Juha Leinonen: Profumo dei Tempi (per 13 archi)

Page 1

Profumo dei Tempi Per 13 Archi Largo q = 54

  Vln. 1/1   

Vln. 2/1

Vln. 3/1

 

Vln. 1/2

Vln. 2/2

Vln. 3/2

Vln. 4/2

Vla. 1

Vla. 2

Vc. 1

Vc. 2

Cb.

 

p





p

p

  



p

   

 

p

p

       

 

 

 

  

p

 



  



p

  3

 

 

 

  

 

3



 

p

 p

 

 p

3

 



3

       p



 p

           p



p



p

p

 

p

p

 

 

p

3

p



p 3

Vln. 4/1

Juha Leinonen (2008/2010)

  

 




2

  Vln. 1/1   7

Vln. 2/1

Vln. 3/1

Vln. 4/1

Vln. 1/2

Vln. 2/2

Vln. 3/2

Vln. 4/2

Vla. 1

Vla. 2

Vc. 1

Vc. 2

     





















 

   

      mf

 

     mf



 

  





 

   





 

   





 

   





 





p



  p

    

 

      



  

    mf



 

     mf



 

 

   p



mp

Cb.



   mp

            mp

   p subito

  

  

  




3

11

 Vln. 1/1 

Vln. 2/1

Vln. 3/1

Vln. 4/1

mp

p

mp

p



  

 

 

 

 

 

p

mp

p





 

    

 

p

p

    

     f

  

Vc. 1

 

mp

f

Vla. 2





mf

Vla. 1



mf

Vln. 4/2

pp

mf

Vln. 3/2

pp

 

 

p

mf

Vln. 2/2



p

mp

mp

Vln. 1/2



5

5

5

f

   f

 

 

5

               mf subito

Vc. 2

Cb.

                                                 mp

mp

  

 

mp

mf subito

 




Doppio Movimento

4

h = 54

  14                 Vln. 1/1   mf

Vln. 2/1





Vln. 1/2



 

Vln. 4/2

Vla. 1

Vla. 2

Vc. 1

Vc. 2

Cb.



                   

 



 

  3

  

                 

7

 

  

f

 

 

 

7

7

7                      

 

f

mf

Vln. 3/2

f

 

mf

Vln. 2/2

3

Vln. 4/1

f

 



7

7

 



f

                  mf

Vln. 3/1

7

7

        




5



17

 Vln. 1/1 















  f

3



p

f



f

p

 

Vln. 1/2

Vln. 4/1

p

Vln. 3/1

Vln. 2/1



f





 



f

Vln. 2/2

 f

     3

Vla. 1

 

  

f

 



  3

f

Vc. 1

Vc. 2

Vla. 2

Cb.

 

  3

f

 

Vln. 4/2



f

 

Vln. 3/2

 

   p


6

20

 Vln. 1/1 

Vln. 2/1

Vln. 3/1

Vln. 4/1

Vln. 1/2











 p

 p

 p

 



 



f

Vln. 2/2

Vln. 3/2

Vln. 4/2

Vla. 1

Vla. 2

Vc. 1



f

  

f

 

3



f

 





  3

f

 

 

 

p

Vc. 2

   

 

 

p

Cb.

    






7

23

 Vln. 1/1  

Vln. 2/1

Vln. 3/1

Vln. 4/1

  

Vln. 2/2

Vln. 3/2

Vln. 4/2

   

   

 

  

   

   

   

   

   

   

   



  

    

mf

 







 

Vc. 1

 

Vc. 2

  

     

     

     

      mf

     

     

     

 

                                     mf

f

Cb.

f

Vla. 2

  

     

Vla. 1

mf

    

Vln. 1/2

   

 

 

  

 

 

 




8

< q = e > e = 108

  Vln. 1/1   27

Vln. 2/1

Vln. 3/1

Vln. 4/1

Vln. 1/2

Vln. 2/2

Vln. 3/2

Vln. 4/2

Vla. 1

Vla. 2

Vc. 1

 

 

 



















 







 



  





 

 







 

 







 

          

     

      



 

     

  

 

     

  



  

    

  

 

  





mf

Vc. 2

  











mf

Cb.

  

 mf










9

30

  Vln. 1/1  

Vln. 2/1

Vln. 3/1

Vln. 4/1

Vln. 1/2

Vln. 2/2

Vln. 3/2

Vln. 4/2

Vla. 1

Vla. 2

Vc. 1

Vc. 2

Cb.

   

 

 

 

 

 

      



  

   





   

 





   

 





 

  

 

                  

p

    mp























  mp

   

     

     

 


10 (sul E)

32

Vln. 1/1

  



gliss.

mp (sul A)

 

Vln. 2/1



gliss.

mp (sul A)

Vln. 3/1

Vln. 4/1

 

 

Vln. 1/2



mp

  mp

                                 f

mf espress.

 

Vln. 2/2

                         f

mf espress.

 

Vln. 3/2

Vln. 4/2

Vla. 1

gliss.

 

gliss.

mf

 



 

  mp  

 

 

 

       

mp

 

Vla. 2

 

gliss.

mp

 

Vc. 1

mf

 

Vc. 2









 











 











 









mp

Cb.

 mp



 


11 (sul A)

  





33

Vln. 1/1

Vln. 3/1



mf

gliss.

mp



(sul D)



mf



  

Vln. 4/1

gliss.

mp

mf

Vln. 2/1

gliss.

mp

mf

Vln. 1/2

ff

 

                     f

ff

  

Vln. 3/2

f

Vln. 4/2

Vla. 1

Vla. 2

                              f

Vln. 2/2



 



 

 

 

  

 



 



 

gliss.

mp

Vc. 1

Vc. 2

 





mp

           

mf

pizz.

mp

Cb.



























 




12 34   Vln. 1/1 

Vln. 3/1

gliss.

gliss.

 



f

gliss.

                  

f



f

 



 

 

 

   mp

  

Vc. 1



                            

mf

Vla. 2

gliss.

mf

 

Vla. 1



mf

Vln. 4/2

mp

 

Vln. 3/2



mf

mf

Vln. 2/2

mp

mp

Vln. 1/2

mf

 

Vln. 4/1

gliss.

mp

mf

Vln. 2/1

  



  

gliss.

        

mf

Vc. 2

Cb.





pizz.






















13 35   Vln. 1/1 





Vln. 3/1





 



Vla. 1

Vla. 2

Vc. 1

Vc. 2

Cb.

gliss.



mf

                              f

 

                   

 

f

gliss.

mp

Vln. 4/2

mf Vln. 3/2



gliss.

mf

Vln. 2/2

gliss.

mf

 

 mf

mp

Vln. 1/2

mf

mf

Vln. 4/1

gliss.

mf

mf

Vln. 2/1





mf

 



 

 

 

  mp

  

  

  

gliss.

       

mf

 

  


14

36

 Vln. 1/1 

Vln. 2/1

Vln. 3/1

Vln. 4/1

Vln. 1/2

Vln. 2/2

Vln. 3/2















 

 











 

 













 

 













 

 











  













 

f

 f

 f

 f

 f

 f

                            

mf espress.

Vln. 4/2

 

                             

 

                   f

f

                   

 

mf

Vc. 1

Vc. 2

Cb.

 

 

mf

Vla. 2

 

f

mf espress.

Vla. 1

 

 

f

 







 

 

 







 

 

  







 

 


15

< j = j >

rit.

q = 80

                           Vln. 1/1  

                         

                           

                          

 

                       

 

 

                     

 

 



 





             

37

mf

Vln. 2/1

  

mf

Vln. 3/1

mf

Vln. 4/1

mf

Vln. 1/2

mf

Vln. 2/2

mf

Vln. 3/2

  

 

pizz.

       

mp

Vln. 4/2

  

pizz.

    



mp

Vla. 1

Vla. 2

Vc. 1

  

mp

     mp    

mp

Vc. 2

Cb.

pizz.







    



 







    

                 

 

 

p

  

p

pizz.                               

                               


16

40

 Vln. 1/1 

Vln. 2/1

Vln. 3/1

Vln. 4/1

Vln. 1/2

Vln. 2/2

Vln. 3/2

Vln. 4/2

Vla. 1

arco

 p



 





                   

Vc. 1

Vc. 2

 

 

 

 

 

  

 

arco

arco











 

   

 

  

 

   

 

p

Cb.

 

   



 







arco

p

Vla. 2

p

 

   

   

 

   

 

  

 

  

 

 

 

  

 


17

43

 Vln. 1/1 

Vln. 2/1

Vln. 3/1

Vln. 4/1

Vln. 1/2

Vln. 2/2

Vln. 3/2

Vla. 1





 

 



  

Vla. 2

   

   

   

   

   

   

p

   

Vln. 4/2

(pizz.)

 

 



 

   

 





p

mp

 

  mp

 

 

 

 

   

 

 

3 3                                                   

arco

Vc. 1

3

mp

Vc. 2

Cb.

3

3

3

mp

f

 

 

  

 

3

3

f

mf

3

3

3

3

 

 

 

 

  

 

  

 

mp

mp

3

3

3

3

 

 

  

 


18

45

 Vln. 1/1  

 



 

 

  



 

Vln. 2/1

mf

mf

 

                                                                                            mf 3

Vln. 3/1

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

f

                                                                                            mf 3

Vln. 4/1

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

f

Vln. 1/2

Vln. 2/2

 



 

 



 

mf

mf

Vln. 3/2

     

   

   

        

   

Vln. 4/2

     

   

   

        

    

        

   

Vla. 1

mf

  

Vla. 2

mf







 

  











  





                                        

Vc. 1

5

Vc. 2

6

5

f

5

mf

5

5

5









 



 









 



 

 

 

 

 

  



  

 

 

 

 

  



  

mp

Cb.




