Smarandache Partitions

Page 1

Scientia Magna Vol. 2 (2006), No. 1, 60-63

Smarandache Partitions Muneer Jebreel Karama SS-Math-Hebron UNRWA Hebron Education Office Jerusalem box Abstract I study Smarandache numbers partitions, and the partitions set of these numbers. This study conducted by Computer Algebra System namely, Maple 8. Keywords Smarandache numbers s(n); Partitions P(n); Partitions sets; Smarandache numbers partitions P(s(n)).

§1.1

The procedure

Using the following procedure, we can verify the number of unrestricted partitions of the Smarandache numbers n is denoted by P (s(n)). With the Maple ( V. 8 )[see, 2] definitions. S:= proc(n::nonnegint) option remember; local i, j, f act: f act:=1: for i from 2 while irem ( f act, n)<> 0 do f act := f act *i: od : return i − 1: end proc: b:= proc(n::nonnegint) option remember; with (combstruct): count (Partition(n)); end proc: This procedure can verify the number of partitions, very fast, for example, it can verify the number of partitions of 200 in 0.2 second, while George Andrews said that ”Actual enumeration of the P (200) = 3972999029388 would certainly take more than a lifetime, [1, p 150].” Below the first 100 Smarandache numbers verifying by the above procedure:

§1.2

Partition counting of Smarandache numbers

By using the above procedure, we can got the first 100 partitions of Smarandache numbers as follows:


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.