Παρουσίαση των στοιχείων Δημοσθένης Β. Παναγιωτάκος Αναπληρωτής Καθηγητής Βιοστατιστικής – Επιδημιολογίας Τμήμα Επιστήμης Διαιτολογίας – Διατροφής Χαροκόπειο Πανεπιστήμιο
Βασικά στοιχεία παρουσίασης…
Βασικές στατιστικές αρχές στη συγγραφή ενός άρθρου • Περιγραφικά μέτρα θέσης & διασποράς ▫ Αριθμητικός μέσος, διάμεσος ▫ Τυπική απόκλιση ▫ Τυπικό σφάλμα ▫ Διάστημα εμπιστοσύνης
Η ερµηνεία των περιγραφικών µέτρων • Αριθμητικός μέσος ▫ Η αναμενόμενη τιμή που θα έχει η ποσοτική μεταβλητή σε ένα τυχαία επιλεγμένο άτομο του δείγματος. Πόσο αξιόπιστο μέτρο είναι; (όταν στο δείγμα υπάρχει ανισοκατανομή)
▫ Αν οι τιμή του είναι <1 τότε παρουσιάζεται με 2 δεκαδικά ψηφία 1-9 τότε παρουσιάζεται με 1 δεκαδικό ψηφίο >9 τότε παρουσιάζεται ως ακέραιος
Αριθµητικός µέσος
Αριθμητικός μέσος
Η ερµηνεία των περιγραφικών µέτρων • Τυπική απόκλιση ▫ ΈΈνας δείκτης μεταβλητότητας των τιμών της ποσοτικής μεταβλητής. ΌΌσο μικρότερες τιμές λαμβάνει, τόσο πιο ομοιογενές το δείγμα. Επηρεάζεται από τι μονάδες μέτρησης.
▫ Αν οι τιμή της είναι <1 τότε παρουσιάζεται με 2 δεκαδικά ψηφία 1-9 τότε παρουσιάζεται με 1 δεκαδικό ψηφίο >9 τότε παρουσιάζεται ως ακέραιος
Μέτρηση της µεταβλητότητας • Συντελεστής μεταβλητότητας ▫ ΈΈνας δείκτης μεταβλητότητας των τιμών της ποσοτικής μεταβλητής, που λαμβάνει υπόψη την μέση τιμή και δεν επηρεάζεται από τις μονάδες μέτρησης. Τιμές <10% ομοιογένεια
Η ερµηνεία των περιγραφικών µέτρων • Πότε χρειαζόμαστε τη διάμεσο; ▫ ΌΌταν έχουμε ακραίες τιμές στην κατανομή της ποσοτικής μεταβλητής, και ειδικότερα όταν είναι ασύμμετρα κατανεμημένες.
▫ Αν οι τιμή της είναι <1 τότε παρουσιάζεται με 2 δεκαδικά ψηφία 1-9 τότε παρουσιάζεται με 1 δεκαδικό ψηφίο >9 τότε παρουσιάζεται ως ακέραιος
Αριθµητικός µέσος & ακραίες τιµές
Α Β
Το τυπικό σφάλµα και το διάστηµα εµπιστοσύνης • Η γενίκευση του αριθμητικού μέσου του δείγματος στον πληθυσμό αναφοράς γίνεται με την παραδοχή του δειγματοληπτικού σφάλματος (τυπικό σφάλμα) • Το (1-α)% διάστημα εμπιστοσύνης του περιγραφικού μέτρου (π.χ. αριθμητικού μέσου) είναι το διάστημα στο οποίο εκτιμάται ότι θα ανήκει το μέτρο στον πληθυσμό αναφοράς, με βεβαιότητα (1-α)% (συνήθως 95%) ▫ Θέλουμε νάναι μικρού εύρους για μεγαλύτερη αξιοπιστία (π.χ. ο ΣΚ της κατανάλωσης καφέ στο ΣΔ είναι 1,15 (95%ΔΕ 0,20 – 28,90!!!)