19

47

Vln. 2/1

Vln. 3/1

 

 Vln. 1/1 

 

Vln. 1/2

                                                                             mp mf f                    3

3

3

3

3

3

3

3

3

3





mp

Vln. 3/2







   





3

 





  

             

    

pizz.



mp

 

5

mf

5

5

5

f









 



 

   

 

 

 

  

 

  

mp

3

 

5



3

3

  3



 



  

mf

                          

mp

Cb.



   

f

Vc. 2

3

         

3

       

mp

Vc. 1



3

   

mp

Vla. 2

3

         

p

Vla. 1

3

p

Vln. 4/2

3

mf

f

Vln. 2/2

     

 

f

mp

Vln. 4/1



 

f

s.  glis 

 gliss. 

   gliss. 

gliss.

 

  gliss. 

 gliss. 

  gliss. 

gliss.

 

mf

mf


20 49       Vln. 1/1           f 3

Vln. 2/1

Vln. 3/1

 

3

3

3

3

3

 

 



mf

3

3

                           f 3

                          

3

3

3

3

3

3

3

  f

 

Vln. 4/1



gliss.

f

 

Vln. 1/2

 

  mp

                 

f

Vln. 2/2

 

 



mf

 

Vln. 3/2

arco

  f

 

Vln. 4/2

arco



f

Vla. 1

arco

    

Vla. 2



f

 

Vc. 1

Vc. 2

Cb.

3

 



  

mf

 3

 

f

 

   

     3

        

mp

  

arco

  

3

3

 





5

mf

 

 

7      6

                      6

5

f

 

    

          

mf

   

 

mf

f

    

 

 gliss.   

7



 

 

 

f


21

51

 

 Vln. 1/1  



mf

 

 



 

     



 

     

f

 

Vln. 2/1

 

 



f

                                                                       f 3

Vln. 3/1

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

                                                                       f mf 3

Vln. 4/1

 

 

Vln. 1/2

3

3

3

3

3

3

3

 

 



3

mf

f



Vln. 2/2

f

 

Vln. 3/2

 

 



  3

  3

  

3

 

 



 



    

3

3

3

    

    

3

3

3

3

3

3

  3

3

  3

3

 



mf

mf

Vln. 4/2

3

  

mf

mf

  

Vla. 1



 

p









mf

5 7                          

Vla. 2

6

mp

mf

   

                             

Vc. 1

mp

 

Vc. 2

6

5

7

 

mf



mf

 



 .  gliss 

mp

mf

    gliss. 

  

5

 

mp

Cb.

pizz.

 gliss.  



gliss.

 


22 53          Vln. 1/1        

           

 

Vln. 2/1

 

Vln. 3/1

 



 

 

mf

 



mf

 

f

 

Vln. 4/1



gliss.

f

 

 

mp

Vln. 1/2

 

                  

                           f

Vln. 2/2

 

                

                           f

Vln. 3/2

 

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

 

f

 

Vln. 4/2



f

  

Vla. 1



     3

Vla. 2

f

Vc. 1

 

 

 3

   3

Cb.

   mf

 

 

  

 





          

3

   

5

mf

          

5

f

 





7   6

  6

7



 



 

f

mf

mf

 



   

f

Vc. 2



arco

3

mp

   

     

 

 

 

f

        

gliss.

f


23

55

 Vln. 1/1  

 



 

 

Vln. 2/1

 

mf



 

 



 

  



 

  



 

mf

 



mf

mf

Vln. 3/1

 

mf

Vln. 4/1

mf

                                                                                           3

Vln. 1/2

3

Vln. 3/2

3

3

3

3

3

3

 

3

 

3

3

3

3

 



3

  

 

 



 



3



 





3

3

3

3

3

3

3

3

3

 

 















mf

6

             

5

  

6

mf

                              6

7

 

 

mp

Cb.

3

5 7 5 7                                             

mp

Vc. 2

3

mp

mp

Vc. 1

3

 

p

Vla. 2

3

  

mf

Vla. 1

3

mp

mf

Vln. 4/2

3

                                                      3

Vln. 2/2

3

mp

mf

 

6

5

7



 

 

 

f

f


24

 

57

 Vln. 1/1  

 



 





 





 



  



 

 3

f

 

 



    

 



    

 

f

mf

Vln. 4/1

 

f

 

mf

 

Vln. 3/1

 

mf

 

Vln. 2/1



  

mf

 

3

3

3

f



   

  

   

  

3

   3

3

3

   3

3

                                                                       mp mf 3

Vln. 1/2

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

                                                                       mp mf                    3

Vln. 2/2

Vln. 3/2

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

mf

mf

 

 

Vln. 4/2



  

  









mf

mf

 

Vla. 1





 







p



6

mp

           

Vc. 1

mp

 

Vc. 2

 







  

5

mf

               6

7

mf

 



 



mp

 

mf

5 7                       

Vla. 2

Cb.

pizz.

mp





5

 

  



 

mf

 .  gliss  mf

 gliss. 

 gliss.  

gliss.

 


25 59         Vln. 1/1         f

    

     

Vln. 2/1

 

             f

    

     

Vln. 3/1

 

 

f

 

Vln. 4/1

 

Vln. 1/2



f

 

  arco

Vla. 1



    

Vla. 2

f

Vc. 1

3

 



       

           

3

f

     3

    3

3

 

Vc. 2

Cb.

  

  f

    gliss.  

    gliss.

f

    3

   

f

   

  

   

        3

3

3

    3

3

 



 

    

 

     

 

     

 

  

   

  

   

  

   

 

 

 

f

 

f

   

  

f

           

f

  

   gliss.

       

  gliss. 



f

f

f

Vln. 4/2

 

   gliss.  

 gliss. 

                 f

 

Vln. 3/2

f

                    f

Vln. 2/2

 

 

f

 

 

 


26

61

 Vln. 1/1 

Vln. 2/1

Vln. 3/1

     

    

      

    

 

  

f

Vln. 4/1

f

   gliss.   

  

  

f

Vln. 1/2

Vln. 2/2

Vln. 3/2

Vla. 2

Vc. 1

Vc. 2

    3

   

3

 

f

f

    gliss.   

   

  

     

f

Vla. 1

f

             

  

  

pizz.

f

Vln. 4/2

f

          

          

gliss.

pizz.

         

 

 

3

  

     

   

   

gliss.

f

   

   3

 

3

3

   

 

    

  

   

mf





mf





 

  



          mf

Cb.

  

 

 

 

 

pizz.

f

   




27

63

Vln. 2/1

Vln. 3/1

    

 Vln. 1/1 

mp

Vln. 1/2

   

  

  

mp

mp

   

   

Vla. 1

Vla. 2

Vc. 1

  

  

 

 

  

 

 





          p

         mp   

     p

  

mp

                

       

arco

mp

 

Vln. 4/2

mp

arco



  

mp

mp

   

p

p

mf

Vln. 3/2

  

mp

mf

Vln. 2/2

mp

mp

    

mp

 

Vln. 4/1

   

              

p

   

  





       

  

 

    

  

 

    

 



            

   

mp

   



mp

   

Vc. 2

mf

Cb.

    mf

  

mp

   mp

   

  

p

  p


28 67        Vln. 1/1 

     

mp

Vln. 2/1

     

mp

   

accel.

     

mp

    

mp

p

   

mp

    

mp

p

Vln. 3/1

Vln. 4/1

Vln. 1/2

  

   

    

  

   

    

p

Vln. 2/2

p

Vln. 3/2



p

Vln. 4/2

Vla. 1

      

         pp 

 

Vla. 2

p

  

Vc. 1

   

   

    

   

Cb.

    

    



    

    

mp

         

         

      

            

   

  mp



p

Vc. 2



mp

  

   

 

pp

  

   

 

    

   

     

   

        

         

   

   

mp

 

 

 

pp

 pp

    

     

 

pp

    

   


29

q = 100

 

71

 Vln. 1/1  

Vln. 2/1

Vln. 3/1

Vln. 4/1

  

 

  

  

     

f

 

f

 f

     

arco

 

 

    

      

     

arco

  

f

  

       

  



      

  

      

  

        



Vln. 2/2



f



Vln. 1/2

  

 

    

f

Vln. 3/2

 

 

 

 



f

Vln. 4/2

 

  

 

 

f



  

 

  

 

  

  

  

  



  

 

  

 

  

  

  

  

     

 

     

 

    

 

 

Vla. 1

 

Vla. 2

arco mp

mp

pizz.

Vc. 1

pp

pizz.

Vc. 2

pp

Cb.

pizz.

pp



 

 







 

 







 



p

p

p






30 74    Vln. 1/1  

Vln. 2/1

Vln. 3/1

Vln. 4/1

    







   



  

 



 

    

    

 

   

  

    

     

    

 

      

     

 



     

 





    

Vln. 4/2

           



   

arco

 



 





p

  

arco

Vc. 1

 

 

 

   

 

 

mp

Cb.

 

    arco

Vc. 2

mp

  

f

p

Vla. 2

f

arco

Vla. 1

  

   



    

   

f

f

  

 

 

 

 

 



 



p

mf

mp

  



   

        

f

Vln. 3/2



f



Vln. 2/2

           

p

Vln. 1/2

 




31

77

 Vln. 1/1   

 

 

Vln. 2/1

Vln. 3/1

Vln. 4/1

Vln. 1/2

 

    



Vln. 2/2

Vln. 3/2

      

  

 



   

    

 

   

    

 

      

 



 

 

   

     



 





    

                 

       

   

Vla. 1

 

 

     

 



     f

f

 

Vla. 2

   

f

Vc. 1

Vc. 2

Cb.



f

Vln. 4/2





 

        

  

  

 

        

  

  

mf

 mf

 


32

     Vln. 1/1   80

Vln. 2/1

Vln. 3/1



       

   

                    3

3

3

3



   



3

           



3





 

f

Vln. 4/1

 

 

                                       

Vln. 1/2

Vln. 2/2

Vln. 3/2

Vln. 4/2

Vla. 1

Vla. 2

Vc. 1

Vc. 2

Cb.

