
2nd gear (1000-1500 rpm)
recommended speed
2nd gear (1500-2000 rpm)
PLATE HARDNESS The steel plate hardness can greatly vary the pull-through times of the dowels. Hardness is in fact defined as the material's strength to drilling or shear. In general, the harder the plate, the longer the drilling time. The hardness of the plate does not always depend on the strength of the steel, it can vary from point to point and is strongly influenced by heat treatments: standardised plates have a medium to low hardness, while the hardening process gives the steel high hardnesses.
METAL | SBD | 287
TIMBER-TO-METAL-TO-TIMBER STRUCTURAL VALUES
CHARACTERISTIC VALUES EN 1995:2014
1 INTERNAL PLATE - DOWEL HEAD INSTALLATION DEPTH 0 mm
s ta
ta B
B
beam width
[mm]
7,5x55
7,5x75
7,5x95
7,5x115
7,5x135
7,5x155
7,5x175
7,5x195
7,5x215
7,5x235
60
80
100
120
140
160
180
200
220
240
head insertion depth
p
[mm]
0
0
0
0
0
0
0
0
0
0
exterior wood
ta
[mm]
27
37
47
57
67
77
87
97
107
117
Rv,k [kN]
load-to-grain angle
0°
7,48
9,20
12,10
12,88
12,41
15,27
16,69
17,65
18,41
18,64
30°
6,89
8,59
11,21
11,96
11,56
13,99
15,23
16,42
17,09
17,65
45°
6,41
8,09
10,34
11,20
10,86
12,96
14,05
15,22
16,00
16,62
60°
6,00
7,67
9,62
10,58
10,27
12,10
13,07
14,12
15,08
15,63
90°
5,66
7,31
9,01
10,04
9,77
11,37
12,24
13,18
14,19
14,79
7,5x235
1 INTERNAL PLATE - DOWEL HEAD INSTALLATION DEPTH 15 mm
p
s ta
ta B
7,5x55
7,5x75
7,5x95
7,5x115
7,5x135
7,5x155
7,5x175
7,5x195
7,5x215
beam width
B
[mm]
80
100
120
140
160
180
200
220
240
-
head insertion depth
p
[mm]
15
15
15
15
15
15
15
15
15
-
exterior wood
ta
[mm]
37
47
57
67
77
87
97
107
117
-
0°
8,47
9,10
11,92
12,77
13,91
15,22
16,66
18,02
18,64
-
30°
7,79
8,49
11,17
11,86
12,82
13,95
15,20
16,54
17,43
-
Rv,k [kN]
load-to-grain angle
288 | SBD | METAL
45°
7,25
8,00
10,55
11,11
11,93
12,92
14,02
15,20
16,31
-
60°
6,67
7,58
10,03
10,48
11,19
12,06
13,04
14,09
15,21
-
90°
6,14
7,23
9,59
9,95
10,56
11,33
12,21
13,16
14,17
-
TIMBER-TO-METAL-TO-TIMBER STRUCTURAL VALUES
CHARACTERISTIC VALUES EN 1995:2014
2 INTERNAL PLATES - DOWEL HEAD INSTALLATION DEPTH 0 mm
s ta
s ti
ta
B
beam width
7,5x55
7,5x75
7,5x95
7,5x115
7,5x135
7,5x155
7,5x175
7,5x195
7,5x215
7,5x235
140
160
180
200
220
240
B
[mm]
-
-
-
-
head insertion depth
p
[mm]
-
-
-
-
0
0
0
0
0
0
exterior wood
ta
[mm]
-
-
-
-
45
50
55
60
70
75
interior wood
ti
[mm]
-
-
-
-
38
48
58
68
68
78
0°
-
-
-
-
20,07
22,80
25,39
28,07
29,24
31,80
30°
-
-
-
-
18,20
20,91
23,19
25,56
26,55
29,07
Rv,k [kN]
load-to-grain angle
45°
-
-
-
-
16,67
19,36
21,39
23,51
24,36
26,63
60°
-
-
-
-
15,41
18,01
19,90
21,81
22,55
24,60
90°
-
-
-
-
14,35
16,73
18,64
20,38
21,01
22,89
7,5x235
2 INTERNAL PLATES - DOWEL HEAD INSTALLATION DEPTH 10 mm
p
s ta
s ti
ta
B 7,5x55
7,5x75
7,5x95
7,5x115
7,5x135
7,5x155
7,5x175
7,5x195
7,5x215
beam width
B
[mm]
-
-
-
140
160
180
200
220
240
-
head insertion depth
p
[mm]
-
-
-
10
10
10
10
10
10
-
exterior wood
ta
[mm]
-
-
-
50
55
60
75
80
85
-
interior wood
ti
[mm]
-
-
-
28
45
50
65
70
75
-
0°
-
-
-
16,56
20,07
23,22
25,65
28,89
30,50
-
Rv,k [kN]
load-to-grain angle
30°
-
-
-
15,07
18,20
21,29
23,14
26,32
27,78
-
45°
-
-
-
13,86
16,67
19,53
21,11
24,05
25,50
-
60°
-
-
-
12,85
15,41
18,01
19,43
22,10
23,62
-
90°
-
-
-
12,00
14,35
16,73
18,01
20,46
22,02
-
METAL | SBD | 289
MINIMUM DISTANCES FOR DOWELS SUBJECT TO SHEAR α=0°
F
d1 a1 a2 a3,t a3,c a4,t a4,c
[mm] [mm] 5∙d [mm] 3∙d [mm] max(7∙d ; 80 mm) [mm] max(3,5∙d ; 40 mm) [mm] 3∙d [mm] 3∙d
F
7,5 38 23 80 40 23 23
d1 a1 a2 a3,t a3,c a4,t a4,c
α=90°
[mm] [mm] 3∙d [mm] 3∙d [mm] max(7∙d ; 80 mm) [mm] max(3,5∙d ; 40 mm) [mm] 4∙d [mm] 3∙d
7,5 23 23 80 40 30 23
α = load-to-grain angle d = d1 = nominal dowel diamter stressed end -90° < α < 90°
a2 a2
unloaded end 90° < α < 270°
F a3,t
unload edge 180° < α < 360°
α
F α
α
a1 a1
stressed edge 0° < α < 180°
F α
F
a4,t
a4,c
a3,c
NOTES • Minimum distances FOR CONNECTORS SUBJECTED TO SHEAR STRESS in accordance with EN 1995:2014.
EFFECTIVE NUMBER FOR SHEAR-STRESSED DOWELS The load-bearing capacity of a connection made with several dowels, all of the same type and size, may be lower than the sum of the load-bearing capacities of the individual connection system. For a row of n dowels arranged parallel to the direction of the grain (α = 0°) at a distance a1 , the characteristic effective load-bearing capacity is equal to:
Ref,V,k
a1 a1
Ref,V,k = nef RV,k
The nef value is given in the table below as a function of n and a1 .
n
2 3 4 5 6
40 1,49 2,15 2,79 3,41 4,01
50 1,58 2,27 2,95 3,60 4,24
60 1,65 2,38 3,08 3,77 4,44
70 1,72 2,47 3,21 3,92 4,62
a1( * ) [mm] 80 1,78 2,56 3,31 4,05 4,77
90 1,83 2,63 3,41 4,17 4,92
100 1,88 2,70 3,50 4,28 5,05
120 1,97 2,83 3,67 4,48 5,28
140 2,00 2,94 3,81 4,66 5,49
( * ) For intermediate a values a linear interpolation is possible. 1
STRUCTURAL VALUES GENERAL PRINCIPLES • Characteristic values according to EN 1995:2014. • Design values can be obtained from characteristic values as follows:
Rd =
Rk kmod γM
The coefficients γM and kmod should be taken according to the current regulations used for the calculation. • Mechanical strength values and dowels geometry comply with CE marking according to EN 14592. • The values provided are calculated using 5 mm thick plates and a 6 mm thick milled cut in the wood. Values are relative to a single SBD dowel. • Dimensioning and verification of timber elements and steel plates must be carried out separately. • The dowels must be positioned in accordance with the minimum distances. • The effective length of SBD (L ≥ 95 mm) dowels takes into account the diameter reduction in the vicinity of the self-drilling tip.
290 | SBD | METAL
NOTES • For the calculation process a timber characteristic density ρk = 385 kg/m3 has been considered. For different ρk values, the strength on the table on the timber side can be converted by the kdens,v coefficient
R’V,k = kdens,v RV,k R’ax,kρ = kdens,ax Rax,k k
3
350
380
385
405
425
430
440
R’[kg/m =] kdens,ax Rhead,k head,k C-GL
C24
C30
GL24h
GL26h
GL28h
GL30h
GL32h
kdens,v
0,90
0,98
1,00
1,02
1,05
1,05
1,07
Strength values thus determined may differ, for higher safety standards, from those resulting from an exact calculation.
INSTALLATION It is suggested to have a milling in the wood equal to the thickness of the plate, increased by at least 1-2 mm, placing SHIM spacers between the wood and the plate to centre it in the milling. In this way, the steel residue from the drilling of the metal has an outlet to escape and does not obstruct the passage of the drill through the plate, thus avoiding overheating of the plate and timber and also preventing the generation of smoke during installation.
Cutter increased by 1 mm on each side.
Shavings obstructing the holes in the steel during drilling (spacers not installed).
To avoid breakage of the tip at the moment of pin-plate contact, it is recommended to reach the plate slowly, pushing with a lower force until the moment of impact and then increasing it to the recommended value (40 kg for top-down applications and 25 kg for horizontal installations). Try to keep the dowel as perpendicular as possible to the surface of the timber and the plate.
Intact tip after correct installation of the dowel.
Broken (cut) tip due to excessive force during impact with metal.
If the steel plate is too hard, the dowel tip may shrink significantly or even melt. In this case, it is advisable to check the material certificates for any heat treatment or hardness tests performed. Try decreasing the force applied or alternatively changing the type of plate.
Tip melted during installation on a too hard plate without spacers between timber and plate.
Reduction of the tip when drilling the plate due to the high hardness of the plate.
METAL | SBD | 291
SBS
EN 14592
SELF-DRILLING TIMBER-TO-METAL SCREW CERTIFIED The SBS self-drilling screw is CE marked according to EN 14592. It is the ideal choice for professionals who demand quality, safety and reliable performance in structural timber-to-metal applications.
TIMBER-TO-METAL TIP Special self-perforating tip with bleeder geometry for excellent drilling capacity both in aluminium (thickness: up to 8 mm) and steel (thickness: up to 6 mm).
CUTTING FINS The fins protect the screw thread during timber pull-through. They guarantee maximum threading efficiency in metal and perfect adhesion between the thickness of the wood and the metal.
BIT INCLUDED
DIAMETER 4 [mm] 5
6
4,2
6
8
100
240
3,5
7
8
LENGTH [mm] 25
32
SERVICE CLASS SC1
SC2
SC3
SC4
ATMOSPHERIC CORROSIVITY C1
C2
C3
C4
C5
WOOD CORROSIVITY T1
T2
T3
T4
T5
MATERIAL
Zn
ELECTRO PLATED
electrogalvanized carbon steel
FIELDS OF USE Direct fastening, without pre-drilling hole, of timber elements to steel substructures: • in S235 steel with a maximum thickness of 6 mm • in aluminium with a maximum thickness of 8,0 mm
292 | SBS | METAL
CODES AND DIMENSIONS L
b
A
sS
sA
[mm]
d1
CODE
[mm]
[mm]
[mm]
[mm]
[mm]
SBS4232 4,2 TX 20 SBS4238 SBS4838 4,8 TX 25 SBS4845 SBS5545 5,5 TX 30 SBS5550 SBS6360 SBS6370 6,3 TX 30 SBS6385 SBS63100
32 38 38 45 45 50 60 70 85 100
18 19 23 25 29 29 35 45 55 55
17 23 22 29 28 33 39 49 64 79
1÷3 1÷3 2÷4 2÷4 3÷5 3÷5 4÷6 4÷6 4÷6 4÷6
2÷4 2÷4 3÷5 3÷5 4÷6 4÷6 6÷8 6÷8 6÷8 6÷8
pcs 500 500 200 200 200 200 100 100 100 100
s S thickness that can be drilled, steel plate S235/St37 sA thickness that can be drilled, aluminium plate
GEOMETRY AND MECHANICAL CHARACTERISTICS A
s
SB
XXX
dk
S
ds
d2 d1 b
t1
Lp L
GEOMETRY Nominal diameter
d1
[mm]
4,2
4,8
5,5
6,3
Head diameter
dK
[mm]
8,00
9,25
10,50
12,00
Thread diameter
d2
[mm]
3,30
3,50
4,15
4,85
Shank diameter
dS
[mm]
3,40
3,85
4,45
5,20
Head thickness
t1
[mm]
3,50
4,20
4,80
5,30
Tip length
Lp
[mm]
10,0
10,5
11,5
15,0
CHARACTERISTIC MECHANICAL PARAMETERS Nominal diameter
d1
[mm]
4,2
4,8
5,5
6,3
Tensile strength
ftens,k
[kN]
7,5
9,5
10,5
16,5
Yield moment
My,k
[Nm]
3,4
7,6
10,5
18,0
Withdrawal resistance parameter
fax,k
[N/mm2]
-
-
-
-
Associated density
ρa
[kg/m3]
-
-
-
-
Head-pull-through parameter
fhead,k [N/mm2]
10,0
10,0
13,0
14,0
Associated density
ρa
350
350
350
350
[kg/m3]
INSTALLATION 01
02
03
RECOMMENDATIONS FOR SCREWING: steel: vS ≈ 1000 - 1500 rpm aluminium: vA ≈ 600-1000 rpm
METAL | SBS | 293
MINIMUM DISTANCES FOR SHEAR LOADS ρk ≤ 420 kg/m3
screws inserted WITHOUT pre-drilled hole
α=0°
F
F
α=90°
d1
[mm]
4,2
4,8
5,5
6,3
d1
[mm]
4,2
4,8
5,5
6,3
a1
[mm]
10∙d
42
48
12∙d
66
76
a1
[mm]
5∙d
21
24
5∙d
28
32
a2
[mm]
5∙d
21
24
5∙d
28
32
a2
[mm]
5∙d
21
24
5∙d
28
32
a3,t
[mm]
15∙d
63
72
15∙d
83
95
a3,t
[mm]
10∙d
42
48
10∙d
55
63
a3,c
[mm]
10∙d
42
48
10∙d
55
63
a3,c
[mm]
10∙d
42
48
10∙d
55
63
a4,t
[mm]
5∙d
21
24
5∙d
28
32
a4,t
[mm]
7∙d
29
34
10∙d
55
63
a4,c
[mm]
5∙d
21
24
5∙d
28
32
a4,c
[mm]
5∙d
21
24
5∙d
28
32
α = load-to-grain angle d = d1 = nominal screw diameter
screws inserted WITH pre-drilled hole
α=0°
F
F
α=90°
d1
[mm]
4,2
4,8
5,5
6,3
d1
[mm]
4,2
4,8
5,5
6,3
a1
[mm]
5∙d
21
24
5∙d
28
32
a1
[mm]
4∙d
17
19
4∙d
22
25
a2
[mm]
3∙d
13
14
3∙d
17
19
a2
[mm]
4∙d
17
19
4∙d
22
25
a3,t
[mm]
12∙d
50
58
12∙d
66
76
a3,t
[mm]
7∙d
29
34
7∙d
39
44
a3,c
[mm]
7∙d
29
34
7∙d
39
44
a3,c
[mm]
7∙d
29
34
7∙d
39
44
a4,t
[mm]
3∙d
13
14
3∙d
17
19
a4,t
[mm]
5∙d
21
24
7∙d
39
44
a4,c
[mm]
3∙d
13
14
3∙d
17
19
a4,c
[mm]
3∙d
13
14
3∙d
17
19
α = load-to-grain angle d = d1 = nominal screw diameter stressed end -90° < α < 90°
a2 a2
unloaded end 90° < α < 270°
F a3,t
unload edge 180° < α < 360°
α
F α
α
a1 a1
stressed edge 0° < α < 180°
F α
a4,t
F a4,c
a3,c
NOTES • Minimum distances in accordance with EN 1995:2014.
EFFECTIVE NUMBER FOR SHEAR LOADS The load-bearing capacity of a connection made with several screws, all of the same type and size, may be lower than the sum of the load-bearing capacities of the individual connection system. For a row of n screws arranged parallel to the direction of the grain at a distance a1 , the characteristic effective load-bearing capacity is equal to:
Ref,V,k
a1 a1
Ref,V,k = nef RV,k
The nef value is given in the table below as a function of n and a1 .
n
2 3 4 5
4∙d 1,41 1,73 2,00 2,24
5∙d 1,48 1,86 2,19 2,49
6∙d 1,55 2,01 2,41 2,77
7∙d 1,62 2,16 2,64 3,09
( * ) For intermediate a values a linear interpolation is possible. 1
294 | SBS | METAL
8∙d 1,68 2,28 2,83 3,34
a 1( * ) 9∙d 1,74 2,41 3,03 3,62
10∙d 1,80 2,54 3,25 3,93
11∙d 1,85 2,65 3,42 4,17
12∙d 1,90 2,76 3,61 4,43
13∙d 1,95 2,88 3,80 4,71
≥ 14∙d 2,00 3,00 4,00 5,00
STRUCTURAL VALUES | TIMBER-TO-STEEL
CHARACTERISTIC VALUES EN 1995:2014
SHEAR
TENSION
timber-to-steel min plate
geometry
timber-to-steel max plate
steel tension
head pull-through
A
L b
sS
sS
d1
d1
L
b
SS
RV,k
SS
RV,k
Rtens,k
A min
Rhead,k
[mm]
[mm]
[mm]
[mm]
[kN]
[mm]
[kN]
[kN]
[mm]
[kN]
7,50
-
9,50
20
10,50
20
4,2 4,8 5,5
6,3
32
18
38
19
38
23
45
25
45
29
50
29
1 2 3
0,62 0,80 0,83 1,05 1,12 1,29
3 4 5
0,64 0,85 1,00 1,20 1,36 1,51
60
35
1,78
2,03
70
45
2,16
2,38
85
55
100
55
4
2,42
6
2,43
2,90 3,00
0,92 1,55 1,55 2,18
16,50
25
2,18 2,18 2,18
ε = screw-to-grain angle
STRUCTURAL VALUES GENERAL PRINCIPLES
NOTES | TIMBER
• Characteristic values according to EN 1995:2014.
• The characteristic plate shear strengths are evaluated considering the case of thin plate (SS ≤ 0,5 d1) and intermediate plate (0,5 d1 < SS < d1).
• Design values can be obtained from characteristic values as follows:
Rd =
Rk kmod γM
The coefficients γM and kmod should be taken according to the current regulations used for the calculation. • Mechanical strength values and screw geometry comply with CE marking according to EN 14592. • Dimensioning and verification of timber elements and steel plates must be carried out separately.
• The characteristic shear strengths on a steel plate are calculated for the minimum drilling hole thickness ss,min (min plate) and maximum ss,max (max plate). • For the calculation process a timber characteristic density ρk = 385 kg/m3 has been considered. • For the Ø4.2 and Ø4.8 screws, the characteristic pull-through strength of the head was calculated by taking the values from the experimental tests carried out at the HFB Engineering laboratory, Leipzig, Germany, as valid.
• The screws must be positioned in accordance with the minimum distances. • The head pull-through characteristic strength was calculated using timber elements.
METAL | SBS | 295
SBS A2 | AISI304 SELF-DRILLING TIMBER-TO-METAL SCREW BIMETAL SCREW The head and body are made of A2 | AISI304 stainless steel, thus providing high resistant to corrosion. The tip is made of carbon steel for excellent drilling performance.
TIMBER-TO-METAL TIP Special self-perforating tip with bleeder geometry for excellent drilling capacity both in aluminium and steel. The fins protect the screw thread during timber pull-through.
STAINLESS STEEL The A2 | AISI304 stainless steel head and body make it ideal for outdoor applications. Very sharp under-head ribs for a perfect surface finish on the wooden element.
BIT INCLUDED
DIAMETER [mm] 3,5
4,8
6
8
LENGTH [mm] 25
45
120
240
SERVICE CLASS SC1
SC2
SC3
SC4
ATMOSPHERIC CORROSIVITY C1
C2
C3
C4
C5
WOOD CORROSIVITY T1
T2
T3
T4
T5
MATERIAL
A2
AISI 304
A2 | AISI304 austenitic stainless steel (CRC II)
FIELDS OF USE Direct fastening, without pre-drilling hole, of timber elements to steel substructures: • in S235 steel with a maximum thickness of 6,0 mm • in aluminium with a maximum thickness of 8,0 mm
296 | SBS A2 | AISI304 | METAL
CODES AND DIMENSIONS L
b
A
sS
sA
[mm]
d1
CODE
[mm]
[mm]
[mm]
[mm]
[mm]
4,8 SBSA24845 TX 25
45
31
30
1÷3
2÷3
5,5 SBSA25555 TX 25
55
39
37
2÷5
3÷5
pcs
d1
CODE
L
b
A
sS
sA
[mm]
[mm]
[mm]
[mm]
[mm]
200
70 6,3 SBSA26370 TX 30 SBSA263120 120
53
49
3÷6
4÷8
100
103
99
3÷6
4÷8
100
200
s S thickness that can be drilled, steel plate S235/St37 sA thickness that can be drilled, aluminium plate
[mm]
pcs
GEOMETRY A
s d2 d 1
dk t1
b
Lp L
Nominal diameter
d1
[mm]
4,8
5,5
6,3
Head diameter
dK
[mm]
9,25
10,50
10,50
Thread diameter
d2
[mm]
3,50
4,15
4,80
Head thickness
t1
[mm]
4,25
4,85
4,50
Tip length
Lp
[mm]
10,3
10,0
12,0
INSTALLATION 01
02
03
RECOMMENDATIONS FOR SCREWING: steel: vS ≈ 1000 - 1500 rpm aluminium: vA ≈ 600-1000 rpm
OUTDOOR ENVIRONMENT Austenitic A2 stainless steel offers higher corrosion resistance. Suitable for outdoor applications up to 1 km from the sea and on class T4 acid wood.
METAL | SBS A2 | AISI304 | 297
SPP
EN 14592
SELF-DRILLING TIMBER-TO-METAL SCREW CERTIFIED The SPP self-drilling screw is CE marked according to EN 14592. It is the ideal choice for professionals who demand quality, safety and reliable performance in structural timber-to-metal applications.
TIMBER-TO-METAL TIP Special self-perforating tip with bleeder geometry for excellent drilling capacity both in aluminium (thickness: up to 10 mm) and steel (thickness: up to 8 mm).
CUTTING FINS The fins protect the screw thread during timber pull-through. They guarantee maximum threading efficiency in metal and perfect adhesion between the thickness of the wood and the metal.
WIDE RANGE The SPP version, with partially thread, is ideal for fastening sandwich panels, even thick ones, to steel. Very sharp under-head ribs for a perfect surface finish on the wooden element.
BIT INCLUDED
DIAMETER [mm] LENGTH [mm]
SPP 3,5
8
6,3
25
125
SERVICE CLASS
SC1
SC2
SC3
SC4
ATMOSPHERIC CORROSIVITY
C1
C2
C3
C4
C5
WOOD CORROSIVITY
T1
T2
T3
T4
T5
MATERIAL
Zn
ELECTRO PLATED
240 240
electrogalvanized carbon steel
FIELDS OF USE Direct fastening, without pre-drilling hole, of timber elements to steel substructures: • in S235 steel with a maximum thickness of 8 mm • in aluminium with a maximum thickness of 10 mm
298 | SPP | METAL
CODES AND DIMENSIONS d1
CODE
L
b
A
sS
sA
[mm]
[mm]
[mm]
[mm]
[mm]
[mm]
SPP63125 SPP63145 SPP63165 6,3 SPP63180 TX 30 SPP63200 SPP63220 SPP63240
125 145 165 180 200 220 240
60 60 60 60 60 60 60
96 116 136 151 171 191 211
6÷8 6÷8 6÷8 6÷8 6÷8 6÷8 6÷8
8 ÷ 10 8 ÷ 10 8 ÷ 10 8 ÷ 10 8 ÷ 10 8 ÷ 10 8 ÷ 10
pcs 100 100 100 100 100 100 100
s S thickness that can be drilled, steel plate S235/St37 sA thickness that can be drilled, aluminium plate
GEOMETRY AND MECHANICAL CHARACTERISTICS A
s
ds SPP
XXX
dk
d2 d1 b
t1
Lp
L
GEOMETRY Nominal diameter
d1
[mm]
6,3
Head diameter
dK
[mm]
12,50
Thread diameter
d2
[mm]
4,85
Shank diameter
dS
[mm]
5,20
Head thickness
t1
[mm]
5,30
Tip length
Lp
[mm]
20,0
CHARACTERISTIC MECHANICAL PARAMETERS Nominal diameter
d1
[mm]
6,3
Tensile strength
ftens,k
[kN]
16,5
Yield moment
My,k
[Nm]
18,0
Withdrawal resistance parameter
fax,k
[N/mm2]
-
[kg/m3]
-
Associated density
ρa
Head-pull-through parameter
fhead,k [N/mm2]
14,0
Associated density
ρa
350
[kg/m3]
SIP PANELS The SPP version is ideal for fastening SIP panels and sandwich panels thanks to the complete range of lengths (up to 240 mm).
METAL | SPP | 299
MINIMUM DISTANCES FOR SHEAR LOADS | TIMBER-TO-STEEL ρk ≤ 420 kg/m3
screws inserted WITHOUT pre-drilled hole
F
α=0°
F
α=90°
d1
[mm]
6,3
d1
[mm]
a1
[mm]
12∙d
76
a1
[mm]
5∙d
6,3
a2
[mm]
5∙d
32
a2
[mm]
5∙d
32
a3,t
[mm]
15∙d
95
a3,t
[mm]
10∙d
63
a3,c
[mm]
10∙d
63
a3,c
[mm]
10∙d
63
a4,t
[mm]
5∙d
32
a4,t
[mm]
10∙d
63
a4,c
[mm]
5∙d
32
a4,c
[mm]
5∙d
32
32
α = load-to-grain angle d = d1 = nominal screw diameter
screws inserted WITH pre-drilled hole
F
α=0°
F
α=90°
d1
[mm]
6,3
d1
[mm]
a1
[mm]
5∙d
32
a1
[mm]
4∙d
6,3
a2
[mm]
3∙d
19
a2
[mm]
4∙d
25
a3,t
[mm]
12∙d
76
a3,t
[mm]
7∙d
44
a3,c
[mm]
7∙d
44
a3,c
[mm]
7∙d
44
a4,t
[mm]
3∙d
19
a4,t
[mm]
7∙d
44
a4,c
[mm]
3∙d
19
a4,c
[mm]
3∙d
19
25
α = load-to-grain angle d = d1 = nominal screw diameter stressed end -90° < α < 90°
a2 a2
unloaded end 90° < α < 270°
F a3,t
unload edge 180° < α < 360°
α
F α
α
a1 a1
stressed edge 0° < α < 180°
F α
a4,t
F a4,c
a3,c
NOTES • Minimum distances in accordance with EN 1995:2014.
