Salonen STOCKHOLM DIARY

Page 1

Esa-Pekka Salonen STOCKHOLM DIARY (2004) for String Orchestra

score

CHESTER MUSIC


Commissioned by the Stockholm Concert Hall Foundation for the Stockholm Philharmonic Orchestra and Stockholm Chamber Orchestra to mark the occasion of Esa-Pekka Salonen’s Composer Portrait, October 2004

First performance: The Stockholm Chamber Orchestra, 27 October 2004, as part of the Stockholm International Composer Festival, conducted by Esa-Pekka Salonen

Duration: circa 12 minutes


STOCKHOLM DIARY for string orchestra

Esa-Pekka Salonen q = 56      Violin 1

Violin 2

Viola

Violoncello

 

  

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 







non vibr.

ppp cresc.

 

       tenuto       

  

  



 

mf

 



mp

 



  



 

   

 

non vibr.

ppp cresc. poco a poco

non vibr.

ppp cresc. poco a poco

 

 

ppp cresc. poco a poco

  

   

 



 

ppp cresc. poco a poco

 

ppp cresc. poco a poco



ppp cresc. poco a poco

 

p cresc. poco a poco







 



mp

 



 



mf non diminuendo

mp



pp

pp

pp

pp

mp

 

pp



 

pp

  

p

mp

  



pp

 





    mp



ppp cresc. poco a poco

non vibr.

mp

mp

 

         

p

ppp cresc. poco a poco

ppp cresc. poco a poco



crescendo

non vibr.

  

 

      

Contrabass

   

pp flautando

 

 

Solo

   p

pp

                             (Top half)               (Solo)

9

Vln. 1

Vln. 2

 

Top half

Vla.

Vc.

Cb.

 

ppp

 

(Top half)

  (May, 2005)

p

 



mf

 

 (Top half)

   p

sim.



 



                              



 

 







 

 



 

 

   

p

p

© Copyright 2004 Chester Music Ltd.

 

    p

   


              14

Vln. 1

Vln. 2

   

  

(Solo)

Tutti div.

  

  Vc.

Cb.

f

vibrato

     

 

mf

mf



  

p

f



        



           



  

 

  

f

f





mf



      

 

     

mf



 

 

Tutti div. vibrato

   



f

3



p

f

mf

      

     



        

  p

f

vibrato

(Top half)

p

 

mf

    

    mf



f

vibrato

 

       

 



 

    

 

p



f

vibrato

 

  

p

 

    

                        3 3 3 3 3 3

f

mf vibrato

Vla.

 

    Tutti   div.       3

Più mosso e = 96-104

2

p

p

mf

f

mf

f

mf

f

mf

f

   19

Vln. 1

Vln. 2

3

      

Vla.

                              



3

3

3

p

 

  



 

3



  

   p





p

Cb.

  

  

mf

 

 

  

mf

 

p

f

       f



     

  

         

  

          

  

p

p



 

     

 

  

p

p

mf

mf

     mf

p

f

mf

p

f

  

     

    

          

f

f

p

p

f

  

Vc.

 



                       3 3 3 3 3 3



       cresc.

  

cresc.

 cresc.

 cresc.

                

p

        

p

          

 

cresc.

cresc.


   25

Vln. 1

Vln. 2



     



ff

Vla.

 

 







  

Cb.

    

p

f

ff

   

 

p

 

p

ff

 



f espressivo

3

3

3

mf

3

3

3

3

3

3

3

mf

3

3

3

3

3

3

mf

3

3

3

3

3

3

                                f



                                     



 

3

f

Vc.

 

3

                                                   3 3 3 3 3

p

ff

f

p

ff

 









                                               3 3

p

ff

 

  



unis.

3

3

3

3

3

mf

  f

 

   

  

3

3

3

3

3

mf

f

mf

  29

Vln. 1

Vln. 2



 unis. 





 

 

 





 



















 







f espressivo

                                      3 3 simile

3

Vla.

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

simile                                                          3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

                                                         simile

3

Vc.

 

f

Cb.

     f

3

3

    

3

    

3

     

3

3

3

3

3





 

 

3

     

3

3

    

3

     

3

3

    

3

3

    

 


4

32

  Vln. 2

 

 

  

 

 

 

 

 

 

 



 

 



 









               3 3



 



 

 





            

 

 



ff sempre



div.a3

ff sempre

 

 

div.

ff sempre

  Vla.

  



 

Vln. 1

 

  

 

  

3

3

                3

 

3

3

3

3

Vc.

 

3

3

ff sempre

ff sempre

ff sempre

3



3

3

3

3

3

3

3

3

                    

Cb.

