CONTENTS THESIS:
01 E - LIFT, FUTURE HOUSING DESIGN DESIGN STUDIO:
02 03 04 05
WILD LIFE CULTURE CENTER FROG SKELETON GALLERY ARCHITECTURE DEPARTMENT DESIGN UNIVERSITY STUDENT CENTER
COMPUTAION & FABRICATION:
06 07 08 09 10 11
BRICKOLOGY PHOTOPEDIA HYPERTHREAD STIGMERGY PATTERN VAULT FOLDING TABLE TOPOLOGY OPTIMAZATION BOOKCASE
Professional Projects:
12 SHANGHAI GREENLAND MALL AND HOTEL 13 SHENZHEN SHANGSHA MIXED USE COMPLEX WORKSHOP TEACHING:
14 HUNAN UNIVERSITY CV
Part I: Academic Projects
1. E - LIFT
FUTURE HOUSING DESIGN
Thesis: Three Dimonsion Circulation System on Facade of Housing Project Tutor: Robert Stuart Smith Team: Steven Young, Vinith TK, Lei Yang Time: May. 2013 - Jan.2014
The project is about creating a new circulation on housing facade, which is a three dimensions moving lift system. This will change the topology of architecture by eliminating the traditional core vertical circulation. The stigmergy code is used for optimized path finding, which means in a specific area, the building topology will be efficient enough for overall lifts running. The housing facade is made by steel, and the lift carrying magnet wheels could run on the building. The facade of building is changing with different timeframe of opening and closing windows patterns when lifts run on it. The interior pumping system is set by flexible pipe, while electricity system is applied with wireless power for transferring.
The traditional housing has two types normally for its circulation. One is corridor connected type, the other is core connected. For both of those, they are lack of social interacts in daily life. And in a urban model, it causes urban sprawls and uninteresting extrusions.
stigmergy pattern
form finding models
traditional circulation
new circulation
possibilities of topology changes in single building with lift on facade
generation process
traditional circulation
ground circulation
external circulation
external circulation unit
possibilities of topology changes in urban with lift system final connections
remodeling
3.0 m level
20.0 m level
40.0 m level
65.0 m level
wind pression analysis
solar access analysis
different form finding topology
t1
s1
sections
t2
s2
t3
s3
t4
s4
s5
t5
s6
t6
s7
s8
prototype study
Arduino mini
Arduino controlled 3600 Servo single wheel
two wheels
external power source for Servo's
wheel for embeding the magnets
Permenant magnets
access to ground
sliding facade partition
interior
interior
sliding facade partition
balance floor study
access to interior
main frame solenoid
3D rotation carriage solenoid
solar panel
driving wheel
facade and lift system
- wireless energy emitters-
- main apartment -
- sliding shafts -
facade opening system
1
2
3
all closed
1
2
3
one, three open, two closed
facade and lift models
1
2
3
1
2
3
one, two open, three closed
one open, two, three closed
1
1
2
3
one, three closed two open
2
all open
3
- steel mesh -
- lift -
facade opening simulations
service panel
receptacles
old electricity system
service panel
service panel
wireless source
wireless power system
plumbing hub
toilet bath
plumbing hub
wireless power activated by different living behaviors
plumbing hub
plumbing hub
plumbing system
2. WILD LIFE CULTURE CENTER Academic Design Study, 2014 Tutor: Robert Stuart Smith Team: Yue Wang
This culture center is about wild fields lives. There are an exhibition, a market, view tower and offices in this building. The shape of building is like a swan swimming in such beatiful wild field. The facade of the tower is parametrically influenced by sun effect, which is eco friendly for environment. The market roof is like fluid flowing into the building, of which cover is of various size, giving changing shadow in different time. And the circulation of museum is clear and provide interesting experience with constant contact of people and outdoor view. The groud floor is an open space to public not only for inviting visitors but also breath nature air of wild field.
