Scientia Magna Vol. 10 (2014), No. 1, 64-67
Some arithmetical properties of the Smarandache series Qianli Yang Department of Mathematics, Weinan Normal University, Weinan, China 714000 Abstract The Smarandache function S(n) is defined as the minimal positive integer m such that n|m!. The main purpose of this paper is to study the analyze converges questions for ∞ ∞ P P 1 1 , i.e., we proved the series diverges for any δ ≤ 1, some series of the form S(n)δ S(n)δ and
∞ P n=1
n=1
n=1
1 S(n) S(n)
converges for any > 0.
Keywords Smarandache function, smarandache series, converges.
§1. Introduction and results For every positive integer n, let S(n) be the minimal positive integer m such that n|m!, i.e., S(n) = min{m : m â&#x2C6;&#x2C6; N, n|m!}. This function is known as Smarandache function [1] . Easily, one has S(1) = 1, S(2) = 2, S(3) = 3, S(4) = 4, S(5) = 5, S(6) = 3, S(7) = 7, S(8) = 4, S(9) = 6, S(10) = 5, ¡ ¡ ¡ . Îąk 1 Îą2 Use the standard factorization of n = pÎą 1 p2 ¡ ¡ ¡ pk , p1 < p2 < ¡ ¡ ¡ < pk , itâ&#x20AC;&#x2122;s trivial to have i S(n) = max {S(pÎą i )}. 1â&#x2030;¤iâ&#x2030;¤k
[2]
Many scholars have studied the properties of S(n), for example, M. Farris and P. Mitchell show the boundary of S(pÎą ) as (p â&#x2C6;&#x2019; 1)Îą + 1 â&#x2030;¤ S(pÎą ) â&#x2030;¤ (p â&#x2C6;&#x2019; 1)[Îą + 1 + logp Îą] + 1.
Z. Xu
[3]
noticed the following interesting relationship formula Ď&#x20AC;(x) = â&#x2C6;&#x2019;1 +
[x] X S(n) n=2
n
,
by the fact that S(p) = p for p prime and S(n) < n except for the case n = 4 and n = p, where Ď&#x20AC;(x) denotes the number of prime up to x, and [x] the greatest integer less or equal to x. Those and many other interesting results on Smarandache function S(n), readers may refer to [2]-[6]. 1 This
work is supported by by the Science Foundation of Shanxi province (2013JM1016).
Vol. 10
65
Some arithmetical properties of the Smarandache series
Let p be a fixed prime and n â&#x2C6;&#x2C6; N, the primitive numbers of power p, denoted by Sp (n), is defined by Sp (n) = min{m : m â&#x2C6;&#x2C6; N, pn |m!} = S(pn ). â&#x2C6;&#x17E; P 1 Z. Xu [3] obtained the identity between Riemann zeta function Îś(s) = ns , Ď&#x192; > 1 and an n=1
infinite series involving Sp (n) as
â&#x2C6;&#x17E; X
1
S s (n) n=1 p
=
Îś(s) , ps â&#x2C6;&#x2019; 1
and he also obtained some other asymptotic formulae for Sp (n). F. Luca [4] proved the series â&#x2C6;&#x17E; â&#x2C6;&#x17E; P P 1 1 converges for all δ â&#x2030;Ľ 1 and diverges for all δ < 1, and the series S(n)δ S(n) log n n=1
S(n)
n=1
converges for any Îľ > 0. In this note, we studied the analyze converges problems for the infinite series involving S(n). That is, we shall prove the following conclusions: Theorem 1.1. For any δ â&#x2030;¤ 1, the series â&#x2C6;&#x17E; X
1 S(n)δ n=1 diverges. Theorem 1.2. For any Îľ > 0, the series â&#x2C6;&#x17E; X
1 ÎľS(n) S(n) n=1 converges.