3

3

3

3

3

                    

ff sempre

  

3

                                                                                     3

 

3

3

3

3

3

3

3

3

3

3

3

3

3

ff sempre

    

 

 

 

  

 

 

 

 





 



 







 







 



 









35

Vln. 1 (div.a3)

Vln. 2

 

  

  

 

 



 

 







 

 







 

  





 

  









 

  





   

Vla.

   



 



 

Vc.

3

3

3

3

3

3

3

3

3

3

3

3

3

                                         



3

3

3

3

3

              



                                                                  3

Cb.

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3


      

  

38

Vln. 1 (div.a3)

Vln. 2

Vla. (div.a4)

  

      

mf

 

 

 

   

   

 

   

   

 









mf



mf





 



 



 



unis.



mf

                                                            mp

                                                           mp

div.a4

                                                            mp

                                                            mp



3



3

 



 



mf espressivo

                       3

mf espressivo

           3

3

Cb.

unis.  

    Vc.

5

3

 











 



 



unis.

 

p

mf espressivo

 

  

(unis.)

41

Vln. 1

Vln. 2

 

 









 

  



 

  







                                                                       

                                                                         Vla. (div.a4)

                                                                         

Vc.

Cb.

                                                                        

   

unis.











 





 

 

 










6

    44

Vln. 1



  





 

Vln. 2





















 



 



  

 III       f      f div.

       f

                                                                    f

                                                                   f

Vla. (div.a4)

                                                                   f

  

Vc.

Cb.

                                                                     



 









div.   

f

  

    



   

f

unis.       f

        Vln. 1

48

           IV            

      

     

      Vln. 2

    

Vla. (div.a4)

    

         

Cb.

     

5

5

5

5

5

5

5

5

5

5

5

5

5

5

                                             

                        

                      

                     

      

 

  

unis.

Vc.

          

5

         

       



5

 

     

      

                          

 

         

                                       



           



           

                         

                        

 



 



   

 



  


7

                                                                 53

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

mp

Vln. 1

                                                              mp

                                                              mp

Vln. 2

                                                              mp





 

   

 

unis.    

Vla.

 

f espressivo

 

Vc.

p Cb.

p

 

 

 



f espressivo



                                                             f 55

Vln. 1

5

5

5

5

5

5

5

5

5

5

5

molto

5

5

5

5

5

5

5

5

5

5

5

                                                             molto

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

f

5

                                                               f molto

Vln. 2

5

                                                           f 

  

Vla.

Vc.

Cb.

 

 

molto

 

 



 





  






8

 

57

Vln. 1

Vln. 2

 

Vla.



 

f con suono



 



 



                                                                        sul pont.

mf

5

5

5

5

5

5

5

5

5

5

5

5

                                                            

sul pont.

mf Vc. div.a4

5

5

5

5

5

5

5

5

5

5

5

5

                                                                  sul pont.

mf

5

5

5

5

5

5

5

5

5

5

5

5

sul pont.                                                                   mf

Cb.

5

div.

   f

5

   

5

5

 

5

 

5

 

  

5

5

5

  

 

  

5

5

 

5

  

59

Vln. 1

Vln. 2

 

Vla.

 

 



 

 

 



                                                              5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

                                                                 5

5

5

5

5

5

5

5

                                                              

Vc. (div.a4)

5

5

5

5

5

5

5

5

5

                                                                

Cb.

  

5

5

5

5

 

5

5

 

 

5

 

5

 

5

 

5

 

5

 

5

   


 

61

Vln. 1

     

 

Vla.

p

p

Vln. 2



 

p



5

5

Cb.

   

5

 

5

5

5





p sub.

    

        

  



p sub.

    

            



p sub.

    

            



  



unis.

 

 

 

  

      normale                                 5 5

       



        

                         normale            5 5 5 5 5 5

f non troppo

 

  

    

normale                                   5 5







p sub.

5

unis.    

f non troppo

  

p sub.

5

        

9

        

normale                                         5 5 5 5 5

Vc. (div.a4)

    

f non troppo

 

   

  

5

    

         

p sub.

 

f non troppo

f non troppo

f non troppo

f non troppo

f non troppo

     f non troppo

         

   

     66        Vln. 1

     

  

                 

Vln. 2

        

Vla.

                  div.a2

Vc.

Cb.

   

 

  

   

     

rit.                   

Meno mosso e=72 



ff

                         ff

 

gliss.

                  



ff

                      



ff

 

 

                                    

                  

6

f sempre

                        ff              ff           ff



   

      6

f sempre

6



     6

  


10

70    

Vln. 1











f

  



f

  

 



  gliss

.











 

 









f



 



Vln. 2

        

 

   

6

Vla.

   

6

   

6

Vc.

   

 

     f

6

     

6

   

6

   

6

6

   

 

   

6

 div.

Cb.

   

6

6

 

     

6

     

  

  

 

 

    



72

Vln. 1

  

 





 









 











 



  







 





Vln. 2

 

     

   

6

Vla.