EFFECTIVE NUMBER FOR SHEAR LOADS The load-bearing capacity of a connection made with several screws, all of the same type and size, may be lower than the sum of the load-bearing capacities of the individual connection system. For a row of n screws arranged parallel to the direction of the grain at a distance a1 , the characteristic effective load-bearing capacity is equal to:
Ref,V,k
a1 a1
Ref,V,k = nef RV,k
The nef value is given in the table below as a function of n and a1 .
n
2 3 4 5
4∙d 1,41 1,73 2,00 2,24
5∙d 1,48 1,86 2,19 2,49
6∙d 1,55 2,01 2,41 2,77
7∙d 1,62 2,16 2,64 3,09
( * ) For intermediate a values a linear interpolation is possible. 1
300 | SPP | METAL
8∙d 1,68 2,28 2,83 3,34
a 1( * ) 9∙d 1,74 2,41 3,03 3,62
10∙d 1,80 2,54 3,25 3,93
11∙d 1,85 2,65 3,42 4,17
12∙d 1,90 2,76 3,61 4,43
13∙d 1,95 2,88 3,80 4,71
≥ 14∙d 2,00 3,00 4,00 5,00
STRUCTURAL VALUES | STEEL-TO-TIMBER
CHARACTERISTIC VALUES EN 1995:2014
SHEAR
TENSION
timber-to-steel min plate
geometry
timber-to-steel max plate
steel tension
head pull-through
L b sS
sS
d1
d1
L
b
SPLATE
RV,k
SPLATE
RV,k
Rtens,k
A min
Rhead,k
[mm]
[mm]
[mm]
[mm]
[kN]
[mm]
[kN]
[kN]
[mm]
[kN]
125
60
3,00
3,09
2,18
145
60
3,00
3,09
2,18
165
60
180
60
6,3
3,00 6
3,00
3,09 8
3,09
2,18 16,50
30
2,18
200
60
3,00
3,09
2,18
220
60
3,00
3,09
2,18
240
60
3,00
3,09
2,18
ε = screw-to-grain angle
INSTALLATION 01
02
03
RECOMMENDATIONS FOR SCREWING: steel: vS ≈ 1000 - 1500 rpm aluminium: vA ≈ 600-1000 rpm
STRUCTURAL VALUES GENERAL PRINCIPLES
NOTES | TIMBER
• Characteristic values according to EN 1995:2014.
• The characteristic plate shear strengths are evaluated by considering the case of intermediate plate (0,5 d1 < SPLATE < d1) or thick plate (SPLATE ≥ d1).
• Design values can be obtained from characteristic values as follows:
Rd =
Rk kmod γM
The coefficients γM and kmod should be taken according to the current regulations used for the calculation.
• The characteristic shear strengths on a steel plate are calculated for the minimum drilling hole thickness Ssmin (min plate) and maximum Ssmax (max plate). • For the calculation process a timber characteristic density ρk = 385 kg/m3 has been considered.
• Mechanical strength values and screw geometry comply with CE marking according to EN 14592. • Dimensioning and verification of timber elements and steel plates must be carried out separately. • The screws must be positioned in accordance with the minimum distances. • The head pull-through characteristic strength was calculated using timber elements.
METAL | SPP | 301
SBN - SBN A2 | AISI304 SELF-DRILLING METAL SCREW TIP FOR METAL Special self-perforating tip for iron and steel in thicknesses ranging from 0,7 mm to 5,25 mm. Ideal for fastening overlapping sections of metal and sheet metal.
FINE THREAD Fine thread ideal for precise fastening on sheet metal or for metal-to-metal or timber-to-metal couplings.
STAINLESS STEEL Also available in a bimetal version with head and body in A2 | AISI304 stainless steel and tip in carbon steel. Ideal for outdoor fastening of clips on aluminium supports.
DIAMETER [mm] 3,5 3,5
5,5
8
LENGTH [mm] 25 25
50
240
SERVICE CLASS SC1
SC2
SC3
SC4
ATMOSPHERIC CORROSIVITY C1
C2
C3
C4
C5
WOOD CORROSIVITY T1
T2
T3
T4
T5
MATERIAL
Zn
electrogalvanized carbon steel
A2
A2 | AISI304 austenitic stainless steel (CRC II)
ELECTRO PLATED
AISI 304
FIELDS OF USE Direct fastening, without pre-drill, of metal structural elements to steel substructures (maximum thickness: 5,25 mm).
302 | SBN - SBN A2 | AISI304 | METAL
CODES AND DIMENSIONS SBN d1
SBN A2 | AISI304 L
b
A
s
[mm]
CODE
[mm]
[mm]
[mm]
[mm]
3,5 SBN3525 TX 15
25
16
16
0.7 ÷ 2.25
3,9 SBN3932 TX 15
35
27
23
4,2 SBN4238 TX 20
38
30
4,8 SBN4845 TX 25
45
5,5 SBN5550 TX 25
50
pcs
L
b
A
s
[mm]
d1
CODE
[mm]
[mm]
[mm]
[mm]
pcs
500
3,5 SBNA23525 TX 15
25
18
20
0.7 ÷ 2.25
1000
0.7 ÷ 2.40
200
3,9 SBNA23932 TX 15
32
24
25
0.7 ÷ 2.40
1000
29
1.75 ÷ 3.00
200
34
34
1.75 ÷ 4.40
200
38
38
1.75 ÷ 5.25
200
s thickness that can be drilled, metal plate (steel or aluminium)
GEOMETRY A
s d1
dk b L
t1
Nominal diameter Head diameter Head thickness Tip length
d1 dK t1 Lp
[mm] [mm] [mm] [mm]
3,5 6,50 2,60 5,0
3,9 7,50 3,80 5,2
Lp
SBN 4,2 7,90 3,60 6,2
4,8 9,30 3,90 6,6
5,5 10,60 4,10 7,5
SBN A2 3,5 3,9 7,30 7,50 3,40 3,80 4,9 5,2
INSTALLATION 01
02
03
RECOMMENDATIONS FOR SCREWING: steel: vS ≈ 1000 - 1500 rpm aluminium: vA ≈ 600-1000 rpm
SBN A2 | AISI304 Ideal for outdoor fastening to standard Rothoblaas aluminium clips. See CLIP for decks from page 356.
METAL | SBN - SBN A2 | AISI304 | 303
SAR SELF-DRILLING SCREW FOR STEEL, HEXAGONAL HEAD SELF-PERFORATING TIP Self-perforating tip with bleeder geometry for excellent drilling capacity (up to 6 mm on steel).
EFFECTIVE Self-tapping thread for steel and hexagonal head with dummy washer SW 10.
WATERTIGHT Complete with integrated washer with EPDM seal for watertight fastening.
DIAMETER [mm] 3,5
6,3
8
LENGTH [mm] 25
60
200
240
ATMOSPHERIC CORROSIVITY C1
C2
C3
C4
C5
MATERIAL
Zn
ELECTRO PLATED
electrogalvanized carbon steel
EPDM EPDM gasket
FIELDS OF USE Direct fastening, without pre-drill hole, of metal structural elements and sheet metal to steel substructures maximum thickness 6,0 mm.
304 | SAR | METAL
CODES AND DIMENSIONS d1
dUK
[mm]
[mm]
6,3 SW 10
12,5
CODE
L
A
s
[mm]
[mm]
[mm]
pcs
SAR6360
60
0 ÷ 47
2÷6
100
SAR6370
70
14 ÷ 57
2÷6
100
SAR6380
80
24 ÷ 67
2÷6
100
SAR63100
100
44 ÷ 87
2÷6
100
SAR63120
120
64 ÷ 107
2÷6
100
SAR63140
140
84 ÷ 127
2÷6
100
SAR63160
160
104 ÷ 147
2÷6
100
SAR63180
180
124 ÷ 167
2÷6
100
SAR63200
200
144 ÷ 187
2÷6
100
s thickness that can be drilled, metal plate (steel or aluminium)
GEOMETRY A dUK
D SW
s d1
t1
L
Nominal diameter
d1
[mm]
6,3
Wrench size
SW
[mm]
SW 10
Head diameter
dUK
[mm]
12,50
Diameter of washer
D
[mm]
15,70
TRAPEZOIDAL METAL SHEET ROOFS Thanks to its steel drilling capability and the watertightness of the combined washer, it is the ideal choice for application on trapezoidal sheet metal.
METAL | SAR | 305
MCS A2 | AISI304 SCREW WITH WASHER FOR METAL SHEET INTEGRATED WASHER A2 | AISI304 stainless steel screw with integrated A2 | AISI304 stainless steel washer and EPDM gasket.
STAINLESS STEEL The A2 | AISI304 stainless steel ensures high resistance to corrosion. Also available in various colours: copper or chocolate brown.
TORX BIT Convex head with Torx slot for secure fastening of sheet metal on wood or plaster. Ideal for fixing gutters and sheet metal flaps on wood.
DIAMETER [mm] 3,5
8
4,5
LENGTH [mm] 25 25
120
240
SERVICE CLASS SC1
SC2
SC3
SC4
ATMOSPHERIC CORROSIVITY C1
C2
C3
C4
C5
WOOD CORROSIVITY T1
T2
T3
T4
T5
MATERIAL
A2
AISI 304
A2 | AISI304 austenitic stainless steel (CRC II)
FIELDS OF USE It can be used outdoors in aggressive environments. Fastening metal structural elements to wooden substructures.
306 | MCS A2 | AISI304 | METAL
CODES AND DIMENSIONS MCS A2: stainless steel d1
MCS CU: copper finish CODE
L
[mm]
[mm]
L
pcs
[mm]
200
MCS4525CU
MCS4535A2
35
200
MCS4545A2
45
200 4,5 TX 20
25
200
MCS4535CU
35
200
MCS4545CU
45
200
MCS4560A2
60
200
MCS4560CU
60
200
MCS4580A2
80
100
MCS4580CU
80
100
MCS45100A2
100
200
MCS45100CU
100
100
MCS45120A2
120
200
MCS45120CU
120
200
L
pcs
MCS B: RAL 9002 - light grey
CODE
L
[mm]
pcs
d1
[mm] MCS4525A2M
4,5 TX 20
CODE
25
MCS M: RAL 8017 - chocolate brown d1
d1
[mm] MCS4525A2
4,5 TX 20
pcs
25
CODE
[mm]
[mm] MCS4525A2B
200
MCS4535A2M
35
200
MCS4545A2M
45
200
4,5 TX 20
25
200
MCS4535A2B
35
200
MCS4545A2B
45
200
GEOMETRY
D
d1
dk L
Nominal diameter
d1
[mm]
4,5
Head diameter
dK
[mm]
8,30
Diameter of washer
D
[mm]
20,00
PERGOLAS Ideal for fastening trapezoidal metal on the wooden pergolas and outdoor structures.
METAL | MCS A2 | AISI304 | 307
MTS A2 | AISI304 SCREWS FOR METAL SHEET HEXAGONAL HEAD Ideal for use in combination with WBAZ washers to achieve water-tight fastening to metal sheet; requires a pre-drill. The hexagonal head facilitates any subsequent removal.
STAINLESS STEEL The A2 | AISI304 stainless steel ensures high resistance to corrosion and excellent durability, even in very aggressive environments.
CODES AND DIMENSIONS d1
CODE
[mm] 6 SW 10
L
b
A
[mm]
[mm]
[mm]
pcs
MTS680
80
58
20 ÷ 40
100
MTS6100
100
58
40 ÷ 60
100
MTS6120
120
58
60 ÷ 80
100
GEOMETRY
d 1 d2
dk SW
b
L
GEOMETRY AND MECHANICAL CHARACTERISTICS DIAMETER [mm]
GEOMETRY 6
3,5
6
Nominal diameter
d1
[mm]
Wrench size
SW
-
SW 8
LENGTH [mm]
Head diameter
dK
[mm]
12,00
25
Thread diameter
d2
[mm]
4,10
Nominal diameter
d1
[mm]
6
Tensile strength
ftens,k
[kN]
9,8
Yield moment
My,k
[Nm]
8,5
Withdrawal resistance parameter
fax,k
[N/mm2]
13,3
Associated density
ρa
[kg/m3]
433
Head-pull-through parameter
fhead,k
[N/mm2]
18,5
Associated density
ρa
[kg/m3]
474
Mechanical parameters from experimental tests.
308 | MTS A2 | AISI304 | METAL
120
SERVICE CLASS SC1
CHARACTERISTIC MECHANICAL PARAMETERS
80
8
SC2
SC3
SC4
ATMOSPHERIC CORROSIVITY C1
C2
C3
C4
C5
WOOD CORROSIVITY T1
T2
T3
T4
T5
MATERIAL
A2
AISI 304
A2 | AISI304 austenitic stainless steel (CRC II)
240
CPL PRE-PAINTED METAL SHEET CAP WITH PE GASKET WATERPROOF Prepainted carbon steel cap complete with PE gasket for a watertight seal with the sheet. 40 x 50 mm aluminium version.
COMPLETE RANGE Full range of sizes for compatibility with different trapezoidal sheet metal sizes on the market.
AESTHETIC PERFORMANCE Available in a variety of colours to suit every roofing aesthetic requirement.
CODES AND DIMENSIONS RAL 9005 - light grey CODE CPLW1528 CPLW2036 CPLW2534 CPLW3040 CPLW4050
C
A
L
B
[mm]
[mm]
[mm]
[mm]
15 20 25 30 40
28 36 34 40 50
50 50 50 50 50
16 16 16 16 16
pcs 50 50 50 50 50
GEOMETRY
C B
RAL 3009 - Siena red CODE CPLR1528 CPLR2036 CPLR2534 CPLR3040 CPLR4050
C
A
L
B
[mm]
[mm]
[mm]
[mm]
15 20 25 30 40
28 36 34 40 50
50 50 50 50 50
16 16 16 16 16
50 50 50 50 50
CPLB1528 CPLB2036 CPLB2534 CPLB3040 CPLB4050
C
A
L
B
[mm]
[mm]
[mm]
[mm]
15 20 25 30 40
28 36 34 40 50
50 50 50 50 50
16 16 16 16 16
pcs 50 50 50 50 50
L
SERVICE CLASS SC1
SC2
SC3
SC4
ATMOSPHERIC CORROSIVITY C1
RAL 8017 - dark brown CODE
A
pcs
C2
C3
C4
C5
MATERIAL PRE PAINTED CARBON STEEL
prepainted carbon steel
PE
polyethylene
METAL | CPL | 309
WBAZ STAINLESS STEEL WASHER WITH SEALING GASKET WATERPROOF Perfect watertight closure and excellent sealing thanks to the EPDM sealing gasket.
RESISTANT TO UV RAYS Excellent resistance to UV rays. Ideal for outdoor use thanks to the adaptability of the EPDM gasket and washer in stainless steel A2 | AISI304.
VERSATILITY Ideal for use on sheets (thickness: up to 0,7 mm) in combination with TBS EVO Ø6 screws, that can be installed without pre-drill, or with MTS A2 | AISI304 screws, installed with pre-drill.
SERVICE CLASS SC1
SC2
SC3
SC4
ATMOSPHERIC CORROSIVITY C1
C2
C3
C4
C5
MATERIAL
A2
AISI 304
A2 | AISI304 austenitic stainless steel (CRC II)
EPDM EPDM gasket
FIELDS OF USE Ideal in combination with TBS EVO, TBS EVO C5 or MTS screws for fastening metal sheets to timber and metal substructures exposed to weathering and UV radiation.
310 | WBAZ | METAL
CODES AND DIMENSIONS D1
CODE
screw
D2
H
D1
[mm]
[mm]
[mm]
[mm]
6,0 ÷ 6,5
25
15
6,5
H
WBAZ25A2
pcs 100
D2
INSTALLATION
A
A
TBS EVO + WBAZ ØxL
fastening package [mm]
6 x 60
min. 0 - max. 30
6 x 80
min. 10 - max. 50
6 x 100
min. 30 - max. 70
6 x 120
min. 50 - max. 90
6 x 140
min. 70 - max. 110
6 x 160
min. 90 - max. 130
6 x 180
min. 110 - max. 150
6 x 200
min. 130 - max. 170
MTS A2 + WBAZ
fastening package
ØxL
[mm]
6 x 80
min. 10 - max. 50
6 x 100
min. 30 - max. 70
6 x 120
min. 50 - max. 90
For more information on related products see page 102 for TBS EVO and page 308 for MTS A2.
Correct tightening
Excessive tightening
Insufficient tightening
Tightening off axis
NOTES: The thickness of the washer after installation is approximately 8-9 mm. The maximum thickness of the fastening package was calculated by ensuring a minimum penetration length into the wood of 4d.
FAUX ROOFING TILE Can also be used on sandwich panels, corrugated panels and faux roofing tiles.
METAL | WBAZ | 311
DECKS AND FACADES
DECKS AND FACADES
SCI HCR
JFA
COUNTERSUNK SCREW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316
ADJUSTABLE SUPPORT FOR DECKS . . . . . . . . . . . . . . . . . . . . . . . 374
SCI A4 | AISI316
SUPPORT
COUNTERSUNK SCREW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318
ADJUSTABLE SUPPORT FOR DECKS . . . . . . . . . . . . . . . . . . . . . . . 378
SCI A2 | AISI304
ALU TERRACE
COUNTERSUNK SCREW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320
ALUMINIUM PROFILE FOR PATIOS. . . . . . . . . . . . . . . . . . . . . . . . . 386
KKT COLOR A4 | AISI316
GROUND COVER
CONE-SHAPED CONCEALED HEAD SCREW . . . . . . . . . . . . . . . . 324
ANTI-VEGETATION TARP FOR SUBSTRATES. . . . . . . . . . . . . . . . . 392
KKT A4 | AISI316
NAG
CONE-SHAPED CONCEALED HEAD SCREW . . . . . . . . . . . . . . . . 328
LEVELING PAD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392
KKT COLOR
GRANULO
CONE-SHAPED CONCEALED HEAD SCREW . . . . . . . . . . . . . . . . 332
GRANULAR RUBBER SUBSTRATE. . . . . . . . . . . . . . . . . . . . . . . . . . 393
FAS A4 | AISI316
TERRA BAND UV
SCREWS FOR FAÇADES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336
BUTYL ADHESIVE TAPE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394
KKZ A2 | AISI304
PROFID
COUNTERSUNK CYLINDRICAL HEAD SCREW. . . . . . . . . . . . . . . 338
SPACER PROFILE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394
KKZ EVO C5
STAR
COUNTERSUNK CYLINDRICAL HEAD SCREW. . . . . . . . . . . . . . . 342
STAR FOR DISTANCES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394
EWS AISI410 | EWS A2
BROAD
CONVEX HEAD SCREW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344
COUNTERBORE CUTTER FOR KKT, KKZ, KKA . . . . . . . . . . . . . . . 394
KKF AISI410
CRAB MINI
PAN HEAD SCREW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348
ONE-HANDED TERRACE CLAMP. . . . . . . . . . . . . . . . . . . . . . . . . . 395
KKA AISI410
CRAB MAXI
SELF-DRILLING SCREWTIMBER-TO-TIMBER | TIMBER-TO-ALUMINIUM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352
BOARD CLAMP, LARGE MODEL . . . . . . . . . . . . . . . . . . . . . . . . . . . 395
KKA COLOR
LEVELLING WEDGES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395
SELF-DRILLING SCREW FOR ALUMINIUM. . . . . . . . . . . . . . . . . . . 354
SHIM SHIM LARGE LEVELLING WEDGES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395
FLAT | FLIP CONNECTOR FOR DECKING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356
SNAP CONNECTOR AND SPACER FOR DECKS. . . . . . . . . . . . . . . . . . . . 360
TVM CONNECTOR FOR DECKING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362
GAP CONNECTOR FOR DECKING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366
THERMOWASHER WASHER TO FASTEN INSULATIONTO TIMBER. . . . . . . . . . . . . . . 396
ISULFIX ANCHOR FOR FASTENING INSULATION TO BRICKWORK. . . . . 397
WRAF CONNECTOR FOR TIMBER-INSULATING LAYER-CEMENT WALLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398
TERRALOCK CONNECTOR FOR DECKING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370
DECKS AND FACADES | 313
WOOD SPECIES | pH and density Each wood species has unique characteristics that influence its stability and strength to weathering, mould, fungus and pests. Where the density of the material is such that the functionality of the connector is compromised (ρk > 500 kg/m3), pre-drilling is required prior to screwing. The limiting density depends on the type of connector chosen.
ρk
pH
The pH of each wood is an indication of the presence of acetic acid, a corrosive agent for various types of metal in contact with wood, especially when the latter is in service class S3. The classification of wood for average moisture contents between 16 and 20 per cent (classes T3/T4) and consequently the type of connectors to be used depends on the pH value.
Douglas fir Pseudotsuga menziesii
North American spruce P. rubens, P. glauca,P. mariana
ρk = 510-750 kg/m3 pH = 3,3-5,8
Red maple Acer rubrum
ρk = 410-435 kg/m3 pH = 5,5-6,0
Blue Douglas fir Pseudotsuga taxifolia
ρk = 630-790 kg/m3 pH = 4,9-6,0
ρk = 510-750 kg/m3 pH = 3,1-4,4
White oak Quercus alba ρk ≈ 750 kg/m3 pH = 3,8-4,2
Red oak Quercus rubra ρk = 550-980 kg/m3 pH = 3,8-4,2
Grand fir Abies grandis ρk = 700-800 kg/m3 pH ~ 6,2
Western red cedar Thuja plicata ρk = 420-580 kg/m3 pH = 2,5-3,5
American black cherry Prunus serotina ρk = 490-630 kg/m3 pH ~ 3,9
Ipè Tabebuia spp. ρk = 960-1100 kg/m3 pH ~ 3,9
Heat treatments Heat or thermo-impregnating treatments can introduce aggressive components (e.g. copper) into the wood structure and/or lower the pH value. Sometimes the reduction in pH is such that the corrosivity class changes from T3 to T4. (e.g. Beech pH ~ 3,4).
Balsa Ochroma ρk = 90-260 kg/m3 pH = 5,5-6,7
Parana Pine Araucaria angustifolia ρk = 540-750 pH ~ 6,1
pH > 4
pH ≤ 4
"standard" timbers low acidity
“aggressive” woods high acidity
314 | WOOD SPECIES | pH and density | DECKS AND FACADES
Massaranduba-Balatá Manilkara ρk = 900-1000 kg/m3 pH = 4,9-5,2
Maritime pine Pinus pinaster
European chestnut Castanea sativa
ρk = 500-620 kg/m3 pH ~ 3,8
ρk = 580-600 kg/m3 pH = 3,4-3,7
Common ash Fraxinus excelsior
European larch Larix decidua
ρk = 720-860 kg/m3 pH ~ 5,8
ρk = 590-850 kg/m3 pH = 4,2-5,4
Oak Quercus petraea
Spruce Picea abies
ρk = 665-760 kg/m3 pH ~ 3,9
ρk = 470-680 kg/m3 pH = 4,1-5,3
Scots pine Pinus sylvestris
Beech Fagus
ρk = 510-890 kg/m3 pH ~ 5,1
ρk = 720-910 kg/m3 pH ~ 5,9
Oak or European oak Quercus robur
White birch Birch warty
ρk = 690-960 kg/m3 pH = 3,4-4,2
ρk = 650-830 kg/m3 pH = 4,85-5,35
Olmo Ulmus ρk = 550-850 kg/m3 pH = 6,45-7,15
Teak Tectona grandis ρk = 660-700 kg/m3 pH ~ 5,1
Jarrah Eucalyptus marginata ρk = 800-900 kg/m3 pH = 3-3,7
Idigbo Terminalia ivorensis ρk = 450-600 kg/m3 pH = 3,5-4,1
Iroko Milicia ρk = 690-850 kg/m3 pH = 5,6-7,0
Obeche Triplochiton scleroxylon
African ebony Acer rubrum
ρk = 400-550 kg/m3 pH = 5,4-6,2
ρk = 1000-1200 kg/m3 pH = 4,2
African padouk Pterocarpus soyauxii
African mahogany Khaya
ρk pH = 3,7-5,6
ρk = 450-550 kg/m3 pH = 5,0 - 5,4
= 700-850 kg/m3
Density and pH taken from: "Wagenführ R; Wagenführ A. Holzatlas (2022)" and from "Canadian Conservation Institute Jean Tetreault, Coatings for Display and Storage in Museums (January 1999)".
DECKS AND FACADES | WOOD SPECIES | pH and density | 315
SCI HCR COUNTERSUNK SCREW MAXIMUM CORROSION PERFORMANCE Rated in the highest corrosion resistance class by EN 1993-1-1:2006/ A1:2015 (CRC V), it offers the highest atmospheric corrosion (C5) and wood (T5) resistance.
HCR: HIGH CORROSION RESISTANCE Austenitic stainless steel. It is characterised by its high molybdenum and nickel content for maximum corrosion resistance, while the presence of nitrogen ensures excellent mechanical performance.
INDOOR POOLS The chemical composition, in particular the high nickel and molybdenum content, confers strength to chloride pitting and, hence, stress corrosion cracking. This is the reason why it is the only category of stainless steel suitable for use in indoor swimming pools according to Eurocode 3.
BIT INCLUDED
DIAMETER [mm] SCI HCR 3,5
5
8
50 70
320
LENGTH [mm] 20
SERVICE CLASS SC1
SC2
SC3
SC4
ATMOSPHERIC CORROSIVITY C1
C2
C3
C4
C5
WOOD CORROSIVITY T1
T2
T3
T4
T5
MATERIAL
HCR
HCR | AL-6XN (CRC V) super-austenitic stainless steel
FIELDS OF USE Outdoor and indoor use in extremely aggressive environments. • indoor pools • façade • very wet areas • oceanic climate
316 | SCI HCR | DECKS AND FACADES
CODES AND DIMENSIONS d1
CODE
[mm] 5 TX 20
L
b
A
[mm]
[mm]
[mm]
pcs
SCIHCR550
50
30
20
200
SCIHCR560
60
35
25
200
SCIHCR570
70
42
28
100
GEOMETRY AND MECHANICAL CHARACTERISTICS A
dk
d2 d 1 t1
ds
b L
GEOMETRY Nominal diameter
d1
[mm]
5
Head diameter
dK
[mm]
9,80
Thread diameter
d2
[mm]
3,20
Shank diameter
dS
[mm]
3,60
Head thickness
t1
[mm]
4,65
Pre-drilling hole diameter(1)
dV
[mm]
3,0
(1) For high density materials, pre-drilled holes are recommended based on the wood specie.