§2. Some lemmas To complete the proof of theorems, we need two Lemmas. Lemma 2.1. Let p be any fixed prime. Then for any real number x â&#x2030;Ľ 1, we have the asymptotic formula: â&#x2C6;&#x17E; X 1 1 p ln p 1 = ln x + Îł + + O(xâ&#x2C6;&#x2019; 2 + ), Sp (n) pâ&#x2C6;&#x2019;1 pâ&#x2C6;&#x2019;1 n=1 Sp (n)â&#x2030;¤x
where Îł is the Euler constant, denotes any fixed positive numbers. Proof. See Theorem 2 of [3]. Lemma 2.2.[7] Let > 0 and d(n) denotes the divisor function of positive integer n. Then d(n) = O(n ) â&#x2030;¤ C n , where the o-constant C depends on . Q Îą Proof. The proof follows [7] by writing n = p , the standard factorization of n. Then p|n
pÎą â&#x2030;Ľ 2Îą = eÎą ln 2 â&#x2030;Ľ Îą ln 2 â&#x2030;Ľ
1 (a + 1) ln 2. 2
66
Qianli Yang
No. 1
If p â&#x2030;Ľ 2, then pÎą â&#x2030;Ľ 2Îą â&#x2030;Ľ Îą + 1. Therefore, Y Îą+1 Y Îą+1 Y d(n) Y Îą + 1 = = â&#x2030;Ľ Îą Îą Îą n p p p p|n
p|n p <2
The last item in above inequality is
p|n p <2
p|n p â&#x2030;Ľ2
Q p|n p <2
2 ln 2 ,
1 2 (a
Y Îą+1 Îą+1 . Îą+1 + 1) ln 2 p|n p â&#x2030;Ľ2
Q
which is less than
p <2
2 ln 2
= C , say, the
o-constant C depends on .
§3. Proof of theorems Proof of Theorem 1. We may treat the case δ = 1 first. By Lemma 1 and the notation Sp (n) = S(pn ), we have â&#x2C6;&#x17E; X
â&#x2C6;&#x17E; X 1 = lim S(pn ) xâ&#x2020;&#x2019;+â&#x2C6;&#x17E; n=1 n=1
1 = â&#x2C6;&#x17E;. Sp (n)
Sp (n)â&#x2030;¤x
Obviously, for δ â&#x2030;¤ 1,
â&#x2C6;&#x17E; P n=1
1 S(n)δ
diverges follows easily by the trivial inequality:
â&#x2C6;&#x17E; X
â&#x2C6;&#x17E; â&#x2C6;&#x17E; X X 1 1 1 â&#x2030;Ľ â&#x2030;Ľ , δ S(n) S(n) n=1 S(pn ) n=1 n=1
complete the proof. Proof of Theorem 2. â&#x2C6;&#x17E; P It certainly suffices to assume that â&#x2030;¤ 1. We rewrite series n=1 â&#x2C6;&#x17E; X u(k) k=1
k Îľk
1 S(n)ÎľS(n)
as
,
where u(k) = ]{n : S(n) = k}. For every positive integer n such that S(n) = k is a divisor of k!, i.e. u(k) â&#x2030;¤ d(k!). By Lemma 2 and the inequality bellow 2
(k!) =
k Y j=1
j(k + 1 â&#x2C6;&#x2019; j) <
2 k Y k+1 j=1
2
=
we have
u(k) â&#x2030;¤ d(k!) â&#x2030;¤ C (k!) < C
k+1 2
k+1 2
2k .
k .
where C means that the constant depending on . k Therefore, recalling that the properties of the sequence 1 + k1 , we have â&#x2C6;&#x17E; X u(k) k=1
k Îľk
â&#x2030;¤ C
k k â&#x2C6;&#x17E; â&#x2C6;&#x17E; â&#x2C6;&#x17E; X X X 1 k+1 1 k+1 1 = C < C , 1 k Îľk 2 2Îľk k 2Îľk
k=1
k=1
k=1
Vol. 10
Some arithmetical properties of the Smarandache series
for some constant C1 , it follows that series
∞ P k=1
C1
u(k) kεk
67
is bounded above by
∞ X C1 1 = ε , 2εk 2 −1
k=1
completing the proof.
References [1] F. Smarandache, Only problem not solution, Xiquan Publishing House, Chicago, 1993. [2] M. Farris and P. Mitchell, Bounding the Smarandache function, Smarandache Notation Journal, 13(2002), 37-42. [3] Z. Xu, Some arithmetical properties of primitive numbers of power p, 2(2006), No. 1, 9-12. [4] F. Luca, The Smarandache harmonic series, NAW, 5(2000), No. 1, 150-151. [5] Jozsef Sandor, On certain inequalities involving the Smarandache dunction, Scientia Magna, 2(2006), No. 3, 78-80. [6] J. Fu, An equaltion involving the Smarandache function, Scientia Magna, 2(2006), No. 4, 83-86. [7] L. K. Hua, Itroduction to number theory, Springer-Verlag, 1982.