Architecture/Construction
SMITH
—From the Foreword by James Timberlake, FAIA
THE DEFINITIVE REFERENCE ON PREFAB ARCHITECTURE FOR ARCHITECTS AND CONSTRUCTION PROFESSIONALS
W
ritten for architects and related design and construction professionals, Prefab Architecture is a guide to off-site construction, presenting the opportunities and challenges associated with designing and building with components, panels, and modules. It presents the drawbacks of building in situ (on-site) and demonstrates why prefabrication is the smarter choice for better integration of products and processes, more efficient delivery, and realizing more value in project life cycles. In addition, Prefab Architecture provides: ■
A selected history of prefabrication from the Industrial Revolution to current computer numerical control, and a theory of production from integrated processes to lean manufacturing
■
Coverage on the tradeoffs of off-site fabrication including scope, schedule, and cost with the associated principles of labor, risk, and quality
■
Up-to-date products featuring examples of prefabricated structure, enclosure, service, and interior building systems
■
Documentation on the constraints and execution of manufacturing, factory production, transportation, and assembly
■
Dozens of recent examples of prefab projects by contemporary architects and fabricators including KieranTimberlake, SHoP Architects, Office dA, Michelle Kaufmann, and many others
In Prefab Architecture, the fresh approaches toward creating buildings that accurately convey mature and expanded green building methodologies make this book an important voice for adopting change in a construction industry entrenched in traditions of the past.
A GUIDE TO MODULAR DESIGN AND CONSTRUCTION
RYAN E. SMITH is Director of the Integrated Technology in Architecture Center (I TAC), an interdisciplinary research consortium at the University of Utah College of Architecture + Planning in Salt Lake City, Utah (www.itac.utah.edu). Smith’s research and teaching focuses on promoting integration that leads to sustainable and lean design and construction practice.
PREFAB ARCHITECTURE
“Prefab Architecture . . . is beyond theory, and beyond most of what we think we know about pods, containers, mods, and joints. This book is more than ‘Prefabrication 101.’ It is the Joy of Cooking writ large for the architecture and construction industries.”
PREFAB ARCHITECTURE A GUIDE TO MODULAR DESIGN AND CONSTRUCTION
RYAN E. SMITH FOREWORD BY JAMES TIMBERLAKE, FAIA
02_275610-ftoc.indd vi
10/11/10 9:15 AM
5.5 GRIDS
125
tions, upgrades, and maintenance throughout the life of the project with the end goal to have the building be reconfigured for reuse, relocated for reuse, or disassembled for reuse of components.
5.6 Grids Grids are a geometric system of organization allowing building components and prefabricated elements to have standard dimensions. These are generally based on square and rectangular organizations thus creating straight components, flat panels, and boxlike modules, although not necessarily. Structural systems are often placed on an axial grid, while panels and modules are developed on a modular grid. • Axial grids use a central axis of a building element that is in line with the reference grid. In steel construction, W-sections are placed on grid lines, irrespective of the dimensions of the structural section. Although this is effective from a design perspective, it can present problems in coordinating how other materials and elements combine with the frame. If
each column, beam, or structural element is a different dimension, a 2D and 3D grid loses its capacity to have standardized panel or infill elements associated with the frame in a standardized connection. Specialized connections will have to be accommodated at each joining of primary structural system on an axial grid with other enclosure and interior systems.18 • Modular grids are based on the actual location and dimension of the building elements. This takes into account the three-dimensional reality of the elements, including their height, width, and thickness. Modular grids are therefore primarily used in panel and modular systems. Modular grids in the United States are based on 2-ft increments. This is because the most basic MTS products are manufactured in 2-ft dimensions including 4 ft × 8 ft sheets of plywood, 2-ft increment lengths of studs, and so on. Various building systems may use different grids. For example, an axial grid may represent the location and relationship between load-bearing frame elements, while an internal fit-out grid determines the location of
Figure 5.28 There are two different types of organizational grids in building construction: Left: Axial grids organize building frames at the center of structural members while Right: Modular grids organize buildings on face of the structure, enclosure, or any other defining building element.
08_275610-ch05.indd 125
10/11/10 9:23 AM
126
all space-enclosing or defining elements. A services grid may be used for highly sophisticated service systems such as dropped ceilings or raised floors that allow plenum spaces for utility runs. Any building systems—structure, enclosure, services, space, and even finishes and furniture—may have their own grid logic. This requires scrupulous dimensional coordination between the different building systems and the elements that support them.19 The relationship between structural elements and fit-out elements present a standard negotiation on any project, but becomes an especially potent topic
08_275610-ch05.indd 126
F U N D A M E N TA L S
with regard to prefabricated architecture. The main structure is usually a frame with non-load-bearing infill enclosure panels, room modules, or interior nonload-bearing partitions. This creates the capacity to replace the infill systems at any given time, if detailed properly. Also, the location of structural frame and infill determines the layout of interior spaces to some degree. Integrating structural frames (embedding) within other systems is an option, aligning one face with the other system, or separating the systems entirely. In prefabrication this must be coordinated seamlessly, especially when one system is site-built and another is fabricated offsite.20
10/11/10 9:23 AM