English English
2017/2018 2017/2018
3
The future is now
HAnano ® Surface
Simplicity Innovation Nanotechnology
2
HAnano® SURFACE The goal of continuous search for implant surfaces improvement is to boost scar response quality and hasten bone response, creating the possibility of an aesthetic and functional rehabilitation in short time compared to what is conventionally proposed25. Hydroxyapatite (HA), which is the main mineral present in the natural bone structure, when applied on the surface of nanostructured titanium implants, forms a homogeneous and stable coating functioning as a scar catalyst that speeds up Osseointegration when compared to conventional surfaces. This coating differs significantly in thickness, application method, clinical predictability and scientific support when compared to the HA surfaces used in the past*. From 2005 on, HAnano® surfaces have been developed by researchers from leading universities in Gothenburg (Sweden). Scientists from several countries have tested and approved its effectiveness, the results of which have been published in dozens of articles in world-renowned scientific journals1;3;4. The HAnano® coating is formed by hydroxyapatite nanocrystals, with size and shape similar to those of human bone, sintered on a microrough titanium measuring 20 nm thick that promotes a change on surface energy, increasing the hydrophilicity and providing substrate that stimulates a greater osteoblasts multiplication25;†. These crystals are applied to the titanium implant surface after a chemical treatment with double thermal acid attack (DAA), which brings a series of benefits to the Unitite implants, such as the healing process acceleration, high hydrophilicity, increased bone formation (BIC - Bone Implant Contact ) and the quality improvement of the new bone formed (BAFO - Bone Area Fraction Occupancy), keeping the original implant microtopography 24;27. The HAnano® present on the surface of the Unitite implant has shown an improvement in scar response in molecular tests of signal transduction, where the proteins involved in the scar process recorded a substantial increase in concentration, presenting the coating positive effect on the interaction with the pre-osteoblastic cells36. Likewise, there was an increase in the concentration of important osteogenic markers, such as alkaline phosphatase and ostecalcin, in a clear signaling of the mineralization process acceleration §. Among the most relevant aspects, with the greatest clinical significance, is the bone mechanical quality which is
formed around this highly hydrophilic Unitite surface, which derives from the resulting ionic potential of the HAnano®. It has been shown that the bone mechanical properties, such as modulus of elasticity and hardness in the fraction of bone area formed (BAFO), increased significantly HAnano® 16;14;27, not only in the vicinity of the bone implant interface (BIC), but also within the healing chambers and especially in distant areas of the implants. According to a in vivo study, published by Coelho and collaborators, there was an increase of +% BIC and +% BAFO - indexes superior to traditional surfaces implants¶ . A comparative study published by Wennerberg A. **, assessing different types of surfaces in animals, has shown that HAnano® greatly improves the quality of the bone formed and accelerates the healing process. Following the same line of research, Cavalcanti and colleagues compared grade IV titanium implants without surface treatment, with a double acid attack and with HAnano® coating; and the result demonstrated complete mineralization of the latter in 28 days45. Other clinical studies recently published by Pessoa and colleagues, evaluating systemically healthy patients with no local bone involvement, point to the same result in humans, emphasizing the need to associate an ideal macrogeometry, microgeometry and nanometric surface to achieve satisfactory results in time as in the case of the Unitite implant29. The resulting ionic potential of the HAnano® coating associated with its microtopography generate an increase in the titanium surface energy, making the implant highly hydrophilic, which guarantees the presence of blood and its components in the healing chamber, in additon to generating greater adsorption of the proteins involved in the Osseointegration process, demonstrating its bioactive potential. Unlike technologies used in past decades, the HAnano® surface coating has a nanometric thickness that does not alter its surface roughness, is reabsorbable and functions as a scar catalyst so that the bone tissue can interact directly with the titanium in shorter periods of time. The use of a patented and proven method of coating application ensures its stability and surface homogeneity †, which is paramount to ensure its use in several types of bone density and to guarantee the success of rehabilitation treatment with high levels of predictability.
*. HA particles can be released from well-fixed HA-coated stems: histopathology of biopsies from 20 hips 2-8 years after implantation. Røkkum M, Reigstad A, Johansson CB. Acta Orthop Scand 73 (3), 298-306. 6 2002 †. On implant surfaces: a review of current knowledge and opinions. Wennerberg A, Albrektsson T. Int J Oral Maxillofac Implants. 2010 Jan-Feb;25(1):63-74. §. Different patterns of bone fixation with hydroxyapatite and resorbable CaP coatings in the rabbit tibia at 6, 12, and 52 weeks. Reigstad O, Johansson C, Stenport V, Wennerberg A, Reigstad A, Røkkum M. J Biomed Mater Res B Appl Biomater. 2011 Oct;99(1):14-20. ¶. Biomechanical and bone histomorphologic evaluation of four surfaces on plateau root form implants: an experimental study in dogs. Coelho PG, Granato R, Marin C, Bonfante EA, Janal MN, Suzuki M. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2010 May;109(5):e39-45. **. A histomorphometric and removal torque study of screw-shaped titanium implants with three different surface topographies. Wennerberg A, Albrektsson T, Andersson B, Krol JJ. Clin Oral Implants Res. 1995 Mar;6(1):24-30.
3
SCIENTIFIC PUBLICATIONS The positive effects of HAnano's surface have been evaluated and proven in numerous scientific publications, some examples of publications are:
"NANO HYDROXYAPATITE STRUCTURES INFLUENCE EARLY BONE FORMATION." Meirelles L, Arvidsson A, Andersson M, Kjellin P, Albrektsson T, Wennerberg A. Journal of Biomedical Materials Research Part A Volume 87A, Issue 2,2008, pp. 299-307
"THE EFFECT OF CHEMICAL AND NANOTOPOGRAPHICAL MODIFICATIONS ON THE EARLY STAGES OF OSSEOINTEGRATION." Meirelles L, Currie F, Jacobsson M, Albrektsson T, Wennerberg A. The International Journal of Oral and Maxillofacial Implants Volume 23, Issue 4, 2008, pp. 641-647
4
UNITITE PRIME Diameter (mm) 3.5 4.3 5.0 Length (mm) 8.5 10.0 11.5 13.0 15.0
UNITITE SLIM Diameter (mm) 2.9 Length (mm) 10.0 11.5 13.0
UNITITE COMPACT Diameter (mm) 4.0 5.0 6.0 Length (mm) 5.0 6.0 7.0
5
PRIME, SLIM and COMPACT: three implant lines, which meet the most diverse needs.
High
hydrophilicity:
macrogeometry
HAnanoÂŽ
expands
surface
surface
combined
energy
and
with
implant
accelerates
the
Osseointegration process.
Healing chambers: while the larger coils touch the bone, guaranteeing primary stability, the smaller coils create a chamber that increases the contact between the clot and the implant, favoring the speed and quality of the healing process.
Hybrid Macrogeometry: a t first, the implant presents a cylindrical shaped body and becomes progressively conical, suitable for all bone densities.
6
OUR KITS SURGICAL
The same kit fits the entire Unitite line.
Small number of drills
Color coded to simplify clinical use.
Torque wrench with torque gauge.
Duo-digital key included
needed for osteotomy. DLC* coated drills: increased durability and cutting power. * Diamond like carbon
SAFE DRILL
7
BONE EXPANDER
SINUS LIFT
OSTEOTHES
PROSTHETIC
BONE GRAFT
SHORT DRILL
ROTARY EXPANDER
8
UNITITE PRIME RESTORATIVE OPTIONS
Open tray transfer
TEMPORARY/CEMENTED/SCREW RETAINED
Healing cap
Analog CODE TMAMU
Closed tray transfer * Coming soon. Check availability with your distributer.
CODE
DIAM.
LENGTH
CODE
DIAM.
LENGTH
CODE
UCM 3585N
3.5
8.5
CIMU 3308
3.3
0.8
ANMU
UCM 3510N
3.5
10.0
CIMU 3315
3.3
1.5
UCM 3511N
3.5
11.5
CIMU 3325
3.3
2.5
UCM 3513N
3.5
13.0
CIMU 3335
3.3
3.5
UCM 3515N
3.5
15.0
CIMU 3345
3.3
4.5
UCM 4385N
4.3
8.5
CIMU 3355
3.3
5.5
UCM 4310N
4.3
10.0
CIMU 4508
4.5
0.8
UCM 4311N
4.3
11.5
CIMU 4515
4.5
1.5
UCM 4313N
4.3
13.0
CIMU 4525
4.5
2.5
CODE
UCM 4315N
4.3
15.0
CIMU 4535
4.5
3.5
TMFMU
UCM 5085N
5.0
8.5
CIMU 4545
4.5
4.5
UCM 5010N
5.0
10.0
CIMU 4555
4.5
5.5
UCM 5011N
5.0
11.5
UCM 5013N
5.0
13.0
UCM 5015N
5.0
15.0
All measurements in mm
Maximum Torque: 60 N.cm.