aluminum cover
glass
structure
roof explosion digram
roof unfold components
floors
skins
floors + skins
cover
structure beam
viewing platform
research center floor
facade components yearly shadow analysis
floor section structure
library circulation
market facade solar access analysis
exhibition
ecotect analysis
subdivision by analysis
water system
winter time shadow analysis
3. FROG SKELETON GALLERYE Academic Design Study, 2008 Architecture Topology Evolution Tutor: Jing Zhang
This project is inspired by skeleton of frog head. At first, it is about study the basic structure principle of head skeleton. Then integrating space design, the form is developing step by step. Finally, with consideration of circulation and function, the building gets two country yards with different sizes, which looks like the opening and enclosure space of the skeleton.
structure form finding
site
entrance
building site
function
program arragement
wind
plan
circulation
architecture
cover
structure
floors
facade
roof
architecture
4. ARCHITECTURE DEPARTMENT DESIGN Academic Design Study, 2009 Multiple Mixed Programes Tutor: Jin Luo
The architecture department design is in a 75m long site, challenging by mixed multiple programs, within library, architecture department, and administration office. There are six cross bridges in the coutyard of library, increasing more visual contact. The architecture department shares one three stories lobby, and two atriums, providing space for student works reviews and exhibitions.
program arrangement
floors arrangement
section
5. UNIVERSITY STUDENT CENTER Academic Design Study, 2010 Structure and Space Tutor: Biao Hu
This student center is near Taozi lake in Changsha, including a climbing center, height view center with cafe, restaurant, and several workshop and associations for student activities. The large structure roof connects all these space together and create a public semi-open space for events, such as concert. The landscape is planted by different species flowers, suited for four seasons.
floors
forms and structure
landscape
6. BRICKOLAGE Computation and Fabrication, 2011 ETH Zurich, Chair of CAAD Form Finding with Masory Team: MAS CAAD 2011/2012 students Tutor: Mathias Bernhard, Manuel Kretzer, Tom Pawlofsky
This project was developed in ETH Zurich, chair of CAAD with the aim to explore the relationship between architectural design, diverse methods of generative computer modelling, the importance of materiality(in this case, Ytong-aerated concrete) in the digital age and the physical representation of information using CAD/ CAM devices( Kuka robot).The brief requirements are thinking beyond parameterization and exploring the computer as a tool for generating an aesthetically appealling structure, which couldn't be done manually. The design concept was based on a Reaction - Diffusion algorithm, programmed in Processing for creating a three-dimensional self-standing structure. Design was adjusted towards a voxelization of the structure, due to the limited cutting-angle of the robot (45 degrees), a simpler setup process and a more homogeneous and smoother surface. The orientation of the 1148 individual bricks was adjusted depending on the overall curvature of the shape. The resulting elements were intersected with the main geometry and grouped into several modules depending on load and assemblaility. Fabrication with seven-axis robot was developed and continously improved - the jigsaw, specialized blades and clamping mechanisms. Final structure consisted of six separated elements. Each element was built manully by glueing digitally fabricated bricks together. 350kg of specialized Ytong glue plus an additional 50kg of strong cement glue were used
form finding and FE analysis
panelized logic
7. PHOTOTROPIA Computation and Fabrication, 2012 ETH Zurich, Chair of CAAD A Self-Sufficient Architectural Version Team: MAS CAAD 2011/2012 students Tutor: Manuel Kretzer
Phototropia was a project focusing on the application of smart materials in an architectural context. It merges self-made electroactive polymers, screen-printed electroluminescent displays, eco-friendly bioplastics and thin-film dye-sensitized solar cells into an autonomous installation that produces all its required energy from sunlight and responds to user presence through moving and illuminating elements. The generated energy is stored in batteries below the platform and then distributed via micro controllers to the respective elements. Phototropia finds its inspiration in participative and transient systems, proposed by visionaries like Yona Friedman or Constant Nieuwenbuys paired with a naive curiosity for self-made (smart) materials and an aversion towards mechanistic kinetic systems. It is a proposal for an experimental architecture that can decay while actively being renewed, as a response to our times of tremendous globalization, increased connectivity and digital identity within our information based society.