 

Cb.

   

   

    

 

 

   

6

6

 

 

     6

   



6

     

6

 

   

6

  

   

6

6

     

6

6

Vc.

   

6

     





 




     74

Vln. 1



 

    Vln. 2



 

      

  Vla.

6

ff

Vc. (div.a4)

Cb.







  

sffz

  



sffz

6





mf

 

 

 

 



  

6



  

6





6





 

6



6



6

pp

 

  

 





  

diminuendo





   

   

    

6

diminuendo

    



 

  

sul pont.

 



 

mf



   

    

ff

sul pont.

 

      

  



f

11

 

pp

 

 

76   

 

Vln. 1

 

    Vln. 2



     

Vla.



6

Vc.

Cb.





6

6







6

6

   



6









  

6





 

6

  





   

 

 

  









  



6

    





   



  

6





     



 

 

 



6



6

  

  

 

 

 

 

 

  

 

 




12

78   

Vln. 1



 

 

 

   

     

    ff

 

ff

6

6

                                             3

mf

6

  



6



 



6

6

sempre f

 



6

6

 

      

unis. pizz.

  p





6

6

6





3



6

3







    



 3

 3

 3

 

f

 f

 

6



 mp



3

6

                

  

 

        mp

         mp

6



mp

6

6

6



6

K e = q = 108                 

   



 

 





 



6

diminuendo









pp



 

p

Cb.

6



 

Vc.

6



6

  

  

  

unis. pizz.



                                

       

Vla.

     

6



   

Vln. 2



      



6

80   



6

6

 



diminuendo



 

 





   

sffz

Vln. 1

6

pp

     

6

6

diminuendo

sempre f

 mf

6

 

 





diminuendo

 





sffz

Vc. (div.a4)

Cb.

 

     



  

 

  Vla.



 



    Vln. 2



   

 



 



mf

mf


13

82                                                       Vln. 1

              





    

Vln. 2

  Vla.



   

                              





 



   

 



strong accents

 

 

 

 

  

                                        

 



 

 

 

f

 

                                             

(pizz.)

Cb.

 

strong accents

   

Vc.

(pizz.)

 



 

f

  





  





 

p

 

p

                   85

Vln. 1

unis.

   Vln. 2

  

   

  

  

 

                 (pizz.)

Vc.

  

(pizz.)

Cb.

   

 







f

 f



   

unis.

Vla.

                



     

 

 

   

  

                

 

 

f

f


14

  87

Vln. 1

                                                

   Vln. 2

  

   

   

 

 

   

  

 

 

     

  

   

 

  

(pizz.)

Vc.

   

(pizz.)



   

     

        

arco

 

 

p



 

 

                                 

Vla.

Cb.

 

p

mf

Vln. 1

90                                                  

  

 

  

 

Vln. 2

 

Vla.

   

   

        

          

Vc.

Cb.

    

    

  

    

 

 

        

          

 

     

  

       

        


Vln. 1

93                                      

   

 

    

Vln. 2

 

 

 

 

Vc.

Cb.

  

 



           

                 

pp crescendo

          

 

                

Vla.

15

arco



pp crescendo

  95

Vln. 1

 Vln. 2

    f

    f

                            

                          

                           

                           f

f

                                                            f

    

mf

Cb.

f

f

f

Vc.

f

                                                           f

Vla.

f

     

mf

 

 

   

 

   

  

 f

  

 f

f



3

 3



3



 3


16

                   

         f

        

                   

              f

      

                    

98

Vln. 1

            Vln. 2

 

Vla.

Vc.

Cb.

     

                  

     

          

 

f

       f

f

f

                               f

            



diminuendo poco a poco

 

 

 

 

 



 

 

 

 

 

diminuendo poco a poco

                   f



 



 



 



 

Vln. 1

101   4                                             f diminuendo poco a poco

                        f diminuendo poco a poco

Vln. 2

4                                                

f diminuendo poco a poco

                                                   

Vla.

f diminuendo poco a poco

Vc.

Cb.

    









    










q. = q = 72

 

103

Solo    p  

Vln. 1

4

         p

5:6

p

Vln. 2

4

         p 4

5:6

                  

Vla.

Vc.

crescendo



6

6

6

6

6



                                                        

Cb.

4

   

   

   

   

   

   

17





p



6

6

pp

crescendo poco





p

  

p

pp

pp



  





      105

Solo

(Solo)

mf espressivo 1/2 section

Vln. 1

 

(top ½)

  

  

     

6

               

Vln. 2 (top ½)

p accompagnando

Vla. fingering

2 Sole Vla.

2 Soli Vc. Altri

Altri

p tenuto altre pizz.



  

altri pizz.