CHARACTERISTIC MECHANICAL PARAMETERS Nominal diameter
d1
[mm]
5
Tensile strength
ftens,k
[kN]
4,9
Yield moment
My,k
[Nm]
3,4
Withdrawal resistance parameter
fax,k
[N/mm2]
12,5
Associated density
ρa
[kg/m3]
350
Head-pull-through parameter
fhead,k
[N/mm2]
9,4
Associated density
ρa
[kg/m3]
350
Mechanical parameters from experimental tests.
SAUNAS AND WELLNESS CENTRES Ideal in environments with very high moisture and the presence of salts and chlorides.
DECKS AND FACADES | SCI HCR | 317
SCI A4 | AISI316 COUNTERSUNK SCREW SUPERIOR STRENGTH Special asymmetrical umbrella thread, elongated reamer cutter and under-head cutting ribs provide the screw with higher torsional strength and safer screwing.
A4 | AISI316 A4 | AISI316 austenitic stainless steel for high corrosion resistance. Ideal for environments adjacent to the sea in corrosivity class C5 and for insertion on the most aggressive timbers in class T5.
T5 TIMBER CORROSIVITY Suitable for use in applications on agressive woods with an acidity (pH) level below 4 such as oak, Douglas fir and chestnut, and in wood moisture conditions above 20%.
BIT INCLUDED
DIAMETER [mm] SCI A4 | AISI316 3,5
5
8
LENGTH [mm] 20
50
100
320
SERVICE CLASS SC1
SC2
SC3
SC4
ATMOSPHERIC CORROSIVITY C1
C2
C3
C4
C5
WOOD CORROSIVITY T1
T2
T3
T4
T5
MATERIAL
A4
AISI 316
A4 | AISI316 austenitic stainless steel (CRC III)
FIELDS OF USE Outdoor use in highly aggressive environments. Wooden boards with density of < 470 kg/m3 (without pre-drill) and < 620 kg/m3 (with pre-drill).
318 | SCI A4 | AISI316 | DECKS AND FACADES
CODES AND DIMENSIONS
HBS EVO C5
SCI A4 | AISI316 d1
CODE
[mm]
5 TX 25
L
b
A
[mm]
[mm]
[mm]
C5
COUNTERSUNK SCREW
pcs
SCI5050A4
50
24
26
200
SCI5060A4
60
30
30
200
SCI5070A4
70
35
35
100
SCI5080A4
80
40
40
100
It is the screw of choice when high mechanical performance is required C1 C2 C3 C4 under very adverse environmental and wood corrosive conditions. T1 T2 T3
Find out more on page 58.
SCI5090A4
90
45
45
100
SCI50100A4
100
50
50
100
SC1
SC2
C5
EVO COATING
SC3
SC4
C5 T4
T5
GEOMETRY AND MECHANICAL CHARACTERISTICS A
IA SC
4
XXX
dk
d2 d1
90° t1
ds
b L
GEOMETRY Nominal diameter
d1
[mm]
5
Head diameter
dK
[mm]
10,00
Thread diameter
d2
[mm]
3,40
Shank diameter
dS
[mm]
3,65
Head thickness
t1
[mm]
4,65
Pre-drilling hole diameter(1)
dV
[mm]
3,0
(1) For high density materials, pre-drilled holes are recommended based on the wood specie.
CHARACTERISTIC MECHANICAL PARAMETERS Nominal diameter
d1
[mm]
5
Tensile strength
ftens,k
[kN]
4,3
Yield moment
My,k
[Nm]
3,9
Withdrawal resistance parameter
fax,k
[N/mm2]
17,9
Associated density
ρa
[kg/m3]
440
Head-pull-through parameter
fhead,k
[N/mm2]
17,6
Associated density
ρa
[kg/m3]
440
Mechanical parameters from experimental tests
MARINE ENVIRONMENTS Can be used in aggressive environments and in areas near the sea thanks to the A4 | AISI316 stainless steel.
DECKS AND FACADES | SCI A4 | AISI316 | 319
SCI A2 | AISI304
EN 14592
COUNTERSUNK SCREW 3 THORNS TIP Thanks to the 3 THORNS tip, minimum installation distances are reduced. More screws can be used in less space and larger screws in smaller elements. Costs and time for project implementation are reduced.
SUPERIOR STRENGTH New tip, special asymmetrical umbrella thread, elongated reamer cutter and under-head cutting ribs provide the screw with higher torsional strength and safer screwing.
A2 | AISI304 A2 austenitic stainless steel. It offers high corrosion resistance. Suitable for outdoor applications up to 1 km from the sea in class C4 on most acid woods in class T4.
BIT INCLUDED
DIAMETER [mm] SCI A2 | AISI305 3,5
SCI A2 COIL bound version
8
LENGTH [mm] 20
25
320 320
SERVICE CLASS SC1
SC2
SC3
SC4
ATMOSPHERIC CORROSIVITY C1
C2
C3
C4
C5
WOOD CORROSIVITY T1
T2
T3
T4
T5
MATERIAL
A2
AISI 304
A2 | AISI304 austenitic stainless steel (CRC II)
FIELDS OF USE Use in aggressive outdoor environments. Wooden boards with density of < 470 kg/m3 (without pre-drill) and < 620 kg/m3 (with pre-drill).
320 | SCI A2 | AISI304 | DECKS AND FACADES
CODES AND DIMENSIONS d1
CODE
[mm] 3,5 TX 15
4 TX 20
4,5 TX 20
5 TX 25
SCI3525( * ) SCI3530( * ) SCI3535( * ) SCI3540( * ) SCI4030 SCI4035 SCI4040 SCI4045 SCI4050 SCI4060 SCI4535 SCI4540 SCI4545 SCI4550 SCI4560 SCI4570 SCI4580 SCI5040 SCI5045 SCI5050 SCI5060 SCI5070 SCI5080 SCI5090 SCI50100
L
b
A
[mm] 25 30 35 40 30 35 40 45 50 60 35 40 45 50 60 70 80 40 45 50 60 70 80 90 100
[mm] 18 18 18 18 18 18 24 30 30 35 24 24 30 30 35 40 40 20 24 24 30 35 40 45 50
[mm] 7 12 17 22 12 17 16 15 20 25 11 16 15 20 25 30 40 20 21 26 30 35 40 45 50
pcs
d1
CODE
[mm] 500 500 500 500 500 500 500 200 400 200 400 400 400 200 200 200 200 200 200 200 200 100 100 100 100
6 TX 30
8 TX 40
SCI6060 SCI6080 SCI60100 SCI60120 SCI60140 SCI60160 SCI80120 SCI80160 SCI80200 SCI80240 SCI80280 SCI80320
L
b
A
pcs
[mm] 60 80 100 120 140 160 120 160 200 240 280 320
[mm] 30 40 50 60 75 75 60 80 80 80 80 80
[mm] 30 40 50 60 65 85 60 80 120 160 200 240
100 100 100 100 100 100 100 100 100 100 100 100
RELATED PRODUCTS HUS A4 TURNED WASHER
see page 68
( * ) Not holding CE marking.
SCI A2 COIL
d1 [mm] 4 TX 20
Bound version available for fast and accurate installation. Ideal for large projects. Compatible with KMR 3373 and KMR 3352 for Ø4 and KMR 3372 and KMR 3338 for Ø5. For further information see page 403.
5 TX 25
CODE
L [mm]
b [mm]
A [mm]
pcs
SCICOIL4025
25
18
7
3000
SCICOIL5050 SCICOIL5060 SCICOIL5070
50 60 70
30 35 40
20 25 30
1250 1250 625
GEOMETRY AND MECHANICAL CHARACTERISTICS
XXX
dk
SCI
A
d2 d1
90° ds
t1
b L
GEOMETRY Nominal diameter Head diameter Thread diameter Shank diameter Head thickness Pre-drilling hole diameter(1)
d1 dK d2 dS t1 dV
[mm] [mm] [mm] [mm] [mm] [mm]
3,5 7,00 2,25 2,45 3,50 2,0
4 8,00 2,55 2,75 3,80 2,5
4,5 9,00 2,80 3,15 4,25 3,0
5 10,00 3,40 3,65 4,65 3,0
6 12,00 3,95 4,30 5,30 4,0
8 14,50 5,40 5,80 6,00 5,0
4 3,2 1,9 17,1 410 13,4 390
4,5 4,4 2,8 17,2 410 18,0 440
5 5,0 4,4 17,9 440 17,6 440
6 6,8 8,2 11,6 420 12,0 440
8 14,1 17,6 14,8 410 12,5 440
(1) For high density materials, pre-drilled holes are recommended based on the wood specie.
CHARACTERISTIC MECHANICAL PARAMETERS Nominal diameter Tensile strength Yield moment Withdrawal resistance parameter Associated density Head-pull-through parameter Associated density
d1 ftens,k My,k fax,k ρa fhead,k ρa
[mm] [kN] [Nm] [N/mm2] [kg/m3] [N/mm2] [kg/m3]
3,5 2,2 1,3 19,1 440 16,0 380
DECKS AND FACADES | SCI A2 | AISI304 | 321
MINIMUM DISTANCES FOR SHEAR LOADS ρk ≤ 420 kg/m3
screws inserted WITHOUT pre-drilled hole
α=0°
F
d1
[mm]
a1
[mm]
a2
[mm]
5∙d
18
20
a3,t
[mm]
15∙d
53
60
a3,c
[mm]
10∙d
35
40
a4,t
[mm]
5∙d
18
20
a4,c
[mm]
5∙d
18
20
10∙d
3,5
4
4,5
35
40
45
F
α=90°
5
6
8
d1
[mm]
12∙d
60
72
96
a1
[mm]
23
5∙d
25
30
40
a2
[mm]
5∙d
18
20
23
5∙d
25
30
40
68
15∙d
75
90
120
a3,t
[mm]
10∙d
35
40
45
10∙d
50
60
80
45
10∙d
50
60
80
a3,c
[mm]
10∙d
35
40
45
10∙d
50
60
80
23
5∙d
25
30
40
a4,t
[mm]
7∙d
25
28
32
10∙d
50
60
80
23
5∙d
25
30
40
a4,c
[mm]
5∙d
18
20
23
5∙d
25
30
40
5
6
8
5∙d
3,5
4
4,5
18
20
23
5∙d
5
6
8
25
30
40
screws inserted WITH pre-drilled hole
α=0°
F
d1
[mm]
3,5
4
4,5
a1
[mm]
a2
[mm]
5∙d
18
20
23
3∙d
11
12
14
a3,t a3,c
[mm]
12∙d
42
48
[mm]
7∙d
25
28
a4,t
[mm]
3∙d
11
a4,c
[mm]
3∙d
11
F
5
6
8
d1
[mm]
5∙d
25
30
40
a1
[mm]
3∙d
15
18
24
a2
[mm]
54
12∙d
60
72
96
a3,t
32
7∙d
35
42
56
a3,c
12
14
3∙d
15
18
24
12
14
3∙d
15
18
24
α=90°
3,5
4
4,5
4∙d
14
16
18
4∙d
20
24
32
4∙d
14
16
18
4∙d
20
24
32
[mm]
7∙d
25
28
32
7∙d
35
42
56
[mm]
7∙d
25
28
32
7∙d
35
42
56
a4,t
[mm]
5∙d
18
20
23
7∙d
35
42
56
a4,c
[mm]
3∙d
11
12
14
3∙d
15
18
24
α = load-to-grain angle d = d1 = nominal screw diameter stressed end -90° < α < 90°
a2 a2 a1 a1
unloaded end 90° < α < 270°
F α
α F a3,t
stressed edge 0° < α < 180°
unload edge 180° < α < 360°
α F α
a4,t
F a4,c
a3,c
MINIMUM DISTANCES NOTES • The minimum distances are according to EN 1995:2014 considering a calculation diameter of d = nominal screw diameter.
• The minimum spacing for all panel-to-timber connections (a1 , a2) can be multiplied by a coefficient of 0,85.
• The minimum spacing for all steel-to-timber connections (a1 , a2) can be multiplied by a coefficient of 0,7.
STRUCTURAL VALUES NOTES • The characteristic timber-to-timber shear strengths were evaluated by considering an angle ε of 90° between the grains of the second element and the connector. • The characteristic thread withdrawal strengths were evaluated by considering an angle ε of 90° between the grains of the timber element and the connector. • For the calculation process a timber characteristic density ρk = 385 kg/m3 has been considered. For different ρk values, the strength values in the table can be converted by the kdens coefficient (see page 42).
322 | SCI A2 | AISI304 | DECKS AND FACADES
• For a row of n screws arranged parallel to the direction of the grain at a distance a1 , the characteristic effective shear bearing capacity Ref,V,k can be calculated by means of the effective number nef (see page 42).
STRUCTURAL VALUES
CHARACTERISTIC VALUES EN 1995:2014 SHEAR
geometry
timber-to-timber
TENSION timber-to-timber with washer legno-legno
thread withdrawal
head pull-through
head pull-through with washer
RV,k [kN] 1,44 1,92 2,13 2,29 2,46 2,46 3,79 4,00 4,00 4,00 4,00 4,00
Rax,k [kN] 1,08 1,08 1,08 1,08 1,17 1,17 1,56 1,95 1,95 2,28 1,77 1,77 2,21 2,21 2,58 2,94 2,94 1,61 1,93 1,93 2,41 2,82 3,22 3,62 4,02 1,95 2,60 3,25 3,90 4,87 4,87 6,76 9,01 9,01 9,01 9,01 9,01
Rhead,k [kN] 0,79 0,79 0,79 0,79 0,85 0,85 0,85 0,85 0,85 0,85 1,31 1,31 1,31 1,31 1,31 1,31 1,31 1,58 1,58 1,58 1,58 1,58 1,58 1,58 1,58 1,55 1,55 1,55 1,55 1,55 1,55 2,36 2,36 2,36 2,36 2,36 2,36
Rhead,k [kN] 4,31 4,31 4,31 4,31 4,31 4,31 7,02 7,02 7,02 7,02 7,02 7,02
con rondella
A L b d1
d1 L b A [mm] [mm] [mm] [mm] 25 18 7 30 18 12 3,5 35 18 17 40 18 22 30 18 12 35 18 17 40 24 16 4 45 30 15 50 30 20 60 35 25 35 24 11 40 24 16 45 30 15 50 30 20 4,5 60 35 25 70 40 30 80 40 40 40 20 20 45 24 21 50 24 26 60 30 30 5 70 35 35 80 40 40 90 45 45 100 50 50 60 30 30 80 40 40 100 50 50 6 120 60 60 140 75 65 160 75 85 120 60 60 160 80 80 200 80 120 8 240 80 160 280 80 200 320 80 240
RV,k [kN] 0,41 0,55 0,63 0,64 0,62 0,68 0,69 0,67 0,76 0,78 0,76 0,88 0,87 0,95 1,04 1,04 1,04 1,04 1,13 1,21 1,35 1,35 1,35 1,35 1,35 1,48 1,77 1,77 1,77 1,77 1,77 2,83 2,83 2,83 2,83 2,83 2,83
GENERAL PRINCIPLES • Characteristic values are consistent with EN 1995:2014 and in accordance with EN 14592. • Design values can be obtained from characteristic values as follows:
Rd =
Rk kmod γM
• The characteristic shear resistances are calculated for screws inserted without pre-drilling hole. In the case of screws inserted with pre-drilling hole, greater resistance values can be obtained. • The screws must be positioned in accordance with the minimum distances. • The thread withdrawal characteristic strength has been evaluated considering a fixing length equal to b.
The coefficients γM and kmod should be taken according to the current regulations used for the calculation.
• The characteristic resistance to head pull-through was calculated using timber elements.
• Mechanical strength values and screw geometry comply with CE marking according to EN 14592.
• The characteristic timber-to-timber shear strengths with washer were evaluated considering the actual thread length in the second element.
• Dimensioning and verification of the timber elements must be carried out separately.
DECKS AND FACADES | SCI A2 | AISI304 | 323
KKT COLOR A4 | AISI316
EN 14592
CONE-SHAPED CONCEALED HEAD SCREW COLOURED HEAD Version in A4 | AISI316 stainless steel with brown, grey or black coloured head. Excellent camouflaging with wood. Ideal for very aggressive environments, for acidic, chemically treated wood and very high internal moisture (T5).
COUNTER THREAD The inverse (left-hand) under-head thread guarantees excellent grip. Small conical head to ensure it is hidden in the timber.
TRIANGULAR BODY The three-lobed thread makes it possible to cut the wood grain during screwing. Exceptional pull-through capacity.
BIT INCLUDED
DIAMETER [mm] KKT COLOR A4 | AISI316 3,5
5
8
LENGTH [mm] 20
43
70
320
SERVICE CLASS SC1
SC2
SC3
SC4
ATMOSPHERIC CORROSIVITY C1
C2
C3
C4
C5
WOOD CORROSIVITY T1
T2
T3
T4
T5
MATERIAL
A4
AISI 316
A4 austenitic stainless steel | AISI316 (CRC III) with organic coloured head coating
FIELDS OF USE Outdoor use in highly aggressive environments. Wooden boards with density of < 550 kg/m3 (without pre-drill) and < 880 kg/m3 (with pre-drill). WPC boards (with pre-drill).
324 | KKT COLOR A4 | AISI316 | DECKS AND FACADES
CODES AND DIMENSIONS BROWN COLOUR HEAD d1
BLACK COLOUR HEAD
CODE
[mm]
5 TX 20
L
b
A
pcs
[mm]
[mm]
[mm]
KKT540A4M
43
25
16
200
KKT550A4M
53
35
18
200
KKT560A4M
60
40
20
200
KKT570A4M
70
50
25
100
pcs
d1
CODE
[mm] 5 TX 20
L
b
A
pcs
[mm]
[mm]
[mm]
KKT550A4N
53
35
18
200
KKT560A4N
60
40
20
200
GREY COLOUR HEAD d1
CODE
[mm] 5 TX 20
L
b
A
[mm]
[mm]
[mm]
KKT550A4G
53
35
18
200
KKT560A4G
60
40
20
200
GEOMETRY AND MECHANICAL CHARACTERISTICS A
d2 d1
dk ds
b L
GEOMETRY Nominal diameter
d1
[mm]
5,1
Head diameter
dK
[mm]
6,75
Thread diameter
d2
[mm]
3,40
Shank diameter
dS
[mm]
4,05
Pre-drilling hole diameter(1)
dV
[mm]
3,0 - 4,0
(1) For high density materials, pre-drilled holes are recommended based on the wood specie.
CHARACTERISTIC MECHANICAL PARAMETERS Nominal diameter
d1
[mm]
Tensile strength
ftens,k
[kN]
7,8
Yield moment
My,k
[Nm]
5,8
Withdrawal resistance parameter
fax,k
[N/mm2]
13,7
Associated density
ρa
[kg/m3]
350
Head-pull-through parameter
fhead,k [N/mm2]
23,8
Associated density
ρa
350
[kg/m3]
5,1
CARBONIZED WOOD Ideal for fastening wooden planks with a burnt effect. Can also be used with acetylate-treated woods.
DECKS AND FACADES | KKT COLOR A4 | AISI316 | 325
MINIMUM DISTANCES FOR SHEAR LOADS ρk ≤ 420 kg/m3
screws inserted WITHOUT pre-drilled hole
α=0°
F
d
[mm]
a1
[mm]
a2 a3,t
F
α=90°
5
d
[mm]
12·d
60
a1
[mm]
5
[mm]
5·d
25
a2
[mm]
5·d
25
[mm]
15·d
75
a3,t
[mm]
10·d
50
a3,c
[mm]
10·d
50
a3,c
[mm]
10·d
50
a4,t
[mm]
5·d
25
a4,t
[mm]
10·d
50
a4,c
[mm]
5·d
25
a4,c
[mm]
5·d
25
5·d
25
α = load-to-grain angle d = screw diameter
screws inserted WITH pre-drilled hole
α=0°
F
d
[mm]
a1
[mm]
a2
[mm]
a3,t
[mm]
a3,c
[mm]
a4,t
[mm]
a4,c
[mm]
F
α=90°
5
d
[mm]
25
a1
[mm]
4·d
20
3·d
15
a2
[mm]
4·d
20
12·d
60
a3,t
[mm]
7·d
35
7·d
35
a3,c
[mm]
7·d
35
3·d
15
a4,t
[mm]
7·d
35
15
a4,c
[mm]
3·d
15
stressed end -90° < α < 90°
unloaded end 90° < α < 270°
5·d
3·d
5
α = load-to-grain angle d = screw diameter
a2 a2 a1 a1
F α
α F a3,t
stressed edge 0° < α < 180°
unload edge 180° < α < 360°
α F α
a4,t
F a4,c
a3,c
NOTES • The minimum distances are according to EN 1995:2014 considering a calculation diameter of d = screw diameter. • The minimum spacing for all steel-to-timber connections (a1 , a2) can be multiplied by a coefficient of 0,7.
326 | KKT COLOR A4 | AISI316 | DECKS AND FACADES
• The minimum spacing for all panel-to-timber connections (a1 , a2) can be multiplied by a coefficient of 0,85.
STRUCTURAL VALUES
CHARACTERISTIC VALUES EN 1995:2014 SHEAR
timber-to-timber without pre-drilling hole
geometry
TENSION timber-to-timber with pre-drilling hole
thread withdrawal
head pull-through including upper thread withdrawal
legno-legno con preforo
A L b
d1
d1
L
b
A
[mm] [mm] [mm] [mm] 43 5
25
16
RV,k
RV,k
Rax,k
Rhead,k
[kN]
[kN]
[kN]
[kN]
1,13
1,35
1,98
1,25
53
35
18
1,16
1,40
2,77
1,25
60
40
22
1,19
1,46
3,17
1,25
70
50
27
1,30
1,63
3,96
1,25
GENERAL PRINCIPLES
NOTES
• Characteristic values according to EN 1995:2014.
• The axial thread withdrawal resistance was calculated considering a 90° angle between the grain and the connector and for a fixing length of b.
• Design values can be obtained from characteristic values as follows:
Rd =
Rk kmod γM
The coefficients γM and kmod should be taken according to the current regulations used for the calculation.
• The axial resistance to head pull-through was calculated using timber elements also considering the underhead thread. • For the calculation process a timber characteristic density ρk = 420 kg/m3 has been considered.
• Mechanical strength values and screw geometry comply with CE marking according to EN 14592. • Dimensioning and verification of the timber elements must be carried out separately. • The screws must be positioned in accordance with the minimum distances.
DECKS AND FACADES | KKT COLOR A4 | AISI316 | 327
KKT A4 | AISI316
EN 14592
CONE-SHAPED CONCEALED HEAD SCREW AGGRESSIVE ENVIRONMENTS A4 | AISI316 stainless steel version ideal for very aggressive environments, for acidic, chemically treated wood and very high internal moisture (T5). KKT X version with short length and long bit for use with clips.
COUNTER THREAD The inverse (left-hand) under-head thread guarantees excellent grip. Small conical head to ensure it is hidden in the timber.
TRIANGULAR BODY The three-lobed thread makes it possible to cut the wood grain during screwing. Exceptional timber pull-through.
BIT INCLUDED
DIAMETER [mm] KKT A4 | AISI316 3,5
5
8
LENGTH [mm] 20 20
80
320
SERVICE CLASS SC1
SC2
SC3
SC4
ATMOSPHERIC CORROSIVITY
KKT X A4 | AISI316
C1
C2
C3
C4
C5
WOOD CORROSIVITY T1
T2
T3
T4
T5
MATERIAL long insert included
KKT A4 | AISI316
A4
AISI 316
A4 | AISI316 austenitic stainless steel (CRC III)
FIELDS OF USE Outdoor use in highly aggressive environments. Wooden boards with density of < 550 kg/m3 (without pre-drill) and < 880 kg/m3 (with pre-drill). WPC boards (with pre-drill).
328 | KKT A4 | AISI316 | DECKS AND FACADES
CODES AND DIMENSIONS KKT A4 | AISI316 d1
KKT X A4 | AISI316 - fully threaded screw
CODE
[mm]
5 TX 20
L
b
A
[mm]
[mm]
[mm]
pcs
d1
CODE
[mm]
KKT540A4
43
25
16
200
KKTX520A4( * )
KKT550A4
53
35
18
200
KKTX525A4( * )
KKT560A4
60
40
20
200
KKT570A4
70
50
25
100
KKT580A4
80
53
30
5 TX 20
L
b
A
pcs
[mm]
[mm]
[mm]
20
16
4
200
25
21
4
200
KKTX530A4( * )
30
26
4
200
KKTX540A4
40
36
4
100
( * ) Not holding CE marking.
100
LONG BIT INCLUDED code TX2050
GEOMETRY AND MECHANICAL CHARACTERISTICS KKT A4 | AISI316
KKT X A4 | AISI316
AA
ds d2d2 d1d1 dk
dkdk dsds
ds d2 d1d2 d1
dk b L
bb LL
b L
GEOMETRY Nominal diameter
d1
[mm]
5,1
Head diameter
dK
[mm]
6,75 3,40
Thread diameter
d2
[mm]
Shank diameter
dS
[mm]
4,05
Pre-drilling hole diameter(1)
dV
[mm]
3,0 - 4,0
(1) For high density materials, pre-drilled holes are recommended based on the wood specie.
CHARACTERISTIC MECHANICAL PARAMETERS Nominal diameter
d1
[mm]
Tensile strength
ftens,k
[kN]
5,1 7,8
Yield moment
My,k
[Nm]
5,8
Withdrawal resistance parameter
fax,k
[N/mm2]
13,7
Associated density
ρa
[kg/m3]
350
Head-pull-through parameter
fhead,k [N/mm2]
23,8
Associated density
ρa
350
[kg/m3]
KKT X Ideal for fastening standard Rothoblaas clips (TVM, TERRALOCK) in outdoor environments. Long bit included in each package.