silicon insulation layer conductive power 5 * prestretched acrylic polymer film conductive power silicon insulation layer acrylic frame
self-made electroactive polvmers
5,000 V power connection
principle of electroactive polvmers
screen printed electroluminescent elements
eco-friendly bio-plastics
DVE sensitized solar cells
site analysis plan
walking space
plan
Working space Working space Exhibition space
Exhibition space Meditation space
form finding
added new path original path
plan
section
8. HYPERTHREADS Computation and Fabrication, 2010 Hunan University, D[a]L + ZAHA CODE workshop Circle Packing Algorithm in Component Aggregation Team: D[a]L students Tutor: Shajay Bhooshan, Biao Hu, Yu Du
By looking into tensile structure, we developed a fully tensioned continuous steel cable surface based on Maya 2011 nCloth analysis tool. This surface offers a perceptible interior shelter as ceiling and allows sunlight penetrating through a dynamically distributed circle packing field. Within the formal language of the surface itself, tension are evenly distributed to each single circle while the surface spreading/stretching itself into the space.All the circles and edge steel cables work together as a tensile structural system, and all the anchor points, steel cable member’s length, numbers of circle patterns are all evaluated/generated from varies of digital tools, hence gangrenes the precision in construction, and provide a more realistic budget and cost control . As a result from this designed ceiling, the interior space of D[a]L studio changed from a conventional cubic space into a multiple layered space, and providers the space users a more dynamic and volumetric spatial experience.
force vector
force FEA
form
surface
subdivision
circle packing
condition 01
condition 02
condition 03
condition 04
condition 05
condition 06
condition 07
condition 08
condition 09
condition 10
condition 11
condition 12
condition 13
condition 14
condition 15
condition 16
condition 17
condition 18
condition 19
condition 20
9. STIGMERGY PATTERN Computation and Fabrication, 2012 AADRL Computation Study Optimal Path Logic Tutor: Robert Stuart Smith
The stigmergy algorithm is about finding optimal short network path in a specific area. In different setup area, the agents will connect and generate different dense, size pattern, because the agents can read information of terrain, such as height, then choose to avoid or go through. The final iso-surface is the path running by agents, which is more like space of a pavilion or bridge, which to connect the boundary of site, and develope as a network.
10.VAULT FOLDING TABLE Computation and Fabrication, 2012 AADRL Computation Study Compression Only Structure Research Tutor: Shajay Bhooshan
If a table is a compression only structure, the more load, the much stabler. The plugin "RhinoVault" developed by ETH Prof. Block, is the computation tool to generate form which is compression only structrue. The component is made by paper folding. In the bottern of the component, they are connected by weaving.
testing compression of compoents
connections bewtween componets
different conncetions result in various curvatures
11.
BENCH & BOOKCASE TOPOLOGY OPTIMIZATION
Computation and Fabrication, 2013 ZAHA CODEworkshop, Mexico Generic Algorithm with Topology Optimization
This bench design is based on topology optimization technology in Solidthinking. The material for basic structure will remain, the rest part will be eliminated. In different structure requrement condition, the optimal form would be various. Intergrating with function, the form will be rebuilt in Maya. With the generic algorithm, it can generate thousands of low-poly form in one second.
structure topology optimization
re-model in Maya
GA algorithm
Part II: Professional Projects
12.