 



 







      



f

 

 

 



 

 

 

 

  

 

   

 

 

  

    



   

 

   

 

 

  

    



   

mf

 

   p

 


33

            

 



83

 Vln. 1/1 

   

   

 

Vln. 2/1

 





           

                  



   

Vln. 3/1

Vln. 4/1

f

 





Vln. 1/2

Vln. 2/2

 

Vln. 3/2

 

  









 

  

 





    





arco

 



f

Vln. 4/2

arco

   f

Vla. 1



arco

 

 

f

Vc. 1

Vc. 2

Cb.

Vla. 2

   

 

  

   

 

  

   

 

(pizz.)

p


34

          

  Vln. 1/1  86

f

Vln. 2/1

               3

3

3

 



Vln. 3/1

Vln. 4/1

Vln. 1/2

Vln. 2/2

f

              

              

3

3

3







 







 





3







           

            

           

f

f



 

  

            

f

f

arco

f

 

  



  

arco

Vc. 1

3

            

Vla. 2

3



f

Vla. 1

3

                                   

Vln. 4/2

3

f

f

Vln. 3/2

3





          

f





           



   

           

f

Vc. 2

 



 



 

 

 

arco

   

 

   

 

f

Cb.

 

 

 



 

 

 

arco

 f


35

89

 Vln. 1/1 

Vln. 2/1

Vln. 3/1

Vln. 4/1

Vln. 1/2

     ff

      ff

         ff

           ff

    ff

Vln. 2/2

Vln. 3/2

Vla. 1

3

   





   

 









3

   

 

3

3

ff

           

ff

           

ff

Vc. 2



3



3

 3

3

 3

 3

           

           

           

ff







 ff

f

Cb.

3

3

   



ff

 

Vc. 1



3



ff

 

Vla. 2



3

3

3

           

   



3

3

3



3

3

3

3

ff





3

3

3

   

3

3

3



3

3

    



3

ff

ff

Vln. 4/2









 ff

                        


36



         91      Vln. 1/1 

            

Vln. 2/1

            

Vln. 3/1

                 

Vln. 4/1

Vln. 1/2

Vln. 2/2

Vln. 3/2

Vln. 4/2

Vla. 1

  



3

3

   

  





   

 









3

   

  

 

3



3





   



3



3

 3



3

3

3

3

3

3



3

3

3



3

3

3

3





3

3

3

  

3

3

3



3

3



3

 3

 3

           

           

           

           

           

           

            

           

ff

 

Vla. 2

ff

 

Vc. 1

ff

Vc. 2













f

Cb.

 f


37

93

 Vln. 1/1 

Vln. 2/1

Vln. 3/1

Vln. 4/1

Vln. 1/2

Vln. 2/2

Vln. 3/2

Vln. 4/2

Vla. 1

Vla. 2

                

Vc. 1

               

f

Vc. 2

       

mf

Cb.


38

95

 Vln. 1/1 

Vln. 2/1

Vln. 3/1

Vln. 4/1

Vln. 1/2

Vln. 2/2

Vln. 3/2

Vln. 4/2

Vla. 1

               

f

Vla. 2

Vc. 1



 

 

pizz.

f



mf

 

 

mf

Cb.

             

f

Vc. 2

   

 

 

  

 

 

        

arco

 

mf


39

97

 Vln. 1/1 

Vln. 2/1

Vln. 3/1

Vln. 4/1

Vln. 1/2

  





                    

    





                    

sul g

f

sul g

Vln. 2/2

f

Vln. 3/2

Vln. 4/2

 

       

      

                

       

      

                 

       

      

 

       

      

                

Vla. 1

f

Vla. 2

f

Vc. 1

f

Vc. 2

  mf

Cb.

  mf subito

 

  

 

 




40

99

               

 Vln. 1/1 

f

               

Vln. 2/1

f

Vln. 3/1

  

 

 

 

 

 

 

  

 

 

  

 

 

f

Vln. 4/1

   f

Vln. 1/2

Vln. 2/2

 



 



  f

  f

Vln. 3/2

Vln. 4/2

 

Vla. 1

                              

                                

Vla. 2

                                

Vc. 1

f

 

Vc. 2

 

 

 

 

 

 

 

 

f

Cb.

 

f

               


41

101     Vln. 1/1 



  

         

     

     



  

         

     

ff

Vln. 2/1

ff

Vln. 3/1

 

  



 

 

  



 

f

Vln. 4/1

f

 

Vln. 1/2

 

 

 

  

        

        

 

 

  

        

        

ff

 

Vln. 2/2

  

ff

Vln. 3/2

Vln. 4/2

Vla. 1

                

         

      

      

  



   



Vc. 1

                  

       

     

Vc. 2

                 

      



     

Vla. 2

          

poco f

Cb.

 

 

 

 

 

   

 

 

 

 


42

103     Vln. 1/1 





  

        

     

Vln. 2/1

     





  

         

     

Vln. 3/1

Vln. 4/1

Vln. 1/2

 

Vln. 2/2

 

Vln. 3/2

 

 

 

  

  

        

  

 

  

  

                 

     

       

     

       

f

 

Vln. 4/2

f

 

       

 

   

  



   

 

   

  



   

      



     

Vla. 1

Vla. 2

                

      



     

Vc. 1

                 





      

       

 

Vc. 2

Cb.

                  

 f

 

 

 

 

 

 

 

 


43

105                                       Vln. 1/1 

ff

f

                                 

Vln. 2/1

ff

f

                                     

Vln. 3/1

ff

f

                                   

Vln. 4/1

ff

f

    

Vln. 1/2

  

 

 

  

f

  

Vln. 2/2

  

 

 

  

 

 

f

  

 

 

  

f

f

Vln. 3/2

Vln. 4/2

                                 

Vla. 1

Vla. 2

                                

Vc. 1

                 

Vc. 2

                          

ff

Cb.

       


44

 107     Vln. 1/1 





  

        

     

    





   

         

     

fff

Vln. 2/1

fff

Vln. 3/1

Vln. 4/1

 

  



 

 

  



 

ff

ff

Vln. 1/2

 

 

 

 

  

        

       

  

 

  

         

       

 

  



 



   

 



   

fff

Vln. 2/2

 

 

fff

Vln. 3/2

Vln. 4/2

ff

         

      

ff

Vla. 1

                 

      



     

                 

      

     

                

      



     

ff

Vla. 2

ff

Vc. 1

  ff

Vc. 2

 

 

 

 

 

 

 

ff

Cb.

   ff



 

 


45

109      Vln. 1/1 

    

Vln. 2/1



  

        

     



   

         

     

Vln. 3/1

 

  



 

  



 

ff

Vln. 4/1

  ff

Vln. 1/2

 

Vln. 2/2

 

 

 

  

        

       

 

 

 

  

         

       

 

Vln. 3/2

Vla. 1

Vla. 2



 

   

 



   



                 

      



     

                 

      



     

               



      

     

 

Vc. 2

 

Vc. 1

  

ff

         

Vln. 4/2

Cb.

 

 

 

      

 

 

 

 

 

 

 

 

 

 


46

111     Vln. 1/1  









  

f

    

Vln. 2/1

f

  

 

Vln. 3/1

   

   

 

  

 

 

  

  

 

 

   





   





f

  

 

Vln. 4/1

f

Vln. 1/2

f

Vln. 2/2

f

Vln. 3/2

f

Vln. 4/2

f

Vla. 1

                 f

                                

Vla. 2

f

 

Vc. 1

f

               

               

                                      

Vc. 2

f

Cb.

                 f


47 113       Vln. 1/1 



 

     



 

mf

Vln. 2/1

mf

Vln. 3/1

Vln. 4/1

 

   

   

 

  

   

 

  

 

 

 

  

 

 

  



  



mf

mf

Vln. 1/2

mf

Vln. 2/2

mf

Vln. 3/2

mf

Vln. 4/2

mf

Vla. 1

                   mf

                                

Vla. 2

mf

                                   mf

Vc. 1

                                

Vc. 2

mf

Cb.

                mf


48 115      Vln. 1/1 



  

   







mp

Vln. 2/1

mp

Vln. 3/1

Vln. 4/1

 

   

 

  

   

   

  



  



mp

mp

Vln. 1/2

   



   



mp

Vln. 2/2

mp

Vln. 3/2

Vln. 4/2

   

  

  

  

 

  

mp

Vla. 1

   mp

 

                                

Vla. 2

mp

 

Vc. 1

mp

               

                

                                

Vc. 2

mp

Cb.

                mp


49

117

 Vln. 1/1 

Vln. 2/1

Vln. 3/1

Vln. 4/1

Vln. 1/2

Vln. 2/2

Vln. 3/2

Vln. 4/2

Vla. 1

   

   

  

 

mp

Vla. 2

  

 

  

  

mp

 



  

  

  

mp

                                 

Vc. 1

                

Vc. 2

Cb.

mp

               

                                     

mp

mp


50

119

 Vln. 1/1 

Vln. 2/1

Vln. 3/1

Vln. 4/1

Vln. 1/2

Vln. 2/2

Vln. 3/2

Vln. 4/2

  

Vla. 1

p

  

Vla. 2

p

  

Vc. 1

p

 

Vc. 2

  

 



 



  

  

  p

  p

       

          mp



 

 

p

mp

Cb.

  



  

 

         mp

           mp

 


51

 Vln. 1/1 



Vln. 2/1

 

Vln. 3/1



Vln. 4/1



Vln. 1/2

 

Vln. 2/2



Vln. 3/2



Vln. 4/2









121

Vla. 1

Vla. 2

Vc. 1

Vc. 2

Cb.