Βασικές στατιστικές αρχές στη συγγραφή ενός άρθρου • Τεχνικά σημεία ▫ Η παρουσίαση των περιγραφικών μέτρων Ο μέσος όρος πρέπει να συνοδεύεται από την τυπική απόκλιση και τον αριθμό του δείγματος στο οποίο υπολογίστηκε. Η διάμεσος πρέπει να συνοδεύεται από τα τεταρτημόρια και τον αριθμό του δείγματος στο οποίο υπολογίστηκε.
Βασικές στατιστικές αρχές στη συγγραφή ενός άρθρου • Τεχνικά σημεία ▫ Οι Πίνακες και τα Γραφήματα Πρέπει να μπορούν να παρουσιάζουν τα στοιχεία χωρίς να χρειάζεται αναφορά στο κείμενο (δηλ., μα περιέχουν υλικό, μονάδες μέτρησης, p, μέγεθος δείγματος κ.α.)
Πίνακας αποτελεσµάτων συγχρονικής έρευνας • Ας υποθέσουμε ότι από μια συγχρονική μελέτη διερευνάται η σχέση κατανάλωσης καφέ και σωματικού βάρους. ▫ Οι πίνακες προτείνεται να έχουν την ακόλουθη μορφή:
Πίνακας αποτελεσµάτων συγχρονικής έρευνας Πίνακας 1. Χαρακτηριστικά των ατόμων της μελέτης ανά κατηγορία σωματικού βάρους. Φυσιολογικό Υπέρβαρ Παχύσαρκ βάρος οι οι Ν Ηλικία (έτη) Κάπνισμα τώρα (%)
250
246
125
45±23
49±21
45±21
23
21
28
p
0,2 5 0,4 1
Πίνακας αποτελεσµάτων συγχρονικής έρευνας Πίνακας 2. Χαρακτηριστικά των ατόμων της μελέτης ανά κατηγορία κατανάλωσης καφέ. Καθόλ 0-1 φλ./ 1-2 φλ./ ου ημ. ημ. Ν Ηλικία (έτη) Κάπνισμα τώρα (%)
3+ φλ./ ημ.
120
123
145
85
45±23
49±21
47±28
42±23
23
21
33
38
p
0,1 5 0,0 1
Πίνακας περιγραφής του δείγµατος
Πίνακας αρχικής ανάλυσης του δείγµατος
Πίνακας κύριας ανάλυσης του δείγµατος
Στο κείμενο των αποτελεσμάτων μπορεί να γίνει και συζήτηση των συντελεστών …
Πίνακας κύριας ανάλυσης του δείγµατος
Πίνακας αποτελεσµάτων έρευνας ασθενών - µαρτύρων Πίνακας 1. Χαρακτηριστικά των ασθενών και των μαρτύρων της μελέτης. Ν Ηλικία (έτη)
Ασθενείς
Μάρτυρες
850
855
45±23
45±21
P 0,89
Η στατιστική σημαντικότητα στην τελευταία στήλη εκφράζει τις
78 77 ΆΆρρεν φύλο συγκρίσεις μεταξύ των ασθενών και των μαρτύρων. (%)
0,97
Πίνακας αποτελεσµάτων έρευνας ασθενών - µαρτύρων
Πίνακας αποτελεσµάτων έρευνας ασθενών - µαρτύρων
Πίνακας αποτελεσµάτων προοπτικής έρευνας Πίνακας 1. Αθροιστική κατανομή συμβάντων των συμμετεχόντων της μελέτης. ΈΈναρξη της μελέτης
12 μήνες
24 μήνες
36 μήνες
850
825
815
801
ΟΕΜ, %
-
3
5
7
ΑΕΕ, %
-
1
1
3
Ν
Πίνακας αποτελεσµάτων προοπτικής έρευνας
Πίνακας αποτελεσµάτων κλινικής δοκιµής Πίνακας 1. Χαρακτηριστικά των ατόμων της κλινικής δοκιμής πριν και μετά την παρέμβαση. Ομάδα Α πριν
μετά
Ομάδα Β πριν
p
μετά
C-RP 2.1±0. 2.2±0.3 2.3±0.8 1.4±0.4* 0.02 Η στατιστική σημαντικότητα στην τελευταία στήλη εκφράζει τις (mg/L) 2 συγκρίσεις μεταξύ των ομάδων.