DECKS AND FACADES | KKT A4 | AISI316 | 329
MINIMUM DISTANCES FOR SHEAR LOADS ρk ≤ 420 kg/m3
screws inserted WITHOUT pre-drilled hole
F
d a1 a2 a3,t a3,c a4,t a4,c
[mm] [mm] [mm] [mm] [mm] [mm] [mm]
α=0°
F
5 60 25 75 50 25 25
12·d 5·d 15·d 10·d 5·d 5·d
d a1 a2 a3,t a3,c a4,t a4,c
[mm] [mm] [mm] [mm] [mm] [mm] [mm]
α=90° 5 25 25 50 50 50 25
5·d 5·d 10·d 10·d 10·d 5·d
α = load-to-grain angle d = screw diameter
420 kg/m3 < ρk ≤ 500 kg/m3
screws inserted WITHOUT pre-drilled hole
F
d a1 a2 a3,t a3,c a4,t a4,c
[mm] [mm] [mm] [mm] [mm] [mm] [mm]
α=0°
F
5 75 35 100 75 35 35
15·d 7·d 20·d 15·d 7·d 7·d
d a1 a2 a3,t a3,c a4,t a4,c
[mm] [mm] [mm] [mm] [mm] [mm] [mm]
α=90° 5 35 35 75 75 60 35
7·d 7·d 15·d 15·d 12·d 7·d
α = load-to-grain angle d = screw diameter
screws inserted WITH pre-drilled hole
F
d a1 a2 a3,t a3,c a4,t a4,c
[mm] [mm] [mm] [mm] [mm] [mm] [mm]
α=0°
F
5 25 15 60 35 15 15
d a1 a2 a3,t a3,c a4,t a4,c
stressed end -90° < α < 90°
unloaded end 90° < α < 270°
5·d 3·d 12·d 7·d 3·d 3·d
[mm] [mm] [mm] [mm] [mm] [mm] [mm]
α=90° 5 20 20 35 35 35 15
4·d 4·d 7·d 7·d 7·d 3·d
α = load-to-grain angle d = screw diameter
a2 a2 a1 a1
F α
α F a3,t
stressed edge 0° < α < 180°
unload edge 180° < α < 360°
α F α
a4,t
F a4,c
a3,c
NOTES • The minimum distances are according to EN 1995:2014 considering a calculation diameter of d = screw diameter. • The minimum spacing for all steel-to-timber connections (a1 , a2) can be multiplied by a coefficient of 0,7.
330 | KKT A4 | AISI316 | DECKS AND FACADES
• The minimum spacing for all panel-to-timber connections (a1 , a2) can be multiplied by a coefficient of 0,85.
STRUCTURAL VALUES
CHARACTERISTIC VALUES EN 1995:2014
KKT A4 |AISI316
SHEAR timber-to-timber without pre-drilling hole
geometry
TENSION timber-to-timber with pre-drilling hole
thread withdrawal
head pull-through including upper thread withdrawal
RV,k
RV,k
Rax,k
Rhead,k
[kN]
[kN]
[kN]
[kN]
A L b
d1
d1
L
b
A
[mm] [mm] [mm] [mm]
5
43
25
16
1,13
1,35
1,98
1,25
53
35
18
1,16
1,40
2,77
1,25
60
40
20
1,19
1,46
3,17
1,25
70
50
25
1,41
1,77
3,96
1,25
80
53
30
1,59
2,00
4,20
1,25
KKT X A4 |AISI316
SHEAR
TENSION
steel-to-timber thin plate
geometry
steel-to-timber intermediate plate SPLATE
thread withdrawal
SPLATE
L b
d1
d1
L
b
SPLATE
[mm]
[mm]
[mm]
[mm]
20
16
25
21
5
30
26
40
36
RV,k
SPLATE
[kN]
[mm]
0,64 1,5
0,82 0,99
3
1,34
RV,k
Rax,k
[kN]
[kN]
0,74
1,27
0,92
1,66
1,10
2,06
1,48
2,85
GENERAL PRINCIPLES
NOTES
• Characteristic values according to EN 1995:2014.
• The axial thread withdrawal resistance was calculated considering a 90° angle between the grain and the connector and for a fixing length of b.
• Design values can be obtained from characteristic values as follows:
Rd =
Rk kmod γM
The coefficients γM and kmod should be taken according to the current regulations used for the calculation. • Mechanical strength values and screw geometry comply with CE marking according to EN 14592. • Dimensioning and verification of timber elements and steel plates must be carried out separately.
• The axial resistance to head pull-through was calculated using timber elements also considering the underhead thread. • The characteristic shear strengths are evaluated considering the case of thin plate (SPLATE ≤ 0,5 d1) and intermediate plate (0,5 d1 < SPLATE < d1). • In the case of steel-to-timber connections, generally the steel tensile strength is binding with respect to head separation or pull-through. • For the calculation process a timber characteristic density ρk = 420 kg/m3 has been considered.
• The screws must be positioned in accordance with the minimum distances. • The KKT A4 screws with double thread are mainly used for timber-to-timber joints. • The KKT X total thread screws are mainly used for steel plates (e.g. TERRALOCK patio system).
DECKS AND FACADES | KKT A4 | AISI316 | 331
KKT COLOR
EN 14592
CONE-SHAPED CONCEALED HEAD SCREW ORGANIC COLOURED COATING Carbon steel version with coloured anti-rust coating (brown, grey, green, sand and black) for outdoor use in service class 3 on non acid timbers (T3).
COUNTER THREAD The inverse (left-hand) under-head thread guarantees excellent grip. Small conical head to ensure it is hidden in the timber.
TRIANGULAR BODY The three-lobed thread makes it possible to cut the wood grain during screwing. Exceptional timber pull-through.
KKT COLOR STRIP bound version BIT INCLUDED
DIAMETER [mm] KKT COLOR 3,5
5
6
8
LENGTH [mm] 20
43
120
320
SERVICE CLASS SC1
SC2
SC3
SC4
ATMOSPHERIC CORROSIVITY C1
C2
C3
C4
C5
WOOD CORROSIVITY T1
T2
T3
T4
T5
MATERIAL ORGANIC COATING
carbon steel with coloured organic anti-rust coating
FIELDS OF USE Outdoor use. Wooden boards with density of < 780 kg/m3 (without pre-drill) and < 880 kg/m3 (with pre-drill). WPC boards (with pre-drill).
332 | KKT COLOR | DECKS AND FACADES
CODES AND DIMENSIONS KKT BROWN COLOUR d1 [mm]
5 TX 20
6 TX 25
KKT GREEN COLOUR
CODE KKTM540 KKTM550 KKTM560 KKTM570 KKTM580 KKTM660 KKTM680 KKTM6100 KKTM6120
L [mm] 43 53 60 70 80 60 80 100 120
b [mm] 25 35 40 50 53 40 50 50 60
A [mm] 16 18 20 25 30 20 30 50 60
L [mm] 43 53 60 70 80
b [mm] 25 35 40 50 53
A [mm] 16 18 20 25 30
pcs
d1 [mm]
5 TX 20
CODE KKTG540 KKTG550 KKTG560 KKTG570 KKTG580
KKTV550 KKTV560 KKTV570
200 200 200 100 100 100 100 100 100
KKT SAND COLOUR
pcs
KKT BLACK COLOUR
5 TX 20
d1 [mm] 5 TX 20
KKT GREY COLOUR d1 [mm]
CODE
d1 [mm]
200 200 200 100 100
5 TX 20
CODE KKTS550 KKTS560 KKTS570
CODE KKTN540( * ) KKTN550 KKTN560
L [mm] 53 60 70
b [mm] 35 40 50
A [mm] 18 20 25
L [mm] 53 60 70
b [mm] 35 40 50
A [mm] 18 20 25
L [mm] 43 53 60
b [mm] 36 35 40
A [mm] 16 18 20
pcs 200 200 100
pcs 200 200 100
pcs 200 200 200
(*) Full threaded screw.
KKT COLOR STRIP
KKT BROWN COLOUR
Bound version available for fast and accurate installation. Ideal for large projects.
d1 [mm]
For information on screwdriver and additional products see page 403.
5 TX 20
CODE
L [mm] KKTMSTRIP540 43 KKTMSTRIP550 53
b [mm] 25 35
A [mm] 16 18
pcs 800 800
Compatible with KMR 3372 loaders, code HH3372 and HH3338 with appropriate TX20 bit (code TX2075)
GEOMETRY AND MECHANICAL CHARACTERISTICS A
d2 d1
dk ds
b L
GEOMETRY Nominal diameter
d1
[mm]
5,1
6
Head diameter
dK
[mm]
6,75
7,75
Thread diameter
d2
[mm]
3,40
3,90
Shank diameter
dS
[mm]
4,05
4,40
Pre-drilling hole diameter(1)
dV
[mm]
3,0 - 4,0
4,0 - 5,0
5,1
6 14,5
(1) For high density materials, pre-drilled holes are recommended based on the wood specie.
CHARACTERISTIC MECHANICAL PARAMETERS Nominal diameter
d1
[mm]
Tensile strength
ftens,k
[kN]
9,6
Yield moment
My,k
[Nm]
8,4
9,9
Withdrawal resistance parameter
fax,k
[N/mm2]
14,7
14,7
Associated density
ρa
[kg/m3]
400
400
Head-pull-through parameter
fhead,k [N/mm2]
68,8
20,1
Associated density
ρa
730
350
[kg/m3]
DECKS AND FACADES | KKT COLOR | 333
MINIMUM DISTANCES FOR SHEAR LOADS ρk ≤ 420 kg/m3
screws inserted WITHOUT pre-drilled hole
α=0°
F
d a1 a2 a3,t a3,c a4,t a4,c
[mm] [mm] [mm] [mm] [mm] [mm] [mm]
5 60 25 75 50 25 25
12·d 5·d 15·d 10·d 5·d 5·d
F
6 72 30 90 60 30 30
d a1 a2 a3,t a3,c a4,t a4,c
[mm] [mm] [mm] [mm] [mm] [mm] [mm]
α=90° 5 25 25 50 50 50 25
5·d 5·d 10·d 10·d 10·d 5·d
6 30 30 60 60 60 30
α = load-to-grain angle d = screw diameter
420 kg/m3 < ρk ≤ 500 kg/m3
screws inserted WITHOUT pre-drilled hole
α=0°
F
d a1 a2 a3,t a3,c a4,t a4,c
[mm] [mm] [mm] [mm] [mm] [mm] [mm]
5 75 35 100 75 35 35
15·d 7·d 20·d 15·d 7·d 7·d
F
6 90 42 120 90 42 42
d a1 a2 a3,t a3,c a4,t a4,c
[mm] [mm] [mm] [mm] [mm] [mm] [mm]
α=90° 5 35 35 75 75 60 35
7·d 7·d 15·d 15·d 12·d 7·d
6 42 42 90 90 72 42
α = load-to-grain angle d = screw diameter
screws inserted WITH pre-drilled hole
α=0°
F
d a1 a2 a3,t a3,c a4,t a4,c
[mm] [mm] [mm] [mm] [mm] [mm] [mm]
5 25 15 60 35 15 15
5·d 3·d 12·d 7·d 3·d 3·d
F
6 30 18 72 42 18 18
d a1 a2 a3,t a3,c a4,t a4,c
[mm] [mm] [mm] [mm] [mm] [mm] [mm]
α=90° 5 20 20 35 35 35 15
4·d 4·d 7·d 7·d 7·d 3·d
6 24 24 42 42 42 18
α = load-to-grain angle d = screw diameter stressed end -90° < α < 90°
a2 a2 a1 a1
unloaded end 90° < α < 270°
F α
α F a3,t
stressed edge 0° < α < 180°
unload edge 180° < α < 360°
α F α
a4,t
F a4,c
a3,c
NOTES • The minimum distances are compliant with EN 1995:2014, according to ETA-11/0030, considering a calculation diameter of d = screw diameter. • The minimum spacing for all steel-to-timber connections (a1 , a2) can be multiplied by a coefficient of 0,7.
334 | KKT COLOR | DECKS AND FACADES
• The minimum spacing for all panel-to-timber connections (a1 , a2) can be multiplied by a coefficient of 0,85.
STRUCTURAL VALUES
CHARACTERISTIC VALUES EN 1995:2014
KKT
SHEAR timber-to-timber without pre-drilling hole
geometry
TENSION timber-to-timber with legno-legno pre-drilling hole
thread withdrawal
head pull-through including upper thread withdrawal
RV,k
RV,k
Rax,k
Rhead,k
[kN]
[kN]
[kN]
[kN]
con preforo
A L b
d1
d1
L
b
A
[mm] [mm] [mm] [mm]
5
6
43
25
16
1,08
1,43
1,91
1,05
53
35
18
1,22
1,48
2,67
1,05
60
40
20
1,25
1,53
3,06
1,05
70
50
25
1,34
1,68
3,82
1,05
80
53
30
1,45
1,84
4,05
1,05
60
40
20
1,46
1,80
3,67
1,40
80
50
30
1,67
2,16
4,59
1,40
100
50
50
1,93
2,27
4,59
1,40
120
60
60
1,93
2,27
5,50
1,40
KKTN540
SHEAR
TENSION
steel-to-timber thin plate
geometry
steel-to-timber intermediate plate SPLATE
thread withdrawal
SPLATE
L b
d1
d1
L
b
SPLATE
RV,k
SPLATE
RV,k
Rax,k
[mm]
[mm]
[mm]
[mm]
[kN]
[mm]
[kN]
[kN]
5
40
36
2
1,32
3
1,50
2,75
GENERAL PRINCIPLES
NOTES
• Characteristic values according to EN 1995:2014.
• The axial thread withdrawal resistance was calculated considering a 90° angle between the grain and the connector and for a fixing length of b.
• Design values can be obtained from characteristic values as follows:
Rd =
Rk kmod γM
• The axial resistance to head pull-through was calculated using timber elements also considering the underhead thread.
The coefficients γM and kmod should be taken according to the current regulations used for the calculation.
• A characteristic head-pull-through parameter equal to 20 N/mm2 with associated density ρa = 350 kg/m3 is considered in the calculation phase for the Ø5 diameter.
• Mechanical strength values and screw geometry comply with CE marking according to EN 14592.
• The characteristic shear strengths are evaluated considering the case of thin plate (SPLATE ≤ 0,5 d1) and intermediate plate (0,5 d1 < SPLATE < d1).
• Dimensioning and verification of timber elements and steel plates must be carried out separately.
• In the case of steel-to-timber connections, generally the steel tensile strength is binding with respect to head separation or pull-through.
• The screws must be positioned in accordance with the minimum distances.
• For the calculation process a timber characteristic density ρk = 420 kg/m3 has been considered.
• The KKT screws with twin thread are mainly used for wood-wood joints. • The KKTN540 fully threaded screw is mainly used for steel plates (e.g. FLAT patio system).
DECKS AND FACADES | KKT COLOR | 335
FAS A4 | AISI316 SCREWS FOR FAÇADES OPTIMISED GEOMETRY Thanks to its flange head, partially threaded body and self-drilling tip, it is the appropriate screw for fastening façade panels (HPL, fibre cement sheets, etc.) on timber battens.
A4 | AISI316 A4 | AISI316 austenitic stainless steel for high corrosion resistance. Ideal for environments adjacent to the sea in corrosivity class C5 and for insertion on the most aggressive timbers in class T5.
COLOURED HEAD Available in white, grey or black for perfect colour uniformity with the panel. The colour of the head can be customised on request.
DIAMETER [mm] 3,5
5
8
LENGTH [mm] 20
25
38
320
SERVICE CLASS SC1
SC2
SC3
SC4
ATMOSPHERIC CORROSIVITY C1
C2
C3
C4
C5
WOOD CORROSIVITY T1
T2
T3
T4
T5
MATERIAL
A4
AISI 316
A4 | AISI316 austenitic stainless steel (CRC III)
FIELDS OF USE It can be used outdoors in aggressive environments. Fixing of façade elements (HPL panels, fibre cement slabs, etc.) to timber substructures.
336 | FAS A4 | AISI316 | DECKS AND FACADES
CODES AND DIMENSIONS FAS: stainless steel d1
FAS W: RAL 9010 - white CODE
[mm] FAS4825
4,8 TX 20 FAS4838
L
b
pcs
[mm]
[mm]
25
17
200
38
23
200
d1 [mm]
FASW4825
4,8 TX 20 FASW4838
FAS N: RAL 9005 - black d1
CODE
L
b
pcs
[mm]
[mm]
25
17
200
38
23
200
pcs
FAS G: RAL 7016 - anthracite gray L
b
[mm]
CODE
[mm]
[mm]
pcs
4,8 FASN4825 TX 20 FASN4838
25
17
200
38
23
200
L
b
[mm]
d1
CODE
[mm]
[mm]
4,8 FASG4825 TX 20 FASG4838
25
17
200
38
23
200
GEOMETRY
d1
dk t1
b L
Nominal diameter
d1
[mm]
5
Head diameter
dK
[mm]
12,30
Head thickness
t1
[mm]
2,70
COMPATIBILITY FAS is compatible with the most common fibre cement and HPL façade panel systems.
DECKS AND FACADES | FAS A4 | AISI316 | 337
KKZ A2 | AISI304
EN 14592
COUNTERSUNK CYLINDRICAL HEAD SCREW HARD WOODS Special tip with sword-shaped geometry specially designed to efficiently drill very high density woods without pre-drill (with pre-drill, over 1000 kg/m3).
DOUBLE THREAD The larger diameter right-hand under-head thread ensures an effective grip, guaranteeing good coupling of the wooden elements. Concealed head.
BURNISHED VERSION Available in a version in antique-burnished stainless steel, ideal to guarantee superb camouflaging in the wood.
BIT INCLUDED
DIAMETER [mm] KKZ A2 | AISI304 3,5
5
8
50 70
320
LENGTH [mm] 20
SERVICE CLASS SC1
SC2
SC3
SC4
ATMOSPHERIC CORROSIVITY C1
C2
C3
C4
C5
WOOD CORROSIVITY T1
T2
T3
T4
T5
MATERIAL
A2
KKZ A2 | AISI304
KKZ BRONZE A2 | AISI304
AISI 304
A2 | AISI304 austenitic stainless steel (CRC II)
FIELDS OF USE Use in aggressive outdoor environments. Wooden boards with density of < 780 kg/m3 (without pre-drill) and < 1240 kg/m3 (with pre-drill). WPC boards (with pre-drill).
338 | KKZ A2 | AISI304 | DECKS AND FACADES
CODES AND DIMENSIONS KKZ A2 | AISI304 d1
KKZ BRONZE A2 | AISI304
CODE
L
[mm] 5 TX 25
b1
b2
A
pcs
d1
[mm] [mm] [mm] [mm] KKZ550
50
KKZ560 KKZ570
22
11
60
27
70
32
CODE
L
[mm]
28
200
11
33
200
11
38
100
5 TX 25
b1
b2
A
pcs
[mm] [mm] [mm] [mm] KKZB550
50
22
11
28
200
KKZB560
60
27
11
33
200
GEOMETRY AND MECHANICAL CHARACTERISTICS A ds d2 d1
dk b2
b1 L
GEOMETRY Nominal diameter
d1
[mm]
5
Head diameter
dK
[mm]
6,80
Thread diameter
d2
[mm]
3,50
Shank diameter
dS
[mm]
4,35
Pre-drilling hole diameter(1)
dV
[mm]
3,5
(1) For high density materials, pre-drilled holes are recommended based on the wood specie.
CHARACTERISTIC MECHANICAL PARAMETERS Nominal diameter
d1
[mm]
Tensile strength
ftens,k
[kN]
5,7
Yield moment
My,k
[Nm]
5,3
Withdrawal resistance parameter
fax,k
[N/mm2]
17,1
Associated density
ρa
[kg/m3]
350
Head-pull-through parameter
fhead,k [N/mm2]
36,8
Associated density
ρa
350
[kg/m3]
5
HARD WOOD Also tested on very high density woods, such as IPE, massaranduba or bamboo Microllam® (over 1000 kg/m3).
ACID TIMBER T4 Based on Rothoblaas' experimental experience, A2 (AISI 304) stainless steel is suitable for use in applications on most agressive woods with acidity (pH) levels below 4, such as oak, Douglas fir and chestnut (see page 314).
DECKS AND FACADES | KKZ A2 | AISI304 | 339
MINIMUM DISTANCES FOR SHEAR LOADS ρk ≤ 420 kg/m3
screws inserted WITHOUT pre-drilled hole
F
d a1 a2 a3,t a3,c a4,t a4,c
[mm] [mm] [mm] [mm] [mm] [mm] [mm]
α=0°
F
5 60 25 75 50 25 25
12·d 5·d 15·d 10·d 5·d 5·d
d a1 a2 a3,t a3,c a4,t a4,c
[mm] [mm] [mm] [mm] [mm] [mm] [mm]
α=90° 5 25 25 50 50 50 25
5·d 5·d 10·d 10·d 10·d 5·d
α = load-to-grain angle d = nominal screw diameter
420 kg/m3 < ρk ≤ 500 kg/m3
screws inserted WITHOUT pre-drilled hole
F
d a1 a2 a3,t a3,c a4,t a4,c
[mm] [mm] [mm] [mm] [mm] [mm] [mm]
α=0°
F
5 75 35 100 75 35 35
15·d 7·d 20·d 15·d 7·d 7·d
d a1 a2 a3,t a3,c a4,t a4,c
[mm] [mm] [mm] [mm] [mm] [mm] [mm]
α=90° 5 35 35 75 75 60 35
7·d 7·d 15·d 15·d 12·d 7·d
α = load-to-grain angle d = nominal screw diameter
screws inserted WITH pre-drilled hole
F
d a1 a2 a3,t a3,c a4,t a4,c
[mm] [mm] [mm] [mm] [mm] [mm] [mm]
α=0°
F
5 25 15 60 35 15 15
d a1 a2 a3,t a3,c a4,t a4,c
stressed end -90° < α < 90°
unloaded end 90° < α < 270°
5·d 3·d 12·d 7·d 3·d 3·d
[mm] [mm] [mm] [mm] [mm] [mm] [mm]
α=90° 5 20 20 35 35 35 15
4·d 4·d 7·d 7·d 7·d 3·d
α = load-to-grain angle d = nominal screw diameter
a2 a2 a1 a1
F α
α F a3,t
stressed edge 0° < α < 180°
unload edge 180° < α < 360°
α F α
a4,t
F a4,c
a3,c
NOTES • The minimum distances are according to EN 1995:2014 considering a calculation diameter of d = nominal screw diameter. • The minimum spacing for all steel-to-timber connections (a1 , a2) can be multiplied by a coefficient of 0,7.
340 | KKZ A2 | AISI304 | DECKS AND FACADES
• The minimum spacing for all panel-to-timber connections (a1 , a2) can be multiplied by a coefficient of 0,85.
STRUCTURAL VALUES
CHARACTERISTIC VALUES EN 1995:2014 SHEAR
timber-to-timber without pre-drilling hole
geometry
TENSION timber-to-timber with pre-drilling hole
thread withdrawal
head pull-through including upper thread withdrawal
A L b1 d1
d1
L
b1
A
RV,k
RV,k
Rax,k
Rhead,k
[kN]
[kN]
[kN]
[kN]
28
1,41
1,71
2,18
1,97
[mm] [mm] [mm] [mm] 50 5
22
60
27
33
1,52
1,83
2,67
1,97
70
32
38
1,61
1,83
3,17
1,97
GENERAL PRINCIPLES
NOTES
• Characteristic values according to EN 1995:2014.
• The axial thread withdrawal resistance was calculated considering a 90° angle between the grain and the connector and for a fixing length of b.
• Design values can be obtained from characteristic values as follows:
Rd =
Rk kmod γM
The coefficients γM and kmod should be taken according to the current regulations used for the calculation.
• The axial resistance to head pull-through was calculated using timber elements also considering the underhead thread. • For the calculation process a timber characteristic density ρk = 420 kg/m3 has been considered.
• Mechanical strength values and screw geometry comply with CE marking according to EN 14592. • Dimensioning and verification of the timber elements must be carried out separately. • The screws must be positioned in accordance with the minimum distances.
DECKS AND FACADES | KKZ A2 | AISI304 | 341
KKZ EVO C5
EN 14592
COUNTERSUNK CYLINDRICAL HEAD SCREW C5 ATMOSPHERIC CORROSIVITY Multi-layer coating capable of withstanding outdoor environments classified C5 according to ISO 9223. Salt Spray Test (SST) with exposure time greater than 3000 h carried out on screws previously screwed and unscrewed in Douglas fir timber.
DOUBLE THREAD The larger diameter right-hand under-head thread ensures an effective grip, guaranteeing good coupling of the wooden elements. Concealed head.
HARD WOODS Special tip with sword-shaped geometry specially designed to efficiently drill very high density woods without pre-drill (with pre-drill, over 1000 kg/m3).
BIT INCLUDED
DIAMETER [mm] KKZ EVO C5 3,5
5
8
50 70
320
LENGTH [mm] 20
SERVICE CLASS SC1
SC2
SC3
SC4
ATMOSPHERIC CORROSIVITY C1
C2
C3
C4
C5
WOOD CORROSIVITY T1
T2
T3
T4
T5
MATERIAL
C5
C5
EVO COATING
carbon steel with C5 EVO coating with very high corrosion resistance
FIELDS OF USE Use in aggressive outdoor environments. Wooden boards with density of < 780 kg/m3 (without pre-drill) and < 1240 kg/m3 (with pre-drill). WPC boards (with pre-drill).
342 | KKZ EVO C5 | DECKS AND FACADES
CODES AND DIMENSIONS d1
CODE
[mm] 5 TX 25
L
b1
b2
A
pcs
[mm]
[mm]
[mm]
[mm]
KKZEVO550C5
50
22
11
28
200
KKZEVO560C5
60
27
11
33
200
KKZEVO570C5
70
32
11
38
100
GEOMETRY AND MECHANICAL CHARACTERISTICS A ds d2 d1
dk b2
b1 L
GEOMETRY Nominal diameter
d1
[mm]
5
Head diameter
dK
[mm]
6,80
Thread diameter
d2
[mm]
3,50
Shank diameter
dS
[mm]
4,35
Pre-drilling hole diameter(1)
dV
[mm]
3,5
(1) For high density materials, pre-drilled holes are recommended based on the wood specie.
DISTANCE FROM THE SEA RESISTANCE TO CHLORIDE EXPOSURE(1)
A4
A4 | AISI316 stainless steel
AISI 316
C5
C5
C5 EVO anti-corrosion coating(2)
EVO COATING
distance from the sea
10 km
3 km
1 km
0,25 km
0
(1) C5 is defined according to EN 14592:2022 based on EN ISO 9223. (2) EN 14592:2022 currently limits the service life of alternative coatings to 15 years.
MAXIMUM STRENGTH It ensures high mechanical performance even in the presence of very adverse environmental and wood corrosive conditions.
DECKS AND FACADES | KKZ EVO C5 | 343
EWS AISI410 | EWS A2
EN 14592
CONVEX HEAD SCREW AESTHETIC PERFORMANCE AND ROBUSTNESS Countersunk teardrop shaped head with curved surface for a pleasant look and firm grip with the bit. The increased shank diameter with high torsional strength for a strong, safe screwing even in high density woods.