 

altri pizz.

p



p tenuto





  

6

     

 

  II



 

 

 

      

   6

     

 



6

6

IV



I

  

  

  



  

     

 

p

2 Soli

p tenuto

     

p

 

  

 6

III

2 Soli

  

2 Soli



  

Cb. fingering

Cb.



  

Vc. fingering

6

2 Soli

  

Altre

     

  

6

6

III

 

  

   6

     

6

  

  

6

p accompagnando 1/2 section

  

  

III

  

 

     

III

  

II









6

IV

 

 



    


18

(Solo)

107    

Vln. 1

  

  

    

6

    

  

   6

     

         

  

 II



Vla. (pizz.)

 

(Altre)

 

Vc. fingering

(2 Soli)

Vc.

 

(pizz.)

(Altri)

 

 

(2 Soli)

Cb.



III

 

Cb. fingering



I

II



III

  

    

6

     

     



IV

 III

 



II

II









III

III

 







 



 

II



 







 6

6

(pizz.)

  

6

6

6

    

 

 

 

6

     

(2 Sole)

 

6

6

Vla. fingering

  

Vln. 2

(Altri)

  

6

  




(Solo)

19

109     

Vln. 1 (Altri)



 

      

       

6



     

Vla.

 

Vc. fingering

 

(2 Soli)



(2 Soli)



II

III

     

(pizz.)

 

(pizz.)





   

 

  





 II



II

 

 



Cb.

(Altri)





6

     

     

6

     

6

6

 

Cb. fingering

     

6

Vc.

(Altri)

     

  

(pizz.)

(Altre)

  

III

  6

    

6

(2 Sole)

     

  

6

6

6

  

Vln. 2

Vla. fingering

  

 

6

 



I







IV



 

 

III



IV

II







    


20

accel. 

 (Solo)    111

  

  

crescendo poco a poco 6

       

Vln. 1 (Altri)

pizz. 3

 

 

       6 3

3

 

     

Vln. 2

pizz. 3

3

6

 

3

 

(2 Sole)



 

 

 

 

Vc. fingering

III

 

(2 Soli)



  

Vc.

(pizz.)

(Altri)

Cb. fingering

(2 Soli)

 

(pizz.)



 

3

III

3

   









 6

3

  

3

  

6

      

  

3

    3

3

 

3

 

 

 

 

3

  

 



III

 

     

II

  

6

3

3

6

3







  

I

Cb.

(Altri)



3

 

6

  

 

            

3

III

I

II

II

Vla.

(Altre)

3

  

 

6

3



(pizz.)

  

     

   

p crescendo poco a poco

Vla. fingering

3

6

3

      

 

 

6

p crescendo poco a poco

 

 

6

   

     

 

 





 

 



 










   

 

113

(Solo)

 



 

 

21

q = 104-108   



diminuendo poco a poco

f

Vln. 1 (Altri)

    

    

6

6

crescendo (pizz.) 3

3

  



6

crescendo

Vln. 2

(pizz.) 3

Vla. fingering

  

(2 Sole)

Vla.

crescendo

3

Vc. fingering

3

3

 

(2 Soli)

 

(2 Soli)

 

 

 

  3





 f

 (pizz.)







 







3 3             

f

3

3





3 3              

f

3

3

 

  



Sola 2: col altre

 



  













  

 

f

crescendo

(pizz.)



 

f

III





IV

Cb.

6

Vc.

Cb. fingering

 





 



crescendo

(Altri)



f

3

3

        6

3

IV

(Altri)

(pizz.)

(Altre)

 3

 

6

3

IV












22

q. = 104-108 (not too fast)       

 

115

(Solo)

mf

       

       

    

   pizz        p mf

    

      

(pizz) mf

Vln. 2

       







(pizz)

 

IV

 

    



Sola N.B.

(Sola)

 

 



f sempre

              pizz

Vla. (Altre)

mf

 

Vc. fingering

Vc. fingering

        pizz

  

mf





  

 

(Solo 1)

(Solo 2) Vc.

(Altri)



 

 

pizz

Cb. fingering

  

mf

II

(Solo 2)

II  

Solo 1

 IV

 

N.B.

      

Solo 2 N.B. f sempre arco

      

f sempre

N.B. All

N.B.

 

  







  I

  

  

 







    





  

 II 

     

   



IV

     



  

    IV

  

 

 

 

     







     

      











sim.

 

 

III

 

sim.

                        



I 

II  





III

 

 

          

   





 



     



       

     

        

  

            

II  



  



       





    

    



            

f sempre

mf

   IV     

   

N.B.

          pizz

Cb. fingering

Cb.



  

III

Solo 1

f sempre

  

(Solo 1)



Solo 2

N.B.