Immediate loading: Recommend torque above 45 N.cm.
Speed of the initial drills: 1,200 rpm.
Early loading (as from 28 days)**: Recommended torque from 30 to 45 N.cm.
Speed of the drills 2.7 to 5.0mm: 800 rpm.
Late loading: Torque less than 30 N.cm.
Speed of the bone tap: 20 rpm*. Insertion speed: 20 to 40 rpm.
* In bone types I and II the bone tap is required to not exceed the recommended torque, and ensure the correct healing process. ** Contraindicated for patients with diabetes, smokers, pos extraction alveolus, active periodontal disease and osteoporosis. Also in patients during radiotherapy and chemotherapy.
9
Includes cover screw of 2.0 mm. Recommended from 1.5 mm to 2.0 mm For installation at bone level it is necessary to use cover screw TIMU 0012. Indicated for all type of bones.
PRIME
Internal angle of 11.5°.
Temporary titanium cylinder
20 N.cm
Plastic/Co-Cr UCLA
20 N.cm
Retaining screw
20 N.cm
CODE
DIAM.
LENGTH
CODE
DIAM.
LENGTH
CODE
DIAM.
CPTMU 3501-H
3.5
1.0
EUCLAMU 3501-H
3.8
1.0
CPTMU 3502-H
3.5
2.0
EUCLAMU 3502-H
3.8
2.0
PTM 18 PTM 1816
1.8 1.8
CPTMU 3503-H
3.5
3.0
EUCLAMU 3503-H
3.8
3.0
CPTMU 3504-H
3.5
4.0
EUCLAMU 3504-H
3.8
4.0
CPTMU 4501-H
4.5
1.0
EUCLAMU 4501-H
4.5
1.0
CPTMU 4502-H
4.5
2.0
EUCLAMU 4502-H
4.5
2.0
CPTMU 4503-H
4.5
3.0
EUCLAMU 4503-H
4.5
3.0
CPTMU 4504-H
4.5
4.0
EUCLAMU 4504-H
4.5
4.0
For temporary cylinder For UCLA
Hex Screw Anti-Rotational Component Squared Screw Abutment Screw Rotational Component
10
One-Piece Straight Universal Abutment
UNITITE PRIME
10 N.cm
20 N.cm CODE
UNIVERSAL ABUTMENT - PRE-MADE POSTS
CEMENTED RETAINED RESTORATIONS
**Two-Pieces Straight Universal Abutment
DIAM.
TRANSMUCOSAL LENGTH
CEMENTATION LENGTH
CODE
AISIT 334008
3.3
0.8
4.0
APSIT 334008
AISIT 334015
3.3
1.5
4.0
APSIT 334015
AISIT 334025
3.3
2.5
4.0
APSIT 334025
AISIT 334035
3.3
3.5
4.0
APSIT 334035
AISIT 334045
3.3
4.5
4.0
APSIT 334045
AISIT 334055
3.3
5.5
4.0
APSIT 334055
AISIT 336008
3.3
0.8
6.0
APSIT 336008
AISIT 336015
3.3
1.5
6.0
APSIT 336015
AISIT 336025
3.3
2.5
6.0
APSIT 336025
AISIT 336035
3.3
3.5
6.0
APSIT 336035
AISIT 336045
3.3
4.5
6.0
APSIT 336045
AISIT 336055
3.3
5.5
6.0
APSIT 336055
AISIT 454008
4.5
0.8
4.0
APSIT 454008
AISIT 454015
4.5
1.5
4.0
APSIT 454015
AISIT 454025
4.5
2.5
4.0
APSIT 454025
AISIT 454035
4.5
3.5
4.0
APSIT 454035
AISIT 454045
4.5
4.5
4.0
APSIT 454045
AISIT 454055
4.5
5.5
4.0
APSIT 454055
AISIT 456008
4.5
0.8
6.0
APSIT 456008
AISIT 456015
4.5
1.5
6.0
APSIT 456015
AISIT 456025
4.5
2.5
6.0
APSIT 456025
AISIT 456035
4.5
3.5
6.0
APSIT 456035
AISIT 456045
4.5
4.5
6.0
APSIT 456045
AISIT 456055
4.5
5.5
6.0
APSIT 456055
Healing cap
Angled universal abutment* CODE
DIAM.
LENGTH
CODE
DIAM.
LENGTH
3.3
0.8
UCM 3585N
3.5
8.5
CIMU 3308
UCM 3510N
3.5
10.0
CIMU 3315
3.3
1.5
UCM 3511N
3.5
11.5
CIMU 3325
3.3
2.5
UCM 3513N
3.5
13.0
CIMU 3335
3.3
3.5
UCM 3515N
3.5
15.0
CIMU 3345
3.3
4.5
UCM 4385N
4.3
8.5
CIMU 3355
3.3
5.5
UCM 4310N
4.3
10.0
CIMU 4508
4.5
0.8
4.5
1.5
UCM 4311N
4.3
11.5
CIMU 4515
UCM 4313N
4.3
13.0
CIMU 4525
4.5
2.5
UCM 4315N
4.3
15.0
CIMU 4535
4.5
3.5
UCM 5085N
5.0
8.5
CIMU 4545
4.5
4.5
UCM 5010N
5.0
10.0
CIMU 4555
4.5
5.5
UCM 5011N
5.0
11.5
UCM 5013N
5.0
13.0
UCM 5015N
5.0
15.0
All measurements in mm
10 N.cm CODE
DIAM.
HIGHER TRANSMUCOSAL LENGTH
LOWER TRANSMUCOSAL LENGTH
CEMENTATION LENGTH
ANG.
APASIT 341715
3.3
2.6
1.5
4.0
17°
APASIT 341725
3.3
3.6
2.5
4.0
17°
APASIT 341735
3.3
4.6
3.5
4.0
17°
APASIT 343015
3.3
3.15
1.5
4.0
30°
APASIT 343025
3.3
4.15
2.5
4.0
30°
APASIT 343035
3.3
5.15
3.5
4.0
30°
APASIT 361715
3.3
2.6
1.5
6.0
17°
APASIT 361725
3.3
3.6
2.5
6.0
17°
APASIT 361735
3.3
4.6
3.5
6.0
17°
APASIT 363015
3.3
3.15
1.5
6.0
30°
APASIT 363025
3.3
4.15
2.5
6.0
30°
APASIT 363035
3.3
5.15
3.5
6.0
30°
APASIT 441715
4.5
3.0
1.5
4.0
17°
APASIT 441725
4.5
4.0
2.5
4.0
17°
APASIT 441735
4.5
5.0
3.5
4.0
17°
APASIT 443015
4.5
3.75
1.5
4.0
30°
APASIT 443025
4.5
4.75
2.5
4.0
30°
APASIT 443035
4.5
5.75
3.5
4.0
30°
APASIT 461715
4.5
3.0
1.5
6.0
17°
APASIT 461725
4.5
4.0
2.5
6.0
17°
APASIT 461735
4.5
5.0
3.5
6.0
17°
APASIT 463015
4.5
3.75
1.5
6.0
30°
APASIT 463025
4.5
4.75
2.5
6.0
30°
APASIT 463035
4.5
5.75
3.5
6.0
30°
* Use hexagonal driver 0.9 mm
11
PRIME
** Coming soon. Check availability with your distributer.
Temporary acrylic cylinder
CODE
Polyacetal Impression Transfer
Analog
DIAM.
LENGTH
CPSIT 3340
3.3
4.0
CPSIT 3360
3.3
6.0
CPSIT 4540
4.5
4.0
CPSIT 4560
4.5
6.0
Calcinable polyacetal cylinder CODE
DIAM.
LENGTH
CODE
TSIT 3340
3.3
4.0
ASIT 3340
3.3
4.0
TSIT 3360
3.3
6.0
ASIT 3360
3.3
6.0
TSIT 4540
4.5
4.0
ASIT 4540
4.5
4.0
TSIT4560
4.5
6.0
ASIT 4560
4.5
6.0
DIAM.
LENGTH
CODE
DIAM.
