RESEARCH
EXPLORI NG COMPLEX GEOMETRY Synt het i c or ' f r ee-f or m' geomet r y i sn' t gener at ed by co-or di nat es or equat i ons but i nst ead consi st s of ' spl i nes' , ( i ndi cat ed i n r ed) whi ch exi st i nf i ni t el yt hr oughout t o f or m a t wo-di mensi onal shape, or shel l .
CYLI NDRI CAL PARABOLOI D
CONI CAL PARABOLOI D
I n t hese t wo vaul t ed shel l s, t he spl i nes r unni ng l at er al l y ar e al ways st r ai ght , meani ng t he sur f ace can be f l at t ened wi t houtchangi ng i t s ar ea.Mor e compl ex cur ves exi stwher et hi s i s not possi bl e, such as t he dome or i ndeed t he shape of t he Ear t h, hence why i t i s i mpossi bl et o dr aw a wor l d map t o scal e.
EXPLORI NG COMPLEX TRI ANGULATI ON
PRI MARY ROOF STRUCTURE MODEL ELLI PTI C PARABOLOI D
I deci ded t o use opt i on 3 of hol di ng a sheet mat er i al i n t ensi on t o expr ess t he r oof as a si ngl e, l i vi ng ent i t y. Thr ough t hi s, t he al gae can be pumped t hr oughout such t hat or i ent at i on i s not as i mpor t ant as al l of t he al gae wi l l be exposed t o t he same amount of di r ect sunl i ght . To achi eve t hi sI devel oped a ci r cul ar st r uct ur ef or t he wat er t o be pumped ar ound l at er al l y. The pr i mar y st r uct ur ef or t he r esul t i ng hyper bol i c cur ves consi st of l i near component s whi ch wi l lr each out i nt o t he sur r oundi ng l andscape.
HYPERBOLI C PARABOLOI D
hese shapes i s essent i al t o Under st andi ng t det ai l i ng compl ex ar chi t ect ur al f or ms, as t he cur vat ur e i nf or ms how t he i nt er nal st r uct ur e behaves. Cr eat i ng t hese shel l si n ar chi t ect ur e usual l yr el i es on t he concept of a ' pl ank l i ne' whi ch i l l ust r at es t hat a pi ece of mat er i al can suppor t t he f or m by onl y bendi ng i n one ed r i bbon acr oss t he geodesi c pl ane. The r domes bel ow r epr esent s how a pi ece of t i mber ,f or exampl e,can be used t o const r uct a compl ex cur ve wi t hout havi ng t o t wi st .
ALUMI NI UM
PLASTI C FI LM
HYPERBOLI C PARABOLOI DS
STRI NG
COPPER MESH
I cr eat ed t hi s secondar y st r uct ur e usi ng st r i ng and di scover ed t hat t he gr i dshel l coul d be gener at ed by equal l y spaced nodes, or t hr ough t r i angul at i on - whi ch woul d of f er an al t er nat i ve ar chi t ect ur all anguage i n t he st r uct ur e, achi evi ng a l ess or gani cf or m.
By scal i ng t hi s secondar y st r uct ur e you coul d act ual l y gener at e a vi sual l y or gani c cur ve wi t hout any need f or a cur ved sur f ace mat er i al , j ust t hr ough t he use of l ot s of smal lf l at modul es.
CARDBOARD The st r i ng f ai l ed wher et he shape r equi r ed compr essi ve st r engt h so I r ecr eat ed i t usi ng st r i ps of car d. These can accur at el yr epr esent pl ank l i nes as t hey pr ovi de a bend but onl y i n one di r ect i on. Al t er nat i vel y t hi s can cr eat e t he i l l usi on of bend t hr ough a sequence of angl ed st r ai ght el ement s.
Gener at i ng a vi sual cur ved f or m t hr ough a modul ar and syst emat i c t r i angul at i on of t he secondar y st r uct ur e.
OPTI ON 3
LI NEN
The f i r st t hr ee mat er i al exper i ment sf ai l ed t o cr eat e t he hyper bol i c par abol oi d shel l . The al umi ni um was t oo weak i n t ensi on and al ongsi de t he l i nen, had i nsuf f i ci ent el ast i ci t yt o change i t s sur f ace ar ea i n or der t o sat i sf yt he f or m. Pl ast i c f i l m was abl e t o do t hi s but t he mat er i al woul dn' t hol d i t s shape because of a l ack of secondar y st r uct ur e.
OPTI ON 1 OPTI ON 2
Fr om equal l y spaced nodes al ong t he edge of t he shape, a gr i dshel l can be cr eat ed such t hat i t can be const r uct ed f r om a compl et el y st r ai ght mat er i al wi t h onl y si ngul ar cur vat ur e, except i n t he case of t he hyper bol i c par abol oi d, whi ch can be bui l t wi t h ent i r el y st r ai ght l i nes, maki ng i t a popul ar f or m i n scul pt ur e and ar chi t ect ur e.
Hol di ng a sheet mat er i al i n t ensi on t hr ough a pr i mar y and secondar y st r uct ur e under neat h.
Cel ebr at i ng and exposi ng t he r ed r i bbon concept bef or e compl et i ng a compl ex net wor k of uni que shapes.
SAMUEL MORLEY PAGE 2 OF 2 ALL I MAGES BELONG TO AUTHOR