 

 

 



 




52

Largo q = 48

  

 

 

 

 

 

127

Vln. 1/1

Vln. 2/1

Vln. 3/1

Vln. 4/1

Vln. 1/2

Vln. 2/2

Vln. 3/2

Vln. 4/2

  

     pp

Vla. 1

Vla. 2

Vc. 1

Vc. 2

Cb.

pp

pizz.

      

pp



pp

 

pp

pizz.    



   pp

  



 



pp

   

 

 



pp

   pp

  

pp

pp

   pp

pp

  

  

   pp

  

 

 

   pp

 

 



pp

  

pp

  pp

 

 


53

131

 Vln. 1/1  

  

 

 

 

  

 

 

 

pp

 

Vln. 2/1

pp

Vln. 3/1

Vln. 4/1

 

  

pp

 

 

 

Vln. 1/2

Vln. 2/2

Vln. 3/2

 

  

pp

Vln. 4/2

  

 

pp

Vla. 1

 

pp

Vla. 2

Vc. 1

 

  

  



pp

   

Vc. 2

Cb.

 



pp

 

  



 

arco



 

 

pp

  

 



  





 

  

pp

 



 

  pp



pp

 

pp

pp

 

pp

   pp

pp

pp

pp

pp

pp

 

  

pp

 

  

pp

pp

pp

pp

   pp

 

pp

 pp


54

135

 Vln. 1/1 

 

       

 

       

 

p

p

Vln. 2/1

 

Vln. 3/1

 

p Vln. 4/1

 

Vln. 1/2

 



 

p



p



  

p

 

Vln. 3/2

Vln. 4/2

  

  

 

   

pp

Vla. 1

Vla. 2

   pp

   pp

 



   pp

 

 

pp

  





    



pp

    pp

  



  

pp

  

pp

pp

 

pp

pp

Cb.



  

pp

Vc. 2

  

   pp

    

pp

pp

  

  

pp

Vc. 1

  

p

   pp

      

p

  



  



 

p

p

Vln. 2/2



  



      

p

  



pp

   p

 p


55

139

 Vln. 1/1  

 

       

 

       

 

p

p

 

Vln. 2/1

 

                          

                        

                          

                        

mp

mp

Vln. 4/1

mp

mp

 

Vln. 1/2





 

mp

mp

mp

mp



   

p

p

Vln. 2/2

  

p

Vln. 3/2

 

Vln. 4/2

 

   p

p

   

   p

p

 

Vla. 2

  

p

 

Vc. 1

  



p

 

Vc. 2

 

p

 

p

mp

mp

  

p



 



p

  

p

 



p

p

                        

  

   p

  

p



p

 

   p

  

p

Cb.

mp

mp

  

p

                         

Vla. 1

  

p

p

Vln. 3/1

  

 

p



p

   

arco p

arco

p


56



143

Vln. 1/1

  

  

mf

 

Vln. 2/1

  

mf

 

Vln. 3/1



 







 







 



 



 





 

mp



 



mp

   

mf Vln. 4/1



   



 



mf



mf

  

   

  

   

 

 

 

mf

                                                 

Vln. 1/2

mf

p

p

p

                         

Vln. 2/2

mf



p



 



 

mf

 

Vln. 3/2

 

Vln. 4/2

mp

   mp

  

mp

 

mp

  

mp



  

   mp

mp

                                                    

Vla. 1

mf

 

Vla. 2

p

  

mp

 

Vc. 1

p

  



  



  



mp

 



 



mp

 

Vc. 2

  mf

p

  

  



  

mp

 



 



mp

mp

mp

mp

mp

Cb.

   mp

mp

mp

  

mp


57

 



147      Vln. 1/1 

mp

Vln. 2/1





 

mf

 

Vln. 4/1





  



  



mp

 

Vln. 3/1

mf

 



   



  



 

 

    

mf

 

 

    

mp

  mp

mp

 

mp

mf

Vln. 1/2

 

  





 

mp

mp

                                                                 

Vln. 2/2

f

f

      mp

Vln. 3/2

    

Vln. 4/2

mp

f

   mp

 

    

Vc. 1

          

f

 



 



 

 

  mf



  

 



 



 



mp

 



 



mp

mp



mp



mp

mp

Vc. 2

    

mf

mp

  

    

f

f espress.

Vla. 2

f

          

  mp

        

Vla. 1

Cb.

  









mp

 





mp

   

mp



mp



   

mp






58

 Vln. 1/1  







151



























  











mf





 

Vln. 2/1

 

mf

Vln. 3/1

mf

 

Vln. 4/1

 

mf

mf

mf

mf

                                      

Vln. 2/2

mf

mf

Vln. 3/2

Vln. 4/2

 



  





 



mf

 



mf

                 

mf

 

 mf

                                      

Vln. 1/2

mf



  



                 

mf

mf

                                                             

Vla. 1

mf

mf

 

Vla. 2

 



mf

mf

 

Vc. 1



f

 

Vc. 2

            

 

   f



       

 



mf

  



 

 



mf

  

 

mf

f

mf

Cb.

  

             

   mf

 f

           


59

   Vln. 1/1  154





 





f

  

Vln. 2/1





 

















f

Vln. 3/1

 

f

 Vln. 4/1

Vln. 1/2

Vln. 2/2

Vln. 3/2

f

                  

          

     

                  



  

                    





  

                      





 

      f

  

Cb.

f

f

f

 



         

  

           

 



f

 f





        

f



f

f

Vc. 2

f



mf

Vc. 1

f

                    

Vla. 2

     

f

mf

Vla. 1

          

f

mf

Vln. 4/2



 

f

  



f

 f



       

 

  f

  


60

   Vln. 1/1 

  



 



  

  

  



 



  

  



  



  



 

  



  



  



 

157

Vln. 2/1

Vln. 3/1

Vln. 4/1

    

Vln. 1/2

 

 

     

 

 

     

     

     



     

     



f

    

Vln. 2/2

f

Vln. 3/2

      

 

      

 

 

      

f

f

Vln. 4/2

 

      

  



f

  

Vla. 2

  

Vc. 1

f

  

Vc. 2

Cb.

 f

  

 



  

  

    

 



       f

f

Vla. 1

      

  



 

f



f

   

   

   

   

   

f

f

     

 

 

 

 f

    

 

f

   f

    


61

159

  Vln. 1/1  

 

       





     





     



     



mp

 

Vln. 2/1

  mp

  

Vln. 3/1

  mp

 

Vln. 4/1

  mp

Vln. 1/2

                          

               

                            

               

                           

               

                       

mp

Vla. 1

mp

               

Vla. 2

mp

               pizz.

Vc. 1

mp

 

pizz.

Vc. 2

 

pizz.

mp

mp

mp

                                               

 





  



 

mp

Cb.

 

                  

mp

Vln. 4/2



                          

mp

Vln. 3/2





                   mp

Vln. 2/2






62

161

   Vln. 1/1   

                              

 

                                

 

                              

                              

  p

Vln. 2/1

   

p

Vln. 3/1

   

p

Vln. 4/1

   

  p

Vln. 1/2

             

                   

              

                     

p

Vln. 2/2

p

Vln. 3/2

Vln. 4/2

Vla. 1

 

 

 

 

 

 

   

      





                 

                       

   p

Cb.



                         

p

Vc. 2

                 p

Vc. 1

p

 

p

Vla. 2

p

     p



 



 









arco



arco




63

163

  Vln. 1/1  



       

 

       

 

p

Vln. 2/1

 



p

Vln. 3/1

Vln. 4/1

Vln. 1/2

 

  

  



   p

  

 



  



 

 

    p

Vla. 1

 



      

p

      

p

   p



   p



 

p

 

  

p

Vln. 4/2







 

   p

  

p

  



p

Vln. 3/2

arco

p

Vln. 2/2

 

p

  

p

 

   p

p

p

  

p

   

   

pp

Vla. 2

pp

Vc. 1

Vc. 2

  

   

   

p



  



  



  



p

p

p

Cb.

arco   

p

p



  



p

p

  

p

p

      p

 p


64

167

 Vln. 1/1 

 

Vln. 2/1

Vln. 3/1

   

 

   

 

 

Vln. 1/2

 



   p

 



  





  

p

Vln. 3/2

 

Vln. 4/2

 

   p

p

p

       

   

 

p

   p

      

p



   p



  





  

   p

p

   p

  

p

   p

                      

                       

 

p

p

 



 



 

p

p

p

 



 



p

p

p



p

Cb.

p

p

p

                       

  

Vc. 2

p

      

                       

p

                      

p

Vc. 1

   p

  

p

Vla. 2

 

p

p

   

p

Vln. 4/1

Vla. 1

        

                          

p

Vln. 2/2

p



 



p

p

 

p

p

   

p

 p


65

171

 Vln. 1/1  

 

Vln. 2/1

 

 

Vln. 3/1





  mp

Vln. 4/1

 

Vln. 1/2

 



   pp



 

mp

Vln. 2/2



pp

pp

Vla. 1

   pp

  

pp

 

 



 

   pp

pp

  

  

pp

   pp

  

pp

 



 



 



 

p

p

 

pp



 



 



pp



 



 



 

pp

pp

 

pp

pp

pp

 

pp

pp

pp



pp

pp

Cb.

   pp

mp

p

pp

Vc. 2

                                               

 

Vc. 1

   mp

pp

p

Vla. 2

pp

   pp

 

Vln. 4/2

   pp



                                              

 

Vln. 3/2

 

pp

pizz.

pp


66

175

 Vln. 1/1 





 

p

                                                

Vln. 2/1

pp

pp



Vln. 3/1

Vln. 4/1

 

   pp

Vln. 1/2

 



pp

  

 

   pp

p

 

Vln. 2/2



 

Vln. 3/2

  

  pp

Vla. 1



 

   pp

  

pp

    

Vc. 1

 

   pp

   pp

   pp

pp

 pp

pp

  

pp

 

pp



 



 



pp

 

 

pp



 

 



pp

pp



 



 

 

pp



pp

 

pp

pp

pp

 

pp

pp

pp

pp

Vc. 2

   pp

                                               

pp

Vla. 2

pp

pp

Vln. 4/2

pp

p

Cb.