EWS AISI410 The martensitic stainless steel version offers the highest mechanical performance. Suitable for outdoor applications and on acid wood, but away from corrosive agents (chlorides, sulphides, etc.).
EWS A2 | AISI305 The austenitic A2 stainless steel version offers higher corrosion resistance. Suitable for outdoor applications up to 1 km from the sea and on most of T4 class acid woods.
BIT INCLUDED
DIAMETER [mm] EWS 3,5
5
8
LENGTH [mm] 20
50
80
320
MATERIAL SC1
410
SC2
SC3
SC4
C1 AISI410 martensitic stainless steel
C2
C3
C4
AISI
T1
A2
AISI 305
EWS AISI410
T2
T3
T4
T5
SC1
SC2
SC3
SC4
A2 | AISI305 austenitic stainless C1 C2 steel (CRC II)
C3
C4
T4
T5
T1
EWS A2 | AISI305
T2
T3
FIELDS OF USE Outdoor use. WPC boards (with pre-drill). EWS AISI410: wooden boards with density of < 880 kg/m3 (without pre-drill). EWS A2 | AISI305: wooden boards with density of < 550 kg/m3 (without pre-drill) and < 880 kg/m3 (with pre-drill).
344 | EWS AISI410 | EWS A2 | DECKS AND FACADES
C5
CODES AND DIMENSIONS 410
EWS AISI410 d1
CODE
[mm] EWS550 5 TX 25
EWS560
AISI
L
b
A
[mm]
[mm]
[mm]
50
30
20
60
A2
EWS A2 | AISI305
pcs
d1
AISI 305
CODE
[mm] 200
36
24
200
EWS570
70
42
28
100
EWS580
80
48
32
100
5 TX 25
L
b
A
pcs
[mm]
[mm]
[mm]
EWSA2550
50
30
20
200
EWSA2560
60
36
24
200
EWSA2570
70
42
28
100
GEOMETRY AND MECHANICAL CHARACTERISTICS A
d2 d1
dk t1
ds
b L
GEOMETRY EWS AISI410
EWS A2 | AISI305
Nominal diameter
d1
[mm]
5,3
5,3
Head diameter
dK
[mm]
8,00
8,00
Thread diameter
d2
[mm]
3,90
3,90
Shank diameter
dS
[mm]
4,10
4,10
Head thickness
t1
[mm]
3,65
3,65
Pre-drilling hole diameter(1)
dV
[mm]
3,5
3,5
EWS AISI410
EWS A2 | AISI305
(1) For high density materials, pre-drilled holes are recommended based on the wood specie.
CHARACTERISTIC MECHANICAL PARAMETERS Nominal diameter
d1
[mm]
5,3
5,3
Tensile strength
ftens,k
[kN]
13,7
7,3
Yield moment
My,k
[Nm]
14,3
9,7
Withdrawal resistance parameter
fax,k
[N/mm2]
16,5
16,6
Associated density
ρa
[kg/m3]
350
350
Head-pull-through parameter
fhead,k [N/mm2]
21,1
21,4
Associated density
ρa
350
350
[kg/m3]
WITHOUT PRE-DRILLED HOLE EWS AISI410 can be used, without pre-drill, in woods having a maximum density of 880 kg/m3. EWS A2 | AISI305 can be used, without predrill, in woods having a maximum density of 550 kg/m3.
DECKS AND FACADES | EWS AISI410 | EWS A2 | 345
MINIMUM DISTANCES FOR SHEAR LOADS ρk ≤ 420 kg/m3
screws inserted WITHOUT pre-drilled hole
F
d a1 a2 a3,t a3,c a4,t a4,c
[mm] [mm] [mm] [mm] [mm] [mm] [mm]
α=0°
F
5 60 25 75 50 25 25
12·d 5·d 15·d 10·d 5·d 5·d
d a1 a2 a3,t a3,c a4,t a4,c
[mm] [mm] [mm] [mm] [mm] [mm] [mm]
α=90° 5 25 25 50 50 50 25
5·d 5·d 10·d 10·d 10·d 5·d
α = load-to-grain angle d = screw diameter
420 kg/m3 < ρk ≤ 500 kg/m3
screws inserted WITHOUT pre-drilled hole
F
d a1 a2 a3,t a3,c a4,t a4,c
[mm] [mm] [mm] [mm] [mm] [mm] [mm]
α=0°
F
5 75 35 100 75 35 35
15·d 7·d 20·d 15·d 7·d 7·d
d a1 a2 a3,t a3,c a4,t a4,c
[mm] [mm] [mm] [mm] [mm] [mm] [mm]
α=90° 5 35 35 75 75 60 35
7·d 7·d 15·d 15·d 12·d 7·d
α = load-to-grain angle d = screw diameter
screws inserted WITH pre-drilled hole
F
d a1 a2 a3,t a3,c a4,t a4,c
[mm] [mm] [mm] [mm] [mm] [mm] [mm]
α=0°
F
5 25 15 60 35 15 15
d a1 a2 a3,t a3,c a4,t a4,c
stressed end -90° < α < 90°
unloaded end 90° < α < 270°
5·d 3·d 12·d 7·d 3·d 3·d
[mm] [mm] [mm] [mm] [mm] [mm] [mm]
α=90° 5 20 20 35 35 35 15
4·d 4·d 7·d 7·d 7·d 3·d
α = load-to-grain angle d = screw diameter
a2 a2 a1 a1
F α
α F a3,t
stressed edge 0° < α < 180°
unload edge 180° < α < 360°
α F α
a4,t
F a4,c
a3,c
NOTES • The minimum distances are according to EN 1995:2014 considering a calculation diameter of d = screw diameter.
346 | EWS AISI410 | EWS A2 | DECKS AND FACADES
• The minimum spacing for all panel-to-timber connections (a1 , a2) can be multiplied by a coefficient of 0,85.
STRUCTURAL VALUES
CHARACTERISTIC VALUES EN 1995:2014
EWS AISI410
SHEAR timber-to-timber without pre-drilled hole
geometry
TENSION timber-to-timber with pre-drilling hole
thread withdrawal
head pull-through
RV,k
RV,k
Rax,k
Rhead,k
[kN]
[kN]
[kN]
[kN]
A L b
d1
d1
L
b
A
[mm] [mm] [mm] [mm]
5
50
30
20
1,38
1,84
2,86
1,56
60
36
24
1,58
2,09
3,44
1,56
70
42
28
1,77
2,21
4,01
1,56
80
48
32
1,85
2,34
4,58
1,56
EWS A2 | AISI305
SHEAR timber-to-timber without pre-drilled hole
geometry
TENSION timber-to-timber with pre-drilling hole
thread withdrawal
head pull-through
A L b
d1
d1
L
b
A
[mm] [mm] [mm] [mm] 5
RV,k
RV,k
Rax,k
Rhead,k
[kN]
[kN]
[kN]
[kN]
50
30
20
1,39
1,80
2,88
1,58
60
36
24
1,55
1,92
3,46
1,58
70
42
28
1,64
2,06
4,03
1,58
GENERAL PRINCIPLES
NOTES
• Characteristic values according to EN 1995:2014.
• The axial thread withdrawal resistance was calculated considering a 90° angle between the grain and the connector and for a fixing length of b.
• Design values can be obtained from characteristic values as follows:
Rd =
Rk kmod γM
The coefficients γM and kmod should be taken according to the current regulations used for the calculation.
• The axial resistance to head pull-through was calculated using wood elements. • For the calculation process a timber characteristic density ρk = 420 kg/m3 has been considered.
• Mechanical strength values and screw geometry comply with CE marking according to EN 14592. • Values were calculated considering the threaded part as being completely inserted into the wood. • Dimensioning and verification of the timber elements must be carried out separately. • The screws must be positioned in accordance with the minimum distances.
DECKS AND FACADES | EWS AISI410 | EWS A2 | 347
KKF AISI410
ETA-11/0030
UKTA-0836 22/6195
AC233 ESR-4645
ETA-11/0030
PAN HEAD SCREW PAN HEAD The flat under-head accompanies absorption of the shavings, preventing the wood from cracking and thus ensuring excellent surface finish.
LONGER THREAD Special asymmetric “umbrella” thread with increased length (60%) for higher grip. Fine thread for the utmost precision when tightening is complete.
OUTDOOR APPLICATIONS ON ACID WOOD Martensitic stainless steel. This stainless steels offers the highest mechanical performance compared to the other available stainless steels. Suitable for outdoor applications and on acid wood, but away from corrosive agents (chlorides, sulphides, etc.).
BIT INCLUDED
DIAMETER [mm] KKF AISI410
3,5
4
6
8
LENGTH [mm] 20 20
120
320
SERVICE CLASS SC1
SC2
SC3
SC4
ATMOSPHERIC CORROSIVITY C1
C2
C3
C4
C5
WOOD CORROSIVITY T1
T2
T3
T4
T5
MATERIAL
410 AISI
AISI410 martensitic stainless steel
FIELDS OF USE Outdoor use. Wooden boards with density < 780 kg/m3 (without pre-drill). WPC boards (with pre-drill).
348 | KKF AISI410 | DECKS AND FACADES
CODES AND DIMENSIONS d1
CODE
[mm] KKF430 4 TX 20
4,5 TX 20
L
b
A
pcs
[mm]
[mm]
[mm]
30
18
12
500
d1
CODE
[mm] KKF540
L
b
A
[mm]
[mm]
[mm]
40
24
16
pcs 200
KKF435
35
20
15
500
KKF550
50
30
20
200
KKF440
40
24
16
500
KKF560
60
35
25
200
KKF445
45
30
15
200
KKF570
70
40
30
100
5 TX 25
KKF450
50
30
20
200
KKF580
80
50
30
100
KKF4520( * )
20
15
5
200
KKF590
90
55
35
100
KKF4540
40
24
16
200
KKF5100
100
60
40
100
KKF4545
45
30
15
200
KKF680
80
50
30
100
KKF6100
100
60
40
100
KKF6120
120
75
45
100
KKF4550
50
30
20
200
KKF4560
60
35
25
200
KKF4570
70
40
30
200
6 TX 30
( * ) Not holding CE marking.
GEOMETRY AND MECHANICAL CHARACTERISTICS
d2 d1
XXX
dk
KKF
A
ds
t1
b L
GEOMETRY Nominal diameter
d1
[mm]
4
4,5
5
6
Head diameter
dK
[mm]
7,70
Thread diameter
d2
[mm]
2,60
8,70
9,65
11,65
3,05
3,25
4,05
Shank diameter
dS
[mm]
2,90
Head thickness
t1
[mm]
5,00
3,35
3,60
4,30
5,00
6,00
Pre-drilling hole diameter(1)
7,00
dV,S
[mm]
2,5
Pre-drilling hole diameter(2)
dV,H
[mm]
-
2,5
3,0
4,0
-
3,5
4,0
Nominal diameter
d1
[mm]
4
4,5
5
6
Tensile strength
ftens,k
[kN]
5,0
6,4
7,9
11,3
Yield moment
My,k
[Nm]
3,0
4,1
5,4
9,5
(1) Pre-drilling valid for softwood. (2) Pre-drilling valid for hardwood and beech LVL.
CHARACTERISTIC MECHANICAL PARAMETERS
softwood (softwood)
LVL softwood (LVL softwood)
hardwood predrilled (hardwood predrilled)
Withdrawal resistance parameter
fax,k
[N/mm2]
11,7
15,0
29,0
Head-pull-through parameter
fhead,k [N/mm2]
16,5
-
-
Associated density
ρa
[kg/m3]
350
500
730
Calculation density
ρk
[kg/m3]
≤ 440
410 ÷ 550
590 ÷ 750
For applications with different materials please see ETA-11/0030.
DECKS AND FACADES | KKF AISI410 | 349
MINIMUM DISTANCES FOR SHEAR LOADS ρk ≤ 420 kg/m3
screws inserted WITHOUT pre-drilled hole
α=0°
F
d1
[mm]
a1
[mm]
a2
[mm]
5∙d
20
a3,t
[mm]
15∙d
60
a3,c
[mm]
10∙d
40
a4,t
[mm]
5∙d
20
a4,c
[mm]
5∙d
20
10∙d
4
4,5
40
45
F
α=90°
5
6
d1
[mm]
10∙d
50
60
a1
[mm]
23
5∙d
25
30
a2
[mm]
5∙d
20
23
5∙d
25
30
68
15∙d
75
90
a3,t
[mm]
10∙d
40
45
10∙d
50
60
45
10∙d
50
60
a3,c
[mm]
10∙d
40
45
10∙d
50
60
23
5∙d
25
30
a4,t
[mm]
7∙d
28
32
10∙d
50
60
23
5∙d
25
30
a4,c
[mm]
5∙d
20
23
5∙d
25
30
5∙d
4
4,5
20
23
d1
[mm]
α=0°
4
4,5
5
6
25
30
420 kg/m3 < ρk ≤ 500 kg/m3
screws inserted WITHOUT pre-drilled hole
F
5∙d
F
5
6
d1
[mm]
α=90°
4
4,5
5
6 42
a1
[mm]
15∙d
60
68
15∙d
75
90
a1
[mm]
7∙d
28
32
7∙d
35
a2
[mm]
7∙d
28
32
7∙d
35
42
a2
[mm]
7∙d
28
32
7∙d
35
42
a3,t
[mm]
20∙d
80
90
20∙d
100
120
a3,t
[mm]
15∙d
60
68
15∙d
75
90
a3,c
[mm]
15∙d
60
68
15∙d
75
90
a3,c
[mm]
15∙d
60
68
15∙d
75
90
a4,t
[mm]
7∙d
28
32
7∙d
35
42
a4,t
[mm]
9∙d
36
41
12∙d
60
72
a4,c
[mm]
7∙d
28
32
7∙d
35
42
a4,c
[mm]
7∙d
28
32
7∙d
35
42
screws inserted WITH pre-drilled hole
α=0°
F
F
α=90°
d1
[mm]
4
4,5
5
6
d1
[mm]
4
4,5
5
6
a1
[mm]
5∙d
20
23
5∙d
25
30
a1
[mm]
4∙d
16
18
4∙d
20
24
a2
[mm]
3∙d
12
14
3∙d
15
18
a2
[mm]
4∙d
16
18
4∙d
20
24
a3,t
[mm]
12∙d
48
54
12∙d
60
72
a3,t
[mm]
7∙d
28
32
7∙d
35
42
a3,c
[mm]
7∙d
28
32
7∙d
35
42
a3,c
[mm]
7∙d
28
32
7∙d
35
42
a4,t
[mm]
3∙d
12
14
3∙d
15
18
a4,t
[mm]
5∙d
20
23
7∙d
35
42
a4,c
[mm]
3∙d
12
14
3∙d
15
18
a4,c
[mm]
3∙d
12
14
3∙d
15
18
α = load-to-grain angle d = nominal screw diameter stressed end -90° < α < 90°
a2 a2 a1 a1
unloaded end 90° < α < 270°
F α
α F a3,t
stressed edge 0° < α < 180°
unload edge 180° < α < 360°
α F α
a4,t
F a4,c
a3,c
NOTES • The minimum distances comply with the EN 1995:2014 standard in accordance with ETA-11/0030. • The minimum spacing for all steel-to-timber connections (a1 , a2) can be multiplied by a coefficient of 0,7. • The minimum spacing for all panel-to-timber connections (a1 , a2) can be multiplied by a coefficient of 0,85. • In the case of joints with elements in Douglas fir (Pseudotsuga menziesii), the minimum spacing and distances parallel to the grain must be multiplied by a coefficient of 1.5.
350 | KKF AISI410 | DECKS AND FACADES
• The spacing a1 in the table for screws with 3 THORNS tip and d1≥5 mm inserted without pre-drilling hole in timber elements with density ρ k ≤ 420 kg/m3 and load-to-grain angle α=0° was assumed to be 10∙d based on experimental tests; alternatively, adopt 12∙d in accordance with EN 1995:2014. • For a row of n screws arranged parallel to the direction of the grain at a distance a1 , the characteristic effective shear bearing capacity Ref,V,k can be calculated by means of the effective number nef (see page 34).
STRUCTURAL VALUES
CHARACTERISTIC VALUES EN 1995:2014 SHEAR
timber-to-timber ε=90°
geometry
timber-to-timber ε=0°
TENSION panel-to-timber
thread withdrawal ε=90°
thread withdrawal ε=0°
head pull-through
Rax,90,k
Rax,0,k
Rhead,k
SPAN
A L b d1
d1
L
b
A
[mm] [mm] [mm] [mm]
4
4,5
5
6
RV,90,k
RV,0,k
SPAN [mm]
[kN]
[kN]
12
0,76
0,38
20
15
0,87
0,45
24
16
0,91
0,51
30
18
35 40
15
RV,k [kN]
[kN]
[kN]
[kN]
0,75
0,91
0,27
1,06
0,83
1,01
0,30
1,06
0,83
1,21
0,36
1,06
45
30
15
0,89
0,56
0,83
1,52
0,45
1,06
50
30
20
1,00
0,62
0,83
1,52
0,45
1,06
20
15
5
0,45
0,28
0,45
0,85
0,26
1,35
40
24
16
1,08
0,55
1,05
1,36
0,41
1,35
45
30
15
1,07
0,61
1,05
1,70
0,51
1,35
15
50
30
20
1,17
0,69
1,05
1,70
0,51
1,35
60
35
25
1,29
0,79
1,05
1,99
0,60
1,35
70
40
30
1,33
0,86
1,05
2,27
0,68
1,35
40
24
16
1,21
0,60
1,15
1,52
0,45
1,66
50
30
20
1,36
0,75
1,19
1,89
0,57
1,66
1,19
2,21
0,66
1,66
1,19
2,53
0,76
1,66
1,19
3,16
0,95
1,66
60
35
25
1,48
0,88
70
40
30
1,59
0,96
80
50
30
1,59
1,11
15
90
55
35
1,59
1,11
1,19
3,47
1,04
1,66
100
60
40
1,59
1,11
1,19
3,79
1,14
1,66
80
50
30
2,08
1,37
1,63
3,79
1,14
2,42
100
60
40
2,27
1,58
1,63
4,55
1,36
2,42
120
75
45
2,27
1,65
1,63
5,68
1,70
2,42
15
ε = screw-to-grain angle
GENERAL PRINCIPLES
NOTES
• Characteristic values comply with the EN 1995:2014 standard in accordance with ETA-11/0030.
• The characteristic timber-to-timber shear strengths were evaluated considering both an ε angle of 90° (RV,90,k) and 0° (RV,0,k) between the grains and the connector in the second element. • The characteristic panel-timber shear strengths were evaluated considering an angle ε of 90° between the grains and the connector in the timber element. • The characteristic thread withdrawal resistances were evaluated considering both an ε angle of 90° (Rax,90,k) and of 0° (Rax,0,k) between the grains and the connector. • For the calculation process a timber characteristic density ρk = 385 kg/m3 has been considered. For different ρk values, the strength on the table (timber-to-timber shear and tensile) can be converted by the kdens coefficient.
• Design values can be obtained from characteristic values as follows:
Rd =
Rk kmod γM
The coefficients γM and kmod should be taken according to the current regulations used for the calculation. • For the mechanical resistance values and the geometry of the screws, reference was made to ETA-11/0030. • Sizing and verification of the timber elements and panels must be done separately. • The screws must be positioned in accordance with the minimum distances. • The characteristic shear resistances are calculated for screws inserted without pre-drilling hole. In the case of screws inserted with pre-drilling hole, greater resistance values can be obtained. • Shear strengths were calculated considering the threaded part fully inserted in the second element. • The characteristic panel-timber shear strengths are calculated considering an OSB3 or OSB4 panel, as per EN 300, or a particle board panel, as per EN 312, with thickness SPAN and density ρk = 500 kg/m3. • The thread withdrawal characteristic strength has been evaluated considering a fixing length equal to b.
R’V,k = kdens,v RV,k R’ax,k = kdens,ax Rax,k R’head,k = kdens,ax Rhead,k ρk
[kg/m3 ]
350
380
385
405
425
430
440
C-GL
C24
C30
GL24h
GL26h
GL28h
GL30h
GL32h
kdens,v
0,90
0,98
1,00
1,02
1,05
1,05
1,07
kdens,ax
0,92
0,98
1,00
1,04
1,08
1,09
1,11
Strength values thus determined may differ, for higher safety standards, from those resulting from an exact calculation.
• The characteristic resistance to head pull-through was calculated using timber elements.
DECKS AND FACADES | KKF AISI410 | 351
KKA AISI410 SELF-DRILLING SCREW TIMBER-TO-TIMBER | TIMBER-TO-ALUMINIUM TIMBER-TO-ALUMINIUM Self-perforating timber-to-metal tip with special bleeder geometry. Ideal for fastening timber or WPC boards to aluminium substructures.
TIMBER-TO-TIMBER Also ideal for fastening timber or WPC boards to thin wooden substructures, they, too, made with wooden boards.
METAL-TO-ALUMINIUM Short version ideal for fastening clips, plates and angle brackets to aluminium substructures. Can be used to fix aluminium-aluminium overlaps.
OUTDOOR APPLICATIONS ON ACID WOOD AISI410 martensitic stainless steel. This stainless steels offers the highest mechanical performance compared to the other available stainless steels. Suitable for outdoor applications and on acid wood, but away from corrosive agents (chlorides, sulphides, etc.). BIT INCLUDED
DIAMETER [mm] KKA AISI410 3,5
4
5
8
LENGTH [mm] 20 20
50
320
SERVICE CLASS SC1
SC2
SC3
SC4
ATMOSPHERIC CORROSIVITY C1
C2
C3
C4
C5
WOOD CORROSIVITY KKA Ø4
T1
T2
T3
T4
T5
MATERIAL
410 AISI
AISI410 martensitic stainless steel
KKA Ø5
FIELDS OF USE Outdoor use. Wooden boards with density of < 880 kg/m3 on aluminium with a thickness of < 3.2 mm (without pre-drill).
352 | KKA AISI410 | DECKS AND FACADES
CODES AND DIMENSIONS L
b1
b2
A
s
[mm]
d1
[mm]
[mm]
[mm]
[mm]
[mm]
4 KKA420 TX 20
20
11,4
-
-
1 ÷ 2,5
200
L
b1
b2
A
s
pcs
[mm]
[mm]
[mm]
[mm]
[mm]
40
15,5
11
29
2÷3
100
50
20,5
11
39
2÷3
100
d1
CODE
CODE
[mm] KKA540
5 TX 25 KKA550 s
pcs
thickness that can be drilled, steel plate S235/St37 thickness that can be drilled, aluminium plate
GEOMETRY KKA Ø4
KKA Ø5
s
A s
t1
d2 d 1
dk b L
s
t1
d 2 d1
dk
Lp
ds
b2
b1
Lp
L
Nominal diameter
d1
[mm]
4
5
Head diameter
dK
[mm]
6,30
6,80
Thread diameter
d2
[mm]
2,80
3,50
Shank diameter
dS
[mm]
-
4,35
Head thickness
t1
[mm]
3,10
3,35
Tip length
Lp
[mm]
5,5
6,5
ALU TERRACE Ideal for fastening timber or WPC boards, clips or angle brackets to aluminium substructures.
DECKS AND FACADES | KKA AISI410 | 353
KKA COLOR SELF-DRILLING SCREW FOR ALUMINIUM ALUMINIUM Self-perforating tip with special bleeder geometry. Ideal for fastening clips to aluminium substructures.
ORGANIC COLOURED COATING Black coloured anti-rust coating for outdoor use in service class 3 on non-acidic woods (T3). Concealed effect on dark substructures and clips.
METAL-TO-ALUMINIUM Short version ideal for fastening clips, plates and angle brackets to steel or aluminium substructures. Can be used to fix metal-metal overlaps.
BIT INCLUDED
DIAMETER [mm] KKA COLOR
3,5
4
5
8
LENGTH [mm] 20 20
40
320
SERVICE CLASS SC1
SC2
SC3
SC4
ATMOSPHERIC CORROSIVITY C1
KKAN Ø4x20
C2
C3
C4
C5
WOOD CORROSIVITY T1
T2
T3
T4
T5
MATERIAL KKAN Ø4x30 KKAN Ø4x40 KKAN Ø5x40
long insert included
ORGANIC COATING
carbon steel with coloured organic anti-rust coating
FIELDS OF USE Outdoor use. Aluminium thickness < 3.2 mm (without pre-drill).
354 | KKA COLOR | DECKS AND FACADES
CODES AND DIMENSIONS L
b
A
s
[mm]
d1
CODE
[mm]
[mm]
[mm]
[mm]
KKAN420 4 KKAN430 TX 20 KKAN440
20
10
-
2÷3
200
5 KKAN540 TX 25 s
pcs
30
20
22
2÷3
200
40
30
32
2÷3
200
40
29
29
2÷3
200
thickness that can be drilled, steel plate S235/St37 thickness that can be drilled, aluminium plate LONG BIT INCLUDED code TX2050
GEOMETRY s
A s
t1
t1 d2 d 1
dk b L
s d 2 d1
dk
Lp
b
Lp
L
KKAN Ø4x20
KKAN Ø4x30 - Ø4x40 - Ø5x40
Nominal diameter
d1
[mm]
4
5
Head diameter
dK
[mm]
6,30
6,80
Thread diameter
d2
[mm]
2,80
3,50
Head thickness
t1
[mm]
3,10
3,35
Tip length
Lp
[mm]
5,5
6,5
TVM COLOR Ideal for fastening standard Rothoblaas clips (TVMN) on aluminium. Long bit included in each package.
DECKS AND FACADES | KKA COLOR | 355
FLAT | FLIP CONNECTOR FOR DECKING INVISIBLE Completely hidden. The version in aluminium with black coating guarantees an attractive result; the galvanized steel version offers good performance at low cost.
FAST INSTALLATION Fast, easy installation thanks to the single-screw fastening and the integrated spacer-tab for precise spacing. Ideal for application with the PROFID spacer.
SYMMETRICAL GROOVING Makes it possible to install deck planks regardless of the position of the grooving (symmetrical). Ribbed surface provides high mechanical strength.
BOARDS 7 mm
7 mm
FASTENING ON FLAT timber
WPC
aluminium
MATERIAL
alu
aluminium with organic coloured coating
Zn
electrogalvanized carbon steel
FLIP ELECTRO PLATED
FIELDS OF USE Outdoor use. Fastening of timber or WPC boards with symmetrical milling on substructures in wood, WPC or aluminium.