Shanghai Greenland Hongqiao Mall and Hotel
Site Plan
Function Programs
Mall Shop Facade System
Mall Lift Diagram
Mall Lift Logistic Diagram
Advertisement Facade System 1-A
1-A
1-B
1-A
1-A
L
L
L
G
L
KEY PLAN
D KEY PLAN
2%
MIR. 2%
KTV
G-G
1:100
KTV
G-G
1:100
D-D
Facade System and Section
1:100
002
D-D
1:100
001
KEY PLAN
LED LED
= 244.771m²
)
Mall Facade Detail Plan
001
1:200
1-3
2-B 2-C
1-4
+4.550
Mall Facade Cooridinate Plan
1:150
1:100
1:150
Mall Facade Mockup Model
Mall Double Curvation Panels Diagram
Mall Plane and Double Curvation Panel Optimation Diagram
Hotel Function Diagram
Hotel Elevation
A 2D-RCP B C
D Aluminium Soffit Panel Edge
E
AH-60-18 Detail See AH-60-18
F G
A Secondary Structure as ISO-Curve control point
B C
H J
D
K
E A F B
G H
C J K D
E
Notes: Red Lines Indicate ISO-Curve A-H-50-52 ISO-Curve control point location see A-H-50-52 A-H-50-53 to 61 For AL. soffit panel types and dimension see A-H-50-53 to 61
F
G -
H
J
K
ISO-Curve control point location
1:200
Hotel Canopy
Hotel Canopy Section
Hotel Canopy Panel Data
ISO-Curve A Points Number: Levels: A0 15.980 A1 15.968 A2 15.932 A3 15.872 A4 15.789 A5 15.682 A6 15.553 A7 15.402 A8 15.231 A9 15.053 A10 14.858 A11 14.665 A12 14.477 A13 14.283 A14 14.079 A15 13.878 A16 13.691 A17 13.518 A18 13.356 A19 13.207 A20 13.066 A21 12.933 A22 12.799 A23 12.648 A24 12.599
ISO-Curve B Points Number: Levels: B0 15.538 B1 15.528 B2 15.498 B3 15.448 B4 15.378 B5 15.289 B6 15.180 B7 15.053 B8 14.908 B9 14.752 B10 14.582 B11 14.419 B12 14.262 B13 14.092 B14 13.899 B15 13.702 B16 13.519 B17 13.350 B18 13.193 B19 13.049 B20 12.915 B21 12.786 B22 12.653 B23 12.532
ISO-Curve C Points Number: Levels: C0 15.096 C1 15.088 C2 15.063 C3 15.022 C4 14.964 C5 14.890 C6 14.800 C7 14.695 C8 14.573 C9 14.442 C10 14.300 C11 14.154 C12 14.031 C13 13.900 C14 13.740 C15 13.540 C16 13.370 C17 13.209 C18 13.059 C19 12.922 C20 12.797 C21 12.674 C22 12.544 C23 12.466
ISO-Curve D Points Number: Levels: D0 14.654 D1 14.647 D2 14.627 D3 14.594 D4 14.547 D5 14.487 D6 14.414 D7 14.328 D8 14.230 D9 14.119 D10 14.002 D11 13.877 D12 13.781 D13 13.687 D14 13.568 D15 13.407 D16 13.246 D17 13.089 D18 12.950 D19 12.823 D20 12.705 D21 12.597 D22 12.485 D23 12.402
ISO-Curve E Points Number: Levels: E0 14.211 E1 14.206 E2 14.190 E3 14.164 E4 14.127 E5 14.080 E6 14.023 E7 13.954 E8 13.875 E9 13.789 E10 13.696 E11 13.592 E12 13.509 E13 13.432 E14 13.359 E15 13.261 E16 13.105 E17 12.977 E18 12.854 E19 12.740 E20 12.636 E21 12.540 E22 12.445 E23 12.341
ISO-Curve F Points Number: Levels: F0 13.769 F1 13.765 F2 13.753 F3 13.733 F4 13.705 F5 13.670 F6 13.626 F7 13.575 F8 13.516 F9 13.449 F10 13.376 F11 13.298 F12 13.226 F13 13.174 F14 13.123 F15 13.059 F16 12.963 F17 12.854 F18 12.749 F19 12.654 F20 12.567 F21 12.487 F22 12.412 F23 12.336 F24 12.275