LENGTH
CCSIT 3340
3.3
4.0
CCSIT 3360
3.3
6.0
CCSIT 4540
4.5
4.0
CCSIT 4560
4.5
6.0
Hex Screw Anti-Rotational Component Squared Screw Abutment Screw Rotational Component
12
UNITITE PRIME CONICAL ABUTMENT
SINGLE/MULTIPLE SCREW RETAINED RESTORATIONS
Healing cap
Conical abutment
Conical abutment protector
20 N.cm CODE
DIAM
LENGTH
CODE
UCM 3585N
3.5
8.5
CIMU 3308
UCM 3510N
3.5
10.0
CIMU 3315
UCM 3511N
3.5
11.5
CIMU 3325
UCM 3513N
3.5
13.0
CIMU 3335
UCM 3515N
3.5
15.0
UCM 4385N
4.3
UCM 4310N UCM 4311N
DIAM
LENGTH
CODE
DIAM
LENGTH
0.8
ACMU 4808
4.8
0.8
3.3
1.5
ACMU 4815
4.8
1.5
3.3
2.5
ACMU 4825
4.8
2.5
3.3
3.5
ACMU 4835
4.8
3.5
CIMU 3345
3.3
4.5
ACMU 4845
4.8
4.5
8.5
CIMU 3355
3.3
5.5
ACMU 4855
4.8
5.5
4.3
10.0
CIMU 4508
4.5
0.8
4.3
11.5
CIMU 4515
4.5
1.5
UCM 4313N
4.3
13.0
CIMU 4525
4.5
2.5
UCM 4315N
4.3
15.0
CIMU 4535
4.5
3.5
UCM 5085N
5.0
8.5
CIMU 4545
4.5
4.5
UCM 5010N
5.0
10.0
CIMU 4555
4.5
5.5
UCM 5011N
5.0
11.5
UCM 5013N
5.0
13.0
UCM 5015N
5.0
15.0
All measurements in mm
3.3
CODE PA 4855
Open tray transfer
CODE TMAA 4800
Laboratory screw
Temporary titanium cylinder
10 N.cm
Analog
CODE
TMAA 4806
Polishing protector
CODE PL 1405
PTA 4800-3
Short
PTMA 13-1 Long
PTA 4806-3
Closed tray transfer
CODE ANAC
Calcinable Co-Cr cylinder
CODE PPAC 01
Retaining screw
10 N.cm CODE TMFA 4800 TMFA 4806
10 N.cm
CODE
LENGTH
PRH 30
3.0
CODE CPAC 06-3 CPAC 00-3 CALE 06-3
Cobalt-chrome
CALE 00-3
Cobalt-chrome
Hex Screw Anti-Rotational Component Squared Screw Abutment Screw Rotational Component
PRIME
13
14
Straight multi-unit abutment
UNITITE PRIME MULTI-UNIT ABUTMENTS
MULTIPLE SCREW RETAINED RESTORATIONS
20 N.cm
Healing cap
CODE
DIAM.
LENGTH
MAMU 4808
4.8
0.8
MAMU 4815
4.8
1.5
MAMU 4825
4.8
2.5
MAMU 4835
4.8
3.5
MAMU 4845
4.8
4.5
MAMU 4855
4.8
5.5
Angled multi-unit abutment*
15 N.cm
CODE
DIAM.
LENGTH
CODE
UCM 3585N
3.5
8.5
UCM 3510N
3.5
10.0
CIMU 3308
UCM 3511N
3.5
11.5
UCM 3513N
3.5
13.0
UCM 3515N
3.5
15.0
UCM 4385N
4.3
8.5
UCM 4310N
4.3
10.0
UCM 4311N
4.3
11.5
UCM 4313N
4.3
13.0
UCM 4315N
4.3
15.0
UCM 5085N
5.0
8.5
UCM 5010N
5.0
10.0
UCM 5011N
5.0
11.5
UCM 5013N
5.0
13.0
UCM 5015N
5.0
15.0
DIAM. 3.3
LENGTH 0.8
CIMU 3315
3.3
1.5
CIMU 3325
3.3
2.5
CIMU 3335
3.3
3.5
CIMU 3345
3.3
4.5
CIMU 3355
3.3
5.5
CIMU 4508
4.5
0.8
CIMU 4515
4.5
1.5
CIMU 4525
4.5
2.5
CIMU 4535
4.5
3.5
CIMU 4545
4.5
4.5
CIMU 4555
4.5
5.5
CODE
DIAM. LENGTH ANG.
MAMA 1715
4.8
1.5
17º
MAMA 1725
4.8
2.5
17º
MAMA 1735
4.8
3.5
17º
MAMA 3015
4.8
1.5
30º
MAMA 3025
4.8
2.5
30º
MAMA 3035
4.8
3.5
30º
* Use hexagonal driver 0.9 mm
Micro multi-unit Abutment
All measurements in mm
20 N.cm CODE
DIAM.
LENGTH
MMAM 3308
3.5
0.8
MMAM 3315
3.5
1.5
MMAM 3325
3.5
2.5
MMAM 3335
3.5
3.5
MMAM 3345
3.5
4.5
15
Temporary titanium cylinder
Abutment protector
CODE
Analog
Laboratory screw
Polishing protector
10 N.cm
CODE
CODE
TMAM 4800
PTM 4800-2
For angled multi-unit
PTM 4800-3
For straight multi-unit
PL 1405 short PTMA 13-1 long CODE PPM 01
Closed tray transfer
CODE P MA 4855
Retaining screw
Calcinable Co-Cr cylinder
CODE ANMA 4800
10 N.cm
10 N.cm
CODE
CODE CPM 4800-2 For angled multi-unit
CODE
LENGTH
PRH 20
2.0
PRH 30
3.0
CPM 4800-3 For straight multi-unit
TMFM 4800
CLEM 4800-2 Cobalt-chrome/For angled multi-unit CLEM 4800-3 Cobalt-chrome/For straight multi-unit
Laboratory screw
Temporary titanium cylinder
Abutment protector
Open tray transfer
Analog
10 N.cm
Polishing protector
CODE PTMMA 14
CODE CPMT 33
Retaining screw
Calcinable Co-Cr cylinder CODE CODE
CODE
CODE
PMM 33
TMM 33
AMMA 33
PPMM 33 10 N.cm
CODE PRH 3035
10 N.cm
Hex Screw
CODE CPMC 33
Plastic
CPMM 33
Cobalt-chrome
Anti-Rotational Component Squared Screw Abutment Screw Rotational Component
PRIME
Open tray transfer
16
UNITITE PRIME OVERDENTURE SOLUTIONS
MULTI-UNIT + BAR-CLIP RESTORATIONS
Straight multi-unit abutment
20 N.cm
Healing cap
CODE
DIAM.
LENGTH
MAMU 4808
4.8
0.8
MAMU 4815
4.8
1.5
MAMU 4825
4.8
2.5
MAMU 4835
4.8
3.5
MAMU 4845
4.8
4.5
MAMU 4855
4.8
5.5
Angled multi-unit abutment* CODE
DIAM.
LENGTH
UCM 3585N
CODE
DIAM. 3.5
LENGTH 8.5
CIMU 3308
3.3
0.8
UCM 3510N
3.5
10.0
CIMU 3315
3.3
1.5
UCM 3511N
3.5
11.5
CIMU 3325
3.3
2.5
UCM 3513N
3.5
13.0
CIMU 3335
3.3
3.5
UCM 3515N
3.5
15.0
CIMU 3345
3.3
4.5
UCM 4385N
4.3
8.5
CIMU 3355
3.3
5.5
UCM 4310N
4.3
10.0
CIMU 4508
4.5
0.8
UCM 4311N
4.3
11.5
CIMU 4515
4.5
1.5
UCM 4313N
4.3
13.0
CIMU 4525
4.5
2.5
UCM 4315N
4.3
15.0
CIMU 4535
4.5
3.5
UCM 5085N
5.0
8.5
CIMU 4545
4.5
4.5
UCM 5010N
5.0
10.0
CIMU 4555
4.5
5.5
UCM 5011N
5.0
11.5
UCM 5013N
5.0
13.0
UCM 5015N
5.0
15.0
All measurements in mm
15 N.cm CODE
DIAM. LENGTH ANG.
MAMA 1715
4.8
1.5
17°
MAMA 1725
4.8
2.5
17°
MAMA 1735
4.8
3.5
17°
MAMA 3015
4.8
1.5
30°
MAMA 3025 MAMA 3035
4.8 4.8
2.5 3.5
30° 30°
* Use hexagonal driver 0.9 mm
Abutment protector
CODE PMA 4855
PRIME
17
Open tray transfer
CODE
Analog
TMAM 4800
Calcinable Co-Cr cylinder
Overdenture bar
Plastic clip
Ø 2.5mm
13mm
Closed tray transfer
45mm
10 N.cm CODE ANMA 4800
Ø 1.95mm
CODE CLEM 4800-2
Cobalt-chrome For angled multi-unit
CLEM 4800-3
Cobalt-chrome For straight multi-unit
CPM 4800-2
Plastic For angled multi-unit
CPM 4800-3
Plastic For straight multi-unit
Ø 4.2mm
CODE
CODE
FO 01
CLIPP
CODE TMFM 4800
Hex Screw Anti-Rotational Component Squared Screw Abutment Screw Rotational Component
18
UNITITE PRIME
Open tray transfer
OVERDENTURE SOLUTIONS
O´RING ATTACHMENT
Healing cap
Analog
CODE TMAMU
Closed tray transfer CODE
DIAM.