356 | FLAT | FLIP | DECKS AND FACADES
CODES AND DIMENSIONS
alu
FLAT CODE
material
PxBxs
pcs
Zn
ELECTRO PLATED
FLIP CODE
material
PxBxs
[mm] FLAT
black alluminum
54 x 27 x 4
200
KKT COLOR
FLIP
zinc-plated steel
54 x 27 x 4
200
L
pcs
KKA COLOR
fastening on wood and WPC for FLAT and FLIP
d1 [mm] 5 TX 20
pcs
[mm]
fastening on aluminium for FLAT and FLIP
CODE
L [mm]
pcs
KKTN540
40
200
d1
CODE
[mm]
[mm] KKAN420
4 TX 20 5 TX 25
20
200
KKAN430
30
200
KKAN440
40
200
KKAN540
40
200
GEOMETRY FLAT
FLIP 2
4
2
8,5
27
8
45°
8,5
5
54
5
27
42°
8
Ø5,3
7
27
6
6
Ø5,3
27
27
B
s P
54
7
27
B
4
s P
WOOD PLASTIC COMPOSITE (WPC) Ideal for fastening WPC boards. Can also be used for fastening on aluminium using KKA COLOR screws (KKAN440).
DECKS AND FACADES | FLAT | FLIP | 357
GROOVING GEOMETRY FLAT
FLIP 7 F
PROFID
7 F
H KKTN
PROFID
SYMMETRICAL GROOVING
H
Min. thickness
F
4 mm
Min. recommended height H
H
free
KKTN
INSTALLATION 01
02
Position the PROFID spacer at the joist centerline. First board: fix it with suitable screws, left visible or hidden thanks to specific accessories.
Insert the FLAT/FLIP fastener into the groove cut so that the spacer tab adheres to the board.
03
04
Position the next board by inserting it into the FLAT/FLIP fastener.
Using the CRAB MINI or CRAB MAXI clamp, tighten the two boards until the gap between them is 7 mm (see product page 395).
05
06
Fix the fastener to the joist underneath by using the KKTN screw.
Repeat the operations for the remaining boards. Last board: repeat step 01.
358 | FLAT | FLIP | DECKS AND FACADES
CALCULATION EXAMPLE INCIDENCE ESTIMATE FORMULA PER m2 f L
1m2/i/(L + f) = pcs of FLAT/FLIP at m2 i = battens spacing L = board width
i
f = gap width
PRACTICAL EXAMPLE NUMBER OF BOARDS AND BATTENS A=6m A=6m
PATIO SURFACE S = A ∙ B = 6 m ∙ 4 m = 24 m2 WOODEN PLANKING L = 140 mm
140 mm 18 mm
s = 18 mm
=4 BB =4 mm
f = 7 mm BATTENS
68 mm
b = 68 mm h = 38 mm
38 mm
i= 0,6 m
0,6 m 0,6 m
0,6 m 0,6 m
0,54 m 0,54 m
no. boards
= [B/(L+f)]
= [4/(0,14+0,007)]= 27 boards
no. 4 m boards = 27 boards no. 2 m boards = 27 boards
27 boards 4 m
no. battens = [A/i] + 1 = (6/0,6) +1 = 11 battens
27 boards 2 m
SCREW SELECTION Screw head thickness
Sscrew head
Grooving thickness Grooving dimension
F H
PROFID thickness
SPROFID
Pull-through length
L pen
f BOARD BATTEN
F FLAT/FLIP
PROFID
PROFID
2,8 mm (s-F)/2
4 mm 7 mm 8 mm
4∙d
20 mm
MINIMUM SCREW LENGTH H KKTN
= Sscrew head + F + H + SPROFID + Lpen = 2,8 + 4 + 7 + 8 + 20 = 41,8 mm CHOICE OF SCREW
KKTN550
FLAT / FLIP NUMBER CALCULATION QUANTITY FOR INCIDENCE FORMULA
QUANTITY FOR THE NUMBER OF INTERSECTIONS
I = S/i/(L + f) = pcs of FLAT/FLIP
I = No. boards with FLAT/FLIP no. battens = pcs. of FLAT/FLIP
I = 24 m2/0,6 m/(0,14 m + 0,007 m) = 272 pcs FLAT/FLIP
no. boards with FLAT/FLIP = (number of boards - 1) = (27 - 1) = 26 boards no. of battens = (A/i) + 1 = (6/0.6) + 1 = 11 battens
waste coefficient = 1,05 I = 272 ∙ 1,05 = 286 pcs FLAT/FLIP
no. intersections = I = 26 ∙ 11 = 286 pcs FLAT/FLIP
I = 286 pcs FLAT/FLIP
I = 286 pcs FLAT/FLIP
FLAT/FLIP NUMBER = 286 pcs
SCREWS NUMBER = No. FLAT/FLIP = 286 pcs KKTN550 DECKS AND FACADES | FLAT | FLIP | 359
SNAP CONNECTOR AND SPACER FOR DECKS VERSATILITY It can be used both as a concealed connector for boards and as a spacer between boards and battens. SNAP is developed to be used individually but also in combination. In this case, SNAPs have dual functionality as connector and spacer, for maximum efficiency and convenience.
MICRO VENTILATION When used as a spacer, SNAP prevents water stagnation thanks to the micro-ventilation created under the decking boards.
DURABILITY PP (glass fiber reinforced polypropylene) material provides excellent durability at an affordable price.
BOARDS 7 mm
7 mm
FASTENING ON
timber
WPC
aluminium
MATERIAL
PP
PP Reinforced polypropylene
FIELDS OF USE Outdoor use. Fastening of timber or WPC boards with symmetrical milling on substructures in wood, WPC or aluminium.
360 | SNAP | DECKS AND FACADES
CODES AND DIMENSIONS CODE
material
SNAP
polypropylene
PxBxs
f
Ø
[mm]
[mm]
[mm]
70 x 28 x 4
7
5,5
KKT COLOR
pcs 100
KKZ A2 | AISI304
fastening on timber
fastening on hardwood
d1 [mm]
CODE
L [mm]
pcs
5 TX 20
KKTN540( * )
43
200
KKTN550
53
200
d1
CODE
L
[mm]
pcs
[mm]
5 TX 25
(*) Full threaded screw.
KKZ550
50
200
KKZ560
60
200
CODE
L
pcs
KKZ EVO C5
d1 [mm]
CODE
L [mm]
pcs
5 TX 20
KKTM550
53
200
d1
KKTM560
60
200
[mm]
fastening on hardwood
[mm]
5 TX 25
KKZEVO550C5
50
200
KKZEVO560C5
60
200
GEOMETRY 29,5
7
29,5
11 10,5 28 7 F
s
7
Ø5,3
P
10,5 B
H
4
70
INSTALLATION VISIBLE FASTENER
7
CONCEALED FASTENER
7
7 F
GROOVING
H
7
Min. thickness
F
4 mm
Min. recommended height H
H
7 mm
7
DECK KIT SNAP, KKT screws, TERRA BAND UV tape and GRANULO or NAG batten support are the best products for building a strong and durable terrace quickly and economically.
DECKS AND FACADES | SNAP | 361
TVM CONNECTOR FOR DECKING FOUR VERSIONS Different sizes for applications on boards with different thickness and gaps of varying width. Black version for complete concealment.
DURABILITY The stainless steel ensures high corrosion-resistance. The micro-ventilation between the boards helps the durability of the wooden elements.
ASYMMETRIC GROOVING Ideal for boards with asymmetrical “female-female” groove cuts. Ribbing on the surface of the connector ensures excellent stability.
BOARDS 7-9 mm
7-9 mm
TVM1
FASTENING ON TVM2
timber
WPC
aluminium
MATERIAL TVM3
A2
A2 | AISI304 austenitic stainless steel (CRC II)
A2
stainless steel with coloured organic coating
AISI 304
AISI 304
TVMN4
FIELDS OF USE Use in aggressive outdoor environments. Fastening timber or WPC boards on substructures in wood, WPC or aluminium.
362 | TVM | DECKS AND FACADES
CODES AND DIMENSIONS
A2
TVM A2 | AISI304 CODE
material
PxBxs
AISI 304
TVM COLOR
pcs
CODE
A2
AISI 304
material
PxBxs
[mm] TVM1
A2 | AISI304
22,5 x 31 x 2,4
500
TVM2
A2 | AISI304
22,5 x 28 x 2,4
500
TVM3
A2 | AISI304
30 x 29.4 x 2.4
500
KKT X
L
5 TX 20
pcs
200
L
pcs
CODE
[mm]
20 25 30 40
200 200 200 100
KKA AISI410
5 TX 20
[mm] KKTN540
40
200
L
pcs
KKA COLOR
fastening on aluminium for TVM A2 | AISI304
d1
d1
[mm] KKTX520A4 KKTX525A4 KKTX530A4 KKTX540A4
23 x 36 x 2.4
fastening on timber and WPC for TVM COLOR
CODE
[mm]
A2 | AISI304 with black coating
TVMN4
KKT COLOR
fastening on timber and WPC for TVM A2 | AISI304
d1
pcs
[mm]
fastening on aluminium for TVM COLOR
CODE
L
[mm]
pcs
d1
[mm]
CODE
[mm]
4 TX 20
KKA420
20
200
5 TX 25
KKA540 KKA550
40 50
100 100
4 TX 20
[mm] KKAN420 KKAN430 KKAN440
20 30 40
200 200 200
GEOMETRY TVM1
TVM2 10
1,5
2,4 6,5 8
1,5
TVM3 10
12
1
2,4 8,1 9,6
31
B
P
B
29,4
TVM3
14,4
17 30
9,6
27,8
2,4 12
14
22,5 8
15 1
2,4 8,6 11
14
22,5
P
TVMN4 12
23 9,6
P
B
36
P
13
B
KKA Can also be used for fastening on aluminium profiles using KKA AISI410 or KKA COLOR screws.
DECKS AND FACADES | TVM | 363
GROOVING GEOMETRY 7
7 ASYMMETRICAL GROOVING
F
PROFID
H KKT
F H PROFID
KKT
Min. thickness
F
3 mm
Min recommended height TVM1
H
7 mm
Min recommended height TVM2
H
9 mm
Min recommended height TVM3
H
10 mm
Min. recommended height TVMN
H
13 mm
INSTALLATION 01
02
Position the PROFID spacer at the joist centerline. First board: fix with suitable screws which are left visible.
Insert the TVM fastener into the groove cut so that the side fin adheres to the groove in the board.
03
04
Position the next board by inserting it into the TVM fastener.
Using the CRAB MINI or CRAB MAXI clamp, tighten the two boards until the gap between them is 7 mm (see product page 395).
05
06
Fix the fastener to the batten underneath by using the KKT screw.
Repeat the operations for the remaining boards. Last board: repeat step 01.
364 | TVM | DECKS AND FACADES
CALCULATION EXAMPLE INCIDENCE ESTIMATE FORMULA PER m2 f L
1m2/i/(L + f) = pcs of TVM at m2 i = battens spacing L = board width
i
f = gap width
PRACTICAL EXAMPLE NUMBER OF BOARDS AND BATTENS A=6m A=6m
PATIO SURFACE S = A ∙ B = 6 m ∙ 4 m = 24 m2 WOODEN PLANKING L = 140 mm
140 mm =4 BB =4 mm
21 mm
s = 21 mm f = 7 mm
BATTENS
60 mm
b = 60 mm h = 30 mm
30 mm
i= 0,6 m
0,6 m 0,6 m
0,6 m 0,6 m
0,54 m 0,54 m
no. boards
= [B/(L+f)]
= [4/(0,14+0,007)]= 27 boards
no. 4 m boards = 27 boards no. 2 m boards = 27 boards
27 boards 4 m
no. battens = [A/i] + 1 = (6/0,6) +1 = 11 battens
27 boards 2 m
SCREW SELECTION Screw head thickness
Sscrew head
2,8 mm
Grooving thickness Grooving dimension
F H
4 mm 10 mm
PROFID thickness
SPROFID
8 mm
Pull-through length
L pen
f BOARD BATTEN
F TVM
PROFID
4∙d
20 mm
MINIMUM SCREW LENGTH H KKTX
PROFID
= Sscrew head + H + SPROFID + Lpen = 2,8 + 10 + 8 + 20 = 40,8 mm CHOICE OF SCREW
KKTX540A4
TVM NUMBER CALCULATION QUANTITY FOR INCIDENCE FORMULA
QUANTITY FOR THE NUMBER OF INTERSECTIONS
I = S/i/(L + f) = pcs of TVM
I = no. boards with TVM no. battens = pcs. of TVM
I = 24 m2/0,6 m/(0,14 m + 0,007 m) = 272 pcs TVM
no. boards with TVM = (number of boards - 1) = (27 - 1) = 26 boards no. of battens = (A/i) + 1 = (6/0.6) + 1 = 11 battens
waste coefficient = 1,05 I = 272 ∙ 1,05 = 286 pcs TVM
no. intersections = I = 26 ∙ 11 = 286 pcs TVM
I = 286 pcs TVM
I = 286 pcs TVM
TVM NUMBER = 286 pcs
SCREWS NUMBER = No. TVM = 286 pcs KKTX540A4 DECKS AND FACADES | TVM | 365
GAP CONNECTOR FOR DECKING TWO VERSIONS Available in A2 | AISI304 stainless steel for excellent corrosion strength (GAP3) or in galvanized carbon steel (GAP4) for good performance at a low cost.
NARROW JOINTS Ideal for making floors with narrow joints between boards (from 3,0 mm). Fastening is performed before the board is positioned.
WPC AND HARDWOODS Ideal for symmetrically grooved boards such as those in WPC or high-density wood.
BOARDS 2-5 mm
2-5 mm
GAP 3 FASTENING ON
timber
WPC
aluminium
MATERIAL
A2
A2 | AISI304 austenitic stainless steel (CRC II)
Zn
electrogalvanized carbon steel
AISI 304
GAP 4
ELECTRO PLATED
FIELDS OF USE Use in aggressive outdoor environments. Fastening timber or WPC boards on substructures in wood, WPC or aluminium.
366 | GAP | DECKS AND FACADES
CODES AND DIMENSIONS GAP 3 A2 | AISI304 CODE
material
PxBxs
GAP3
A2 | AISI304
40 x 30 x 11
Zn
AISI 304
A2
GAP 4
pcs
CODE
material
PxBxs
500
GAP4
zinc-plated steel
41,5 x 42,5 x 12
500
L
pcs
ELECTRO PLATED
[mm]
[mm]
SCI A2 | AISI304
HTS
fastening on timber and WPC for GAP 3
d1
fastening on timber and WPC for GAP 4
CODE
L
[mm]
pcs
d1
[mm]
3,5 TX 10
25
500
SCI3535
35
500
3,5 TX 15
[mm] HTS3525
25
1000
HTS3535
35
500
L
pcs
SBN
fastening on aluminium for GAP 3
fastening on aluminium for GAP 4
CODE
L
[mm]
pcs
d1
SBNA23525
25
CODE
[mm]
[mm]
3,5 TX 15
CODE
[mm]
SCI3525
SBN A2 | AISI304 d1
pcs
3,5 TX 15
1000
[mm] SBN3525
25
500
GEOMETRY GAP 3 A2 | AISI304
GAP 4 11
15 4
9,8 2
1 9,6 11,6 1
6,5
12
16
12 16
16
19
40
19
12
4
16
41,5
6,5
11
30
1,5 8,8 11,8 1,5
42,5
11,8
s s P
P
B
B
WOOD PLASTIC COMPOSITE (WPC) Ideal for fastening WPC boards. Can also be used for fastening on aluminium using SBN A2 | AISI304 screws.
DECKS AND FACADES | GAP | 367
GAP 3 GROOVE GEOMETRY SYMMETRICAL GROOVING F
H
Min. thickness
F
3 mm
Min. recommended height GAP 3
H
8 mm
SCI
GAP 3 INSTALLATION 01
02
First board: fix it with suitable screws, left visible or hidden thanks to specific accessories.
Insert the GAP3 fastener into the groove cut so that the clip’s central tab adheres to the groove in the board.
03
04
Fix the screw in the central hole.
Position the next board by inserting it into the GAP3 fastener so that the two tabs adhere to the groove in the board.
05
06
Using the CRAB MINI clamp, tighten the two boards until the gap between them is 3 or 4 mm depending on aesthetic requirements (see product page 395).
Repeat the operations for the remaining boards. Last board: repeat step 01.
368 | GAP | DECKS AND FACADES
GAP 4 GROOVE GEOMETRY SYMMETRICAL GROOVING F
H
Min. thickness
F
3 mm
Min recommended height GAP 4
H
7 mm
HTS
GAP 4 INSTALLATION 01
02
First board: fix it with suitable screws, left visible or hidden thanks to specific accessories.
Insert the GAP4 fastener into the groove cut so that the clips’ central tab adheres to the groove in the board.
03
04
Secure the screws in the two available holes.
Position the next board by inserting it into the GAP4 fastener so that the two tabs adhere to the groove in the board.
05
06
Using the CRAB MINI clamp, tighten the two boards until the gap between them is 4-5 mm depending on aesthetic requirements (see product page 395).
Repeat the operations for the remaining boards. Last board: repeat step 01.
DECKS AND FACADES | GAP | 369
TERRALOCK CONNECTOR FOR DECKING INVISIBLE Completely concealed, guarantees a highly attractive result. Ideal for both decks and façades. Available in metal and plastic.
VENTILATION The micro-ventilation under the boards prevents water stagnation, ensuring excellent durability. The larger bearing surface ensures that the substructure is not crushed.
INGENIOUS Assembly stop for an accurate and simple installation of the fastener. Slotted holes to follow movements of the wood. Allows replacement of individual boards.
BOARDS 2-10 mm
2-10 mm
FASTENING ON
timber
WPC
aluminium
MATERIAL
Zn
ELECTRO PLATED
PA
carbon steel with coloured antirust coating
polyamide/brown nylon
FIELDS OF USE Outdoor use. Fastening of wooden or WPC boards on substructures in timber, WPC or aluminium. In the case of dimensionally unstable wood, the use of the metal version is recommended.
370 | TERRALOCK | DECKS AND FACADES
CODES AND DIMENSIONS TERRALOCK
TERRALOCK PP
CODE TER60ALU TER180ALU TER60ALUN TER180ALUN
material
PxBxs
zinc-plated steel zinc-plated steel zinc-plated steel, black zinc-plated steel, black
[mm] 60 x 20 x 8 180 x 20 x 8 60 x 20 x 8 180 x 20 x 8
pcs
CODE TER60PPM TER180PPM
100 50 100 50
material
PxBxs
pcs
brown nylon brown nylon
[mm] 60 x 20 x 8 180 x 20 x 8
100 50
In the case of dimensionally unstable wood, the use of the metal version is recommended.
Upon request also available in A2 | AISI304 stainless steel for quantities over 20.000 pcs. (code TER60A2 e TER180A2).
KKT A4 | AISI316/KKT COLOR
KKF AISI410
fastening on wood and WPC for TERRALOCK
d1 [mm]
CODE
L [mm] 20 25 30 40 40
KKTX520A4 KKTX525A4 KKTX530A4 KKTX540A4 KKTN540
5 TX 20
fastening on wood and WPC for TERRALOCK PP
pcs
d1 [mm]
200 200 200 100 200
4,5 TX 20
CODE
L [mm]
pcs
KKF4520
20
200
KKF4540
40
200
GEOMETRY TERRALOCK
TERRALOCK PP 5 8
5 8 60 45 15
180 165
20 5 20 20 15
3
5
15
5 10 5
5 20 15
85
5 8
5 8 60 45 15
85
5 10 5
180 165 20
5 20 20 15
10
5 10 5
5
B
5 10 5
85
20 15 board L min = 100 mm
20
board L min = 145 mm
P
5
85
board L min = 100 mm
s
15
s
s
P B
board L min = 145 mm
P
B
s
P B
TERRALOCK PP Version in plastic, ideal for creating patios near aquatic environments. Durability in time guaranteed by microventilation under the boards. Totally concealed fastening. In the case of dimensionally unstable wood, the use of the metal version is recommended.
DECKS AND FACADES | TERRALOCK | 371
CONNECTOR SELECTION TERRALOCK 60
TERRALOCK PP 60
A. TERRALOCK 60 fastener: 2pcs B. top screws: 4pcs C. bottom screws: 1pc.
A. TERRALOCK PP 60 fastener: 2pcs B. top screws: 4pcs C. bottom screws: 1pc.
B
C
L
L
B
B C
A
B
S
A
B
H
S B
H
L
top screw type
C C
L
minimum board bottom screw type thickness
B
minimum joist height
C
top screw type
minimum board bottom screw type thickness
B
KKTX 5 x 20
S > 21 mm
KKT 5 x 40
H > 40 mm
KKTX 5 x 25
S > 26 mm
KKT 5 x 50
H > 50 mm
KKTX 5 x 30
S > 31 mm
KKT 5 x 60
H > 60 mm
C
KKF 4,5 x 20
S > 19 mm
KKF 4,5 x 40
TERRALOCK 180
TERRALOCK PP 180
A. TERRALOCK 180 fastener: 1pc B. top screws: 2pcs C. bottom screws: 1pc.
A. TERRALOCK PP 180 fastener: 1 pc. B. top screws: 2pcs C. bottom screws: 1pc.
L
C
B C
A
C
B
C
S
A
S H
H
L
top screw type
H > 38 mm
L
B B
minimum joist height
L
minimum board bottom screw type thickness
B
minimum joist height
top screw type
KKF 4,5 x 20
C
B
KKTX 5 x 20
S > 21 mm
KKT 5 x 40
H > 40 mm
KKTX 5 x 25
S > 26 mm
KKT 5 x 50
H > 50 mm
KKTX 5 x 30
S > 31 mm
KKT 5 x 60
H > 60 mm
372 | TERRALOCK | DECKS AND FACADES
minimum board bottom screw type thickness
minimum joist height
C S > 19 mm
KKF 4,5 x 40
H > 38 mm
TERRALOCK 60 INSTALLATION 01
02
03
04
Position two connectors per each fixing node.
Turn the board over and slide it under the previously fastened board fixed to the sub-structure.
Fix each fastener to the sub-structure by inserting a KKTX screw in one of the two slotted holes.
It is recommended to use STAR spacers inserted between the boards.
TERRALOCK 180 INSTALLATION 01
02
03
04
For each board arrange one fastener and fix it by means of two KKTX screws.
Turn the board over and slide it under the previously fastened board fixed to the sub-structure.
Fix each fastener to the sub-structure by inserting a KKTX screw in one of the two slotted holes.
It is recommended to use STAR spacers inserted between the boards.
CALCULATION EXAMPLE i = i = joist spacing|
L = board width
|
f = joint width
f
TERRALOCK 180
TERRALOCK 60
L
i = 0,60 m
i
|
L = 140 mm
|
f = 7 mm
i = 0,60 m
|
L = 140 mm
|
f = 7 mm
1m2 / i / (L + f) ∙ 2 = pcs at m2
1m2/i/(L + f) =pcs at m2
1m2/ 0,6 m / (0,14 m + 0,007 m) ∙ 2 = 23 pcs /m2 + 46 pcs. top screws type B/m2
1m2/ 0,6 m/(0,14 m + 0,007 m) = 12 pcs /m2 + 24 pcs. top screws type B/m2
+ 12 pcs. bottom screws type C/m2
+ 12 pcs. bottom screws type C/m2
DECKS WITH COMPLEX GEOMETRIES Thanks to its special geometric configuration, the TERRALOCK fastener allows to create decks with complex geometric layouts that will meet any aesthetic requirement. The two slotted holes and optimal positioning of the end stop allow for assembly on inclined substructures.
DECKS AND FACADES | TERRALOCK | 373
JFA ADJUSTABLE SUPPORT FOR DECKS LEVELLING The height-adjustable support can easily adapt to variations in substrate level. The rise also allows for ventilation under the joists.
DOUBLE REGULATION Can be adjusted both from below, with a SW 10 wrench, or from above, using a flat-tip screwdriver. Fast, convenient, versatile system.
SUPPORT The TPV plastic support base reduces the noise produced by footsteps and is UV-resistant. The ball-joint can adapt to uneven surfaces.
HEIGHT
R
can be adjusted from above and below
USE
MATERIAL
Zn
ELECTRO PLATED
electrogalvanized carbon steel
FIELDS OF USE Raising and levelling of the substructure.
374 | JFA | DECKS AND FACADES
CODES AND DIMENSIONS CODE
screw Ø x L
R
pcs
[mm]
[mm]
JFA840
8 x 40
25≤ R≤ 40
100
JFA860
8 x 60
25≤ R≤ 57
100
JFA880
8 x 80
25≤ R≤ 77
100
GEOMETRY 16 19
H SW 10
R 14
25 50
57
L
20 Ø8
57
57
77
77
77
40
40
40
25
25
25
25
25
25
25
25
25
0
0 0 JFA840
0
0
0 0 JFA860
0
0
57
57
57
25
25
25
JFA880
TECHNICAL DATA CODE Screw Ø x L Assembly height
R
JFA840
JFA860
JFA880
[mm]
8 x 40
8 x 60
8 x 80
[mm]
25 ≤ R ≤ 40
25 ≤ R ≤ 57
25 ≤ R ≤ 77
+/- 5°
+/- 5°
+/- 5°
Ø10
Ø10
Ø10
Angle Pre-drill for bush
[mm]
Adjustment nut
SW 10
SW 10
SW 10
Total height
H
[mm]
51
71
91
Admissible capacity
Fadm
kN
0,8
0,8
0,8
UNEVEN SURFACES The adjustment from top and bottom allows for the most precise installation of decks on uneven surfaces.
DECKS AND FACADES | JFA | 375
JFA INSTALLATION WITH ADJUSTMENT FROM BELOW
01
02
03
04
Trace the joist midline, indicating the position of the holes and then pre-drill a 10 mm diameter hole.
The depth of the pre-drill depends on the assembly height R and must be at least 16 mm (bushing size).
Use a hammer to insert the bushing.
Screw the support into the bushing and turn the joist.
Detail of adjustment from below.
Follow the course of the ground by acting independently on the individual supports.
H 05
06
Place the joist on the substrate, parallel to the one previously laid.
Adjust the height of the support from the bottom using a 10 mm SW wrench.
JFA INSTALLATION WITH ADJUSTMENT FROM ABOVE
01
02
03
04
Trace the joist midline, indicating the position of the holes and then pre-drill a 10 mm diameter through hole.
We recommend a maximum of 60 cm between supports, to be checked according to depending on the load.
Use a hammer to insert the bushing.
Screw the support into the bushing and turn the joist.
05
06
Place the joist on the substrate, parallel to the one previously laid.
Adjust the height of the support from above using a flat screwdriver.
Detail of adjustment from above.
