On the Product of the Square-free Divisor of a Natural Number

Page 1

Scientia Magna Vol. 2 (2006), No. 2, 55-59

On the Product of the Square-free Divisor of a Natural Number Yanyan Han Department of Mathematics, Shandong Normal University Jinan, Shandong, P.R.China Abstract In this paper we study the product of the square-free divisor of a natural number Q Psd (n) = d. According to the Dirichlet divisor problem, we turn to study the asymptotic d|n µ(d)6=0

P

formula of

log Psd (n). This article uses the hyperbolic summation and the convolution

n≤x

method to obtain a better error term. Keywords

Square-free number, Dirichlet divisor problem, hyperbolic summation, convolution.

§1. Introduction and main results F.Smarandache introduced the function Pd (n) :=

Q

d in Problem 25[1] . Now we define a

d|n

similar function Psd (n), which denotes the product of all square-free divisors of n, i.e., Y

Psd (n) :=

d.

d|n

µ(d)6=0

In the present paper, we shall prove the following Theorem. Theorem. We have the asymptotic formula X

1

3

1

log Psd (n) = A1 x log2 x + A2 x log x + A3 x + O(x 2 exp(−D(log x) 5 (log log x)− 5 ),

n≤x

where A1 , A2 , A3 are constants, D > 0 is an absolute constant. Rt Notations. [x] = maxk∈Z {k ≤ x}.ψ(t) = t − [t] − 12 , ψ1 (t) = 0 ψ(u)du. µ(n) is the M obius function. ε denotes a fixed small positive constant which may be different at each occurence. γ is the Euler constant. B1 , B2 , B3 , C1 , C2 , D1 , D2 , D3 , D4 are constants.

§2. Some preliminary lemmas We need the following results: Lemma 1. Let f (n) be an arithmetical function for which X n≤x

f (n) =

l X j=1

xaj Pj (log x) + O(xa ),


56

Yanyan Han

X

No. 2

|f (n)| = O(xa1 logr x),

n≤x 1 k

where a1 ≥ a2 ≥ · · · ≥ al > > a ≥ 0, r ≥ 0, P1 (t), · · · , Pl (t) are polynomials in t of degrees not exceeding r , and k ≥ 1 is a fixed integer. If X h(n) = µi (d)f (n/dk ), i ≥ 1 dk |n

then

X

h(n) =

l X

xaj Rj (log x) + δ(x),

j=1

n≤x

where R1 (t), · · · , Rl (t) are polynomials in t of degrees not exceeding r. and for some D > 0 1

3

1

δ(x) ¿ x k exp (−D(log x) 5 (log log x)− 5 ). Proof. See Theorem 14.2 of A. Ivi´ c[3] when l = 1 and the similar proof is used when l > 1 . Lemma 2. Suppose that f (u) ∈ C 3 [u1 , u2 ], then Z u2 ¯ u2 Z ¯ u2 X ¯ ¯ f (n) = f (u)du − ψ(u)f (u)¯ + ψ1 (u)f 0 (u)¯ − u1

u1 <n≤u2

u1

u1

u2

ψ1 (u)f 00 (u)du.

u1

Lemma 3. We have X 1≤m≤y

ψ(y) 1 = log y + γ − +O m y

µ

1 y2

¶ , y ≥ 1.

Lemma 4. We have X

log m = y log y − y − ψ(y) log y +

1≤m≤y

ψ1 (y) + D1 + O y

µ

1 y2

¶ , y ≥ 1.

Lemma 5. We have µ ¶ X log m log y 1 log y = − − + D + O , y ≥ 1. 3 m2 y y y2

1≤m≤y

Lemma 6. We have µ 2 ¶ X log2 m log2 y 2 log y 2 log y =− , y ≥ 1. − − + D4 + O m2 y y y y2

1≤m≤y

Lemma 7. We have X

1

d(n) = y log y + (2γ − 1)y + O(y 3 ).

n≤y

Lemma 8. We have X 1 1 1 1 d(n)n− 2 = 2y 2 log y + (4γ − 4)y 2 − 2γ + 3 + O(y − 6 ). n≤y


Vol. 2

57

On the Product of the Square-free Divisor of a Natural Number

Lemma 9. We have X 1 1 1 1 1 d(n)n− 2 log n = 2y 2 log2 y + (4γ − 8)y 2 log y + (16 − 8γ)y 2 + 8γ − 16 + O(y − 6 log y). n≤y

Lemma 2 is the Euler-Maclaurin summation formula (see [2]). Lemma 3, 4, 5, 6 follow from Lemma 2 directly. Lemma 7 is a classical result about the Dirichlet divisor problem. Lemma 8, 9 can be easily obtained by Lemma 2 and Lemma 7.