ISO-Curve G Points Number: Levels: G0 13.327 G1 13.324 G2 13.315 G3 13.301 G4 13.281 G5 13.256 G6 13.225 G7 13.188 G8 13.146 G9 13.098 G10 13.046 G11 12.990 G12 12.931 G13 12.894 G14 12.855 G15 12.819 G16 12.778 G17 12.698 G18 12.619 G19 12.546 G20 12.478 G21 12.417 G22 12.359 G23 12.306 G24 12.251 G25 12.207
ISO-Curve H Points Number: Levels: H0 12.885 H1 12.883 H2 12.877 H3 12.868 H4 12.856 H5 12.840 H6 12.820 H7 12.797 H8 12.770 H9 12.740 H10 12.707 H11 12.671 H12 12.631 H13 12.605 H14 12.582 H15 12.561 H16 12.537 H17 12.501 H18 12.450 H19 12.401 H20 12.356 H21 12.315 H22 12.277 H23 12.241 H24 12.208 H25 12.174 H26 12.137
ISO-Curve J Points Number: Levels: J0 12.442 J1 12.441 J2 12.439 J3 12.435 J4 12.428 J5 12.421 J6 12.412 J7 12.401 J8 12.388 J9 12.373 J10 12.358 J11 12.340 J12 12.322 J13 12.306 J14 12.295 J15 12.285 J16 12.274 J17 12.263 J18 12.242 J19 12.218 J20 12.196 J21 12.176 J22 12.157 J23 12.139 J24 12.123 J25 12.107 J26 12.092 J27 12.075 J28 12.068
ISO-Curve K Points Number: Levels: K0 12.000 K1 12.000 K2 12.000 K3 12.000 K4 12.000 K5 12.000 K6 12.000 K7 12.000 K8 12.000 K9 12.000 K10 12.000 K11 12.000 K12 12.000 K13 12.000 K14 12.000 K15 12.000 K16 12.000 K17 12.000 K18 12.000 K19 12.000 K20 12.000 K21 12.000 K22 12.000 K23 12.000 K24 12.000 K25 12.000 K26 12.000 K27 12.000 K28 12.000 K29 12.000
Panel Type B: Quantity Ratio: 14.11% Dimension:(mm) Panel Number: AB BC CD DA 6 1000 2526 1081 2530 7 1000 2526 1081 2530 8 1000 2526 1081 2530 9 1000 2526 1081 2530 10 1000 2526 1081 2530 11 1000 2526 1081 2530 12 1000 2526 1081 2530 34 1000 2526 1081 2530 35 1000 2526 1081 2530 36 1000 2526 1081 2530 37 1000 2526 1081 2530 38 1000 2526 1081 2530 39 1000 2526 1081 2530 61 1000 2526 1081 2530 62 1000 2526 1081 2530 63 1000 2526 1081 2530 64 1000 2526 1081 2530 65 1000 2526 1081 2530 68 1000 2526 1081 2530 87 1000 2526 1081 2530 88 1000 2526 1081 2530 2526 1081 2530 89 1000 110 1000 2526 1081 2530 111 1000 2526 1081 2530 112 1000 2526 1081 2530 113 1000 2526 1081 2530 134 1000 2526 1081 2530 135 1000 2526 1081 2530 136 1000 2526 1081 2530 156 1000 2526 1081 2530 157 1000 2526 1081 2530 158 1000 2526 1081 2530 178 1000 2526 1081 2530 179 1000 2526 1081 2530 180 1000 2526 1081 2530
AC 2729 2729 2729 2729 2729 2729 2729 2729 2729 2729 2729 2729 2729 2729 2729 2729 2729 2729 2729 2729 2729 2729 2729 2729 2729 2729 2729 2729 2729 2729 2729 2729 2729 2729 2729
2-A
20% 2%
1:25
1:25
2%
BPI
1:25
1:25
2-A
2-A
1:100
Hotel Section
1:100
Hotel Skylight Design and Data
Aluminium Panel division and dimension for Skylight