LENGTH
CODE
DIAM.
LENGTH
UCM 3585N
3.5
8.5
CIMU 3308
3.3
0.8
UCM 3510N
3.5
10.0
CIMU 3315
3.3
1.5
UCM 3511N
3.5
11.5
CIMU 3325
3.3
2.5
UCM 3513N
3.5
13.0
CIMU 3335
3.3
3.5
UCM 3515N
3.5
15.0
CIMU 3345
3.3
4.5
UCM 4385N
4.3
8.5
CIMU 3355
3.3
5.5
UCM 4310N
4.3
10.0
CIMU 4508
4.5
0.8
UCM 4311N
4.3
11.5
CIMU 4515
4.5
1.5
UCM 4313N
4.3
13.0
CIMU 4525
4.5
2.5
UCM 4315N
4.3
15.0
CIMU 4535
4.5
3.5
UCM 5085N
5.0
8.5
CIMU 4545
4.5
4.5
UCM 5010N
5.0
10.0
CIMU 4555
4.5
5.5
UCM 5011N
5.0
11.5
UCM 5013N
5.0
13.0
UCM 5015N
5.0
15.0
All measurements in mm
*Coming soon. Check availability with your distributer.
CODE ANMU
CODE TMFMU
PRIME
19
Abutment O’Ring
Titanium cap+O’Ring
O’Ring
Directional rings
20 N.cm CODE
DIAM.
LENGTH
CODE
CODE
CODE
AOM 4815
4.0
1.5
AFROM
OCAN
POS01
0º
White
AOM 4825
4.0
2.5
POS02
7º
Yellow
AOM 4835
4.0
3.5
POS03
14º
Blue
AOM 4845
4.0
4.5
O’Ring attachment torque driver
O’Ring attachment hand driver
O’Ring insert hand driver
O’Ring removal hand driver
CODE
CODE
CODE
CODE
CCAO 20
CDAO 20
MOR
ROR
CCAO 24
CDAO 24
Hex Screw Anti-Rotational Component Squared Screw Abutment Screw Rotational Component
20
UNITITE SLIM UNIVERSAL ABUTMENT - PRE-MADE POSTS
CEMENTED RETAINED RESTORATIONS
Straight universal abutment
Healing cap
15 N.cm CODE
DIAM.
LENGTH
CODE
DIAM.
LENGTH
UCMS 2910N
2.9
10.0
CIMUS 3315
3.3
1.5
UCMS 2911N
2.9
11.5
CIMUS 3325
3.3
2.5
UCMS 2913N
2.9
13.0
CIMUS 3335
3.3
3.5
CIMUS 3345
3.3
4.5
All measurements in mm
CODE
DIAM.
TRANSMUCOSAL CEMENTATION LENGTH LENGTH
AISITS 334008
3.3
0.8
4.0
AISITS 334015
3.3
1.5
4.0
AISITS 334025
3.3
2.5
4.0
AISITS 334035
3.3
3.5
4.0
AISITS 334045
3.3
4.5
4.0
AISITS 334055
3.3
5.5
4.0
AISITS 336008
3.3
0.8
6.0
AISITS 336015
3.3
1.5
6.0
AISITS 336025
3.3
2.5
6.0
AISITS 336035
3.3
3.5
6.0
AISITS 336045
3.3
4.5
6.0
AISITS 336055
3.3
5.5
6.0
Maximum Torque: 45 N.cm. Speed of the initial drills: 1,200 rpm. Speed of the drill 2.7mm: 800 rpm. Speed of the bone tap: 20 rpm*. Insertion speed: 20 to 40 rpm.
Suitable for late loading: As from 60 days. * In bone types I and II the bone tap is required to not exceed the recommended torque, and ensure the correct healing process.
21
Includes cover screw of 2.0 mm. Recommended 1.5 mm infra-bone installation. Indicated for all type of bones. Internal angle of 3°.
Calcinable polyacetal cylinder
Polyacetal Impression Transfer
CODE
DIAM.
LENGTH
CCSIT 3340
3.3
4.0
CCSIT 3360
3.3
6.0
SLIM
Analog
Temporary acrylic Cylinder CODE
DIAM.
LENGTH
CODE
DIAM.
LENGTH
TSIT 3340 TSIT 3360
3.3 3.3
4.0 6.0
ASIT 3340
3.3
4.0
ASIT 3360
3.3
6.0
CODE
DIAM.
LENGTH
CPSIT 3340
3.3
4.0
CPSIT 3360
3.3
6.0
Hex Screw Anti-Rotational Component Squared Screw Abutment Screw Rotational Component
22
UNITITE SLIM MICRO MULTI-UNIT ABUTMENT
MULTIPLE SCREW RETAINED RESTORATIONS
Healing cap
Micro multi-unit Abutment
Abutment protector
15 N.cm CODE
DIAM.
LENGTH
CODE
DIAM.
LENGTH
UCMS 2910N
2.9
10.0
CIMUS 3315
3.3
1.5
UCMS 2911N
2.9
11.5
CIMUS 3325
3.3
2.5
UCMS 2913N
2.9
13.0
CIMUS 3335
3.3
3.5
CIMUS 3345
3.3
4.5
All measurements in mm
CODE
DIAM.
TRANSMUCOSAL LENGTH
MMAMS 3315
3.5
1.5
MMAMS 3325
3.5
2.5
MMAMS 3335
3.5
3.5
CODE PMM 33
23
Temporary titanium cylinder
Analog
10 N.cm CODE
Polishing protector
CPMT 33
CODE
LENGTH 1.4
PTMMA 14
Calcinable Co-Cr cylinder
Retaining screw
CODE
CODE
CODE
TMM 33
AMMA 33
PPMM 33
10 N.cm
10 N.cm
CODE
CODE
LENGTH
CPMC 33
PRH 3035
1.4
CPMM 33 Cobalt-chrome
Hex Screw Anti-Rotational Component Squared Screw Abutment Screw Rotational Component
SLIM
Open tray transfer
Laboratory screw
24
UNITITE COMPACT UNIVERSAL ABUTMENT - PRE-MADE POSTS
CEMENTED RETAINED RESTORATIONS
Healing cap
CODE
DIAM.
Straight universal abutment
LENGTH
UCMC 4005N
4.0
5.0
UCMC 4006N
4.0
6.0
UCMC 4007N
4.0
7.0
UCMC 5005N
5.0
5.0
UCMC 5006N
5.0
6.0
UCMC 5007N
5.0
7.0
UCMC 6005N
6.0
UCMC 6006N
6.0
UCMC 6007N
6.0
20 N.cm CODE
DIAM.
LENGTH
CODE
DIAM.
TRANSMUCOSAL CEMENTATION LENGTH LENGTH
5.0
CIC 4002
4.0
2.0
CIC 4004
4.0
4.0
AIMC 45401
4.5
1.0
4.0
6.0
4.0
6.0
4.5
2.0
4.0
7.0
CIC 4006
AIMC 45402 AIMC 45403
4.5
3.0
4.0
AIMC 45404
4.5
4.0
4.0
AIMC 45405
4.5
5.0
4.0
AIMC 45601
4.5
1.0
6.0
AIMC 45602
4.5
2.0
6.0
AIMC 45603
4.5
3.0
6.0
AIMC 45604
4.5
4.0
6.0
AIMC 45605
4.5
5.0
6.0
All measurements in mm
Maximum Torque: 60 N.cm. Speed of the initial drills: 1,200 rpm. Speed of the drills 2.7 to 5.8mm: 800 rpm. Speed of the bone tap: 20 rpm*. Insertion speed: 20 to 40 rpm.
Suitable for late loading: As from 60 days. * In bone types I and II the bone tap is required to not exceed the recommended torque and ensure the correct healing process.
25
Includes cover screw of 0.0 mm. Recommended bone level installation. Indicated for all type of bones Internal angle of 4°
Temporary acrylic cylinder
Polyacetal Impression Transfer
Analog
CODE
DIAM.
LENGTH
CPSIT 4540
4.5
4.0
CPSIT 4560
4.5
6.0
Calcinable polyacetal cylinder CODE
DIAM.
LENGTH
TSIT 4540
DIAM. 4.5
LENGTH 4.0
ASIT 4540
4.5
4.0
TSIT 4560
4.5
6.0
ASIT 4560
4.5
6.0 CODE
DIAM.