Follow the course of the ground by acting independently on the individual supports.
H
376 | JFA | DECKS AND FACADES
CALCULATION EXAMPLE The number of supports per m2 is to be evaluated according to the load magnitude and the joist spacing.
INCIDENCE OF SUPPORTS ON SURFACE (I): q = load [kN/m2]
I = q/Fadm = pcs of JFA at m2
Fadm = admissible JFA capacity [kN]
MAXIMUM DISTANCE BETWEEN SUPPORTS (a): a
amax, JFA
a=
min
with:
amax, JFA = 1/pcs/m2/i
i
amax, batten
3
i = between battens spacing
E ∙ J ∙384
amax, batten =
flim ∙ 5 ∙ q ∙ i
flim = instantaneous strain limit between supports E = material elastic modulus J = joist section inertia modulus
PRACTICAL EXAMPLE PROJECT DATA A=6m
PATIO SURFACE S = A x B = 6 m x 4 m = 24 m2 BATTENS 50 mm
b = 50 mm h = 30 mm
B=4m
30 mm
i= 0,50 m
LOADS
0,50 m
Overload Category of use: category A (balconies) (EN 1991-1-1)
q
Admissible JFA support capacity
Fadm
Joist material
4,00 kN/m2
0.80 kN
C20 (EN 338:2016)
Limit for instantaneous deflection between supports
flim
a/400
-
Material elastic moment
E0,mean
Moment of joist section inertia
J
(b ∙ h3)/12
112500 mm4
Maximum joist deflection
fmax
(5/384) ∙ (q ∙ i ∙ a4)/(E ∙ J)
-
9,5 kN/mm2
JFA NUMBER CALCULATION INCIDENCE
NUMBER OF JFA SUPPORTS
I = q/Fadm = pcs of JFA at m2
n = I ∙ S ∙ waste coeff. = pcs. of JFA
I = 4,0 kN/m2/0,8 kN = 5,00 pcs/m2
n = 5,00 pcs/m2 ∙ 24 m2 ∙ 1,05 = 126 pcs of JFA waste coefficient = 1,05
CALCULATION OF MAXIMUM DISTANCE BETWEEN SUPPORTS SUPPORT STRENGTH LIMIT
JOIST FLEXURAL LIMIT 3
flim = fmax therefore:
3
amax, batten =
E ∙ J ∙384
amax, JFA = 1/n/i
400 ∙ 5 ∙ q ∙ i
amax, JFA = 1/5,00/0,5 = 0,40 m
9,5 ∙ 112500 ∙ 384
amax, batten =
∙ 10-3 = 0,47 m
400 ∙ 5 ∙ (4,0 ∙ 10-6) ∙ 500
a = min
amax, JFA
= min amax, batten
0,40 m 0,47 m
= 0,40 m
maximum distance between JFA supports
DECKS AND FACADES | JFA | 377
SUPPORT ADJUSTABLE SUPPORT FOR DECKS THREE VERSIONS The Small version (SUP-S) can be raised by up to 37 mm, the Medium version (SUP-M) by up to 220 mm and the Large version (SUP-L) by up to 1025 mm. All versions are adjustable in height.
STRENGTH Sturdy system suitable for heavy loads. The Small (SUP-S) and Medium (SUP-M) versions can handle up to 400 kg. The Large version (SUP-L) can handle up to 1000 kg.
COMPATIBLE All versions can be combined with a special head to facilitate lateral or upper fastening to the batten, which may be made of either timber or aluminium. A tile adapter is also available on request.
NEW “ALL IN ONE” SUP-L It features not only excellent adjustability and load-bearing capacity, but also versatile, self-levelling heads that can automatically correct the slope of uneven installation surfaces by up to 5%; thanks to the SUPLKEY key, it can be adjusted from above for maximum stability in tile flooring systems.
USE
MATERIAL
PP
polypropylene (PP)
FIELDS OF USE Substructure raising and levelling. Outdoor use.
378 | SUPPORT | DECKS AND FACADES
DURABILITY UV-resistant and suitable also for aggressive environment conditions. Ideal in combination with ALU TERRACE and KKA screws to create a system with excellent durability.
ADJUSTMENT FROM TOP Thanks to the SUPLKEY key, it is adjustable from the top for maximum stability in tile flooring systems.
DECKS AND FACADES | SUPPORT | 379
CODES AND DIMENSIONS - SUP-S Ø H
1
2
CODE 1
Ø
H
[mm]
[mm]
pcs
SUPS2230
150
22 - 30
20
2 SUPS2840
150
28 - 40
20
Ø1
pcs
INTERLOCKING HEAD FOR SUP-S Ø1
Ø
1 CODE 1
Ø
SUPSLHEAD1
[mm]
[mm]
70
3 x 14
20
CODES AND DIMENSIONS - SUP-M Ø
H
H
H
Ø
Ø
H
1
Ø
H
Ø
H
Ø
Ø
H
2
3
4
CODE 1
5
6
7
Ø
H
[mm]
[mm]
pcs
SUPM3550
200
35 - 50
25
2 SUPM5070
200
50 - 70
25
3 SUPM65100
200
65 - 100
25
4 SUPM95130
200
95 - 130
25
5 SUPM125160
200
125 - 160
25
6 SUPM155190
200
155 - 190
25
7 SUPM185220
200
185 - 220
25
INTERLOCKING HEAD FOR SUP-M Ø
Ø1
EXTENSIONS AND SLOPE ADAPTERS FOR SUP-M 1
h
2
Ø
Ø
3
Ø
4
H 1
2
B
P
1%
CODE 1
SUPMHEAD1
2 SUPMHEAD2
BxPxH
Ø
Ø1
[mm]
[mm]
[mm]
-
120
-
25
1
SUPMEXT30
120 x 90 x 30
-
3 x 14
25
380 | SUPPORT | DECKS AND FACADES
pcs
CODE
2%
3%
H
Ø
pcs
[mm]
[mm]
%
30
-
-
25
2 SUPCORRECT1
-
200
1
20
3 SUPCORRECT2
-
200
2
20
4 SUPCORRECT3
-
200
3
20
CODES AND DIMENSIONS - SUP-L
1
2
3
4
CODE
Ø
H
[mm]
[mm]
pcs
37 - 50
20
1
SUPL3750( * )
200
2
SUPL5075( * )
200
50 - 75
20
3 SUPL75125( * )
200
75 - 125
20
4 SUPL125225
200
125 - 225
20
5 SUPL225325
200
225 - 325
20
6 SUPL325425
200
325 - 425
20
7 SUPL425525
200
425 - 525
20
8 SUPL525625
200
525 - 625
20
9 SUPL625725
200
625 - 725
20
10 SUPL725825
200
725 - 825
20
11 SUPL825925
200
825 - 925
20
12 SUPL9251025
200
925 - 1025
20
(*) SUPLEXT100 extension not usable.
Head to be ordered separately. Codes 5-12 consist of the product SUPL125225 and of a number of SUPLEXT100 extensions to reach the indicated height range.
INTERLOCKING HEADS FOR SUP-L Ø1
Ø1
Ø
P
B
B
P 2
1
3
application
BxP
Ø
[mm]
[mm]
[mm]
SUPLHEAD1
timber/aluminium battens
70 x 110
-
3 x 14
20
2 SUPLHEAD2
timber/aluminium battens
60 x 40
-
-
20
3 SUPLHEAD3
tiles
-
120
-
20
CODE 1
ACCESSORIES FOR SUP-L
2
2
Ø
Ø
3
CODE
description
pcs
SUPLRING1
stem lock ring
20
1
SUPLEXT100
2 SUPLKEY
key for adjustment from the top
1
3 SUPLRING2
rotation lock ring
5
SUPLKEY and SUPLRING2 only compatible with SUPLHEAD3 heads. SUPLRING1 and SUPLRING2 are supplied together with the heads.
Ø
4
H
3
1%
1
pcs
EXTENSIONS AND SLOPE ADAPTERS FOR SUP-L 1
1
Ø1
CODE
2%
3%
H
Ø
pcs
[mm]
[mm]
%
100
-
-
20
2 SUPCORRECT1
-
200
1
20
3 SUPCORRECT2
-
200
2
20
4 SUPCORRECT3
-
200
3
20
DECKS AND FACADES | SUPPORT | 381
INSTALLATION OF SUP-S WITH SUPSLHEAD1 1
2
3
4
KF
K
KF
X
K
X
F
KK
X
F
KK
X
Fit the head SUPSLHEAD1 on the SUP-S and fix the batten with 4,5 mm diameter KKF screws.
INSTALLATION OF SUP-M WITH SUPMHEAD2 1
2
3
4
KF
K
X
F
KK
X
F
KK
X
Fit the head SUPMHEAD2 on the SUP-M and fix the batten laterally with 4,5 mm diameter KKF screws.
INSTALLATION OF SUP-M WITH SUPMHEAD1 3
4
X
K
KF
K
X
2
KF
1
Fit the head SUPMHEAD1 on the SUP-M and fix the batten with KKF 4,5 mm diameter screws.
INSTALLATION OF SUP-L WITH SUPLHEAD1 1
2
3
4
F
KK
X
F
KK
X
F
KK
X
F
KK
X
H
Fit the head SUPLHEAD1 on the SUP-L, adjust the height of the base as needed and fix the batten laterally with 4,5 mm diameter KKF screws. The tilting head allows self-levelling during installation for slopes of up to 5%.
382 | SUPPORT | DECKS AND FACADES
INSTALLATION OF SUP-L WITH SUPLHEAD1 AND SUPLRING1 1
2
3
4
F
KK
X
F
KK
X
F
KK
X
F
KK
X
H
If provided, add the SUPLEXT100 extension to the SUP-L support and then fit the SUPLHEAD1 head. To lock the tilting of the self-levelling head, secure it with SUPLRING1. Adjust the height of the base as needed and fix the batten laterally with 4,5 mm diameter KKF screws.
INSTALLATION OF SUP-L WITH SUPLHEAD2 AND SUPLRING1 1
2
3
4
60 - 40 mm
H
If provided, add the SUPLEXT100 extensions to the SUP-L support and then fir the SUPLHEAD2 head. To lock the tilting of the self-levelling head, secure it with SUPLRING1. Adjust the height as required and place the batten inside the fins.
DECKS AND FACADES | SUPPORT | 383
INSTALLATION OF SUP-L WITH SUPLHEAD3 HEAD | HEIGHT ADJUSTMENT FROM TOP 1
3
2
4 360°
H
Fit the SUPLHEAD3 head on SUP-L. Adjust the height of the support using SUPLKEY. Place the tiles on the supports. Level the floor by adjusting the height of the supports from the top with SUPLKEY without having to remove the tiles already installed. The tilting head allows self-levelling during installation for slopes of up to 5%.
INSTALLATION OF SUP-L WITH SUPLHEAD3 HEAD | HEIGHT ADJUSTMENT FROM BOTTOM 1
2
3
4
If provided, add the SUPLEXT100 extension to the SUP-L support and then fit the SUPLHEAD3 head. To lock the tilting of the self-levelling head, secure it with SUPLRING1. Position the SUPLRING2. Adjust the height as required and position the flooring.
CODES AND DIMENSIONS - FASTENING KKF AISI410 d1 [mm] KF
K
X F
KK
X
4,5 TX 20
384 | SUPPORT | DECKS AND FACADES
CODE
L [mm]
pcs
KKF4520
20
200
KKF4540
40
200
KKF4545
45
200
KKF4550
50
200
KKF4560
60
200
KKF4570
70
200
RECOMMENDATIONS FOR INSTALLATION
DECKS AND FACADES | SUPPORT | 385
ALU TERRACE ALUMINIUM PROFILE FOR PATIOS TWO VERSIONS ALUTERRA30 version for standard loads. ALUTERRA50 version, in black, for very high loads; can be used on both sides.
SUPPORT EVERY 1.10 m ALUTERRA50 designed with a very high inertia so that the SUPPORTS can be positioned every 1,10 m (along the profile midline), even with high loads (4,0 kN/m2).
DURABILITY The substructure made of aluminium profiles guarantees excellent patio durability. The drainage channel allows water to run off and generates effective micro-ventilation.
SECTIONS [mm]
50
30 53
60
SERVICE CLASS SC1
SC2
SC3
SC4
MATERIAL
alu
aluminium
alu
class 15 anodised aluminium in graphite black
FIELDS OF USE Patio substructure. Outdoor use.
386 | ALU TERRACE | DECKS AND FACADES
DISTANCE 1.10 m With an inter-profile distance of 80 cm (load: 4.0 kN/m2), the SUPPORTS can be spaced 1,10 m apart and placed along the ALUTERRACE50 midline.
COMPLETE SYSTEM Ideal for use in combination with SUPPORT, fixed laterally with KKA screws. System with excellent durability.
DECKS AND FACADES | ALU TERRACE | 387
Stabilization of ALUTERRA50 with stainless steel plates and KKA screws.
Aluminium substructure made with ALUTERRA30 and resting on GRANULO PAD
ACCESSORY CODES AND DIMENSIONS s s P
M P
s M M
s H
P
H M
P
LBVI15100 CODE
WHOI1540 pcs
CODE
-
50
40
50
s
M
P
H
[mm]
[mm]
[mm]
[mm]
A2 | AISI304
1,75
15
100
WHOI1540 A2 | AISI304
1,75
15
40
LBVI15100
material
FLIP
KKA AISI410
FLAT material
pcs
FLAT
black alluminum
200
FLIP
zinc-plated steel
200
KKA COLOR d1
CODE
[mm] 4 TX 20 5 TX 25
L
pcs
[mm] KKA420
20
200
KKA540
40
100
KKA550
50
100
388 | ALU TERRACE | DECKS AND FACADES
d1
CODE
[mm] 4 TX 20 5 TX 25
L
pcs
[mm] KKAN420
20
200
KKAN430
30
200
KKAN440
40
200
KKAN540
40
200
GEOMETRY
12 5
43
36 5
5 18,5 11,5
30
12
12 43
19 5
36
12
s
19
15,5 5018,5 H 30 15,5 11,5
P
53
60
s
15,5 50
53 B
MH
P
15,5 60
ALU TERRACE 30
B
ALU TERRACE 50
CODES AND DIMENSIONS CODE ALUTERRA30
s
B
P
H
[mm]
[mm]
[mm]
[mm]
1,8
53
2200
30
pcs
CODE
1
ALUTERRA50
s
B
P
H
[mm]
[mm]
[mm]
[mm]
2,5
60
2200
50
pcs 1
NOTES: upon request, P= 3000 mm version is available.
EXAMPLE OF FASTENING WITH SCREWS AND ALUTERRA30 01
02
03
04
Place the ALU TERRACE on the SUP-S fit with head SUPSLHEAD1.
Fix the ALU TERRACE with 4,0 mm diameter KKAN.
Fix the wooden or WPC boards directly on the ALU TERRACE with 5,0 mm diameter KKA screws.
Repeat the operations for the remaining boards.
EXAMPLE OF FASTENING WITH CLIP AND ALUTERRA50 01
02
03
04
Place the ALU TERRACE on the SUP-S fit with head SUPSLHEAD1.
Fix the ALU TERRACE with 4,0 mm diameter KKAN.
Fix the boards using FLAT concealed clips and 4,0 mm diameter KKAN screws.
Repeat the operations for the remaining boards.
DECKS AND FACADES | ALU TERRACE | 389
EXAMPLE PLACEMENT ON GRANULO PAD 01
02
Several ALUTERRA30 units can be connected lengthwise using stainless steel plates. Connection is optional.
Line up the ends of 2 aluminium profiles.
03
04
Place the LBVI15100 stainless steel plate on the aluminium profiles and fix with 4,0 x 20 KKA screws.
Do this on both sides to maximize stability.
EXAMPLE PLACEMENT ON SUPPORT 01
02
KF
K
KF
X
K
X
Several ALUTERRA50 units can be connected lengthwise using stainless steel plates. Connection is optional if the joint coincides with placement on the SUPPORT.
Connect the aluminium profiles with KKAN screws (diameter: 4,0 mm) and place 2 aluminium profiles end to end.
03
04
Place the LBVI15100 stainless steel plate on the lateral holes in the aluminium profiles and fix with 4,0 x 20 KKA screws or KKAN 4,0 mm diameter.
Do this on both sides to maximize stability.
390 | ALU TERRACE | DECKS AND FACADES
MAXIMUM DISTANCE BETWEEN SUPPORTS (a) ALU TERRACE 30 ALU TERRACE 30 SUPPORT
a
i
i = battens spacing
a
a = distance between supports i
OPERATING LOAD
a [m]
[kN/m2]
i=0,4 m
i=0,45 m
i=0,5 m
i=0,55 m
i=0,6 m
i=0,7 m
i=0,8 m
i=0,9 m
i=1,0 m
2,0
0,77
0,74
0,71
0,69
0,67
0,64
0,61
0,59
0,57
3,0
0,67
0,65
0,62
0,60
0,59
0,56
0,53
0,51
0,49
4,0
0,61
0,59
0,57
0,55
0,53
0,51
0,48
0,47
0,45
5,0
0,57
0,54
0,53
0,51
0,49
0,47
0,45
0,43
0,42
ALU TERRACE 50 ALU TERRACE 50 SUPPORT
a
i
i = battens spacing
a
a = distance between supports i
OPERATING LOAD
a [m]
[kN/m2]
i=0,4 m
i=0,45 m
i=0,5 m
i=0,55 m
i=0,6 m
i=0,7 m
i=0,8 m
i=0,9 m
i=1,0 m
2,0
1,70
1,64
1,58
1,53
1,49
1,41
1,35
1,30
1,25
3,0
1,49
1,43
1,38
1,34
1,30
1,23
1,18
1,14
1,10
4,0
1,35
1,30
1,25
1,22
1,18
1,12
1,07
1,03
1,00
5,0
1,25
1,21
1,16
1,13
1,10
1,04
1,00
0,96
0,92
NOTES • Example with limit deformation L/300; • Useful load according to EN 1991-1-1: - Category A areas = 2,0 ÷ 4,0 kN /m²; - Areas susceptible to category C2 crowding = 3,0 ÷ 4.0 kN/m²; - Areas susceptible to category C3 crowding = 3,0 ÷ 5,0 kN/m²;
The calculation was performed considering, for safety purposes, the static diagram of a single-span beam in simple support loaded with a uniformly distributed load.
DECKS AND FACADES | ALU TERRACE | 391
GROUND COVER ANTI-VEGETATION TARP FOR SUBSTRATES PERMEABLE The anti-vegetation tarp prevents the growth of grasses and roots, protecting the patio substructure from the ground. Permeable to water, allowing it to flow off.
STRONG The polypropylene non-woven fabric (50 g/m 2) effectively separates the patio substructure from the ground. Dimensions optimised for patios (1,6 m x 10 m).
CODE COVER50
material NWF
g/m2 50
HxL
A
[m]
[m2]
1.6 x 10
16
pcs 1
NAG LEVELING PAD OVERLAPPABLE Available in 3 thicknesses (2,0, 3,0 and 5,0 mm), can also be overlapped to obtain different thicknesses and thus effectively level the patio substructure.
DURABILITY The EPDM material guarantees excellent durability, is not subject to sagging in time and does not suffer from exposure to sunlight.
CODE
BxLxs
density
shore
pcs
65
50
[mm]
[kg/m3]
NAG60602
60 x 60 x 2
1220
NAG60603
60 x 60 x 3
1220
65
30
NAG60605
60 x 60 x 5
1220
65
20
Operating temperature -35°C | +90°C.
392 | GROUND COVER | | DECKS AND FACADES
GRANULO GRANULAR RUBBER SUBSTRATE THREE FORMATS Available in sheet (GRANULOMAT 1,25 x 10 m), roll (GRANULOROLL and GRANULO100) or pad (GRANULOPAD 8 x 8 cm). Extremely versatile thanks to the variety of formats.
GRAINY RUBBER Made of granules of recycled rubber thermal-bonded with polyurethane. Resistant to chemical interactions, maintains its characteristics in time and is 100% recyclable.
ANTI-VIBRATION The thermal-bonded rubber granules dampen vibrations, thus insulating the noise produced by footsteps. Also ideal as a wall barrier and resilient strip for acoustic separation.
GRANULO PAD
GRANULO ROLL GRANULO MATT CODE
B
L
s
[mm]
[m]
[mm]
pcs
GRANULO100
100
15
4
1
GRANULOPAD
80
0,08
10
20
GRANULOROLL
80
5
8
1
GRANULOMAT110
1000
10
6
1
MATERIAL
rubber granules thermo-bound with PU
s: thickness | B: base| L: length
FIELDS OF USE Substrate for substructures in wood, aluminium, WPC and PVC. Outdoor use. Suitable for service classes 1-2-3.
DECKS AND FACADES | GRANULO | 393
TERRA BAND UV BUTYL ADHESIVE TAPE
CODE
s
B
L
pcs
[mm]
[mm]
[m]
TERRAUV75
0,8
75
10
1
TERRAUV100
0,8
100
10
1
TERRAUV200
0,8
200
10
1
s: thickness | B: base| L: length
PROFID SPACER PROFILE
CODE PROFID
s
B
L
density
[mm]
[mm]
[m]
kg/m3
8
8
40
1220
shore
pcs
65
8
s: thickness | B: base| L: length
STAR STAR FOR DISTANCES
CODE
thickness
STAR
4,5,6,7,8
pcs
[mm] 4
BROAD COUNTERBORE CUTTER FOR KKT, KKZ, KKA
CODE BROAD1 BROAD2
Øbit [mm] 4 6
Øcounterbore cutter [mm] 6,5 9,5
Lbit [mm] 41 105
394 | TERRA BAND UV | DECKS AND FACADES
TL [mm] 75 150
pcs 1 1
CRAB MINI ONE-HANDED TERRACE CLAMP
CODE
opening
compression
[mm]
[kg]
CRABMINI
263 - 415
max. 200
pcs 1
CRAB MAXI BOARD CLAMP, LARGE MODEL CODE
opening [mm] 200 - 770
CRABMAXI CODE
pcs 1
thickness [mm] 6,0 8,0 10,0
CRABDIST6 CRABDIST8 CRABDIST10
pcs 10 10 10
SHIM LEVELLING WEDGES
CODE
colour
SHBLUE SHBLACK SHRED SHWHITE SHYELLOW
blue black red white yellow
B [mm] 22 22 22 22 22
L [mm] 100 100 100 100 100
s [mm] 1 2 3 4 5
pcs
L [mm] 160 160 160 160 160
s [mm] 2 3 5 10 15
250 250 250 100 100
160
see above
80
500 500 500 500 500
SHIM LARGE LEVELLING WEDGES CODE
colour
LSHRED LSHGREEN LSHBLUE LSHWHITE LSHYELLOW
red green blue white yellow
B [mm] 50 50 50 50 50
LSHMIX
mix(*)
50
pcs
* 20 pcs. red, 20 pcs. green. 20 pcs. blue, 10 pcs. white, 10 pcs. yellow.
( )
DECKS AND FACADES | SHIM | 395
THERMOWASHER WASHER TO FASTEN INSULATION TO TIMBER CE FASTENING WITH HBS SCREWS The thermowasher is intended for use with screws with the CE marking in accordance with ETA. Ideal for Ø6 or Ø8 HBS screws, with lengths based on the thickness of the insulation to be fastened.
ANTI-THERMAL BRIDGE Incorporated hole cover to avoid thermal bridges. Large cable spaces for proper plaster adhesion. Has a system that prevents the screw from pulling out.
SERVICE CLASS SC1
CODES AND DIMENSIONS CODE THERMO65
SC2
SC3
SC4
MATERIAL
dSCREW
dHEAD
thickness
depth
[mm]
[mm]
[mm]
[mm]
6÷8
65
4
20
pcs
PP
Propylene (PP) system
700
FIELDS OF USE The propylene washer with an external diameter of 65 mm is compatible with 6 and 8 mm screw diameters. Suitable for all types of insulation and all fixture thicknesses.
396 | THERMOWASHER | DECKS AND FACADES
ISULFIX
ETA
ANCHOR FOR FASTENING INSULATION TO BRICKWORK CERTIFIED Anchor with the CE mark in accordance with ETA, with certified resistance values. Double expansion with preassembled steel nails allows for fast versatile fastening on concrete and brickwork.
DOUBLE EXPANSION Ø8 PVC double expansion anchor with preassembled steel nails, for fastening to concrete and brickwork. Can be used, with an additional washer, on particularly soft insulating materials.
ISULFIX90
additional washer
CODES AND DIMENSIONS CODE
dHEAD
L
dHOLE
A
[mm]
[mm]
[mm]
[mm] 80
250
60
150
8
120
150
160
100
ISULFIX8110 ISULFIX8150
110
ISULFIX8190
190
pcs
SERVICE CLASS SC1
SC2
SC3
SC4
A= maximum fastening thickness
CODE
dHEAD
description
pcs
additional washer for soft insulation
250
[mm] ISULFIX90
90
MATERIAL
PVC
PVC system with carbon steel nail
FIELDS OF USE Anchor available in various measurements for different insulation thicknesses; can be used with an additional washer for use with soft insulation; method of use and certified laying possibilities indicated in the relative ETA document.
DECKS AND FACADES | ISULFIX | 397
WRAF CONNECTOR FOR TIMBER-INSULATING LAYER-CEMENT WALLS TIMBER-INSULATING LAYER-CEMENT ENVELOPE Designed for binding the cement finishing layer with the timber substructure of prefabricated timber-insulating layer-cement envelope walls.
REDUCED CEMENT LAYER The omega shape of the connector allows the screw head to fit flush with the reinforcement of the cement layer without protruding, even in small thickness (up to 20 mm), and allows the screw to be applied at an angle of 0° to 45° to take full advantage of the screw thread withdrawal resistance.
LIFTING OF PREFABRICATED WALLS Allowing the reduction of the cement finishing layer also results in a reduction of the layer's weight, thus returning the centre of gravity of the weight to the timber during handling and transport of the prefabricated walls.
WRAF
MATERIAL
A2
A2 | AISI304 austenitic stainless steel (CRC II)
PP
polypropylene
AISI 304
WRAFPP
FIELDS OF USE • • • •
lightweight frame substructures timber, LVL, CLT, NLT based panel substructures hard and soft insulation layer cement-based finishing layers (plaster, concrete, lightweight concrete, etc.) • metal reinforcements (electrowelded mesh) • plastic reinforcements
398 | WRAF | DECKS AND FACADES
CODES AND DIMENSIONS
GEOMETRY 65 1,5
5,5 WRAF
WRAFPP
CODE
9
material
5
pcs 21
13 WRAF
A2 | AISI304
50
WRAFPP
polypropylene
50
INSTALLATION PARAMETERS A
FINISH
plaster, concrete, lightweight concrete, cement mortar
spl,min
[mm]
20
minimum thickness
B
GRID
Ø2 mm steel
M
[mm]
20 ÷ 30
mesh size
C
INSULATION LAYER
continuous insulation (soft or rigid)
sin,max
[mm]
400
thickness
D
SUBSTRUCTURE
solid timber, glulam, CLT, LVL
lef,min
[mm]
4∙d1
minimum penetration length
E
SCREWS
HBS, HBS EVO, SCI
d1
[mm]
6÷8
diameter
spl
M M
sin d1 lef
XXX
HBS
A
0-45° B
D C
XXX
HBS
E
NOTE: The number and position of the fastening systems depends on the design of the surface, the kind of insulator and acting load.