 

pp

 pp


67

179

 Vln. 1/1 

                                    

Vln. 2/1

pp

pp

pp

Vln. 3/1

Vln. 4/1

 

Vln. 1/2

 

Vln. 2/2

 

Vln. 3/2

 

  pp



 



  pp



  

Vln. 4/2

pp

Vla. 1

  pp



pp

  

pp

Vc. 1

  pp

pp

  

 

 

  pp



pp

 



 



pp

pp

 

 

 

 

 



 



pp



pp

 

pp

pp

 

pp

pp

pp

Cb.

  

pp

Vc. 2



                                   

pp

Vla. 2

 

pp


68

182

 pizz.  Vln. 1/1  

   

ppp

Vln. 2/1





 





 

 

   

pp

Vln. 3/1

   

pp

Vln. 4/1

 

Vln. 1/2

   pp









Vln. 3/2

 

Vln. 4/2

  

   pp

pp



pp subito

Vla. 1

   pp



pp subito

Vln. 2/2

  pp

  

pp



pp



    ppp



ppp



ppp

  pp

  

  pp



   ppp

  

ppp

                                    

p

Vla. 2

Vc. 1

  

 

 

pp



 



 



pp

pp

 

Vc. 2

 

pp



 



 





 



 



 

ppp

pp

 

ppp

pp

pp

 

pp

pp

pp

Cb.

 

 

ppp



ppp


69

rit.

186

Vln. 1/1

  

Vln. 2/1

Vln. 3/1

  



 

 

Vln. 1/2

Vln. 2/2

Vln. 3/2

 

Vln. 4/2

  

Vla. 2

Vc. 1

   



   

 



 

ppp





















   ppp

   ppp  

ppp



  

 





 





 





  

  

 

ppp



 



 



 

ppp

ppp

Cb.





ppp

Vc. 2





ppp

pp

ppp

Vla. 1



pp

 

Vln. 4/1



ppp

arco






70

Più mosso ad. lib. q = ca. 92 190

Vln. 1/1

 



Vln. 2/1



Vln. 3/1



Vln. 4/1

 

Vln. 1/2



Vln. 2/2







 

Vln. 3/2

 





 

Vln. 4/2

  





 







Vla. 1









 







Vc. 1

 





 

Vc. 2

 





Vla. 2

 

                       mp

Cb.







  pp

5

6

7


71

194

 Vln. 1/1 

Vln. 2/1

Vln. 3/1

Vln. 4/1

Vln. 1/2

Vln. 2/2

Vln. 3/2

Vln. 4/2

Vla. 1

Vla. 2

5 7                              

 

5

Vc. 1

gliss.6

mp

      

Vc. 2

mp

Cb.

5

gliss.

mp

                 mf

5

6

7


72

196

 Vln. 1/1 

Vln. 2/1

Vln. 3/1

Vln. 4/1

Vln. 1/2

Vln. 2/2

Vln. 3/2

Vln. 4/2

Vla. 1

Vla. 2

5 5                                         

Vc. 1

6

mf

      

Vc. 2

mf

Cb.

5

gliss.

7

 

6

mf

7


73

198

 Vln. 1/1 

Vln. 2/1

Vln. 3/1

Vln. 4/1

Vln. 1/2

Vln. 2/2

Vln. 3/2

Vln. 4/2

Vla. 1

Vla. 2

      

Vc. 1

mf

mf

Cb.

5

            

Vc. 2

 

gliss.

5

                                6

7

mf

5

6

7


74

200

 Vln. 1/1 

Vln. 2/1

Vln. 3/1

Vln. 4/1

Vln. 1/2

Vln. 2/2

Vln. 3/2

Vln. 4/2

Vla. 1

Vla. 2

Vc. 1

       

mf

mf

Cb.

sul G pp 5                

6

6

mf

           

Vc. 2



sul pont.

5

               6

7

5

mf

gliss.

7

 


75

202

 Vln. 1/1 

Vln. 2/1

Vln. 3/1

Vln. 4/1

Vln. 1/2

Vln. 2/2

Vln. 3/2

Vln. 4/2

sul pont. (sul D)

 

Vla. 1

Vla. 2



pp

(sul C)





5                             

Vc. 1

6

mf

Vc. 2

     6

Cb.

7

mf

 

gliss.

5

                        mf

5

6

7


76

arco 204

 Vln. 1/1 

pp



arco

Vln. 3/1

Vln. 4/1

Vln. 1/2

Vln. 2/2

Vln. 3/2

Vln. 4/2

Vln. 2/1

Vla. 1

Vla. 2

pp

 



    

   

sul C

       

Vc. 1

mf

6

mf

5

6

7

5

f

6

5

f

                                

Vc. 2

Cb.

                      

gliss.

7

 


77

206

 Vln. 1/1 

Vln. 2/1

Vln. 3/1

 pp

pp

Vln. 1/2

Vln. 2/2

Vln. 3/2

Vln. 4/2

Vln. 4/1

Vla. 1

Vla. 2

 



    

  

                             

Vc. 1

6

5

Vc. 2

    6

Cb.

pp

7

f

 

gliss.

5

                           6

f

5

6

7


78

208

 Vln. 1/1 

Vln. 2/1

Vln. 3/1

Vln. 4/1

Vln. 1/2

pp

pp



Vln. 3/2

Vln. 4/2

Vln. 2/2

Vla. 1

Vla. 2

pp

 



    

   

        

Vc. 1

6

Vc. 2

                   6

5

mf

                                f

Cb.

 

5

6

7

5

mf

gliss.

6

7

 


79

210

 Vln. 1/1 

Vln. 2/1

Vln. 3/1

Vln. 4/1

Vln. 1/2

Vln. 2/2

Vln. 3/2

pp



arco

Vln. 4/2

Vla. 1

Vla. 2

pp

 



    

   

                           

Vc. 1

5

mp

Vc. 2

     6

Cb.

6

7

mp

 

gliss.

5

                         mp

5

6

7


80

212

 Vln. 1/1  

Vln. 2/1

Vln. 3/1

Vln. 4/1

Vln. 1/2

Vln. 2/2

Vln. 3/2

Vln. 4/2

Vla. 1

Vla. 2

Vc. 1

poco a poco sul pont.

poco a poco sul pont.

poco a poco sul pont.

poco a poco sul pont.

poco a poco sul pont.

poco a poco sul pont.

poco a poco sul pont.

 



   

   

     

          

6

5

mp

                               

Vc. 2

mp

Cb.

poco a poco sul pont.

5

6

7

p

5

gliss.

  6

7

 


81

214

 Vln. 1/1 

Vln. 2/1

Vln. 3/1

Vln. 4/1

Vln. 1/2

Vln. 2/2

Vln. 3/2

Vln. 4/2

Vla. 1

Vla. 2

 



    

   

                         

Vc. 1

5

p

Vc. 2

            p

Cb.

6

6

7

7

 

gliss.

5

p

                     p

5

6

7


82

216

 Vln. 1/1 

Vln. 2/1

Vln. 3/1

Vln. 4/1

Vln. 1/2

Vln. 2/2

Vln. 3/2

Vln. 4/2

Vla. 1

Vla. 2

Vc. 1

 



    

   

   

                    

6

p

5

6

7

5

p

6

5

mf

                         

Vc. 2

Cb.

7

gliss.

7

 


218

Vln. 1/1

 

Vln. 2/1

Vln. 3/1

Vln. 4/1

Vln. 1/2

Vln. 2/2

Vln. 3/2

Vln. 4/2

 f



f



f

 

f



f



f



f



f

 

Vla. 1



 f

   

    

Vla. 2

f

7

Vc. 2

f

6

6

7

ff

6

7

7

ff

6

7

7

ff

6

7

 f

ff

6

6



 



 



 

 

 



 



 



 



  



  







6

                                              f

Cb.

 

                                    

Vc. 1

83

7



 

  




84

Allegro q = 118 221

Vln. 1/1

    mf

Vln. 2/1

   mf

Vln. 3/1

Vln. 4/1

  

  

          

            

 

mf

mf

Vln. 1/2

   mf

Vln. 2/2

Vln. 3/2

  

  

 

 

mf



  



 

 

mf

Vla. 1

Vla. 2

Vc. 1

  

  



          

mf

Vln. 4/2



 





 





pizz.

mf

pizz.

mf

             

                           



                       











                            









 

  



  

 

 





 





 





 





                       

mf

Vc. 2

Cb.

  

  

 

pizz.



mf



 





 






85

224

           

            

 Vln. 1/1 

Vln. 2/1

 

Vln. 3/1

 

Vln. 4/1

Vln. 1/2

 

Vln. 3/2



mf

 

Vla. 1

 

Vla. 2



 



           

            

mf

 



 



 f



 







arco



arco



 

 

mf

 f



            



mf

           

mf

mf

mf

mf

mf

            

Vc. 1

 f

 

Vln. 4/2

f

           

 

Vln. 2/2



mf

mf

          

f

 

Vc. 2

Cb.

 





 

pizz. f

 f





          


86

227

 Vln. 1/1  

                                       

                                      

Vln. 2/1

 

Vln. 3/1



legato

 legato











Vln. 4/1

Vln. 1/2

 

Vln. 2/2

                                     

Vln. 3/2

 

Vln. 4/2







legato

 legato



 

Vla. 2

                                       

 

Vla. 1









legato



















legato

                                    

Vc. 1

 

Vc. 2

Cb.

