On the Smarandache sequences

Page 1

Scientia Magna Vol. 4 (2008), No. 4, 36-39

On the Smarandache sequences Yanting Yang Department of Mathematics, Northwest University, Xi’an, Shaanxi, P.R.China Abstract In this paper, we use the elementary method to study the convergence of the Smarandache alternate consecutive, reverse Fibonacci sequence and Smarandache multiple sequence. Keywords Convergence, Smarandache sequences, elementary method.

§1. Introduction and results For any positive integer n, the Smarandache alternate consecutive and reverse Fibonacci sequence a(n) is defined as follows: a(1) = 1, a(2) = 11, a(3) = 112, a(4) = 3211, a(5) = 11235, a(6) = 853211, a(7) = 11235813, a(8) = 2113853211, a(9) = 112358132134, · · · . The Smarandache multiple sequence b(n) is defined as: b(1) = 1, b(2) = 24, b(3) = 369, b(4) = 481216, b(5) = 510152025, b(6) = 61218243036, b(7) = 7142128354249, b(8) = 816243240485664, b(9) = 91827364554637281, · · · . These two sequences were both proposed by professor F.Smarandache in reference [1], where he asked us to study the properties of these two sequences. About these problems, it seems that none had studied it, at least we have not seen any related papers before. However, in reference [1] (See chapter III, problem 6 and problem 21), professor Felice Russo asked us to study the convergence of a(n) , a(n + 1)

lim

k→∞

k X

b(n) b(n + 1) n=1

and other properties. The main purpose of this paper is using the elementary method to study these problems, and give some interesting conclusions. That is, we shall prove the following: Theorem 1. For Smarandache alternate consecutive and reverse Fibonacci sequence a(n) a(n), we have lim = 0. n→∞ a(n + 1) ∞ X b(n) Theorem 2. For Smarandache multiple sequence b(n), the series is converb(n + 1) n=1 gent.


Vol. 4

On the Smarandache sequences

37

§2. Proof of the theorems In this section, we shall using elementary method to prove our Theorems. First we prove Theorem 1. If n is an odd number, then from the definition of a(n) we know that a(n) can be written in the form: a(n) = F (1)F (2) · · · F (n) and a(n + 1) = F (n + 1)F (n) · · · F (1), where F (n) be the Fibonacci sequence. Let αn denote the number of the digits of F (n) in base 10, then a(n) = F (n) + F (n − 1) · 10αn + F (n − 2) · 10αn +αn−1 + · · · + F (1) · 10αn +αn−1 +···+α2 and a(n + 1) = F (1) + F (2) · 10α1 + F (3) · 10α1 +α2 + · · · + F (n + 1) · 10α1 +α2 +···+αn . So a(n) a(n + 1)

=

F (n) + F (n − 1) · 10αn + · · · + F (1) · 10αn +αn−1 +···+α2 F (n + 1) · 10α1 +α2 +···αn F (n) F (n − 1) F (1) + α1 +···+αn−1 + · · · + α1 10α1 +···+αn 10 10 . F (n + 1)

For 1 ≤ k ≤ n, since the number of the digits of F (k) in base 10 is αk , we can suppose F (k) = a1 · 10αk −1 + a2 · 10αk −2 + · · · + aαk , 0 ≤ ai ≤ 9 and 1 ≤ i ≤ αk . Therefore, we have F (k) 10α1 +α2 +···+αk

= ≤ = ≤

a1 · 10αk −1 + a2 · 10αk −2 + · · · + aαk 10α1 +α2 +···+αk −1 9 · (1 + 10 + 10−2 + · · · + 101−αk ) 10α1 +α2 +···+αk−1 +1 10 · (1 − 10−αk ) 10α1 +α2 +···+αk−1 +1 1 1 ≤ k−1 . α +α +···+α 1 2 k−1 10 10

Thus, 0≤

a(n) 1 + 10−1 + 10−2 + · · · + 101−n 10 ≤ ≤ → 0, as n → ∞. a(n + 1) F (n + 1) 9F (n + 1)

That is to say, lim

n→∞

a(n) = 0. a(n + 1)

If n be an even number, then we also have a(n) = F (1) + F (2) · 10α1 + F (3) · 10α1 +α2 + · · · + F (n) · 10α1 +α2 +···+αn−1 and a(n + 1) = F (n + 1) + F (n) · 10αn+1 + F (n − 1) · 10αn+1 +αn + · · · + F (1) · 10αn+1 +αn +···+α2 .