INSTALLATION SUGGESTIONS 1
Place the mesh for the surface finishing layer on top of the insulation, spacing it with the appropriate supports.
2
3
4
Apply the WRAF washers according to the defined arrangement, hooking it onto the net.
Fasten WRAF washers with screws to the substructure.
Apply the finishing coat to the wall.
DECKS AND FACADES | WRAF | 399
COMPLEMENTARY PRODUCTS
COMPLEMENTARY PRODUCTS A 12
WASP
CORDLESS DRILL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402
HOOK FOR TIMBER ELEMENTS TRANSPORT. . . . . . . . . . . . . . . . 413
A 18 | ASB 18
RAPTOR
CORDLESS DRILL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402
TRANSPORT PLATE FOR TIMBER ELEMENTS . . . . . . . . . . . . . . . . 413
KMR 3373 AUTOMATIC LOADER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403
LEWIS
KMR 3372 AUTOMATIC LOADER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403
DRILL BITS FOR DEEP DRILLING IN EUROPEAN SOFT AND HARDWOODS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414
KMR 3352
SNAIL HSS
SCREWDRIVER WITH AUTOMATIC LOADER. . . . . . . . . . . . . . . . . 404
KMR 3338 SCREWDRIVER WITH AUTOMATIC LOADER. . . . . . . . . . . . . . . . . 404
KMR 3371
TWIST DRILL BITS FOR HARDWOOD, MELAMINE-FACED BOARDS AND OTHER MATERIALS. . . . . . . . 415
SNAIL PULSE CARBIDE DRILL BIT IN HM WITH SDS DRILL CHUCK SHANK. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416
BATTERY POWERED WITH BELT LOADER. . . . . . . . . . . . . . . . . . . 405
BIT
B 13 B
TORX BITS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417
POWERED SCREWDRIVER. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405
D 38 RLE 4-SPEED DRILL DRIVER. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407
CATCH SCREWING DEVICE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408
TORQUE LIMITER TORQUE LIMITER. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408
JIG VGU TEMPLATE FOR VGU WASHER. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409
JIG VGZ 45° TEMPLATE FOR 45° SCREWS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409
BIT STOP DRIVER BIT HOLDER WITH END STOP . . . . . . . . . . . . . . . . . . . . . 410
DRILL STOP COUNTERBORE CUTTER WITH DEPTH STOP. . . . . . . . . . . . . . . 410
JIG ALU STA DRILLING TEMPLATE FOR ALUMIDI AND ALUMAXI. . . . . . . . . . . . 411
COLUMN RIGID AND INCLINED DRILLING COLUMN. . . . . . . . . . . . . . . . . . . 411
BEAR TORQUE WRENCH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412
CRICKET 8 SIZES RATCHETING WRENCH . . . . . . . . . . . . . . . . . . . . . . . . . . . 412
COMPLEMENTARY PRODUCTS | 401
A 12 CORDLESS DRILL • • • • •
Soft / hard torque: 18/45 Nm Nominal minimum 1st gear: 0 - 510 (1/min) Nominal minimum 2° gear: 0 - 1710 (1/min) Nominal tension: 12 V Weight (including battery): 1,0 kg
CODES CODE
description
pcs
MA91D001
A 12 cordless screwdriver in T-MAX
1
For accessories see the catalogue "Tools for timber construction" available at www.rothoblaas.com.
A 18 | ASB 18 CORDLESS DRILL • • • • • •
Electronic anti-kickback function Soft / hard torque: 65/130 Nm Nominal minimum 1st gear: 0 - 560 (1/min) Nominal minimum 2° gear: 0 - 1960 (1/min) Nominal tension: 18 V Weight (including battery): 1,8 kg / 1,9 kg
A 18
ASB 18
CODES CODE
description
pcs
MA91C801
A 18 cordless screwdriver in T-MAX
1
MA91C901
ASB 18 percussion drill in T-MAX
1
For accessories see the catalogue "Tools for timber construction" available at www.rothoblaas.com.
402 | A 12 | A 18 | ASB 18 | COMPLEMENTARY PRODUCTS
KMR 3373 AUTOMATIC LOADER • Screw length: 25 - 50 mm • Screw diameter: 3,5 - 4,2 mm • Compatible with A 18 screwdriver
CODES CODE
description
pcs
HH3373
loader for cordless screwdriver
1
For accessories see the catalogue "Tools for timber construction" available at www.rothoblaas.com.
KMR 3372 AUTOMATIC LOADER • Screw length: 40 - 80 mm • Screw diameter: 4,5 - 5 mm, 6 mm with HZB6PLATE • Compatible with A 18 screwdriver
CODES CODE
description
pcs
HH3372
loader for cordless screwdriver
1
For accessories see the catalogue "Tools for timber construction" available at www.rothoblaas.com.
COMPLEMENTARY PRODUCTS | KMR 3373 | KMR 3372 | 403
KMR 3352 SCREWDRIVER WITH AUTOMATIC LOADER • • • •
Screw length: 25 - 50 mm Screw diameter: 3,5 - 4,2 mm Performance: 0 - 2850/750 (1/min/W) Weight: 2,2 kg
CODES CODE
description
pcs
HH3352
automatic screwdriver
1
For accessories see the catalogue "Tools for timber construction" available at www.rothoblaas.com.
KMR 3338 SCREWDRIVER WITH AUTOMATIC LOADER • • • •
Screw length: 40 - 80 mm Screw diameter: 4,5 - 5 mm, 6 mm with HZB6PLATE Performance: 0 - 2850/750 (1/min/W) Weight: 2,9 kg
CODES CODE
description
pcs
HH3338
automatic screwdriver
1
For accessories see the catalogue "Tools for timber construction" available at www.rothoblaas.com.
404 | KMR 3352 | KMR 3338 | COMPLEMENTARY PRODUCTS
Application example with extension HH14411591.
KMR 3371 BATTERY POWERED WITH BELT LOADER • Adapter for processing plasterboard and gypsum fibreboard of timber and metal substructures • Supplied in a case, with charger and two batteries • Screw length: 25 - 55 mm • Screw diameter: 3,5 - 4,5 mm • Speed: 0 - 1800/500 (U/min) • Weight: 2,4 kg
CODES CODE
description
pcs
HH3371
cordless screwdriver + adapter for screwdrivers with belt loader
1
TX20L177
TX20 bit for KMR 3371
5
For accessories see the catalogue "Tools for timber construction" available at www.rothoblaas.com.
B 13 B POWERED SCREWDRIVER • • • • • • •
Rated power consumption: 760 W Torque: 120 Nm Weight: 2,8 kg Neck Ø: 43 mm Nominal minimum 1st gear: 0 - 170 (1/min) Nominal minimum 2° gear: 0 - 1320 (1/min) Screw without pre-drill: 11 x 400 mm screws
CODES CODE
description
pcs
DUB13B
powered screwdriver
1
For accessories see the catalogue "Tools for timber construction" available at www.rothoblaas.com.
COMPLEMENTARY PRODUCTS | KMR 3371 | 405
ANKER NAILGUNS
HH3731
ATEU0116
HH3722
HH3522
TJ100091
HH12100700
CODES AND DIMENSIONS CODE
description
binding
d1 nail
d1 nail
L nail
consumption
[mm]
[mm]
[kg]
[l/
packaging
pcs
4-6
-
-
(1)
in case
1
]
HH3731
palm nailer
loose nails
ATEU0116
34° strip magazine Anker nailgun
plastic
4
40 - 60
2,36
4,60
in cardboard
1
HH3722
25° strip magazine Anker nailgun
plastic
4
40 - 50
2,55
1,73
in cardboard
1
HH3522
25° strip magazine Anker nailgun
plastic
4
40 - 60
4,10
2,80
in cardboard
1
TJ100091
Anker coil nailgun 15°
plastic (BC-coil)
4
40 - 60
2,30
2,50
in case
1
HH12100700
Anker 34° strip gas nailgun
plastic/paper
4
40 - 60
4,02
(2)
in case
1
(1) Depends on the type of nail. (2)Approximately 1200 rounds per gas cartridge and approximately 8000 rounds per battery charge.
RELATED PRODUCTS
LBA HIGH BOND NAIL 25°
LBA 25 PLA
page 250
34°
LBA 34 PLA
LBA COIL
406 | ANKER NAILGUNS | COMPLEMENTARY PRODUCTS
D 38 RLE 4-SPEED DRILL DRIVER • Rated power consumption: 2000 W • For inserting long screws and threaded rods • No. of revolutions under load in 1st, 2nd, 3rd and 4th speeds: 120 - 210 - 380 - 650 U/min • Weight: 8,6 kg • Mandrel connection: conical MK 3
CODES AND DIMENSIONS CODE
description
pcs
DUD38RLE
4-speed screwdriver
1
ACCESSORIES FRICTION
SCREW HANDLE
MANDREL
• Tightening torque 200 Nm • Square connection 1/2”
• Increased safety
• Opening 1-13 mm
CODE
pcs
CODE
pcs
CODE
pcs
DUVSKU
1
DUD38SH
1
ATRE2014
1
ADAPTER 1
ADAPTER 2
SLEEVES
• For MK3
• For sleeve
• For RTR
CODE
pcs
CODE
pcs
CODE
ATRE2019
1
ATCS2010
1
RELATED PRODUCTS
Ø
pcs
ATCS007
16 mm
1
ATCS008
20 mm
1
RTR STRUCTURAL REINFORCEMENT SYSTEM
page 196 COMPLEMENTARY PRODUCTS | D 38 RLE | 407
CATCH
MANUALS
SCREWING DEVICE • Thanks to CATCH, even longer screws can be screwed on quickly and safely without the risk of the bit slipping • Particularly useful in case of screwing in corners, which usually do not allow exerting a great screwing force
CODES AND DIMENSIONS CODE
pcs
suitable screws HBS
VGS
VGZ
[mm]
[mm]
[mm]
CATCH
Ø8
Ø9
Ø9 [mm]
1
CATCHL
Ø10 | Ø12
Ø11 | Ø13
-
1
Further information on the use of the product can be found at www.rothoblaas.com.
TORQUE LIMITER TORQUE LIMITER • It decouples as soon as the maximum torque is reached, thus protecting the screw from excessive load, especially in metal plate applications • Also compatible with CATCH and CATCHL
CODES AND DIMENSIONS CODE
version
pcs
TORLIM18
18 Nm
1
TORLIM40
40 Nm
1
408 | CATCH | TORQUE LIMITER | COMPLEMENTARY PRODUCTS
JIG VGU TEMPLATE FOR VGU WASHER • The VGU JIG template ensures precision pre-drilling and facilitates the VGS 45° screws fastening inside the washer • Essential for perfect hole centring • For diameters from 9 to 13 mm
CODES AND DIMENSIONS CODE
washer
dh
dV
pcs
[mm]
[mm]
[mm]
JIGVGU945
VGU945
5,5
5
1
JIGVGU1145
VGU1145
6,5
6
1
JIGVGU1345
VGU1345
8,5
8
1
NOTE:Further information on page 190.
JIG VGZ 45°
MANUALS
TEMPLATE FOR 45° SCREWS • For diameters from 7 to 11 mm • Screw length indicators • Screws can be inserted in double 45° mitre cuts
CODES AND DIMENSIONS CODE JIGVGZ45
description
pcs
steel template for screws at 45°
1
For detailed information on the use of the template, please see the installation manual on the website (www.rothoblaas.com).
COMPLEMENTARY PRODUCTS | JIG VGU | JIG VGZ 45° | 409
BIT STOP DRIVER BIT HOLDER WITH END STOP • With O-ring to prevent wood damage at end of travel • The internal device automatically stops the driver bit holder when it reaches the preset depth
CODES AND DIMENSIONS CODE
AT4030
Ø tip
Ø counterbore cutter
[mm]
[mm]
adjustable depth
5
pcs
1
DRILL STOP COUNTERBORE CUTTER WITH DEPTH STOP • Particularly indicated for build terraces • The rotating depth stop stops at the workpiece and leaves no marks on the material
CODES AND DIMENSIONS CODE
Ø tip
Ø counterbore cutter
[mm]
[mm]
F3577040
4
12
1
F3577050
5
12
1
F3577060
6
12
1
F3577504
set 4, 5, 6
12
1
410 | BIT STOP | DRILL STOP | COMPLEMENTARY PRODUCTS
pcs
JIG ALU STA DRILLING TEMPLATE FOR ALUMIDI AND ALUMAXI • Position, drill, done! For drilling dowel holes easily, quickly and precisely • It allows to drill precise holes for both ALUMIDI and ALUMAXI in a template
CODES AND DIMENSIONS CODE JIGALUSTA
B
L
s
[mm]
[mm]
[mm]
164
298
3
pcs 1
COLUMN RIGID AND INCLINED DRILLING COLUMN • For precise holes perpendicular to the work surface
1-3
2-4
CODES AND DIMENSIONS
1 2 3 4
CODE
version
F1403462 F1404462 F1403652 F1404652
rigid inclined rigid inclined
for bits length
hole depth
TL
pcs
[mm] 460 460 650 650
[mm] 310 250 460 430
[mm] approx. 630 approx. 630 approx. 810 approx. 810
1 1 1 1
COMPLEMENTARY PRODUCTS | JIG ALU STA | COLUMN | 411
BEAR TORQUE WRENCH • Precise tightening torque control • Essential when screwing full thread screws into a metal plate • Wide adjustment range
BEAR
BEAR2
CODES AND DIMENSIONS weight
tightening torque
CODE
dimensions
pcs
[mm]
[g]
[Nm]
BEAR
395 x 60 x 60
1075
10 - 50
1
BEAR2
535 x 60 x 60
1457
40 - 200
1
With 1/2'' square drive.
CRICKET 8 SIZES RATCHETING WRENCH • Ratchet spanner with through hole and 8 bushings of varying sizes • 4 ring spanners in a single tool
CODES AND DIMENSIONS CODE
CRICKET
dimensions / thread
length
[SW / M]
[mm]
10 / M6 - 13 / M8 14 / (M8) - 17 / M10 19 / M12 - 22 / M14 24 / M16 - 27 / M18
340
412 | BEAR | CRICKET | COMPLEMENTARY PRODUCTS
pcs
1
WASP
MANUALS ANNUAL REPORT REUSABLE 2006/42/CE
HOOK FOR TIMBER ELEMENTS TRANSPORT • Fastened with just one screw, it allows significant time savings due to its quick assembly and disassembly • The lifting hook can be used for both axial and lateral loads • Certified pursuant to the Machinery Directive 2006/42/EC
CODES AND DIMENSIONS CODE
max. capacity
WASP WASPL
1300 kg 1600kg
suitable screws
pcs
VGS Ø11 - HBS Ø10 VGS Ø11 - VGS Ø13 - HBS Ø12
2 1
RAPTOR
MANUALS REUSABLE 2006/42/CE
TRANSPORT PLATE FOR TIMBER ELEMENTS • Multiple application possibilities with the choice of 2, 4 or 6 screws depending on the load. • The lifting plate can be used for both axial and lateral loads • Certified pursuant to the Machinery Directive 2006/42/EC
CODES AND DIMENSIONS CODE RAP220100
max. capacity
suitable screws
pcs
3150 kg
HBS PLATE Ø10mm
1
COMPLEMENTARY PRODUCTS | WASP | RAPTOR | 413
LEWIS DRILL BITS FOR DEEP DRILLING IN EUROPEAN SOFT AND HARDWOODS • In alloy tool steel • With round-section twist flute, threaded tip, very high quality main cutting edge and roughing tooth • Version with independent head and hex shank (starting from Ø8 mm)
CODES AND DIMENSIONS CODE F1410205 F1410206 F1410207 F1410208 F1410210 F1410212 F1410214 F1410216 F1410218 F1410220 F1410222 F1410224 F1410228 F1410230 F1410232 F1410242 F1410305 F1410306 F1410307 F1410308 F1410309 F1410310 F1410312 F1410314 F1410316 F1410318 F1410320 F1410322 F1410324 F1410326 F1410328 F1410330 F1410332 F1410407 F1410408 F1410410 F1410412 F1410414 F1410416 F1410418 F1410420 F1410422 F1410424 F1410426
Ø tip
Ø shank
TL
SL
[mm]
[mm]
[mm]
[mm]
5 6 7 8 10 12 14 16 18 20 22 24 28 30 32 42 5 6 7 8 9 10 12 14 16 18 20 22 24 26 28 30 32 7 8 10 12 14 16 18 20 22 24 26
4,5 5,5 6,5 7,8 9,8 11,8 13 13 13 13 13 13 13 13 13 13 4,5 5,5 6,5 7,8 8 9,8 11,8 13 13 13 13 13 13 13 13 13 13 6,5 7,8 9,8 11,8 13 13 13 13 13 13 13
235 235 235 235 235 235 235 235 235 235 235 235 235 235 235 235 320 320 320 320 320 320 320 320 320 320 320 320 320 320 320 320 320 460 460 460 460 460 460 460 460 460 460 460
160 160 160 160 160 160 160 160 160 160 160 160 160 160 160 160 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 380 380 380 380 380 380 380 380 380 380 380
414 | LEWIS | COMPLEMENTARY PRODUCTS
pcs
CODE
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
F1410428 F1410430 F1410432 F1410440 F1410450 F1410612 F1410614 F1410616 F1410618 F1410620 F1410622 F1410624 F1410626 F1410628 F1410630 F1410632 F1410014 F1410016 F1410018 F1410020 F1410022 F1410024 F1410026 F1410028 F1410030 F1410032 F1410134 F1410136 F1410138 F1410140 F1410145 F1410150
Ø tip
Ø shank
TL
SL
[mm]
[mm]
[mm]
[mm]
28 30 32 40 50 12 14 16 18 20 22 24 26 28 30 32 14 16 18 20 22 24 26 28 30 32 34 36 38 40 45 50
13 13 13 13 13 11,8 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13
460 460 460 460 460 650 650 650 650 650 650 650 650 650 650 650 1080 1080 1080 1080 1080 1080 1080 1080 1080 1080 1000 1000 1000 1000 1000 1000
380 380 380 380 380 535 535 535 535 535 535 535 535 535 535 535 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 535 535 535 535 535 535
TL
total length
SL
spiral length TL
SL
pcs 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
LEWIS - SET CODES AND DIMENSIONS CODE
Ø set
TL
SL
[mm]
[mm]
[mm]
pcs
F1410200
10, 12, 14, 16, 18, 20, 22, 24
235
160
1
F1410303
10, 12, 14, 16, 18, 20, 22, 24
320
255
1
F1410403
10, 12, 14, 16, 18, 20, 22, 24
460
380
1
SNAIL HSS TWIST DRILL BITS FOR HARDWOOD, MELAMINE-FACED BOARDS AND OTHER MATERIALS • Very high quality polished drill bits, with 2 main cutting edges and 2 roughing teeth • Special twist with smoothed flute for improved chip evacuation • Ideal for free hand and stationary use
CODES AND DIMENSIONS CODE
Ø tip
Ø shank
TL
SL
pcs
CODE
Ø tip
Ø shank
TL
SL
pcs
[mm]
[mm]
[mm]
[mm]
[mm]
[mm]
[mm]
[mm]
F1594020
2
2
49
22
1
F1599209
9
9
250
180
1
F1594030
3
3
60
33
1
F1599210
10
10
250
180
1
F1594040
4
4
75
43
1
F1599212
12
12
250
180
1
F2108005
5
5
85
52
1
F1599214
14
13
250
180
1
F2108006
6
6
92
57
1
F1599216
16
13
250
180
1
F2108008
8
8
115
75
1
F1599605
5
5
460
380
1
F1594090
9
9
125
81
1
F1599606
6
6
460
380
1
F1594100
10
10
130
87
1
F1599607
7
7
460
380
1
F1594110
11
11
140
94
1
F1599608
8
8
460
380
1
F1594120
12
12
150
114
1
F1599609
9
9
460
380
1
F1599205
5
5
250
180
1
F1599610
10
10
460
380
1
F1599206
6
6
250
180
1
F1599612
12
12
460
380
1
F1599207
7
7
250
180
1
F1599614
14
13
460
380
1
F1599208
8
8
250
180
1
F1599616
16
13
460
380
1
SNAIL HSS - SET CODES AND DIMENSIONS CODE
Ø set
pcs
[mm] F1594835
3, 4, 5, 6, 8
1
F1594510
3, 4, 5, 6, 8, 10, 12, 13, 14, 16
1
COMPLEMENTARY PRODUCTS | SNAIL HSS | 415
SNAIL PULSE CARBIDE DRILL BIT IN HM WITH SDS DRILL CHUCK SHANK • For drilling concrete, reinforced concrete, masonry and natural stone. • The 4 spiral HM cutting edges ensure rapid forward movement.
CODES AND DIMENSIONS CODE
Ø tip
TL
[mm]
[mm]
pcs
DUHPV505
5
50
1
DUHPV510
5
100
1
DUHPV605
6
50
1
DUHPV610
6
100
1
DUHPV615
6
150
1
DUHPV810
8
100
1 1
DUHPV815
8
150
DUHPV820
8
200
1
DUHPV840
8
400
1
DUHPV1010
10
100
1
DUHPV1015
10
150
1
DUHPV1020
10
200
1 1
DUHPV1040
10
400
DUHPV1210
12
100
1
DUHPV1215
12
150
1
DUHPV1220
12
200
1
DUHPV1240
12
400
1
DUHPV1410
14
100
1
DUHPV1420
14
200
1
DUHPV1440
14
400
1
DUHPV1625
16
250
1
DUHPV1640
16
400
1
DUHPV1820
18
200
1
DUHPV1840
18
400
1
DUHPV2020
20
200
1
DUHPV2040
20
400
1
DUHPV2240
22
400
1
DUHPV2440
24
400
1
DUHPV2540
25
400
1
DUHPV2840
28
400
1
DUHPV3040
30
400
1
416 | SNAIL PULSE | COMPLEMENTARY PRODUCTS
BIT TORX BITS CODES AND DIMENSIONS BITS C 6.3 L
CODE
bit
colour
geometry
pcs
TX1025
TX 10
yellow
10
TX1525
TX 15
white
10
TX2025
TX 20
orange
10
TX2525
TX 25
red
10
TX3025
TX 30
purple
10
TX4025
TX 40
blue
10
TX5025
TX 50
green
10
TX1550
TX 15
white
5
TX2050
TX 20
orange
5
TX2550
TX 25
red
5
TX3050
TX 30
purple
5
TX4050
TX 40
blue
5
TX4050L(*)
TX 40
blue
5
TX5050
TX 50
green
5
TX1575
TX 15
white
5
TX2075
TX 20
orange
5
TX2575
TX 25
red
5
bit
colour
TXE3050
TX 30
purple
5
TXE4050
TX 40
blue
5
CODE
bit
colour
TX25150
TX 25
red
[mm]
25
50
75
(*)Special tip for CATCH L.
BITS L
6.3
CODE
geometry
pcs
[mm] 50
LONG BITS L
geometry
pcs
[mm] 150
1
200
TX30200
TX 30
200 purple200
350
TX30350
TX 30
purple3 50 350
1
150
TX40150
TX 40
blue
1
200
TX40200
TX 40
blue 200
1
350
TX40350
TX 40
blue 350
1
520
TX40520
TX 40
blue 520
1
150
TX50150
TX 50
green
1
1
DRIVER BIT HOLDER CODE
description
TXHOLD
60 mm - magnetic
geometry
pcs 5
COMPLEMENTARY PRODUCTS | BIT | 417
Rotho Blaas Srl does not guarantee the legal and/or design conformity of data and calculations, as Rotho Blass provides indicative tools such as technical-commercial service within the sales activity. Rotho Blaas Srl follows a policy of continuous development of its products, thereby reserving the right to modify their characteristics, technical specifications and other documentation without notice. The user or the designer are responsible to verify, at each use, the conformity of the data to the regulations in force and to the project. The ultimate responsibility for choosing the appropriate product for a specific application lies with the user/designer. The values resulting from "experimental investigations" are based on the actual test results and valid only for the test conditions specified. Rotho Blaas Srl does not guarantee and in no case can be held responsible for damages, losses and costs or other consequences, for any reason (warranty for defects, warranty for malfunction, product or legal responsibility, etc.) deriving from the use or inability to use the products for any purpose; from non-conforming use of the product; Rotho Blaas Srl is not liable in any way for any errors in printing and/or typing. In the event of differences between the contents of the catalogue versions in the various languages, the Italian text is binding and takes precedence with respect to the translations. The latest version of the data sheets available can be found on the Rotho Blaas website. Pictures are partially completed with accessories not included. Images are for illustration purposes only. The use of third party logos and trademarks in this catalogue is subject to the terms and conditions set out in the general conditions of purchase, unless otherwise agreed with the supplier. Packaged quantities may vary. This catalogue is private property of Rotho Blaas Srl and may not be copied, reproduced or published, totally or in part, without prior written consent. All violations will be prosecuted according to law. The general purchase and sale conditions of Rotho Blaas Srl are available on the website www.rothoblaas.com All rights reserved. Copyright © 2023 by Rotho Blaas Srl All renderings © Rotho Blaas Srl
Solutions for Building Technology
FASTENING AIRTIGHTNESS AND WATERPROOFING SOUNDPROOFING FALL PROTECTION TOOLS AND MACHINES
Rotho Blaas Srl Via dell‘Adige N.2/1 | 39040, Cortaccia (BZ) | Italia Tel: +39 0471 81 84 00 | Fax: +39 0471 81 84 84 info@rothoblaas.com | www.rothoblaas.com
01SCREWS3EN
08|23
Rothoblaas is the multinational Italian company that has made innovative technology its mission, making its way to the forefront for timber buildings and construction safety in just a few years. Thanks to its comprehensive product range and the technically-prepared and widespread sales network, the company promotes the transfer of its knowhow to the customers and aims to be a prominent and reliable partner for developing and innovating products and building methods. All of this contributes to a new culture of sustainable construction, focused on increasing comfortable living and reducing CO2 emissions.