(
1-49)
(
50-93)
(
94-177)
(
178-179)
Glass panels division and dimension for Skylight (Quadrilateral panels)
Division of Aluminium Panel on Skylight (Number 1 to Number 49)
Division of Aluminium Panel on Skylight (Number 94 to Number 177)
Edge BC (mm)
Edge CD (mm)
Edge DA (mm)
Edge AB (mm)
Edge BC (mm)
Edge CD (mm)
Edge BA (mm)
Edge CD (mm)
Edge AC (mm)
Edge DB (mm)
151
1211.063
1211.063
3000.000
3000.000
1154.560
1297.553
2477.996
50
1199.858
253.741
1291.639
732.064
94
1199.998
3000.000
1199.998
3000.000
152
1211.063
1211.064
3000.000
3000.000
2
1428.859
2224.255
1199.858
3000.000
51
1199.868
1458.441
1285.534
1920.052
95
1200.184
3000.000
1200.184
3000.000
153
1210.313
1210.310
3000.000
3000.000
3
1402.703
2273.623
1199.868
3000.000
52
1199.906
2599.603
1279.189
3043.204
96
1200.513
3000.000
1200.513
3000.000
154
1210.310
1210.308
3000.000
3000.000
1201.037
3000.000
1201.038
3000.000
155
1210.308
1210.306
3000.000
3000.000
Number
Number
Division of Aluminium Panel on Skylight (Number 94 to Number 177)
Edge AB (mm)
1458.670
4
1379.101
2320.449
1199.906
3000.000
53
1199.998
678.145
1272.602
1102.205
97
5
1357.794
2365.058
1199.998
3000.000
54
1200.184
1694.475
1265.828
2097.300
98
1201.038
3000.000
1201.040
3000.000
156
1208.210
1208.205
3000.000
3000.000
6
1338.581
2407.729
1200.184
3000.000
55
1200.513
2648.603
1258.987
3028.464
99
1201.781
3000.000
1201.780
3000.000
157
1208.205
1208.200
3000.000
3000.000
1201.040
540.301
1252.257
895.572
100
1201.780
3000.000
1201.779
3000.000
158
1208.200
1208.195
3000.000
3000.000
7
1321.310
2448.697
1200.513
3000.000
56
8
1305.864
2488.163
1201.037
3000.000
57
1201.779
1369.278
1245.904
1698.908
101
1202.742
3000.000
1202.744
3000.000
159
1205.276
1205.283
3000.000
3000.001
9
1292.134
2526.294
1201.781
3000.000
58
1202.747
2135.675
1240.106
2438.947
102
1202.744
3000.000
1202.747
3000.000
160
1205.283
1205.290
3000.000
3000.001
10
1279.991
2563.233
1202.742
3000.000
59
1200.279
2839.853
1235.085
3117.358
103
1203.821
3000.000
1203.821
3000.000
161
1205.290
1205.297
3000.000
3000.001
1204.845
483.387
1230.887
736.787
104
1203.821
3000.000
1203.821
3000.000
162
1202.066
1202.066
3000.000
3000.000
11
1269.255
2599.094
1203.821
3000.000
60
12
1259.671
2633.974
1204.851
3000.000
61
1205.582
1068.833
1227.169
1299.676
105
1204.851
3000.000
1204.849
3000.000
163
1202.066
1202.066
3000.000
13
1250.921
2667.955
1205.585
3000.000
62
1205.749
1593.738
1214.632
1742.124
106
1204.849
3000.000
1204.847
3000.000
164
1202.066
1202.066
3000.000
3000.000
14
1241.503
2705.938
1205.747
3000.000
63
1205.123
2005.897
1208.234
2094.305
107
1204.847
3000.000
1204.845
3000.000
165