§3. Proof of the theorem It is easily seen that

X

log Psd (n) =

log d,

n=dl,µ(d)6=0

which implies that (σ > 1) ∞ X log Psd (n) ns n=1

= ζ(s)

Ã

∞ X |µ(d)| log d

= ζ(s) − ds ds d=1 µ ¶0 0 0 ζ(s) 1 1 = −ζ(s) = −ζ(s)ζ (s) + 2ζ 2 (s)ζ (2s) 2 ζ(2s) ζ(2s) ζ (2s) ∞ ∞ X X = h1 (n)n−s + 2 h2 (n)n−s .

where h1 (n) =

n=1

X

µ(d)f1 (n/d2 ), f1 (n) =

d2 |n

X

!0

d=1

n=1

h2 (n) =

∞ X |µ(d)|

µ2 (d)f2 (n/d2 ),

X

log m;

m|n

X

f2 (n) =

d(k) log m,

µ2 (d) =

µ(d)µ(k).

n=dk

n=m2 k

d2 |n

X

Our Theorem follows from the following Proposition 1 and Proposition 2. Proposition 1. We have X 1 3 1 h1 (n) = B1 x log2 x + B2 x log x + B3 x + O(x 2 exp(−D(log x) 5 (log log x)− 5 ). n≤x

Proposition 2. We have X 3 1 1 h2 (n) = C1 x log x + C2 x + O(x 2 exp(−D(log x) 5 (log log x)− 5 ). n≤x

We only proof Proposition 2. The proof of Proposition 1 is similar and easier. We have X

f2 (n) =

n≤x

=

X 1

m≤x 3

X X n≤x m2 k=n

log m

X

n≤ mx2

= S1 + S2 − S3

X

d(k) log m =

d(n) +

X 1

n≤x 3

d(n) log m

m2 n≤x

d(n)

X

log m − 1

x 2 ) m≤( n

X 1

m≤x 3

log m

X 1

n≤x 3

d(n)


58

Yanyan Han

No. 2

By Lemma 7, 5, 6 µ³ ¶¶ X µ x x x x ´ 13 S1 = log 2 + (2γ − 1) 2 + O log m m2 m m m2 1 m≤x 3

X log m X log m  1 X log m  − 2x + O x 3 2  2 2 m m m3 1 1 1 m≤x 3 m≤x 3 m≤x 3 µ ³ ´¶ 1 2 1 1 = (x log x + (2γ − 1)x) − x− 3 log x − x− 3 + D3 + O x− 3 log x 3 µ ³ 2 ´¶ ³ 4 ´ 1 1 1 2 1 −2x − x− 3 log2 x − x− 3 log x − 2x− 3 + D4 + O x− 3 log x + O x 9 +ε 9 3 2

= (x log x + (2γ − 1)x)

By Lemma 4, 8, 9 S2

=

X 1

µ ³ ´1 ¶ ³ x ³ x ´ 12 x´ 1 x 2 log − + D1 + O log d(n) 2 n n n n

n≤x 3

X 1 1 1 1 1 1 1 X = ( x 2 log x − x 2 ) d(n)n− 2 − x 2 d(n) log n n− 2 2 2 1 1 n≤x 3

n≤x 3

+D1

X

X   d(n) + O log x d(n)

1

1

n≤x 3

¶µ

n≤x 3

³ 1 ´¶ 1 1 2 1 1 1 x 2 log x − x 2 x 6 log x + (4γ − 4)x 6 − 2γ + 3 + O x− 18 2 3 µ ³ 1 ´¶ 1 1 1 1 2 1 1 − x2 x 6 log2 x + (4γ − 8)x 6 log x + (16 − 8γ)x 6 + 8γ − 16 + O x− 18 log x 2 9 3 ³ 1 ´ X +D1 d(n) + O x 3 +ε

µ =

1

n≤x 3

By Lemma 4 and Lemma 7, µ ¶ X 1 1 1 S3 = d(n) x 3 log x − x 3 + D1 + O (log x) 3 1 n≤x 3

=

X X X 1 1 1 x 3 log x d(n) − x 3 d(n) + D1 d(n) 3 1 1 1 

n≤x 3

n≤x 3

n≤x 3

X   +O log x d(n) 1

n≤x 3

¶µ ³ 1 ´¶ 1 1 1 1 1 1 3 3 3 3 x log x − x x log x + (2γ − 1)x + O x 9 = 3 3 ³ 1 ´ X +O x 3 +ε + D1 d(n) µ

1

n≤x 3


Vol. 2

On the Product of the Square-free Divisor of a Natural Number

59

Combining the above estimates we get X

f2 (n) = D3 x log x + ((2γ − 1)D3 − 2D4 ) x +

n≤x

³ 4 ´ 1 3 − 2γ 1 x 2 log x + (5 − 2γ)x 2 + O x 9 +ε , 2

which gives Proposition 2 immediately by using Lemma 1 .

References [1] Smarandache F, Only problems, not Solutions, Chicago, Xiquan Publ, House, 1993. [2] Chengdong Pan and Chengbiao Pan, Foundation of Analytic Number Theory, Science Press, Beijing, 1997. [3] A. Ivi´ c, the Riemann zeta-function, Wiley-Interscience, New York, 1985.


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.