38

Yanting Yang

We can use the similar methods to evaluate the value of

No. 4

a(n) . And a(n + 1)

a(n) F (1) + F (2) · 10α1 + F (3) · 10α1 +α2 + · · · + F (n) · 10α1 +α2 +···+αn−1 ≤ . a(n + 1) 10α2 +α3 ···+αn+1 For every 1 ≤ k ≤ n, similarly, let F (k) = a1 · 10αk −1 + a2 · 10αk −2 + · · · + aαk , we have F (k) · 10α1 +α2 +···+αk−1 10α2 +α3 +···+αn+1

= ≤ ≤

(a1 · 10αk −1 + a2 · 10αk −2 + · · · + aαk ) · 10α1 +α2 +···+αk−1 10α2 +α3 +···+αn+1 −1 −2 9(1 + 10 + 10 + · · · + 101−αk ) 10αk+1 +αk+2 +···+αn+1 1 . 10αk+1 +αk+2 +···+αn+1 −1

Therefore, 0≤

a(n) a(n + 1)

1

10α2 +α3 +···+αn+1 −1

+

1 10α3 +α4 +···+αn+1 −1

+ ··· +

1 10αn+1 −1

1 (1 + 10−1 + 10−2 + · · · + 101−n) ) 10αn+1 −1 100 → 0, as n → ∞. 9 · 10αn+1

≤ ≤

a(n) = 0. This proves Theorem 1. a(n + 1) Now we prove Theorem 2. For the sequence b(n) = n(2n)(3n) · · · (n · n), let γ(n) denote the number of the digits of n2 in base 10, then by observation, we can obtain γ(2) = γ(3) = 1, γ(4) = 2, γ(10) = 3, γ(40) = 4, γ(100) = 5, γ(400) = 6, γ(1000) = 7, · · · . When n ranges from 4 · 10α to 10α+1 , γ(n) increases. That is to say, γ(4 · 10α ) = 2α + 2, and γ(10α+1 ) = 2α + 3, where α = 0, 1, 2, · · · . So lim

n→∞

For every positive integer n, it is obvious that k · n ≤ k · (n + 1), where 1 ≤ k ≤ n. So we b(n) can evaluate as b(n + 1) b(n) b(n + 1)

= ≤

n(2n)(3n) · · · (n · n) (n + 1)(2(n + 1)) · · · (n · (n + 1))((n + 1) · (n + 1)) b(n) 1 = γ(n+1) , b(n) · 10γ(n+1) 10

thus, ∞ X

∞ X b(n) 1 ≤ . γ(n+1) b(n + 1) 10 n=1 n=1

If 4 · 10α ≤ n ≤ 10α+1 − 1, then 2α + 2 ≤ γ(n) ≤ 2α + 3, where α = 0, 1, 2, 3, · · · . In addition, if 10α+1 ≤ n ≤ 4 · 10α+1 − 1, then 2α + 3 ≤ γ(n) ≤ 2α + 4, where α = 0, 1, 2, 3, · · · .


Vol. 4

On the Smarandache sequences

39

Therefore, we can get ∞ X n=1

1 10γ(n+1)

=

2 1 1 1 1 1 + γ(4) + γ(5) + · · · + γ(9) + γ(10) + · · · + γ(39) 10 10 10 10 10 10 1 1 + · · · + γ(10α+1 −1) 10γ(4·10α ) 10 1 1 + γ(10α+1 ) + · · · + γ(4·10α+1 −1) + · · · 10 10 ¶ ∞ µ X 2 1 1 + + · · · + 10 α=0 10γ(4·10α ) 10γ(10α+1 −1) ¶ ∞ µ X 1 1 + + · · · + γ(4·10α+1 −1) 10γ(10α+1 ) 10 α=0 +··· +

=

X 3 · 10α+1 1 X 6 · 10α + + 5 α=0 102α+2 α=0 102α+3

=

X 3 1 X 6 3 + + = . α+2 α+2 5 α=0 10 10 10 α=0

So the series

∞ X

b(n) is convergent. This completes the proof of Theorem 2. b(n + 1) n=1

References [1] Felice Russo, A set of new Smarandache functions, Sequences and Conjectures in Number Theory, American Research Press, USA, 2000. [2] Liu Yanni, Li Ling and Liu baoli, Smarandache Unsolved Problems and New Progress, High American Press, 2008. [3] F.Smarandache, Only Problems, Not Solutions, Xiquan Publishing House, Chicago, 1993. [4] F.Smarandache, Sequences of numbers involved in unsolved problems, Hexis, 2006. [5] Zhang Wenpeng, The elementary number theory (in Chinese), Shaanxi Normal University Press, Xi’an, 2007. [6] Chengdong Pan and Chengbiao Pan, The Elementary Number Theory, Beijing University Press, Beijing, 2003. [7] Yi Yuan and Kang Xiaoyu, Research on Smarandache Problems, High American Press, 2006. [8] Chen Guohui, New Progress On Smarandache Problems, High American Press, 2007.


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.