1199.129
1199.128
3000.000
3000.000
1205.585
3000.000
1205.584
3000.000
166
1199.128
1199.128
3000.000
3000.000
3000.000
15
1234.025
2736.227
1205.119
3000.000
64
1203.630
2331.056
1204.754
2384.827
108
16
1227.025
2763.250
1203.634
3000.000
65
1201.459
2595.001
1201.698
2620.595
109
1205.584
3000.000
1205.583
3000.000
167
1196.816
1196.816
3000.000
3000.000
17
1219.971
2789.826
1201.461
3000.000
66
1199.003
2804.568
1199.004
2808.434
110
1205.583
3000.000
1205.582
3000.000
168
1196.816
1196.816
3000.000
3000.000
18
1213.237
2816.028
1199.007
3000.000
67
1196.869
2966.493
1196.942
2954.150
111
1205.747
3000.000
1205.748
3000.000
169
1195.296
1195.295
3000.000
3000.000
19
1207.389
2841.941
1196.870
3000.000
68
1195.681
3086.497
1195.991
3059.834
112
1205.748
3000.000
1205.749
3000.000
170
1195.295
1195.295
3000.000
3000.000
20
1203.046
2867.653
1195.680
3000.000
69
1195.907
3166.585
1200.181
3065.548
113
1205.749
3000.000
1205.749
3000.000
171
1194.564
1194.564
3000.000
3000.000
21
1200.677
2893.249
1195.907
3000.000
70
1197.690
3146.474
1204.026
3023.122
114
1205.119
3000.000
1205.121
3000.000
172
1194.564
1194.564
3000.000
3000.000
1200.748
3078.780
1208.823
2938.614
115
1205.121
3000.000
1205.122
3000.000
173
1194.497
1194.497
3000.000
3000.000
22
1200.420
2918.797
1197.690
3000.000
71
23
1201.994
2944.343
1200.740
3000.000
72
1204.386
2968.707
1214.909
2808.067
116
1205.122
3000.000
1205.123
3000.000
174
1194.908
1194.908
3000.000
3000.000
24
1204.737
2969.907
1204.387
3000.000
73
1207.783
2812.585
1221.852
2626.289
117
1203.634
3000.000
1203.633
3000.000
175
1195.602
1195.602
3000.000
3000.000
25
1207.801
2995.481
1207.794
3000.000
74
1210.183
2605.241
1229.405
2387.079
118
1203.633
3000.000
1203.631
3000.000
176
1196.409
1196.409
3000.000
3000.000
1211.064
2387.079
1237.808
2129.424
119
1203.631
3000.000
1203.630
3000.000
177
1197.205
1197.205
3000.000
3000.000
26
1210.398
3021.048
1210.186
3000.000
75
27
1212.024
3000.000
1211.062
2953.410
76
1210.306
2082.834
1247.690
1777.904
120
1201.461
3000.000
1201.460
3000.000
28
1212.567
3000.000
1210.313
2927.896
77
1208.195
1705.800
1260.150
1345.932
121
1201.460
3000.000
1201.459
3000.000
29
1212.292
3000.000
1208.210
2902.391
78
1205.297
1248.322
1276.414
826.571
122
1201.459
3000.000
1201.459
3000.000
30
1212.777
3000.000
1205.276
2866.894
79
1202.066
693.467
1295.903
207.821
123
1199.007
3000.000
1199.006
3000.000
31
1212.905
3000.000
1202.066
2839.700
80
1199.127
3046.206
1295.820
2555.038
124
1199.006
3000.000
1199.004
3000.000
32
1213.810
3000.000
1199.129
2813.094
81
1196.816
2368.133
1282.323
1906.593
125
1199.004
3000.000
1199.003
3000.000
1195.295
1692.768
1270.230