 





 





 





                                   


87

230

                    Vln. 1/1                     mf

f

                                      

Vln. 2/1

mf

Vln. 3/1

 













 









mf

Vln. 4/1

f

mf

 f













f

                                    

Vln. 1/2

mf

f

                                    

Vln. 2/2

mf

Vln. 3/2

Vln. 4/2

Vla. 1

f

 

mf













 









 









mf

 

Vla. 2



























 f

mf

f

f







mf



 f

                                    

Vc. 1

mf

 

Vc. 2

f



arco

mf

Cb.



 f

                                     mf

f


88 233            Vln. 1/1    ff 

  

             ff 

Vln. 2/1

Vln. 3/1



   

 

3

ff

     

Vln. 2/2

ff

Vln. 3/2

Vln. 4/2

       

   f

    



Cb.

                 





ff

 







 

ff

3

3

 

3

 

3

   

     

     

 

 

 





             



 



 



 

   







 f

  

 

 

 

           

  



  





f

   

     

  

f

Vc. 2

     

f

 

Vc. 1

  

  

f

Vla. 2





     

ff

ff

 

  

ff

ff

Vla. 1



f

     

Vln. 1/2

 

3

ff

       

f

   

Vln. 4/1



  

ff











 









 



 

 



 

   







 

   


89 237        Vln. 1/1 

ff

      

Vln. 2/1

ff

      

Vln. 3/1

ff

      

Vln. 4/1

ff

  

Vln. 1/2

Vln. 3/2

Vln. 4/2

3

     

     

     

          

     

     3

f

   

   f

Vc. 1

      ff

      ff

 

3

    

     ff







f

Cb.



f

ff

 

   

 

   

f

3

         ff

        

     

       

 

3

ff

     

      

3

            

      

 

ff

        ff

3

        ff







 f

 

 

 

 

 









  

             

ff

       



   





 











f

Vc. 2

 

3

f

ff

ff

f

Vla. 2

 

ff

f

 

Vla. 1

  

 

      ff

  

     

    ff

     

     

  

Vln. 2/2

     

          

f







 



 

 



       











       



 



   









 



 



 


90

241

  Vln. 1/1   

  

  

 



mf

  

Vln. 2/1

mf

 

Vln. 3/1

 

Vln. 4/1

 

mf

  mf

 

Vln. 1/2

mf







legato

       legato



 

 

                                                

                                                

Vln. 2/2

mf

 

Vln. 3/2

 

Vln. 4/2

 

mf

  mf

 

Vla. 2

  



  

   

mf

 



legato

       legato

 

 

Vla. 1



 



    

 



 

 

 

legato

legato

 

mf

 

Vc. 1

  

 

 

 

 

  

 

   

 

  

 

 

 

 

  

 

   

 

pizz.

mf

 

Vc. 2

pizz.

mf

Cb.


91

        Vln. 1/1     f pizz.

245

Vln. 2/1

Vln. 3/1

Vln. 4/1

Vln. 1/2

Vln. 2/2

 

         f

 

pizz.

 

pizz.

    

    3

f

 

pizz.

 

pizz.

     

f

     

f

       

   

       

   

3

pizz.

3

f

pizz.

Vla. 1

3

f

    

   

f

Vln. 4/2

 

 

 

 

  

   

3

 

    3

        f

  

        f

  

  

   

  

3



3

3

 

  

3

 

3



f









 

3



f

 

 

           

 

  

     

 

 

           

 

  

     

   

f

f

  

pizz.

Cb.

f

Vc. 2

       

f

pizz.

Vc. 1

  

   

f

Vla. 2

f

f



        f

pizz.

pizz.

Vln. 3/2

f

   

 

     


92

  Vln. 1/1  

      

249

f

 

Vln. 2/1



      

f

 

Vln. 3/1

 

Vln. 4/1

Vln. 3/2

Vln. 4/2

         



3

3







    



    

f

  

      

  





         

3

  



3

  



          

  

   









3



    





    





    



 f

3

    

f

  

    





f

pizz.





 

Vla. 2

 f

    

f

3

 



    

f

  

    f

Vla. 1

  

    f



      

f

  

3

 

Vln. 2/2

  

          



 

Vln. 1/2



f

 f

Vc. 1

  





 

 



       





 

 





Vc. 2

  





 

 



       





 

 





  

      

  

  

Cb.

 


93

253

 Vln. 1/1 

Vln. 2/1

Vln. 3/1

Vln. 4/1

p

                   p

                     p

                    p

                                       

Vln. 1/2

mp

p

                                     

Vln. 2/2

mp

p

                                       

Vln. 3/2

mp

p

                                     

Vln. 4/2

mp

p

                                      

Vla. 1

mp

p

                                          

Vla. 2

mp

p

                                        

Vc. 1

mp

p

                        

Vc. 2

mp

Cb.

                    

                    p

                   p


94

259

  Vln. 1/1  

Vln. 2/1

Vln. 3/1

G.P.

arco       

      

arco       

      

f

 

 

f

 

  

arco

mp

f

Vln. 4/1

 

 

  

arco

 

f

Vln. 1/2

Vln. 2/2

Vln. 3/2

Vln. 4/2

Vla. 1

Vla. 2

Vc. 1

 

 

 

 

 

 

 

 

arco

 

arco

mp

    mp

  

  

 

   

 

arco

 

 

 

 

arco    

f

f

 



 



 

 

f

arco

f

arco

f

mp

mp

     

  



 



 

 

 



 



 



 



  



  



 



   

    mf

    mf

 

 

mf

 

 

mf

 

 

 

 

 

 

 

mp

mp

mp

mp





 

f



mf

   

   

  

mf

mp

 

     

 mf

 mf

mf

 mf

 

arco

mf

Vc. 2

 

 



 

 



 

mf

Cb.

  

arco

mf











 



 





mp

mp

mf

mf


95

      Vln. 1/1   

 

              

    



      

 

              

    



        

   

       

 

  

 

        

   

       

 

  

 

     

    

   

     



    

    

   

     



263

Vln. 2/1

Vln. 3/1

Vln. 4/1

Vln. 1/2

Vln. 2/2

Vln. 3/2

        

  

       

     

 

Vln. 4/2

       

  

      

     



Vla. 1

Vla. 2

Vc. 1

 







 

 

 

 

                                                 f espress.

Vc. 2

 

 

 

 

 



 

 





   



    

 

 

 

  

 



   



pizz.

pizz.

Cb.

 


96

      Vln. 1/1   

      

266

Vln. 2/1

Vln. 3/1

 

 



     



 



     



  

f

 

 

Vln. 2/2

Vln. 3/2

Vln. 4/2

Vla. 1

Vla. 2

Vc. 1

Vc. 2

Cb.

 

  

 

 

 

 

 

  



  



  



  



  

 

 

             

 

 



  







mf



 





  



  





 



 

 

 

 



  



mp



f

f

f

mp

mp

 mp

f

 

mp

f

mp

       

 



arco



  

f

         

 

   

mp

  

  



mp

f

Vln. 1/2

mp

f

Vln. 4/1

    mp

f

  





 mp






97

   Vln. 1/1    269

  

  

mf

Vln. 2/1

   

  

Vln. 4/1

Vln. 1/2

Vln. 2/2

Vln. 3/2

Vln. 4/2

Vla. 1

Vla. 2

  

  

   

  

     

mf

 mf

Vc. 2

Cb.

  

 

  

    

     

 

   





  

 

      

    

    

    

 

      

    

    

      

 

      

     

      

     

 

      

     

      

     

     

  

 

                

mf

     

     

   

 

   

 

       



f





  

    

f



mf

 

 

   

mf

Vc. 1

  

 

mf

     

mf



  

f



    

mf

   

f

  

   





  

 

mf

   



  

mf

Vln. 3/1

  

pizz.



 



   

   



  

     



 

   



 

 







 




98

   272

Vln. 1/1

Vln. 2/1

Vln. 3/1

   





f

   

  

  

   

f

 



f

 

f

   

  



f

  

 

f

    







 



 

mf

Vln. 4/1

  

 

   

mf

Vln. 1/2

Vln. 2/2

Vln. 3/2

Vln. 4/2

Vla. 1

      

   

  

     



      

   

  

     

 

  

  

  



 

 

 

 

mf

    



 

    

 

 

  

       

 

 

       

 



mf

mf

Vla. 2

Vc. 1

Vc. 2

Cb.

  

          

 

  



   

mf

            



   

 

  

 

                  mf

                  arco

mf

 

  

 

mf

   

  




99

275

  Vln. 1/1  

 

f

  

  

Vln. 2/1

Vln. 3/1

Vln. 4/1

Vln. 1/2

Vln. 2/2

 

f

   

 

f



f

               





   

  

 

 

   

  

 

 

Vln. 4/2

   





 

   

 

 

 

   

 

 

 



 

 

Cb.

   



Vc. 2

f

   

 



Vc. 1



                 

   

Vla. 2



 

f

Vln. 3/2

Vla. 1

   

  

  

 

 

 

  

 





 

  







  

 

 

 

 

 

 

  

 

 

 

 

  





 

 

  







 

  

 

 

 

  



  



 

 

 



  

                     

            

 

  

                     

            

 

 





 

 

 



 

 

 




100

278

Vln. 1/1

Vln. 2/1

  

   

   

mf

mf

   

  

   

mf

   

mf

   

mf

mf

Vln. 3/1

  





















Vln. 4/1

  

















Vln. 1/2

   





















Vln. 2/2

   

















Vln. 3/2

  

 













Vln. 4/2

   















   

 

 

 

















   

 

 

 

 

 

 

 









legato

legato

legato

legato

Vla. 1

Vla. 2

Vc. 1

Vc. 2

Cb.