LENGTH
CCSIT 4540
4.5
4.0
CCSIT 4560
4.5
6.0
COMPACT
CODE
Hex Screw Anti-Rotational Component Squared Screw Abutment Screw Rotational Component
26
UNITITE COMPACT MULTI-UNIT ABUTMENT
MULTIPLE SCREW RETAINED RESTORATIONS Open tray transfer
Multi-unit Abutment
Healing cap
Abutment protector
CODE TMAM 4800
CODE
DIAM.
LENGTH
UCMC 4005N
4.0
5.0
UCMC 4006N
4.0
6.0
UCMC 4007N
4.0
7.0
UCMC 5005N
5.0
5.0
UCMC 5006N
5.0
6.0
UCMC 5007N
5.0
7.0
Closed tray transfer 20 N.cm CODE
DIAM.
LENGTH
UCMC 6005N
6.0
5.0
UCMC 6006N
6.0
6.0
CIC 4002
4.0
2.0
UCMC 6007N
6.0
7.0
CIC 4004
4.0
4.0
CIC 4006
4.0
6.0
All measurements in mm
CODE
CODE DIAM.
TRANSMUCOSAL LENGTH
MAC 4801
4.8
1.0
MAC 4802
4.8
2.0
MAC 4803
4.8
3.0
MAC 4804
4.8
4.0
MAC 4805
4.8
5.0
PMA 4855
CODE TMFM 4800
27
Laboratory screw
Temporary titanium cylinder
Analog
10 N.cm
Polishing protector
CODE
CODE
PTM 4800 -3 For straight multi-unit
PL 1405
Short
PTMA 13-1
Long
Calcinable Co-Cr cylinder
Retaining screw
CODE
CODE
ANMA 4800
PPM 01
10 N.cm CODE
10 N.cm CODE
LENGTH
PRH 30
3.0
CPM 4800-3 For straight multi-unit
COMPACT
CLEM 4800-3 Cobalt-chrome/For straight multi-unit
Hex Screw Anti-Rotational Component Squared Screw Abutment Screw Rotational Component
28
Unitite Prime
DRILLING SEQUENCE GUIDE Unitite Prime 1.200 RPM
800 RPM
20 RPM
1.200 RPM
800 RPM
20 RPM
1.200 RPM
800 RPM
20 RPM
Unitite Prime
PLAT.
FRLD 2005
FHCD 2015
FUM 2915
FUM 3515
FUM 4315
FUM 5015
CMRU 35
3.5
(mm) 4.3
● FRLD 2005 ●
● FHCD 2015 ●
● FUM 2915 ●
● FUM 3515 ●
FUM 4315 ●
FUM 5015
● CMRU 35
PLAT.
3.5 5.0 (mm) 4.3 3.5
● FRLD ● 2005 ● ●
● FHCD ● 2015 ● ●
● FUM ● 2915 ● ●
● FUM ● 3515 ● ●
FUM ● 4315 ●
FUM ● 5015
● CMRU 35
5.0 4.3
● ●
● ●
● ●
● ●
● ●
●
5.0
●
●
●
●
●
●
(mm)
PLAT.
Unitite Slim Unitite Slim Unitite Slim
●
CMRU 43
CMRU 50
CMRU 43 ●
CMRU 50
CMRU 43 ●
CMRU ● 50
●
●
●
1.200 RPM
800 RPM
20 RPM
1.200 RPM
800 RPM
20 RPM
1.200 RPM
800 RPM
20 RPM
PLAT. (mm)
FRLD 2005
FHCD 2015
FUM 2915
CMRU 29
PLAT. (mm)
FRLD 2005
FHCD 2015
FUM 2915
CMRU 29
2.9
●
●
●
●
PLAT. (mm)
FRLD 2005
FHCD 2015
FUM 2915
CMRU 29
2.9
●
●
●
●
2.9
●
●
●
●
Unitite Compact Unitite Compact
1.200 RPM
800 RPM
20 RPM
1.200 RPM
800 RPM
20 RPM
1.200 RPM
800 RPM
20 RPM
Unitite Compact
PLAT.
( mm )
4.0
PLAT.
( mm )
5.0
4.0 PLAT. 6.0
FRLD 2005 ●
FRLD 2005 ● ●
FHCD 2015 ●
FHCD 2015 ● ●
( mm )
FRLD ● 2005
FHCD ● 2015
6.0
●
●
FUM 2915 ●
FUM 2915 ● ●
FUM ● 2915
FUM 3515 ●
FUM 3515 ● ●
FUM ● 3515
FHCD 3215
FHCD 4215
FHCD CMRUC CMRUC CMRUC 5215 40 50 60
FHCD 4215 ●
FHCD CMRUC CMRUC CMRUC 5215 40 50 60 ●
FHCD ● 3215
FHCD ● 4215
FHCD CMRUC CMRUC CMRUC ● ● 5215 40 50 60
●
●
●
FHCD 3215 ● ●
●
●
5.0 ● ● ● ● ● ● ● 4.0 ● ● ● ● ● ● 6.0 ● ● ● ● ● ● ● ● For all implants, in bone tap to ●not exceed the recommended torque and ensure the correct 5.0 types ● I and ● II the bone ● ● is required ● ●
healing process.
●
●
●
●
5
UCM 35xxN
UCM 43xxN
3.50 11.5° 2.50
UCM 50xxN
x. 2
5
4.30 11.5° 2.50
He
11.5 °
2.50
29 4.30
UCM 35xxN
UCM 43xxN
3.50 11.5° 2.50
UCM 50xxN
8.5mm 10mm 11.5mm 13mm 15mm
4.30 11.5° 2.50
5
UCM 35xxN
2,90 3°
3.50 11.5° 2.50
1.8
UCM 35xxN
UCM 43xxN
3.50 11.5° 2.50
4.30 11.5° 2.50
1.8
He
UCMS 29xxN Unitite Slim
x. 2
10mm 11.5mm 13mm 15mm
He
UCM 43xxN
2,90
5
UCMS3°29xxN
UCM 50xxN
2
2,90 3°
UCMS 29xxN
4.30 11.5° 2.50
x. 28.5mm
3
2.3
4.30 11.5° 2.50
2.3
3.50 11.5° 2.50
UCM 43xxN
3.50
x. 2
He
Unitite Prime UCM 35xxN
5
2
UCM 50xxN 5 11.5 ° 2.50
He
2.50
TECHNICAL INFORMATION UCMS 29xxN
x. 2
x. 2
He
11.5 °
1.8
2.50
10mm 11,5mm x. 2 He 13mm
8.5mm 10mm x. 2 He 11.5mm 13mm 15mm
5
11.5 °
UCMS 29xxN
4.30
2.90 2 3°
2
x. 2
3
2.3
He
2,90 3° 3.50
.2 ex
He
2.90 3°
10mm 11,5mm 10mm 13mm
H
x. 2
8.5mm 10mm 11.5mm 13mm 15mm
2,90 3°
2,4
2
11.5mm 13mm
UCMS 29xxN 2.90 3°
30
2
d.
1.
10mm 11,5mm 13mm
3.50
ua
2
Q
3
2.3
x. 2
He
10mm 11.5mm 13mm
2,4
He x. 2
x. 2
x. 2
He
He
2.4
2.90
UCMS 29xxN 2.90 UCMC 40xxN 4 4° 2.50
3°
2
Código:
UCMC 50xxN
Escala:
UCMC 60xxN Unitite Slim
Q Qu ua ad d. . 1 1, .3 300
10mm 11,5mm 13mm 2,4
5 4° 10mm 2.50 11.5mm 13mm
5
4.30
d.
1.
30
3.50
30
d.
2,90
x. 2
4
30
1,
d. Q ua
d.
ua
mm
8:1 Unidade
03/01/2017
mm
2,90
4
5
Código:
8:1
03/01/2017
x. 2
He
x. 2 He4
5
5
6
6
6
Escala:
Data:
4
Escala:
Data:
x. 2
Unitite Slim
H
6
Escala:
Unidade
5mm 6mm 7mm
.2 ex
x. 2
He
He
He
H
x. 2
5mm 6mm 7mm
Unitite Slim
Unitite Slim 8:1
6 Data: 4° 2.5003/01/2017
.2 ex
He
mm
Código:
UCMC 60xxN Unitite Slim
5 4° 2.50
Código:
Unidade
x. 2
5
He
Código:
UCMC 50xxN
8:1
6 Data: 4° 2.5003/01/2017
1,
5 4° 2.50
5mm 6mm 7mm
Escala:
UCMC 60xxN Unitite Slim
2.4
2.90
Q
2,90
ua Q
0 .3 ua d
.1
4 4° 2.50
Data:
4° Data: 03/01/2017 03/01/2017 2.50
Código:
UCMC 50xxN
Código: Código:
UCMC 60xxN UnititeSlim Slim Unitite 6
He
x. 2
He
x. 2
UCMC 40xxN
5 4° 2.50 x. 2
1,
4 4° 2.50
10mm 11.5mm 13mm 2.4
2.90
UCMC 50xxN 30
Q
ua
UCMC 40xxN
Unitite Compact
4 4° 2.50
mm
5mm 6mm 7mm
He
UCMC 40xxN
Unidade
2.4
2.90
2,4
8:1
6 Data: 4° 2.5003/01/2017
2,90
Q
2
2.90 3°
UCMS 29xxN
8.5mm 3 10mm 11.5mm 13mm 15mm
UCMS 29xxN
1.8
UCMS 29xxN
4.30
5
2.3
UCM 50xxN
2.50
11.5 °
3
10mm 11,5mm 13mm
1.8
2
Unidade
mm
30
WHAT THE SPECIALISTS SAY
ANN WENNERBERG “Our research group has worked with the HAnano® surface for over 10 years. Until now this research has resulted in two doctoral theses and another one is in progress. Our experimental results in 17 in vivo studies, mostly on rabbits, usually shows an improved bone response for the titanium with the HAnano® surface and PEEK implants when compared with implants without this surface.”