Για να δείξουμε τη στατιστική σημαντικότητα πριν – μετά σε κάθε ομάδα συνήθως χρησιμοποιούμε σύμβολα, όπως *<0.05 κοκ
Πίνακας αποτελεσµάτων κλινικής δοκιµής
Παρουσίαση αποτελεσµάτων κλινικής δοκιµής • Η δημιουργία ενός διαγράμματος ροής διευκολύνει τον αναγνώστη να καταλάβει την κλινική δοκιμή.
Γραφήµατα • Ραβδογράμματα, ιστογράμματα • Θηκογράμματα • Στικτά διαγράμματα
Iστόγραµµα Κατανομή συχνοτήτων μιας ποσοτικής μεταβλητής
Ραβδόγραµµα Κατανομή συχνοτήτων μιας κατηγορικής μεταβλητής
Θηκογράµµατα Περιγραφικά μέτρα μιας ασύμμετρης ποσοτικής μεταβλητής
Θηκογράµµατα Περιγραφικά μέτρα μιας ποσοτικής μεταβλητής
Στικτό διάγραµµα Συσχέτιση δύο ποσοτικών μεταβλητών
Στικτό διάγραµµα Συσχέτιση ανά ομάδες των δύο ποσοτικών μεταβλητών
Διαγράµµατα επιφανείας Συσχέτιση τριών ποσοτικών μεταβλητών
Διαγράµµατα «προφίλ» Προφίλ χαρακτηριστικών, κατάλληλα για οικολογικές μελέτες
Παραδείγµατα
Παραδείγµατα
ΈΈλεγχος των προϋποθέσεων
Οι ερευνητικές υποθέσεις αξιολογούνται µε στατιστικά κριτήρια Έχουµε 2 δυνατές υποθέσεις … Άκυρη υπόθεση
Εναλλακτική υπόθεση
Η υπόθεση μας δεν ισχύει.
Η υπόθεση µας ισχύει.
Στατιστικό κριτήριο S
Οι προϋποθέσεις για την ορθή εφαρµογή των στατιστικών ελέγχων υποθέσεων • ΌΌλα τα στατιστικά κριτήρια έχουν διάφορες προϋποθέσεις. ▫ Π.χ. T-test, ANOVA, συντελεστής συσχέτισης του Pearson: κανονικότητα της ποσοτικής μεταβλητής
• Τι συμβαίνει όταν δεν ισχύει μια προϋπόθεση; ▫ Ο υπολογισμός του p-value είναι λανθασμένος η απόφαση που θα ληφθεί παρακινδυνευμένη.
Παράδειγµα
Εξετάστηκε η συσχέτιση της κατανάλωσης κρέατος με τα επίπεδα τριγλυκεριδίων σε 2552 άτομα. Βρέθηκε αρνητική συσχέτιση Δεν λήφθηκε υπόψη όμως η κανονικότητα των μεταβλητών, βασική (p=0.03) προϋπόθεση για τον έλεγχο της στατιστικής σημαντικότητας του συντελεστή συσχέτισης του Pearson.
Και οι 2 μεταβλητές δεν ακολουθούν την κανονική κατανομή.
Παράδειγµα
Το κατάλληλο στατιστικό κριτήριο, συντελεστής συσχέτισης rho του Spearman, υποδεικνύει ότι δεν υπάρχει στατιστικά σημαντική συσχέτιση (p=0.205).
P-values … ή κάτι παραπάνω
Τι είναι το p-value • Η πιθανότητα η παρατηρηθείς στο δείγμα διαφορά, ή ακόμα και μεγαλύτερη, να μην ισχύει στον πληθυσμό αναφοράς.
