03 instructorsolutions

Page 1

3

MOTION IN TWO OR THREE DIMENSIONS

3.1.

IDENTIFY and SET UP: Use Eq.(3.2), in component form. Δx x2 − x1 5.3 m − 1.1 m = = = 1.4 m/s EXECUTE: ( vav ) x = Δt t2 − t1 3.0 s − 0

( vav ) y =

Δy y2 − y1 −0.5 m − 3.4 m = = = −1.3 m/s Δt t2 − t1 3.0 s − 0 tan α =

( vav ) y ( vav ) x

=

−1.3 m/s = −0.9286 1.4 m/s

α = 360° − 42.9° = 317° vav =

( vav ) x + ( vav ) y 2

2

vav = (1.4 m/s) 2 + (−1.3 m/s) 2 = 1.9 m/s Figure 3.1

3.2.

! EVALUATE: Our calculation gives that vav is in the 4th quadrant. This corresponds to increasing x and decreasing y. ! IDENTIFY: Use Eq.(3.2), written in component form. The distance from the origin is the magnitude of r . SET UP: At time t1 , x1 = y1 = 0 . EXECUTE:

(a) x = (vav-x )Δt = ( −3.8m s)(12.0 s) = −45.6 m and y = (vav-y )Δt = (4.9m s)(12.0 s) = 58.8 m .

(b) r = x 2 + y 2 = (−45.6 m) 2 + (58.8 m) 2 = 74.4 m. ! ! EVALUATE: Δr is in the direction of vav . Therefore, Δx is negative since vav-x is negative and Δy is positive

since vav-y is positive.

3.3.

! (a) IDENTIFY and SET UP: From r we can calculate x and y for any t. Then use Eq.(3.2), in component form. ! EXECUTE: r = ⎡⎣ 4.0 cm + ( 2.5 cm/s 2 ) t 2 ⎤⎦ iˆ + ( 5.0 cm/s ) tˆj ! At t = 0, r = ( 4.0 cm ) iˆ. ! At t = 2.0 s, r = (14.0 cm ) iˆ + (10.0 cm ) ˆj.

Δx 10.0 cm = = 5.0 cm/s. Δt 2.0 s Δy 10.0 cm = = = 5.0 cm/s. Δt 2.0 s

( vav ) x = ( vav ) y

3-1


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
03 instructorsolutions by Salim Makhdom - Issuu