      

           

           

      

      

           

           

      

    mp



  

 

 







  









 




101

281

Vln. 1/1

 

    mf

   

mf

   

 

Vln. 2/1

   

mf

   

mf

   

mf

mf

Vln. 3/1

Vln. 4/1

Vln. 1/2

 





















mp

 

















 















 















  

 

  

















 

  

 

 

 

 









Vln. 2/2

mp

Vln. 3/2

mp

Vln. 4/2

mp

Vla. 1

mp

  

Vla. 2

mp

    

           

           

      

Vc. 1

           

           

      

Vc. 2

     

Cb.

  mp



  

 

 







  









 




102

284

 Vln. 1/1 

   

   

   

mf

mf

   

 

Vln. 2/1

 

mf

   

mf

   

mf

mf

Vln. 3/1

Vln. 4/1

Vln. 1/2

 

 

  





 

 





 

 



Vln. 2/2

 

 

 

 

 

 

 



Vln. 3/2

 

 

 





 

 



 

 

Vln. 4/2

 

 

 



 

 



 

 



 

 

 





 

 



 

  

 

 

 



 

 



 

  

arco legato

Vla. 1

legato

Vla. 2

Vc. 1



p

Vc. 2

arco





 

 









  









 



 





 

 









  









 



mf

Cb.


103

rit.

287      Vln. 1/1 

 

mp

   

 

mp

 

 

Vln. 2/1

 

mp

   

mp

 

mp

Vln. 3/1

 

Vln. 4/1

 

Vln. 1/2

 

pizz.

p

pizz.

 

Vln. 2/2

p

 

  

 

 



 

Vln. 3/2

p

pizz.

 

Vln. 4/2

p

Vla. 1

Vla. 2

Vc. 1

 

 

 



 

 

p





 

 



 

 

p

 



 





 

 

 

 

 

 

 

 

 

 



 





 









  

  









  

 

  









  

 

   







  

   









 

  

 

 

  



 

 



 



   

 

 

   



 

 

 



 

 





 

p

p

Cb.

 



p

Vc. 2

 

 

 

 

pizz.



 




104

Andante q = 58

291

Vln. 1/1

   f

 

Vln. 2/1

f

 

Vln. 3/1

 

Vln. 4/1

                                                                               



 



arco

mf

arco

mf

arco

 

Vln. 1/2

f

                                      

arco

 

Vln. 2/2

f

           arco

 

Vln. 3/2

 

f

arco

 

Vln. 4/2

 

f

 

Vla. 1

 





 





mf

 

Vc. 1

f

 

Vc. 2

 

                      

 

 

  

 

  

 

  

 

  

 

 





 













                                    

(pizz.)







mf

Cb.

 

 

f

Vla. 2

 



f

 







 








105

294

           

            

 Vln. 1/1 

Vln. 2/1

Vln. 3/1

Vln. 4/1

Vln. 1/2

Vln. 2/2

Vln. 3/2

Vln. 4/2

Vla. 1

Vla. 2

Vc. 1

 

 

p

 



f

Cb.

 

  

 



 

p



 



 

f

f





 

p

 

 



p



 

          

            

mf

 

 

 



mf

 

arco



mf



           

f



 

f

p

arco

 

f

p

arco



p

          

mf

 



 

          



 

 f

p

Vc. 2

f

p

 

            

 



           





 

 



p

 



           

p

 

p

 



 f





          


106

297

 Vln. 1/1  

                                       

                                      

Vln. 2/1

legato

Vln. 3/1

 

Vln. 4/1

Vln. 1/2

 

Vln. 2/2

                                      

Vln. 3/2

 

 

  

  

 

 legato















                                       



legato









legato

 

Vln. 4/2

Vla. 2

  

 













 









legato

legato

                                    

Vc. 1

 

Vc. 2

Cb.

  

Vla. 1

 

 





 





 





                                   


107

300

 Vln. 1/1 

Vln. 2/1

Vln. 3/1

Vln. 4/1

Vln. 1/2

 

legato





















 

















 





















mf

 

















 





























mf

legato

Vln. 2/2

mf

Vln. 3/2

Vln. 4/2

mf

Vla. 1

mf

 

Vla. 2

mf

Vc. 1

            

                       

            

                       

mf

Vc. 2

mf

Cb.


108

  Vln. 1/1 















































































303

legato

mf

Vln. 2/1

legato

mf

legato

Vln. 3/1

 

Vln. 4/1

 

Vln. 1/2

 

legato



mf

 

Vln. 2/2







mf

 

Vln. 3/2

 





















Vln. 4/2

 

















 















 



















Vla. 1

Vla. 2

                                    

Vc. 1

                                    

Vc. 2

Cb.

                                     mf


109

 306        Vln. 1/1  ff

         

Vln. 2/1

ff

        

Vln. 3/1

      

Vln. 4/1

    

    

           

  f

pizz.

 

Vln. 4/2

f

Vla. 1

 

  

 

 

    

 

 

mf

 

Vc. 1

     mf

Vla. 2

 

          



 f

           

 

           

Vc. 2

f

 

 

  

ff

 

 

3

         



ff

         



ff

 



 

 

mf

 

3

   

mf







f

ff

                         mf

ff



pizz.



             

 

     

 

             

 

     

 

f

 

3

arco      ff

 

3

f

     

arco            

f

Cb.

f

arco     



  

     

f

     

ff

ff

Vln. 3/2

 

3

ff

pizz.

ff

     

ff

                   

Vln. 2/2

       

3

ff

Vln. 1/2

ff

      

ff

        

       

pizz.

f

 

 

 

  



 

           

arco

ff arco

          

ff

                                  

ff

f


110 310     Vln. 1/1 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 





 



 

ff

 

Vln. 2/1

 

Vln. 3/1

 

Vln. 4/1

ff

 ff



    

Vln. 2/2

Vln. 3/2

Vln. 4/2

 ff

 ff

 

 

 

 

 

3

  



 





3

 

 

 

 

 

 

 

 

 



 

 

 

 



 

 

 

 

 ff

3

 ff





 3





f

Vla. 2

 

 

 

Vla. 1

 

ff

    

Vln. 1/2





 

 

 

 

 

 

ff

Vc. 1

                                               

f

 

Vc. 2

 

 

 

















 

 

 

 

















ff

Cb.

 
















111

312

 Vln. 1/1  

 

Vln. 2/1

 

Vln. 3/1

 

Vln. 4/1

Vln. 1/2

 

 

Vln. 3/2

Vln. 4/2

ff

 ff



 

       

 

  



 

       

 

  



ff

 

 

 

  

 



 

ff

 ff

3



 

 









 



 

3

ff



 

 



 

 

 



 

 

 



 

 

 



 

ff

 ff

 

3

 ff





 

3

 ff







 

Vla. 1

ff

  



  

ff

    

Vln. 2/2

 

f

  

Vla. 2

mf



 



 



 



   

Vc. 1

 

Vc. 2

















































































f

Cb.

 


112 314     Vln. 1/1 



 

 

  





 



  



 



  



 



  

ff

 

Vln. 2/1

 

Vln. 3/1

 

Vln. 4/1

ff

 ff

 ff

        

Vln. 1/2

        

Vln. 2/2

        

Vln. 3/2

Vln. 4/2

       

       

       

       

 



 



  



 



  



 

 

  

ff

  ff

  ff

 







 







f

Vla. 1

f

  

Vla. 2

 

 

 

 

 

 

 

                                                      

Vc. 1

ff

Vc. 2

Cb.

  









































  










































113

316

 Vln. 1/1  

 

Vln. 2/1

 

Vln. 3/1

 

Vln. 4/1





 





  



 







 





 







Vln. 4/2

        





  

        





  

        

 

ff

 ff

      

Vln. 3/2

  

ff

          

Vln. 2/2



ff

          

Vln. 1/2

        





 





  





 





  





 





  



ff

 ff

 ff

 













f

Vla. 1

 

f

  

Vla. 2

f



 



 





 



                                             

Vc. 1

 

Vc. 2





















































































ff

Cb.

  ff


114

318

  Vln. 1/1   

Vln. 2/1

Vln. 3/1

Vln. 4/1

Vln. 1/2

Vln. 2/2

Vln. 3/2

Vln. 4/2

Vla. 1

Vla. 2

Vc. 1

Vc. 2

Cb.

        

      

    



  

    



  

    



  

    





   

   





     

  

 



   





  

   





   

   





fff

  

    

 



fff

  

     

 



fff

                       



 

  

fff

       

 

     





fff

   

fff

   

 

   

 

   

 





fff

   

          fff

       

 

fff

         

   



   

fff

   

   

fff

         

   



   

         

   

fff









    







  

                                                  



    

 

 









 

 













     

 

 









    

 









    



















   



 







 



 







 


321

 Vln. 1/1  

Vln. 2/1

Vln. 3/1

Vln. 4/1

Vln. 1/2

 

 

    

115

  

 







 

      

  





      

    

  

 







 

      

  





      

    

  

 







 

      

  





      

    

  

 







 

      

  





      

    



  

 

     



    

     

  

 

     



    

     

  

 

     



    

     

 

   

 

fff

Vln. 2/2

  

fff

 

   

 



fff

Vln. 3/2

  

fff

 

   

 



fff

Vln. 4/2

Vla. 1

Vla. 2

fff

                                       fff  











    











fff

  











   

                                                fff

Vc. 1

  











    











  











 

   

 

 

   

 

 

 

   

 

 

   

 

 

    

fff

Vc. 2

 

 



 

 



fff

Cb.

   

 



 

 



fff













 

 


116

324

 Vln. 1/1 

Vln. 2/1

Vln. 3/1

        

    

        

    

                 

  













 













  













 













    

  













 













    

  













 













Vln. 4/1

Vln. 1/2

         

 













 













Vln. 2/2

          

 













 













           

 













 













Vln. 3/2

Vln. 4/2

Vla. 1

Vla. 2

Vc. 1

                                             









     









   









   

                                          

 









       









       









     

Vc. 2

    

   

   

 

 

   

   

   

 

 

   

   

   

 

 

Cb.