IV

    

III

      

         

mf

Vla. fingering

col altri

          

                 pizz

p



pp

(diminuendo)

Vln. 1 (Altri)

 

      

N.B.



sim.

harmonics in this section (through measure 161) should be natural harmonics, preferably even the F in the Contrabass and the F and Bb in the Cello, although there may be other ways to produce these depending on the instrument. Use artificial harmonics only if absolutely necessary.

   



I

   II

 

sim.

 


         121 (pizz)

Vln. 1

     

Vla. fingering

(Sola)

Vla. (Altre)

  

             

 

Vc. fingering

(Solo 1)

(Solo 2) Vc.

(Altri)

 



      

(pizz)

(Solo 2)

  

IV

   

   

(pizz)

Cb.



     

Cb. fingering

(Solo 1)



 

 

  

  II



    

     

   0

IV

     

     

  

  



    

    

     





 

IV





   









 

 

 





II



  II



          

     

          

     

IV



 



IV

 

 

 

   



IV



          

 



 





 



 

IV

  

 

    

 





     



 

0

    



IV



IV



  

    

     

                                 







    



   

    

         

sim.

(pizz)



IV

 

     



 

      

Cb. fingering



     

 

    

(pizz)

(pizz)

Vc. fingering

    

(pizz)

(pizz)

Vln. 2

23

  

III



III

 I 



 III  

 

III

N.B.

 

 

     



 



 



 

 

  



   



 

 

  


24

        127 (pizz)

Vln. 1

      (pizz)

 Vln. 2

Vla. fingering

(Sola)

     

(pizz)

     

      (pizz)

 

 



    

  

 

  



 

    

          



    

    



 

0



IV

 

    

     

     

    

Vc. fingering



 

  

   IV

Vc. fingering







 

   

 

 

 

    

Vla. (Altre)

(pizz)

(Solo 1)

(Solo 2) Vc.

(Altri)

   





  

    

 

 



III

   

       (pizz)

I   

Cb. fingering

 

(Solo 1) Cb. (Solo 2)

     

  

  

 

I



 

 

 

 

IV

     

      (pizz)

Cb. fingering



        

        



 

       (pizz)

  

         



 

III

 

       

 





0

   IV





 

 

 





  IV

          

  

IV



  







      





  

 

 

 

III

 

           

     

    











    

III





          

  

    

    

 



         



  









I 

 

  IV









 

       

 










            

             133 (pizz)

Vln. 1

      (pizz)

f sempre

           

Vla. fingering

Vla. fingering

(Sola)

Vla. (Altre)

      (pizz)

 

  

 

 

      (pizz)

Vc. fingering

 







IV

Vc. fingering

(Solo 1)

(Solo 2)

(pizz)

Cb. fingering

(Solo 2)



I   



 

 

  

f sempre

III



III



     

     III



arco

 

arco

 







 

 

  

 



 

       





  

III

 



   III





N.B.

N.B.

 I



 

 

 



  



 



 



IV

 

 

col altri

   

col altri

 

arco

 

 

N.B.

 

arco

   

 



N.B.

 

I

 

  

I

Tutti div.a2







N.B.

    arco N.B

 

  

arco





       

col altre

  

III

     





         

     

Cb.

 

(pizz)

Cb. fingering

(Solo 1)

 

 

Vc.

(Altri)

  

               

                



(pizz)            



 

            

                  

f sempre

       



f sempre

 

(pizz)

Vln. 2

           



      

25





 



 







 







   

 

 

 


26

139 (pizz)                  

Vln. 1

(pizz)                

          

        

        

                

       

   

 

                                        (pizz)

Vln. 2

      

                                                (pizz)

Vla. fingering

Vla. fingering

Vla.

 



 



 

 

     

 





Vc. fingering

II





 





  



 





 

 

 

III



Vc.



 

Cb. fingering

II

  

Cb. fingering

III

 

 

 II

   I



               

III

  

III

    













 

 

 

 

  





 



 

 



 

 

      

 

 

 

 II

  

      









IV



Vc. fingering

Cb.

 II



 

I   

   





    

 

   

 

   

     

   



 

I





 

 I  

  

      



   

IV


  

         (pizz)

145

Vln. 1

  

(pizz)

(pizz)

        (pizz)

Vla. fingering

Vla. fingering

 Vla.

Vc. fingering

Vc. fingering

 Vc.





 



 

II

  

Cb. fingering



Cb.





   

f brillante

          

              

         

arco on the string

f brillante



   





III

 

  IV

on the string

f

                              

on the string

p



III



 



 

 

   



IV

 



  III





 II 



  III

 





 

 

 

  

 





  I



 







  II



I 





 

 



 

 

 

 

 



 

 

 



 







f

   

p

            

arco on the string



  



f brillante

                                    

   

I



 

                          

arco on the string

 

 

 

Cb. fingering



f brillante

             

 

    

 

III

                             

           

       

  Vln. 2

   

27

arco on the string



 

  

II

  IV

      


28

          151

Vln. 1

Vln. 2

Vla. fingering

Vla. fingering

       

  

  



III

Vla.