DDS/PhD and Director of the Department of Dental Prosthesis at the Malmö University, Sweden. Specialized in Implant Surface and author of more than 220 scientific articles published in renowned magazines on this subject.
STUDIES 12
Genetic Responses to Nanostructured Calcium-phosphate-coated Implants. Jimbo R, Xue Y, Hayashi M, Schwartz-Filho HO, Andersson M, Mustafa K, Wennerberg A. J DENT RES published online 20 September 2011
13
Histological and three-dimensional evaluation of osseointegration to nanostructured calcium phosphate-coated implants. Jimbo R, Coelho PG, Vandeweghe S, Humberto Osvaldo Schwartz-Filho HO, Hayashi M, Ono D, Andersson M, Wennerberg A. Acta Biomater. 2011 Dec;7(12):4229-34.
3
Nano hydroxyapatite-coated implants improve bone nanomechanical properties.
Jimbo R, Coelho PG, Bryington M, Baldassarri M, Tovar N, Currie F, Hayashi M, Janal MN, Andersson M, Ono D, Vandeweghe S, Wennerberg A. J Dent Res. 2012;91(12):1172-7
11
The biological response to three different nanostructures applied on smooth implant surfaces. Jimbo R, Sotres J, Johansson C, Breding K, Currie F, Wennerberg A. Clin Oral Implants Res. 2012;23(6):706-12
2
The effect of chemical and nanotopographical modifications on the early stages of osseointegration. Meirelles L, Currie F, Jacobsson M, Albrektsson T, Wennerberg A. Int J Oral Maxillofac Implants. 2008 Jul-Aug;23(4):641-7
31
WHAT THE SPECIALISTS SAY
FÁBIO BEZERRA "Surface coating HAnano®, used in the Unitite implant, and 20 nanometers thick, homogeneously coating the entire surface, significantly increases surface energy, hydrophilicity and scar response in the early stages of the Osseointegration process. The positive impact of its bioavailability has been demonstrated by different advanced methods of research, such as signal transduction and atomic force microscopy. Higher protein adsorption, associated to a statistically significant presence of proteins related to the bone healing process in the presence of a biological catalyst for mineralization, make this surface one of the most advanced in the implants global market.”
A Graduate of Bauru School of Dentistry - USP Specialist in Periodontics, Bauru School of Dentistry - USP Specialist in Implantology by INEPO - SP Master in Implantology by UNIP - São Paulo Doctor in Biotechnology by IBB - UNESP
STUDIES 45
Functional evaluation of implants by bone mineralization in vitro. Lima JHC; Tanaka MN; Bezerra FJ; Maia VTG; Robbs PCM
Rev. bras. odontol., Rio de Janeiro, v. 72, n. 1/2, p. 92-5, jan./jun. 2015
46
Titanium-based dental implants favor cell-signaling pathway involved in the survival and proliferation of osteoblasts. Bezerra FJ, Rossi MC, Fernandes CJC, Nascimento A, Ferreira MR, Zambuzzi WF Innov Implant J, Biomater Esthet. 2014;9(2/3):8-12
37
Microtomographic evaluation of a new nanometric hydroxyapatite covered implant surface. In vivo study in diabetic rats. Scombatti de Souza S, Oliveira P, Borges C, Reino D, Novaes Jr A, Taba Jr M, Bezerra FJ. Clin. Oral Impl. Res. 27 (Suppl. 13), 2016
38
Evaluation of a new nanometric hydroxyapatite covered implant surface. In vivo study in diabetic rats analysing osteogenesis gene expression. Oliveira P, Scombatti de Souza S, Sales M, Novaes Jr A, Palioto D, Messora M, Santos F, Bezerra FJ. Clin. Oral Impl. Res. 27 (Suppl. 13), 2016
36
Nano hydroxyapatite-blasted titanium surface affects pre-osteoblast morphology by modulating critical intracellular pathways. Bezerra FJ, Ferreira MR, Fontes GN, da Costa Fernandes C Jr; Andia DC, Cruz NC, da Silva RA; Zambuzzi WF. Biotechnol Bioeng. 2017 Apr 12
For original titles of the articles mentioned herein, please refer to the Scientific Publications page.
32
WHAT THE SPECIALISTS SAY
PER KJELLIN “The HAnano® surface is an ultrathin layer of synthetic bone on the surface of the implant. Each crystal of synthetic bone is extremely small, 10 to 14 nm in length and about 5nm in thickness. What makes these crystals so special is that they have the same size and shape as those found in human bone and are recognized by the bone cells, as well as by the bone tissue, which activates the catalyzer and starts a huge process of building bone around the implant. This effect has been proven in more than 20 pre-clinical studies with the best researchers in the world in the area of implants.”
CTO of Promimic, Co-inventor of the HAnano® surface, PhD in Materials and Chemical Surfaces by the Chalmers University in Gothenburg, Sweden, and author of several studies in the area of nanomaterials.
STUDIES 1
Nano hydroxyapatite structures influence early bone formation. Meirelles L, Arvidsson A, Andersson M, Kjellin P, Albrektsson T, Wennerberg A. J Biomed Mater Res A. 2008 Nov;87(2):299-307
7
Bone reaction to nano hydroxyapatite modified titanium implants placed in a gap-healing model. Meirelles L, Albrektsson T, Kjellin P, Arvidsson A, Franke-Stenport V, Andersson M, Currie F, Wennerberg A. J Biomed Mater Res A. 2008 Dec 1;87(3):624-31
4
Effect of hydroxyapatite and titania nanostructures on early in vivo bone response. Meirelles L, Melin L, Peltola T, Kjellin P, Kangasniemi I, Currie F, Andersson M, Albrektsson T, Wennerberg A. Clin Implant Dent Relat Res. 2008 Dec;10(4):245-54
5
Evaluation of bone healing on sandblasted and acid etched implants coated with nanocrystalline hydroxyapatite: an in vivo study in rabbit femur. Svanborg LM, Meirelles L, Franke-Stenport V, Kjellin P, Currie F, Andersson M, Wennerberg A. International Journal of Dentistry 2014;2014:197581. Epub 2014 Mar 2
33
WHAT THE SPECIALISTS SAY
ROBERTO PESSOA "UNITITE implants have made the results of current major clinical demands more predictable, such as shortening the time between implant installation and final patient rehabilitation, maintaining peri-implant bone height, which has a large impact on long-term aesthetic predictability and the rehabilitation of areas with poor bone availability in an efficient and minimally invasive way, in many cases avoiding the need for bone grafts. I am very flattered to have participated actively in this project. "
Researcher in the Bme - KULeuven, Belgium. Post-PhD in Biomechanics by the FEMEC/UFU and Researcher in the Bme - KULeuven, Belgium. PhD in Periodontics/Dental Implant FOAr/UNESP - Araraquara, Brazil. Master in Oral Rehabilitation - FOUFU - Uberlândia, Brazil.
