SOME EXPRESSIONS OF THE SMARANDACHE PRIME FUNCTION

Page 1

SOME EXPRESSIONS OF THE SMARANDACHE PRIME FUNCTION Sebastian Martin Ruiz Avda. de Regla 43, Chipiona 11550, Spain

Abstract

The main purpose of this paper is using elementary arithmetical functions to give some expressions of the Smarandache Prime Function P (n).

In this article we gave some expressions of the Smarandache Prime Function P (n) (see reference [1]), using elementary arithmetical functions. The Smarandache Prime Function is the complementary of the Prime Characteristic Function: ½

P (n) =

0 1

if if

n n

is is

a a

prime, composite.

Expression 1. ¹

P (n) = 1

º

lcm(1, 2, · · · , n) , n · lcm(1, 2, · · · , n − 1)

where b·c is the floor function (see reference [2]). Proof. We consider three cases: Case 1: If n = p with p prime, then we have lcm(1, 2, · · · , p) = lcm(lcm(1, 2, · · · p − 1), p) = p · lcm(1, 2, · · · , p − 1) Therefore we have: P (n) = 0. Case 2: If n = pα with p is prime and α is a positive integer greater than one, we may have ¹

º

lcm(1, 2, · · · , n) n · lcm(1, 2, · · · , n − 1) ¹ º lcm(1, 2, · · · , pα ) = n · lcm(1, 2, · · · , pα − 1) $

lcm(lcm(1, 2, · · · , pα−1 , · · · , pα − 1), pα = n · lcm(1, 2, · · · , pα − 1)

%


72

SCIENTIA MAGNA VOL.1, NO.1 $

p · lcm(1, 2, · · · , pα−1 , · · · , pα − 1) = n · (1, 2, · · · , pα − 1) ¹ º p = = 0. n

%

So we have: P (n) = 1. Case 3: If n = a · b with gcd(a, b) = 1 and a, b > 1. We can suppose a < b, then we have lcm(1, 2, · · · , a, · · · , b, · · · , n) = lcm(1, 2, · · · , a, · · · , b, · · · , n − 1, a · b) = lcm(1, 2, · · · , a, · · · , b, · · · , n − 1) and therefore we have: ¹

lcm(1, 2, · · · , n) n · lcm(1, 2, · · · , n − 1) ¹ º 1 = 1− =1−0=1 n

º

P (n) = 1 −

With this the expression one is proven. Expression 2. [3],[4]  ¹ º n ¹ º X  n n−1  2 −  −   i i   i=1  P (n) = −    n  

Proof. We consider d(n) =

i=1

of n because: ¹ º

n ¹ º X n

¹

º

n n−1 − = i i

½

1 0

i

¹

if if

º

n−1 is the number of divisors i i i

divides n, not divide

If n = p prime we have d(n) = 2 and therefore P (n) = 0 . If n is composite we have d(n) > 2 and therefore: −1 <

2 − d(n) < 0 =⇒ P (n) = 1. n

Expression 3. We can also prove the following expression:

n.


73

Some Expressions of the Smarandache Prime Function $

1 P (n) = 1 − · GCD n

ÃÃ ! Ã !

Ã

n n n , ,···, 1 2 n−1

!!%

,

à !

n is the binomial coefficient. i Can the reader prove this last expression?

where

References [1] E. Burton, Smarandache Prime and Coprime Functions, http://www.gallup. unm.edu/ smarandache/primfnct.txt. [2] S. M. Ruiz, A New Formula for the n-th Prime, Smarandache Notions Journal 15 2005. [3] S. M. Ruiz, A Functional Recurrence to Obtain the Prime Numbers Using the Smarandache Prime Function, Smarandache Notions Journal 11 (2000), 56. [4] S. M. Ruiz, The General Term of the Prime Number Sequence and the Smarandache Prime Function, Smarandache Notions Journal, 11 (2000), 59.


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.