     

   

   

 

 

   

   

   

 

 

   

   

   

 

 


117

    Vln. 1/1 

 













 

 













  

 













 

 













  

 













 

 













  

 













 

 















 













 

 















 













 

 















 













 

 













327

Vln. 2/1

Vln. 3/1

Vln. 4/1

Vln. 1/2

Vln. 2/2

Vln. 3/2

Vln. 4/2

                                

Vla. 1

Vla. 2

Vc. 1

Vc. 2

Cb.

 











    











   

                                 

 











  

 

 

 

 

 

   

 

 

 

 

 

    















 

 

 



 

 









 

 

 



 

 





   


118

                                  Vln. 1/1  329

                                 

Vln. 2/1

                                 

Vln. 3/1

                                 

Vln. 4/1

Vln. 1/2

Vln. 2/2

Vln. 3/2

Vln. 4/2

Vla. 1

Vc. 1

Vc. 2

Cb.

                               

                               

                

               

  

   

               

               

               

Vla. 2

                               











  











 









 









   

               














































119

                                                  Vln. 1/1  331

Vln. 2/1

Vln. 3/1

Vln. 4/1

Vln. 1/2

Vln. 2/2

Vln. 3/2

Vln. 4/2

Vla. 1

Vla. 2

Vc. 1

                                                                                                   

loco                                                

                                               

                                               

                                               

                                               

                                               

                                               

                 

Vc. 2

                                               

Cb.

                                


120

   Vln. 1/1 

  

  













334

Vln. 2/1

Vln. 3/1

Vln. 4/1

Vln. 1/2

Vln. 2/2

Vln. 3/2

Vln. 4/2

Vla. 1

Vla. 2

 

 

 

 

         

 

Vc. 1

Vc. 2

 

 

 

Cb.



 


335

  Vln. 1/1  



   

Vln. 3/1

   

Vln. 4/1

gliss.

 



gliss.

Vln. 2/2

Vln. 3/2

Vln. 4/2

Vla. 1

  

gliss.

  



gliss.

Cb.



 



 

fff



 

gliss.

   

   

   



 

 





 





 





 

gliss.

ff

 

ff

   

   

Vc. 2

fff

 

 

gliss.

ff

 

gliss.

ff

   

gliss.

f

ff

Vc. 1



 

       

Vla. 2

fff

   

Vln. 1/2

 

fff

  

Vln. 2/1

121

 

gliss.

f

     ff



   

   

ff



gliss.

f

 

 

gliss.

f

   

 

 

          mf

 

gliss.








122

336

  Vln. 1/1  

 

 

 

 

 

 

 

 

 

Vln. 3/1

Vln. 4/1

Vln. 1/2

Vln. 2/2

Vln. 3/2

Vln. 4/2

Vla. 1

Vla. 2

Vc. 1

Vc. 2

Cb.

 

   

mf

      

 

mf



pizz.

  



Vln. 2/1



arco

      



gliss.



   


123

rall. 338

Vln. 1/1

 

Vln. 2/1

Vln. 3/1

Vln. 4/1

Vln. 1/2

Vln. 2/2

Vln. 3/2

Vln. 4/2

Vla. 1

Vla. 2

Vc. 1

7

Cb.

  

5

     

p

Vc. 2

6

 

 

gliss.



gliss.



  


124 Meno mosso e = 74 340

 Vln. 1/1  

Vln. 2/1

                                               mp

                                                              mp

 

Vln. 3/1

                        mp

 

Vln. 4/1

       

mp



Vln. 1/2

Vln. 2/2

Vln. 3/2







 3

mp espress.

 





 3

mp espress.



mp

 

Vln. 4/2

mp

 3

Vla. 1

Vla. 2

 

 

Vc. 1

Cb.

  p

 mp

pp

Vc. 2

mp

 

 


125 341                                                                 Vln. 1/1 

mf

Vln. 2/1

                                                              mf

                                                                 

Vln. 3/1

mf

Vln. 4/1

                                                              mf

Vln. 1/2

Vln. 2/2

  

  

Vln. 3/2



 3





 3

 

Vln. 4/2



3

Vla. 1

 

Vla. 2

 

Vc. 1

ppp

Vc. 2

Cb.

 

 

 

 


126

342

 Vln. 1/1  

Vln. 2/1

                                               mp

                                                              mp

 

Vln. 3/1

                        mp

 

Vln. 4/1

       

mp

Vln. 1/2

Vln. 2/2

  

  

Vln. 3/2



 3





 3

mp

 

Vln. 4/2



 3

Vla. 1

 

Vla. 2

 

Vc. 1

Vc. 2

Cb.

 

 

 

 


127 343                                                                 Vln. 1/1 

mf

Vln. 2/1

                                                              mf

                                                                  

Vln. 3/1

mf

Vln. 4/1

                                                              mf

Vln. 1/2

Vln. 2/2

  

  

Vln. 3/2



 3





 3

 

Vln. 4/2



3

 

Vla. 1

 

Vc. 1

Vc. 2

Vla. 2

Cb.

 

 

   


128

344

Vln. 1/1

 

Vln. 2/1





p





p

 

Vln. 3/1

Vln. 4/1

p

p

                                                

 

Vln. 1/2

Vln. 2/2

mp

                                                                mp

Vln. 3/2

 



p

 

Vln. 4/2

       

mp

 

Vla. 1

 

 

pp

 

Vla. 2

 3

                        mp

Vc. 1

 

Vc. 2

  pp

Cb.

 

  pp




129

345

Vln. 1/1

 

Vln. 2/1



 pp



 pp

 

Vln. 3/1

Vln. 4/1

Vln. 1/2

Vln. 2/2

Vln. 3/2

pp

 pp

                                                                                                                                

 pp

    

Vln. 4/2

 

Vla. 1

                                                                                 

Vla. 2

 

Vc. 1

mp

Vc. 2

Cb.





3



 


130

                                              

346

 Vln. 1/1  

Vln. 2/1

mp

                                                              mp

 

Vln. 3/1

                        mp

 

Vln. 4/1

       

mp

Vln. 1/2

Vln. 2/2

Vln. 3/2

 



 3

mp

 





 3

mp



mp

 

Vln. 4/2



mp

3

 

Vla. 1

 

con sord.

 

Vla. 2

Vc. 1

mp

 pp

 

Vc. 2

  pp

Cb.

 

 



mp

 

 


131

347

 Vln. 1/1  

                                              

                                                             

Vln. 2/1

Vln. 3/1

 

Vln. 4/1

 

Vln. 1/2

Vln. 2/2

  

  

Vln. 3/2

       



 3





 3



 

Vln. 4/2



                       

3

Vla. 1

 

Vla. 2

 

Vc. 1

 

Vc. 2

Cb.

 

 

   


132

348

 Vln. 1/1  

Vln. 2/1

                                               p

                                                              p

 

Vln. 3/1

                        p

 

Vln. 4/1

       

p

Vln. 1/2

  

  





 3

p

Vln. 2/2





 3

p

Vln. 3/2

 p

 

Vln. 4/2

 

p

3

Vla. 1

Vla. 2

 

Vc. 2

  p

Vc. 1

Cb.

 

p

   


133 349                                                                 Vln. 1/1 

Vln. 2/1

                                                             

                                                                 

Vln. 3/1

Vln. 4/1

Vln. 1/2

Vln. 2/2

  

  

Vln. 3/2

                                                             



 3





 3

 

Vln. 4/2



3

 

Vla. 1

Vla. 2

 

Vc. 1

 

Vc. 2

Cb.

 

 

   


134

350

Vln. 1/1

 

Vln. 2/1





p





p

 

Vln. 3/1

Vln. 4/1

p

p

                                                

 

Vln. 1/2

                                                                 

Vln. 2/2

Vln. 3/2

 



p

Vln. 4/2

 

Vla. 1

 

Vla. 2

 





 





 

 

p

con sord.

Vc. 1

p

Vc. 2

pp

Cb.

 

  pp



       

                       

3

 

3

 


135

    Vln. 1/1 

 

sul pont.

   

  

sul pont.

   

 

  

 

sul pont.

351

Vln. 2/1

Vln. 3/1

sul pont.

Vln. 4/1

                                                                 sul pont.

Vln. 1/2

                                                                    sul pont.

Vln. 2/2





sul pont.

Vln. 3/2

     sul pont.

Vln. 4/2

                                                                    sul pont.

Vla. 1

Vla. 2

 





Vc. 1

 





Vc. 2

Cb.

 

3

 

3

 


136 352                                                                 Vln. 1/1 

pp

Vln. 2/1

Vln. 3/1

                                                              pp

                                                                  pp

Vln. 4/1

Vln. 1/2

Vln. 2/2

Vln. 3/2

                                                              pp







3

pp espress.



 





 

 3

pp espress.

   pp

Vln. 4/2

   pp

Vla. 1

  

  

pp

Vla. 2

pp

Vc. 1













  





pp

Vc. 2

pp

Cb.

pp


137

353

 Vln. 1/1 

Vln. 2/1

Vln. 3/1

Vln. 4/1

Vln. 1/2

Vln. 2/2

Vln. 3/2

Vln. 4/2

Vla. 1

 

   

  

 

  

 

 



     

3



Vc. 2

 

     

3

    

    

3

ppp



3

ppp

   

   

   

   

 

   

   

   

   

niente

 

niente







pppp

niente

pizz.







   



 

pppp

pizz.

   

pppp

pp

Cb.

niente





   

niente

ord./pizz.

p

      3

3

 

 

niente

 

niente

     

  

   

niente

pp

Vc. 1

niente

p

Vla. 2

 

rit.

pizz.

    pppp

Pori 25.2.2008 JLe Duration 17 min. 33 sec.


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.