Σφάλµατα στη λήψη απόφασης
Υπόθεση Ηο αληθής στον πληθυσμό
Αποδοχή υπόθεσης Ηο από το δείγμα
Απόρριψη υπόθεσης ΗO από το δείγμα
Σφάλμα τύπου Ι
Υπόθεση Ηο ψευδής στον Σφάλμα τύπου ΙΙ πληθυσμό
Στατιστική ισχύς
Έλεγχοι Υποθέσεων
Περιοχή απόρριψης Ηο
Ηο αληθής στον Πληθυσµό
Σωστή απόφαση
Σφάλµα Τύπου-Ι
Σωστή απόφαση
Ηο ψευδής στον Πληθυσµό
Περιοχή µηαπόρριψης Ηο
Σφάλµα Τύπου-ΙΙ
Στατιστική Ισχύς
Τιµές στατιστικού κριτηρίου S
Τι δεν είναι το p-value • Το p-value δεν είναι η πιθανότητα να επαληθευθεί η μηδενική υπόθεση ▫ και αυτό γιατί οι υποθέσεις δεν εκφράζονται με πιθανότητες στην στατιστική.
Τι δεν είναι το p-value • Το p-value δεν είναι η πιθανότητα να απορριφθεί λανθασμένα η μηδενική υπόθεση. ▫ Το να απορριφθεί λανθασμένα η μηδενική υπόθεση είναι το σφάλμα Τύπου Ι. Αυτό το σφάλμα είναι μια εκδοχή της καλούμενης «σφάλμα του εισαγγελέα» (“prosecutor's fallacy”) όπου κρίνει αθώο τον κατηγορούμενο ενώ έχει διαπράξει το έγκλημα. Το σφάλμα Τύπου Ι είναι στενά συνυφασμένο με το p-value, αφού απορρίπτουμε τη μηδενική υπόθεση όταν το p-value είναι μικρότερο από κάποιο προκαθορισμένο όριο α (επίπεδο σημαντικότητας) του σφάλματος τύπου-Ι.
Τι δεν είναι το p-value • Το p-value δεν δηλώνει το μέγεθος ή τη σημασία του παρατηρούμενου αποτελέσματος. ▫ ΈΈτσι, ένα πολύ μικρό p-value, π.χ. 0,000…1 (συνήθως παρουσιάζεται ως <0,001) δε σημαίνει απαραίτητα μια πολύ ισχυρή συσχέτιση.
Το επίπεδο σηµαντικότητας
? Τι συμπέρασμα βγάζετε από το διπλανό Σχήμα;
Το επίπεδο σηµαντικότητας
Παρόλο που η συσχέτιση φαίνεται να είναι ισχυρή (p < 0,001) ο συντελεστής συσχέτισης είναι µικρός (r = -0,11), υποδηλώνοντας αδύναµη σχέση.
Το µέγεθος της σχέσης ▫ Ο καλύτερος τρόπος για να αποτιμηθεί μια συσχέτιση είναι η χρήση μέτρων που αποτυπώνουν το μέγεθος της ισχύος μιας σχέσης δηλ. το effect size, όπως
ο σχετικός λόγος συμπληρωματικών πιθανοτήτων, ο σχετικός κίνδυνος, ο συντελεστής συσχέτισης, το d του Cohen το η2 ▫ κ.τ.λ.
p-value και µέγεθος του δείγµατος ▫ Το p-value επηρεάζεται ισχυρά από το μέγεθος του δείγματος.
Συγκεκριμένα • Υπάρχει αντίστροφη συσχέτιση μεταξύ του μεγέθους δείγματος και του p-value.
p-value και µέγεθος του δείγµατος για µια δεδοµένη συσχέτιση 0,16
0,14
0,12
p-value
0,1
0,08
0,06
0,04
0,02
0 0
100
200
300
400
500
600
700
Μέγεθος δείγµατος σε κάθε οµάδα
800
900
1000
Το µέγεθος του δείγµατος • Το επαρκές μέγεθος του δείγματος είναι μεγίστης σημασίας για την αξιοπιστία της έρευνας.