STUDIES 30
Bone Remodeling Around Implants with External Hexagon and Morse-Taper Connections: A Randomized, Controlled, Split-Mouth, ClinicalTrial. Pessoa RS, Sousa RM, Pereira LM, Neves FD, Bezerra FJ, Jaecques SV, Sloten JV, Quirynen M, Teughels W, Spin-Neto R. Clin Implant Dent Relat Res. 2017 Feb;19(1):97-110
26
Influence of implant design on the biomechanical environment of immediately placed implants: computed tomography-based nonlinear three-dimensional finite element analysis. Pessoa RS, Coelho PG, Muraru L, Marcantonio Jr E, Vaz LG, Sloten JV, Jaecques SV. Int J Oral Maxillofac Implants. 2011 Nov-Dec;26(6):1279-87
34
Biomechanical evaluation of platform switching: different mismatch sizes, connection types, and implant protocols. Pessoa RS, Bezerra FJ, Sousa RM, Vander Sloten J, Casati MZ, Jaecques SV. J Periodontol. 2014 Sep;85(9):1161-71
29
Influence of Connection Types and Implant Number on the Biomechanical Behavior of Mandibular Full-Arch Rehabilitation. Sousa RM, Simamoto-Junior PC, Fernandes-Neto AJ, Sloten JV, Jaecques SV, Pessoa RS. Int J Oral Maxillofac Implants. 2016 Jul-Aug;31(4):750-60
35
Influence of implant connection type on the biomechanical environment of immediately placed implants - CT-based nonlinear, three-dimensional finite element analysis. Pessoa RS, Muraru L, Júnior EM, Vaz LG, Sloten JV, Duyck J, Jaecques SV. Clin Implant Dent Relat Res. 2010 Sep;12(3):219-34.
For original titles of the articles mentioned herein, please refer to the Scientific Publications page.
34
SCIENTIFIC PUBLICATIONS 1
Nano hydroxyapatite structures influence early bone formation. Meirelles L, Arvidsson A, Andersson M, Kjellin P, Albrektsson T, Wennerberg A. J Biomed Mater Res A. 2008 Nov;87(2):299-307
2
The effect of chemical and nanotopographical modifications on the early stages of osseointegration. Meirelles L, Currie F, Jacobsson M, Albrektsson T, Wennerberg A. Int J Oral Maxillofac Implants. 2008 Jul-Aug;23(4):641-7
3
Nano hydroxyapatite-coated implants improve bone nanomechanical properties. Jimbo R, Coelho PG, Bryington M, Baldassarri M, Tovar N, Currie F, Hayashi M, Janal MN, Andersson M, Ono D, Vandeweghe S, Wennerberg A. J Dent Res. 2012;91(12):1172-7
4
Effect of hydroxyapatite and titania Nanostructures on early in vivo bone response. Meirelles L, Melin L, Peltola T, Kjellin P, Kangasniemi I, Currie F, Andersson M, Albrektsson T, Wennerberg A. Clin Implant Dent Relat Res. 2008 Dec;10(4):245-54
5
Evaluation of bone healing on sandblasted and acid etched implants coated with nanocrystalline hydroxyapatite: an in vivo study in rabbit femur. Melin Svanborg L, Meirelles L, Franke-Stenport V, Kjellin P, Currie F, Andersson M, Wennerberg A. International Journal of Dentistry 2014;2014:197581.
6
Classification of osseointegrated implant surfaces: materials, chemistry and topography. Donhan Ehrenfest DM, Coelho PG, Kang BS, Sul YT, Albrektsson T. Trends Biotechnol. 2010 Apr;28(4):198-206
7
Bone reaction to nano hydroxyapatite modified titanium implants placed in a gap-healing model. Meirelles L, Albrektsson T, Kjellin P, Arvidsson A, Franke-Stenport V, Andersson M, Currie F, Wennerberg A. J Biomed Mater Res A. 2008 Dec 1;87(3):624-31
14 8
Nanohydroxyapatite-coated PEEK implants: a pilot study in rabbit bone. Barkarmo S, Wennerberg A, Hoffman M, Kjellin P, Breding K, Handa P, Stenport V. J Biomed Mater Res A. 2013 Feb;101(2):465-71
9
An in vitro comparison of possibly bioactive titanium implant surfaces. Göransson A, Arvidsson A, Currie F, Franke-Stenport V, Kjellin P, Mustafa K, Sul YT, Wennerberg A. J Biomed Mater Res A. 2009 Mar 15;88(4):1037-47
10
Formation of calcium phosphates on titanium implants with four different bioactive surface preparations. An in vitro study. Arvidsson A, Franke-Stenport V, Andersson M, Kjellin P, Sul YT, Wennerberg A. J Mater Sci Mater Med. 2007 Oct;18(10):1945-54.
11
The biological response to three different nanostructures applied on smooth implant surfaces. Jimbo R, Sotres J, Johansson C, Breding K, Currie F, Wennerberg A. Clin Oral Implants Res. 2012;23(6):706-12
12
Genetic Responses to nanostructured calcium-phosphate-coated Implants. Jimbo R, Xue Y, Hayashi M, Schwartz-Filho HO, Andersson M, Mustafa K, Wennerberg A. J DENT RES published online 20 September 2011
13
Histological and three-dimensional evaluation of osseointegration to nanostructured calcium phosphate-coated implants. Jimbo R, Coelho PG, Vandeweghe S, Humberto Osvaldo Schwartz-Filho HO, Hayashi M, Ono D, Andersson M, Wennerberg A. Acta Biomater. 2011 Dec;7(12):4229-34.
14
Precipitation of calcium phosphate in the presence of albumin on titanium implants with four different possibly bioactive surface preparations. An in vitro study. Stenport V , Kjellin P, Andersson M, Currie F, Sul Y-T, Wennerberg A, Arvidsson A. J Mater Sci: Mater Med. 2008;19:3497–505
35
15
Nucleation and growth of calcium phosphates in the presence of fibrinogen on titanium implants with four potentially bioactive surface preparations. an in vitro study. Arvidsson A, Currie F, Kjellin P, Sul YT, Stenport V. J Mater Sci Mater Med. 2009 Sep;20(9):1869-79
16
Early bone healing and biomechanical fixation of dual acidetched and as-machined implants with healing chambers: an experimental study in dogs. Bonfante EA, Granato R, Marin C, Suzuki M, Oliveira SR, Giro G, Coelho PG. Int J Oral Maxillofac Implants. 2011 Jan-Feb;26(1):75-82
17
Osseointegration: hierarchical designing encompassing the macrometer, micrometer, and nanometer length scales. Coelho PG, Jimbo R, Tovar N, Bonfante EA. Dent Mater. 2015;31(1):37-52
18
Are insertion torque and early osseointegration proportional? A histologic evaluation. Baires-Campos FE, Jimbo R, Bonfante EA, Barbosa DZ, Oliveira MT, Janal MN, Coelho PG. Clin Oral Implants Res. 2015 Nov;26(11):1256-60.
19
Fracture strength and probability of survival of narrow and extra-narrow dental implants after fatigue testing: In vitro and in silico analysis. Bordin D, Bergamo ETP, Fardin VP, Coelho PG, Bonfante EA. J Mech Behav Biomed Mater. 2017 Jul;71:244-249
20
Drilling dimension effects in early stages of osseointegration and implant stability in a canine model. Baires-Campos FEB, Jimbo R, Bonfante EA, Oliveira MTF, Moura C, Barbosa DZ, Coelho PG. Med Oral Patol Oral Cir Bucal. 2015 Jul 1;20(4):e471-9
21
Osseointegration of metallic devices: current trends based on implant hardware design. Coelho PG, Jimbo R. Archives of biochemistry and biophysics. 2014;561:99-108
22
Buccal and lingual bone level alterations after immediate implantation of four implant surfaces: a study in dogs. Bonfante EA, Janal MN, Granato R, Marin C, Suzuki M, Tovar N, Coelho PG. Clin Oral Implants Res. 2013 Dec;24(12):1375-80
23
Alveolar buccal bone maintenance after immediate implantation with a surgical flap approach: a study in dogs. Coelho PG, Marin C, Granato R, Bonfante EA, Lima CP, Oliveira S, Dohan Ehrenfest DM, Suzuki M. The International Journal of Periodontics & Restorative Dentistry 2011;31:e80–e86
24
Influence of clinically relevant factors on the immediate biomechanical surrounding for a series of dental implant designs. Shunmugasamy VC, Gupta N, Pessoa RS, Janal MN, Coelho PG. J Biomech Eng. 2011;133(3):031005
25
Basic research methods and current trends of dental implant surfaces. Coelho PG, Granjeiro JM, Romanos GE, Suzuki M, Silva NR, Cardaropoli G, Thompson VP, Lemons JE. J Biomed Mater Res B Appl Biomater. 2009;88(2):579-96
26
Influence of implant design on the biomechanical environment of immediately placed implants: computed tomography-based nonlinear three-dimensional finite element analysis. Pessoa RS, Coelho PG, Muraru L, Marcantonio Jr E, Vaz LG, Sloten JV, Jaecques SV. Int J Oral Maxillofac Implants. 2011 Nov-Dec;26(6):1279-87
27
Fatigue reliability of three single-unit implant-abutment designs. Martins LM, Martins LM, Bonfante EA, Zavanelli RA, Freitas AC Jr, Silva NR, Marotta L, Coelho PG. Implant Dent. 2012 Feb;21(1):67-71
28
Immediate or early loading of implants with healing chambers and nano-surface: a non-interferential longitudinal prospective study
Carregamento funcional imediato ou precoce de implantes com câmara de cicatrização e superfície nanométrica: estudo clínico prospectivo longitudinal. Bezerra FJ, Pessoa RS, Zambuzzi WF. Innov Implant J, Biomater Esthet. 2014;9(2/3):13-7
36
SCIENTIFIC PUBLICATIONS 29
Influence of connection types and implant number on the biomechanical behavior of mandibular full-arch rehabilitation. Sousa RM, Simamoto-Junior PC, Fernandes-Neto AJ, Sloten JV, Jaecques SV, Pessoa RS. Int J Oral Maxillofac Implants. 2016 Jul-Aug;31(4):750-60
30
Bone remodeling around implants with external hexagon and morse-taper connections: a randomized, controlled, split-mouth, clinical trial. Pessoa RS, Sousa RM, Pereira LM, Neves FD, Bezerra FJ, Jaecques SV, Sloten JV, Quirynen M, Teughels W, Spin-Neto R. Clin Implant Dent Relat Res. 2017 Feb;19(1):97-110
31
Bone remodeling of implants with external hexagon connection and retention elements at the crestal module under immediate loading – a 1-year longitudinal prospective clinical trial.
