A proof of Smarandache-Patrascu's theorem using barycentric coordinates

Page 1

Scientia Magna Vol. 6 (2010), No. 1, 36-39

A proof of Smarandache-Patrascu’s theorem using barycentric coordinates Claudiu Coanda The National College “Carol I” Craiova, Romania Abstract In this article we prove the Smarandache-Patrascu’s theorem in relation to the inscribed orthohomological triangles using the barycentric coordinates. Keywords Smarandache-Patrascu’s theorem, barycentric coordinates.

Definition. Two triangles and ABC and A1 B1 C1 , where A1 ∈ BC, B1 ∈ AC, C1 ∈ AB, are called inscribed ortho homological triangles if the perpendiculars in A1 , B1 , C1 on BC, AC, AB respectively are concurrent. Observation. The concurrency point of the perpendiculars on the triangle ABC’s sides from above definition is the orthological center of triangles ABC and A1 B1 C1 . Smarandache-Patrascu Theorem. If the triangles ABC and A1 B1 C1 are orthohomo0 0 0 logical, then the pedal triangle A1 B1 C1 of the second center of orthology of triangles ABC and A1 B1 C1 , and the triangle ABC are orthohomological triangles. Proof. Let P (α, β, γ), α + β + γ = 1, be the first orthologic center of triangles ABC and A1 B1 C1 (See Figure 1).

Fig. 1 The perpendicular vectors on the sides are: ¡ ¢ ⊥ UBC = 2a2 , −a2 − b2 + c2 , −a2 + b2 − c2 , ¢ ¡ ⊥ UCA = −a2 − b2 + c2 , 2b2 , a2 − b2 − c2 , ¡ ¢ ⊥ UAB = −a2 + b2 − c2 , a2 − b2 − c2 , 2c2 . We know that: −−→ A1 B −−→ A1 C

−−→ B1 C · −−→ B1 A

−−→ C1 A · −−→ = −1, C1 B

(1)


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
A proof of Smarandache-Patrascu's theorem using barycentric coordinates by Ryan Elias - Issuu