Οι «αρχές» της δειγµατοληψίας • Πρέπει όμως να ληφθεί υπόψη ότι σχετικά μεγάλο δείγμα συνεπάγεται και μεγάλο κόστος ▫ χωρίς αυτό να σημαίνει και απαραίτητα αξιόπιστα αποτελέσματα,
• ενώ πολύ μικρό δείγμα μπορεί να οδηγήσει σε συστηματικό σφάλμα και μεροληπτικές αποφάσεις για τον πληθυσμό.
Το µέγεθος του δείγµατος καθορίζεται από: 1. το επίπεδο στατιστικής σηµαντικότητας των ελέγχων, το οποίο συµβολίζεται µε α και στο χώρο των επιστηµών της Υγείας έχει καθοριστεί να είναι < 0,01 ή < 0,05 2. το µέγεθος της αναζητούµενης σχέσης, π.χ. πόσο µεγάλη θα πρέπει να είναι η διαφορά στα επίπεδα ολικής χοληστερόλης µεταξύ της θεραπευτικής προσέγγισης Α και της θεραπευτικής προσέγγισης Β έτσι ώστε να θεωρείται κλινικά αξιόλογη, 3. τη στατιστική ισχύ των ελέγχων, η οποία συµβολίζεται µε γ και στο χώρο των επιστηµών της Υγείας έχει καθοριστεί να είναι > 0,80 ή > 0,90 4. το επίπεδο ακρίβειας στις µετρήσεις, το οποίο εξαρτάται και από την συνείδηση των ερευνητών που διεξάγουν την έρευνα 5. το µέγεθος του πληθυσµού αναφοράς 6. τη µεταβλητότητα στα χαρακτηριστικά του πληθυσµού, η οποία αν είναι µεγάλη συνεπάγεται και ανάλογη αύξηση του µεγέθους του δείγµατος 7. το διαθέσιµο χρηµατικό ποσό για την έρευνα
Η στατιστική ισχύς είναι συνάρτηση του µεγέθους του δείγµατος Επαρκές δείγμα
Μη επαρκές
Μη επαρκές
Η ανάγκη για πολυπαραγοντική ανάλυση.
Μονοπαραγοντική & • Η σχέση παράγοντας νόσος είναι πολυπαραγοντικής αιτιολογίας. ▫ Η εφαρμογή της πολυπαραγοντικής ανάλυσης είναι επιβεβλημένη στην έρευνα. Οι παράγοντες που συμμετέχουν στην πολυπαραγοντική ανάλυση είναι οι πιθανοί συγχυτικοί.
Εργαλεία Ελέγχου Υποθέσεων, µονο-παραγοντική ανάλυση, n = µεγάλο Υ
Ποσοτική µτβλ Π.χ. ΣΑΠ
Υ
Ποιοτική µτβλ
Χ
Φύλο, µορφωτικό επίπεδο
Students’ t – test, one-way ANOVA
Ποιοτική µτβλ Π.χ. ΑΥ
Υ
Π.χ. ΣΑΠ Ποσοτική µτβλ
Ποιοτική µτβλ
Χ
Φύλο, µορφωτικό επίπεδο
Pearson’s X2 - test
Ποσοτική µτβλ
Χ
Π.χ. ηλικία
Pearson’s r
Εργαλεία Ελέγχου Υποθέσεων, μονο-παραγοντική ανάλυση, n = μικρό ή ασύμμετρη Υ
Υ
Ποσοτική µτβλ Π.χ. ΣΑΠ
Υ
Ποιοτική µτβλ
Χ
Φύλο, µορφωτικό επίπεδο
Ποιοτική µτβλ Π.χ. ΑΥ
Χ
Φύλο, µορφωτικό επίπεδο
Pearson’s X2 – test
Wilcoxon test
Fisher’s test
Ποσοτική µτβλ Π.χ. ΣΑΠ Ποσοτική µτβλ
Ποιοτική µτβλ
Mann – Whitney U – test Kruskal – Wallis test
Υ
Χ
Π.χ. ηλικία
Spearman’s rho
Εργαλεία Ελέγχου Υποθέσεων, πόλυ-παραγοντική ανάλυση, n = μεγάλο Υ
Ποσοτική µτβλ Π.χ. ΣΑΠ
Υ
Π.χ. ΑΥ
Χ1, Χ2, …
Χ1, Χ2, …
Ποιοτική µτβλ
Χ
Ποιοτική µτβλ
Φύλο, µορφωτικό επίπεδο
Υ
Π.χ. ΣΑΠ Χ1, Χ2, …
Ποσοτική µτβλ
Ποιοτική µτβλ
Χ
Ποσοτική µτβλ
Φύλο, µορφωτικό επίπεδο
multi-way ANOVA
Stratified X2 – test
multi-way ANCOVA
Logistic regression
Linear (non-linear) regression
Ordinal logistic regression
Χ
Π.χ. ηλικία
Linear (non-linear) regression
Πολυπαραγοντική ανάλυση Ερµηνευτικές µεταβλητές Χ (συνεχείς, ποιοτικές).
