An introduction to the Smar andac he Squa re Complementary function Felice Russo Via A. Infante 67051 Avezzano (Aq) Italy felice.russo@katamail.com
Abstract
In this paper the main properties of Smarandache Square Complementa ry function has been analysed. Several problems still unsolved are reported too.
The Smarandache square complementary function is defined as [4],[5]:
Ssc(n)=m where m is the smallest value such that m路 n is a perfect square. Example: for n=8, m is equal 2 because this is the least value such that m路 n is a perfect square. The first 100 values ofSsc(n) function follows: n
Ssc(n)
n
Ssc(n)
n Ssc(n) n ssc(n) ---------------------------------------------------------------1 ------1 -26 26 51 51 76 19 2
3 4 5 6 7 8 9 10 11
12 13 14 15 16 17 18 19 20 21 22 23 24 25
2 3 1 5 6 7 2 1 10 11 3
13 14 15 1 17
2 19 5 21 22 23 6 1
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
3
7 29 30 31
2 33 34 35 1 37 38 39 10 41 42 43 11 5 46 47 3
1 2
52 53 54 5S 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
71 72
73 74 75
13 53 6 55
14
57 58 S9 15 61 62 7 1 65 66 67 17
69 70 71
2 73 74 3
Let's start to explore some properties of this function. 160
77
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
77 78 79 5 1.
82 83 21 85 86 87 22 89 10 91 23 93 94 95 6 97 2 11 1