Remodelação óssea de implantes com conexão hexágono externo e elementos de retenção no módulo da crista sob carregamento imediato – estudo clínico prospectivo longitudinal de um ano. Pessoa RS, Souza RM, Pereira LM, Neves FD, Jaecques SVN, Sloten JV, Quirynen M, Teughels W, Spin-Neto R. ImplantNews 2015;12(4):E2-E7
32
Soft and hard tissue maintenance following placement of immediate-loaded implants in the aesthetic zone: a prospective longitudinal clinical trial.
Avaliação da estabilidade dos tecidos duros e moles em implantes imediatos com carga imediata em área estética: estudo clínico. Pessoa RS, Sousa RM, Pereira LM, Silva TD, Bezerra FJ, Spin-Neto R. Dental Press Implantol. 2015 Apr-Jun;9(2):100-9
33
Edentulism impact assessment and rehabilitation mandibular total fixed on implants with immediate loading in patients’ quality of life of elderly.
Avaliação do impacto do edentulismo total mandibular e da reabilitação fixa sobre implantes com carga imediata na qualidade de vida de pacientes idosos. Bezerra FJ, Lenharo A, Pessoa RS, Duarte LRS, Granjeiro JM. Rev Dental Press Periodontia Implantol. 2011 jul-set;5(3):101-10
34
Biomechanical evaluation of platform switching: different mismatch sizes, connection types, and implant protocols. Pessoa RS, Bezerra FJ, Sousa RM, Vander Sloten J, Casati MZ, Jaecques SV. J Periodontol. 2014 Sep;85(9):1161-71
35
Influence of implant connection type on the biomechanical environment of immediately placed implants - CT-based nonlinear, three-dimensional finite element analysis. Pessoa RS, Muraru L, Júnior EM, Vaz LG, Sloten JV, Duyck J, Jaecques SV. Clin Implant Dent Relat Res. 2010 Sep;12(3):219-34.
36
Nano hydroxyapatite-blasted titanium surface affects pre-osteoblast morphology by modulating critical intracellular pathways. Bezerra FJ, Ferreira MR, Fontes GN, da Costa Fernandes C Jr; Andia DC, Cruz NC, da Silva RA; Zambuzzi WF. Biotechnol Bioeng. 2017 Apr 12
37
Microtomographic evaluation of a new nanometric hydroxyapatite covered implant surface. In vivo study in diabetic rats. Scombatti de Souza S, Oliveira P, Borges C, Reino D, Novaes Jr A, Taba Jr M, Bezerra FJ. Clin. Oral Impl. Res. 27 (Suppl. 13), 2016
38
Evaluation of a new nanometric hydroxyapatite covered implant surface. In vivo study in diabetic rats analysing osteogenesis gene expression. Oliveira P, Scombatti de Souza S, Sales M, Novaes Jr A, Palioto D, Messora M, Santos F, Bezerra FJ. Clin. Oral Impl. Res. 27 (Suppl. 13), 2016
37
39
Biofilm formation on nanostructured hydroxyapatite-coated titanium. Westas E, Gillstedt M, Lönn-Stensrud J, Bruzell E, Andersson M. Biomed Mater Res A. 2014 Apr;102(4):1063-70
40
Nanocrystalline hydroxyapatite/titania coatings on titanium improves osteoblast adhesion. Sato M, Aslani A, Sambito MA, Kalkhoran NM, Slamovich EB, Webster TJ. J Biomed Mater Res. 2008;84A:265–72
41
Topography and surface energy of dental implants: a methodological approach. Barbosa TP, Naves MM, Menezes HHM, Pinto PHC, de Mello JDB, Costa HL. Journal of The Brazilian Society of Mechanical Sciences and Engineering 2017. June 2017, Volume 39, Issue 6, pp 1895–1907
42
Influence of macro-geometry in the primary stability of implants. Influência da macrogeometria na estabilidade primária dos implantes. Bezerra FJ, Ribeiro EP, Bittencourt S, Lenharo A. Innov Implant J 2010; 5:29-34
43
Influence of implant geometry on primary stability at diferent bone density.
Influência da macrogeometria na estabilidade primária dos implantes em diferentes densidades ósseas. Bezerra FJ, Ribeiro EP, Bittencourt S, Lenharo A. Implant News 2010;7(5):671-6.
44
A multi-center prospective longitudinal study evaluating the clinical success rates of osseointegrated implants with a new macro-geometry: 6 to 12 months follow-up.
Estudo prospectivo longitudinal multicêntrico avaliando o sucesso clínico de uma nova macrogeometria de implantes osseointegráveis: acompanhamento de 06 a 12 meses. Lenharo A, Granjeiro JM, Leão L, Bezerra FJ, Oliva MA. Revista Fluminense de Odontologia 2010; 34: 43-48
45
Functional evaluation of implants by bone mineralization in vitro. Avaliação funcional de implantes por mineralização óssea in vitro. Lima JHC; Tanaka MN; Bezerra FJ; Maia VTG; Robbs PCM Rev. bras. odontol., Rio de Janeiro, v. 72, n. 1/2, p. 92-5, jan./jun. 2015
46
Titanium-based dental implants favor cell-signaling pathway involved in the survival and proliferation of osteoblasts. Implantes dentários à base de titânio favorecem via de sinalização celular envolvidas com sobrevivência e proliferação de osteoblastos Bezerra FJ, Rossi MC, Fernandes CJC, Nascimento A, Ferreira MR, Zambuzzi WF Innov Implant J, Biomater Esthet. 2014;9(2/3):8-12
47
Influence of operador experience on primary stability of implants with different geometry: in vitro study.
Influência da experiência do operador na estabilidade primária de implantes com diferentes macrogeometrias – estudo in vitro. Bezerra FJ, Ribeiro EDP, Bittencourt S, Lenharo A. IJD, Int. j. dent. 2010, vol.9, n.2, pp. 63-67. ISSN 1806-146X.
38
ABOUT US Established in 2003, S.I.N. Implant System is one of the largest dental implant companies in the global market today, with 700,000 implants sold annually, offering a wide range of products and with a strong global presence. The combination of the latest in cutting-edge technologies with results of scientific investigations conducted alongside the world's leading dentistry universities has led us to produce simple solutions that meet the needs of our customers, simplify processes, leading to a positive and safe experience for both professional and patient.
FDA
There are hundreds of publications and international research studies; in addition to trials conducted in over 40 universities.
Our factory is equipped with more than 50 imported lathes with the latest technology and manufactures a total 5 million products per year.
We maintain a strict control process, proven by national and international certifications, in order to guarantee quality.
39
40
WHERE WE ARE
DOMINICAN REPUBLIC GUATEMALA EL SALVADOR COLOMBIA ECUADOR
ITA LY
PERU
EGYPT
BOLIVIA
TURKEY
PARAGUAY
SPAIN
CHILE
PORTUGAL
BRAZIL
S.I.N. HEADQUARTERS 1100 Vereador Abel Ferreira Avenue Jardim Anália Franco/São Paulo – SP ZIP CODE: 03340-000
INTERNATIONAL SALES international@sinimplante.com.br
TECHNICAL DEPARTMENT consultorinternacional@sinimplante.com.br +55(11) 21693000 www.sinplant.com
Developed by: S.I.N. Implant System Graphic Design: dog | Brands for People International Sales Manager: Leonardo Rodrigues Marketing Analyst: Lais Magrini
RUSSIA
2
w w w. s i n p l a n t . c o m Implant System