Υ Ποσοτική µτβλ Π.χ. ΣΑΠ
Πολλαπλή γραµµική παλινδρόµηση Ερµηνευτικές µεταβλητές Χ (συνεχείς, ποιοτικές).
Υ Δίτιµη ποιοτική µτβλ Π.χ. νόσος/ υγεία
Λογαριθµική παλινδρόµηση
ΆΤΥΠΟΣ ΚΑΝΟΝΑΣ για το µέγεθος δείγµατος: σύνολο επεξηγηµατικών µεταβλητών ν/10… Υ είναι η µεταβλητή που εκφράζει την έκβαση (το φαινόµενο που µελετάται) και Χ οι ερµηνευτικές µεταβλητές.
Συγχυτικός παράγοντας Παράγοντας
Έκβαση
Συγχυτικός παράγοντας
Παράδειγµα συγχυτικού παράγοντα Κάπνισµα Καρκίνος / κατανάλωση καφέ
Ανάπτυξη καρκίνου
Κατανάλωση καφέ
Κάπνισµα (Συγχυτικός Παράγοντας)
Συγχυτικός παράγοντας Εξαρτηµένη µεταβλητή
Κύρια ανεξάρτητη µεταβλητή
Συγχυτικός παράγοντας
Εξαρτηµένη µεταβλητή
Κύρια ανεξάρτητη µεταβλητή
Συγχυτικός παράγοντας
Υπέρ-προσαρµογή κατά την πολυπαραγοντική ανάλυση. • Η υπέρ-προσαρμογή είναι το φαινόμενο που συνυπολογίζονται πολλές μεταβλητές ως συμπαράγοντες σε ένα υπόδειγμα. ▫ Χρησιμοποιούμαι μόνο τους απαραίτητους, συγχυτικούς παράγοντες.
Βασικές στατιστικές αρχές στη συγγραφή ενός άρθρου • Σχετικός κίνδυνος ή σχετικός λόγος • Τυπική απόκλιση ή τυπικό σφάλμα • β-συντελεστής παλινδρόμησης ή Β συντελεστής ▫ ερμηνεία
• P – value ή 95% διάστημα εμπιστοσύνης
Βασικές στατιστικές αρχές στη συγγραφή ενός άρθρου ▫ Οι Στατιστικές μέθοδοι πρέπει να είναι αναλυτικές και με επεξηγήσεις (δηλ., να μην γράφεται μόνο τη φράση «SPSS was used for all statistical analyses», αλλά «…Student’s t-test was applied to test for mean differences on glucose levels between men and women. Normality of glucose levels was tested through the P-P plot and equality of variances using the Levene’s test”
Σχετικός κίνδυνος (relative risk) ή σχετικός λόγος (odds ratio) ΑΝΑΔΡΟΜΙΚΟΣ ΣΧΕΔΙΑΣΜΟΣ
Σχετικός Κίνδυνος = τυχαιοποίηση ως προς το συμβάν
Κίνδυνος να νοσήσουν
?