Vc. fingering



  

  

 

    IV

Vc. fingering

 

III

Vc.



     

  

  



                                                                      



 

II 



III

 



       IV



  

     

 

    III

Cb.



 II

II

 

  

 

    

 

  

     

  

 

  

   



III

IV

 

     

    

          

      IV

 

               

  

                                

  

 

 

   

    

 

                 

I on the string

     

on the string

                                           

 I

II   

   

 

  I 



  



 



  

 



 

      

  

III

  

    

on the string

   

 

  

  

        

  

           

  

I    

  

on the string

                    

on  the  string                        

 

  

            158

Vln. 1

diminuendo poco a poco

 Vla.

            diminuendo poco a poco

      

     

diminuendo poco a poco



     

  

                               

             

      

     

diminuendo poco a poco

diminuendo poco a poco

     

diminuendo poco a poco

        diminuendo poco a poco

           



           

       Vc.

Cb.

3 3         3                    

3 3 3                                                     

diminuendo poco a poco

Vln. 2

          

e = x rall.

       

     

                   3

                       3

3

       3

3

      3



   


    163

29

q =72 (always over 2 strings)



p

   Vln. 1 div a 4

 

  

(always over 2 strings)

(always over 2 strings)

       

p

p (always over 2 strings)

  

p

  

(always over 2 strings)

 

 

 

 

 

 

 

 

 

 

 

 

p (always over 2 strings)

  

p

Vln. 2 div a 4

          p

  



(always over 2 strings)

                               

p (always over 2 strings)

p

(always over 2 strings)

 

 

 

 

 

 

 

 

 

 

 

               

(always over 2 strings) IV 0

                       

p

Vla. div a 4

  

p

(always over 2 strings)

                                        

(always over 2 strings)

                                                  p

III

   Vc.

II

I

II

p

  III

    II   

II

pizz.

I



III

II

mf II

     

p





I





II





I



pizz.

p

Cb.

mf



II

p





I




30

164                                                    f

crescendo

                                                 f

crescendo

Vln. 1

 



                                      f

crescendo

 

crescendo

 

 

 

 

 

 

 

 



f

                                      f

crescendo

  Vln. 2



crescendo

 

f

                f

crescendo

 

f

                                                 f

crescendo

                                                 Vla.

crescendo

f

 

                        f

crescendo

 

 f

III

I

arco

p Vc.

    Cb.

   II

pizz.

II

I



II

 

II

III



I





II

p

arco

pizz.

mf

 

arco III

I

p

mf

 





I

 

II

I



pizz.



III

mf

II

 

II

 


31

   165



p

 Vln. 1

 



p

  

p

 

p subito

Vln. 2



p subito

                         

                                       

                                                p subito IV 0

                                                p subito

 

                        0 IV

p Vla.

                                                 p subito

                                                 p subito

III

II

I

arco

p

Vc.

     I



p

I



II

III

I

arco

p

mf



II





I

    p

mf arco

III

II

pizz.

Cb.

 

 

pizz.

II





II





I



 II

I

II


32

166                                                   f

crescendo

  Vln. 1

 

 



crescendo

 

 

 

 

 

 

 

 

 

 

 

                              f

 

                               

crescendo

f

f

crescendo

  Vln. 2

f

crescendo

 

f

crescendo

 

                        f

crescendo

 

f

                                                 f

crescendo

                                                 Vla.

f

crescendo

 

               

f

crescendo

 



     II

III

 I

II

arco

p

mf Vc.



 

I



 





II

II

I



II

pizz. III



I

mf

I

p



pizz.

mf

arco

 

II

mf

Cb. pizz.

f

cresc.

pizz. III

       



II

p

arco





I




33

   167

p

  Vln. 1

p

 

 

 

 

 

 

 

 

 

 

 

 

p

                                                 p subito

  



p

Vln. 2

 

p



                                                 p subito

 

                               

p

                                                 p subito

Vla.

                                                 p subito

   Vc.

III arco

 

 II

I

  Cb.

   II

pizz.



III



I

arco

p

 

I

mf II

III

II



 





II

p

arco

pizz.

mf

pizz.

II

I



II

II

III

mf



I





II




34

168                                                   crescendo

f

  Vln. 1

 

 

 



crescendo

 

 

 

 

 

 

 

 

f

crescendo

 

 

 

 

 

                f

crescendo

 

                                        f

crescendo

 

 

crescendo

 

f

crescendo

f

 

 

  

f

f

 

Vln. 2

  

  

  

                                                f

crescendo

 

                        crescrendo

Vla.

f

                                                 crescendo

f

    Vc.

arco

p



  III

I

I



 II

I

pizz.