ΠΡΟΟΠΤΙΚΟΣ ΣΧΕΔΙΑΣΜΟΣ
οι εκτεθέντες σε σχέση με τους μη-εκτεθέντες
Σχετικός Λόγος = τυχαιοποίηση ως προς την έκθεση
Η σχετική εκτίμηση έκθεσης στον παράγοντα
στους έχοντες τη νόσο σε σχέση με την πιθανότητα έκθεσης στους μη νοσούντες
Χρήση σωστής ορολογίας …
http://www.cdc.gov/reproductivehealth/EpiGlossary/glossary.htm
The STROBE statement
BMJ 2007;335:806-808
Βασικές στατιστικές αρχές στη συγγραφή ενός άρθρου (The STROBE statement) Clinical trial • Report numbers of individuals at each stage of study ▫ eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed • Give reasons for non-participation at each stage • Consider use of a flow diagram
BMJ 2007;335:806-808
Βασικές στατιστικές αρχές στη συγγραφή ενός άρθρου (The STROBE statement) • Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders • Indicate number of participants with missing data for each variable of interest Cohort study • Summarize follow-up time
• eg average and total amount)
• Report numbers of outcome events or summary measures over time. Case-control study • Report numbers in each exposure category (cases – controls), or summary measures of exposure Cross sectional study • Report numbers of outcome events or summary measures BMJ 2007;335:806-808
Βασικές στατιστικές αρχές στη συγγραφή ενός άρθρου (The STROBE statement) Statistical Methods (general) • Describe all statistical methods, including those used to control for confounding • Describe any methods used to examine subgroups and interactions • Explain how missing data were addressed • Cohort study… explain how loss to follow-up was addressed • Case-control study… explain how matching of cases and controls was addressed. • Cross sectional study… describe analytical methods taking account of sampling strategy • Describe any sensitivity analyses
BMJ 2007;335:806-808
Uniform Requirements for Manuscripts Submitted to Biomedical Journals: Writing and Editing for Biomedical Publication. ICMJE 2008 Statistical Methods 1. Describe statistical methods with enough detail to enable a knowledgeable reader with access to the original data to verify the reported results. 2. When possible, quantify findings and present them with appropriate indicators of measurement error or uncertainty (such as confidence intervals). 3. Avoid relying solely on statistical hypothesis testing, such as P values, which fail to convey important information about effect size.
Uniform Requirements for Manuscripts Submitted to Biomedical Journals: Writing and Editing for Biomedical Publication. ICMJE 2008 4. 5. 6.
References for the design of the study and statistical methods should be to standard works when possible (with pages stated). Define statistical terms, abbreviations, and most symbols. Specify the computer software used (SPSS v14.2, SPSS Inc, Chicago, Il, USA).
Uniform Requirements for Manuscripts Submitted to Biomedical Journals: Writing and Editing for Biomedical Publication. ICMJE 2008 Results 1. Present your results in logical sequence in the text, tables, and illustrations, giving the main or most important findings first. 2. Do not repeat all the data in the tables or illustrations in the text; emphasize or summarize only the most important observations. 3. Extra or supplementary materials and technical detail can be placed in an appendix where they will be accessible but will not interrupt the flow of the text, or they can be published solely in the electronic version of the journal. 4. When data are summarized in the Results section, give numeric results not only as derivatives (for example, percentages) but also as the absolute numbers from which the derivatives were calculated, and specify the statistical methods used to analyze them.
Uniform Requirements for Manuscripts Submitted to Biomedical Journals: Writing and Editing for Biomedical Publication. ICMJE 2008 5. 6. 7. 8.
Restrict tables and figures to those needed to explain the argument of the paper and to assess supporting data. Use graphs as an alternative to tables with many entries; do not duplicate data in graphs and tables. Avoid non-technical uses of technical terms in statistics, such as “random” (which implies a randomizing device), “normal,” “significant,” “correlations,” and “sample.” Where scientifically appropriate, analyses of the data by such variables as age and sex should be included.
Συµπεράσµατα • Η ορθή στατιστική ανάλυση και παρουσίαση των αποτελεσμάτων μιας έρευνας είναι μεγίστης σημασίας διαδικασία για την αξιοπιστία όλου του έργου.
Καλή τύχη!