III

II

f

III arco

p

mf

       

I

II

pizz.

 

 

p



II

arco





I



III

mf

 p

mf

Cb.

pizz.





II





I



II

I

II


35

   169

p crescendo poco a poco

  Vln. 1



p crescendo poco a poco

 

 

 

 

 

 

 

 

 

 

 

 

p crescendo poco a poco

 



p crescendo poco a poco

 

        p crescendo poco a poco

 

               

p crescendo poco a poco

Vln. 2

                                                 p subito crescendo poco a poco

                                                 p subito crescendo poco a poco

                                                 p subito crescendo poco a poco

                                                 Vla.

p subito crescendo poco a poco

 

                        p crescendo poco a poco

                                                 p subito crescendo poco a poco

  Vc.

I

arco

p



II





I

pizz.

  III

II



 

II

 II

I





III

II

I

p

mf II

 

I

 

mf

mf

Cb.

 

  pizz.

arco pizz.



II

p

arco





I




36

170                                                    



  Vln. 1

 

 





 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

   

   

                                                                                                     Vln. 2

                                                                                                                                               6

6

5

6

6

5



                                         



                                         



Vla.

6

5

6

6

6

5

                                          III arco

  Vc.

II

I

pizz. III



II

Cb.

II

pp

 

pizz.



III

II

mf

arco



II

 



I





II

p

   II





I







I

mf

pizz.

mf





 


37

171                                        mf

                                                                     Vln. 1

mf

                                                                                                                                      

                                                                     mf

                                                                   mf

Vln. 2

                                                                  

                                                                      

5

              5

3

3

 3



3

3

               

3



               







Vla.

5

5

                 

3

3 3

3 3



3

I

pp





Vc.

 

I   

pp







Cb.

   

pp


38

173                                 

                                      Vln. 1

                                   mf

                                               mf

                               

  

                                

  

                                

  

Vln. 2

mf

                                        mf

  





 

3

  

3





 

  





 





 

Vla.

  

Vc.

3

3

 

 arco div.

Cb.

    

pp crescendo

 

   

  


39

q = 144

                                       

                             

                 

                  

             



 

                



  

 

 

  

 

 

(light separation)

   

 

 

(light separation)

175 Vln. 1

unis. on the string

f unis. on the string

Vln. 2

                                   

    on the string

  f

Vla. div.a2

on the string

f

arco

f

Vc. div.a4

arco f

Cb.

f

    

 



  

  

 



 

  

  

 

  

(light separation)

                                                                                  180

Vln. 1

Vln. 2

                                                                                  

Vla.



     

Vc. (div.a4)

Cb.

 

  

   

 

sim.

 

gliss.

p

 

gliss.

p

 

f

p

 

f

gliss.

gliss.

p

 

f

p

 

f

gliss.

 f

gliss.

p

 f

   

  

 

sim.

 

 

 

 

  



 

 









 

  



   

   

 

 

 

sim.

 

 

 

 

 

 

 


40

                                                                                    185

Vln. 1

Vln. 2

                                                         

unis.

Vla.

f

Vc. (div.a4)

Cb.

  

   



 

      

 

  



   

   

 

  



   



       

 

 

 

    

 

 











 



             

 

 

3

3

3

3

3

3







3

 

 

 







 

3

 

 

 

 

3

      190

Vln. 1

p

Vln. 2

     p

Vla.

  p

 

                              

                               





Cb.

                                                                                                   p

  unis.                                                    p

mf

p

mf

mf

p

Vc.

p

div.a4 (as before)

  

  

(as before)

  

crescendo

   crescendo

div. (as before)

   crescendo

  




                 

195 Vln. 1

                                                                 

41

                                                                                 

Vln. 2

Vla.

Vc. (div.a4)

 



   



   













 

 













 

 





      

mf

mf

  

Cb.



 

 

 

mf

 

mf

   

    

           div.         

200

Vln. 1

                                               

            p

            p

                                                      

                                                 

Vln. 2

                  

p

                                 p





Vla.

   

 





3

Vc. (div.a4)

 





3

 

 3

Cb.

   

3

 



p subito

  

p subito



  





  

 

crescendo

crescendo

  

  

  

div.a3    

  div.a3    div.a3     div.a3      

p subito

                     

 

div.a2

 

div.a2

 

div.a4

 

div.a4

                  

                                                             3

 

  

crescendo

      unis.                                             3 p subito             unis.                                      3

crescendo

  

         

p subito

3                                                          p subito


42

                                                                                  

205

crescendo

Vln. 1

Vln. 2 (div.a4)

                                                                        crescendo  gliss.                                                        



 Vla. (div.a4)

   

    

   



   

    

f

   mf

  



mf

  



mf

    



 

 



   

 

    

  

    

 



  

gliss.



    

   

    

  

    

  

    

f

gliss.

  

f

gliss.

f

 

 



  



 



                                                                            crescendo unis.

Vc.

mf

                                                                                            unis.

Cb.

crescendo

 210                      

tenuto







tenuto                        





tenuto                         









tenuto                     



f

Vln. 1

f

Vln. 2

f

 

f

               

    f

Vla.

   

f

Vc.

    f

Cb.

    f

   

        

 

 

     

                  

   

                 

                               

                                                          

                                                  


43

                                                              

   

unis.

214 Vln. 1

Vln. 2

                                                              

 

unis.

                                                                                                                                                     

Vla.

       

Vc.

    Cb.

   

  

 

  

 

  

 

  

 





                 

 





                 







                 





                 

       

    

off the string                                                                         sul G

219 Vln. 1

sempre f

on the string                                                                             

Vln. 2

mf

off the string                                                 sempre f off the string                                                              

Vla.

sempre f

         on  the string                                                                       mf

            off the string                                           

Vc.

sempre f

                                                 on the string

mf

Cb.

                on the string

mf

                                       


44 Vln. 1

Vln. 2

224                                                                    

                                                                                                                                    unis.

Vla.

Vc.

                                                                            

                                                                         mf

                                                          unis.

Cb.

                                                                 

229 Vln. 1

Vln. 2

Vla.

non divisi!

    

 

 

 

  

                                                                 mf

                                               p

Vc.

Cb.

                

           

               

mf

                               

                                                     


 

233

Vln. 1

  

 

 

Vln. 2

gliss.

45

 

 

  

                         

 

 

fp

fp

fp

f

                                                                

Vla.

p subito

                                                                

Vc.

p subito

Cb.

                                                                 f

p subito

Vln. 1

 

237    

fp

  

fp

fp

   

  

 

fp

fp

gliss.

 

Vln. 2

                                                   

Vla.

                                                 f

p

crescendo

                                                  

Vc.

f

Cb.

p

crescendo

                                                   crescendo

p

Vln. 1

e e

        240

ff





non  divisi                                                                                                 

Vln. 2

                                                  

Vla.

f

                                         

Vc.

f

Cb.

  

             


46

                                          242

Vln. 1



f

                                                                        

Vln. 2

Vla.

Vc.

Cb.

    





                       

    





                                                f

                      

   244

Vln. 1





                                                

Vln. 2

   

Vla.

Vc.

Cb.



 

 

            









       

non legato

              non legato

 Wild on the string                                                            246

Vln. 1

ff

on the string

Vln. 2

                                                        ff

on the string

Vla.

                                                        ff

                                                        on the string

Vc.

ff

Cb.

on the string                                                          ff


   249

Vln. 1

47

                                                sffz

sffz

                                                      

Vln. 2

                  

Vla.

                  

Vc.

     

                               sffz

                 sffz

Cb.

                   

     

                               sffz

                                    

                                

252

Vln. 1

sffz

Vln. 2

possibile

possibile

                          

Vla.

non div.

                  p

possibile

                                

Vc.



p

possibile

Cb.

                                  possibile

 p

  sul G                                                          255

Vln. 1

ff

sffz

sffz

                                                         sul G

Vln. 2

ff

sffz

sffz

                                                      

Vla.

f

Vc.

ff

                                                           f sffz

Cb.

sempre ff

                                                           f

sffz

sempre ff


48

                                         258

Vln. 1

sffz

                                       

Vln. 2

sffz

Vla.

                                    

Vc.

                                    

Cb.

                                    

                                         260

Vln. 1

sffz

                                      

Vln. 2

sffz

                                    

Vla.

                   

Vc.

                  sffz

Cb.

                   

                  sffz

                                     262

Vln. 1

(sempre sul G)

Vln. 2

                                    

Vla.

                                     

Vc.

Cb.

                                    

                  

                 


 

264

Vln. 1

                       4  4

4

4

Vln. 2

4

4

0

4

diminuendo molto

4

                    4

                     

 

4

4

con tutta forza 4

4

        

diminuendo molto

4

con tutta forza

diminuendo molto

                  







diminuendo molto







                  













con tutta forza

Cb.

4

           

4

Vc.

4

con tutta forza

con tutta forza

diminuendo molto

 

 

267

Vln. 1

 

Vln. 2

 

 

 

 

 

 

   

 









mp









 

mp

 

  

Vla.

 

 





 

 

 

  

  







   





 

mp

 

 









Vc.

  

I

  

  

 



 

 

mp

 

 



 

 

 

     

 

 

q. = 42

 



mp

 

 

           

           

     

morendo

morendo

  

morendo

  

morendo

 

morendo

  

mp

morendo

 

 

div.

Cb.

49

             4

Vla.

           

0

rall.         

 

mp







morendo


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.