1262.006
126
1196.870
3000.000
1196.870
3000.000
33
1215.965
3000.000
1196.816
2786.175
82
34
1219.562
3000.000
1195.296
2758.855
83
1194.564
1020.861
1259.594
620.618
127
1196.870
3000.000
1196.869
3000.000
35
1224.629
3000.000
1194.564
2731.058
84
1194.497
3351.677
1250.112
2982.365
128
1196.869
3000.000
1196.869
3000.000
36
1231.075
3000.000
1194.497
2702.725
85
1194.908
2685.090
1241.545
2347.551
129
1195.680
3000.000
1195.680
3000.000
1195.602
2021.356
1233.757
1716.570
130
1195.680
3000.000
1195.680
3000.000
37
1238.750
3000.000
1194.908
2673.805
86
38
1247.499
3000.000
1195.602
2644.259
87
1196.409
1360.829
1226.672
1089.795
131
1195.680
3000.000
1195.681
39
1257.196
3000.000
1196.409
2614.048
88
1197.205
703.843
1220.286
467.456
132
1195.907
3000.000
1195.907
3000.000
40
1267.764
3000.000
1197.205
2583.128
89
1197.911
3050.583
1214.638
2849.579
133
1195.907
3000.000
1195.907
3000.000
41
1279.179
3000.000
1197.911
2551.445
90
1198.490
2401.024
1209.792
2235.966
134
1195.907
3000.000
1195.907
3000.000
3000.000
1291.465
3000.000
1198.490
2518.933
91
1198.937
1754.899
1205.819
1626.201
135
1197.690
3000.000
1197.690
3000.000
43
1304.686
3000.000
1198.937
2485.508
92
1199.264
1111.709
1202.789
1019.660
136
1197.690
3000.000
1197.690
3000.000
44
1318.937
3000.000
1199.264
2451.072
93
1199.491
470.731
1200.759
415.541
137
1197.690
3000.000
1197.690
3000.000
45
1334.330
3000.000
1199.491
2415.506
138
1200.740
3000.000
1200.742
3000.000
46
1351.000
2831.047
1199.780
2191.567
139
1200.742
3000.000
1200.745
3000.000
47
1369.093
2191.567
1199.890
1551.019
140
1200.745
3000.000
1200.748
3000.000
1204.387
3000.000
1204.387
3000.000
42
Glass panels division and dimension for Skylight (Quadrilateral panels)
Division of Aluminium Panel on Skylight (Number 50 to Number 93)
Edge DA (mm)
1
Number
48
1388.773
1551.019
1201.002
905.361
141
49
1410.227
905.361
1202.969
251.124
142
1204.387
3000.000
1204.386
3000.000
143
1204.386
3000.000
1204.386
3000.000
144
1207.794
3000.000
1207.790
3000.000
145
1207.790
3000.000
1207.786
146
1207.786
3000.000
1207.783
3000.000
3000.000
147
1210.186
3000.000
1210.185
3000.000
148
1210.185
3000.000
1210.184
3000.000
149
1210.184
3000.000
1210.183
3000.000
150
1211.062
3000.000
1211.063
3000.000
Division of Aluminium Panel on Skylight (Number 178 to Number 179) Number 178 179
Edge AB (mm) 1030.958 459.272
Edge BC (mm) 1154.560 543.530
Edge CA (mm) 1211.837 251.124
Site Construction
13.
Shenzhen Shangsha Mixed Use Complex
写字楼
SOHO 塔楼
一号住宅
二号住宅
上沙一期塔楼整体剖面示意图 Overall Tower Section 1/1500, A3
Office Tower Design
吊装窗槛墙位置单元板
安装步骤4-吊装窗槛墙位置单元板
吊装可视位置单元板块
安装步骤2-吊装可视位置单元板块
安装楼板位置封堵
安装步骤5-安装楼板位置封堵
B
B
⽪മ KEY PLAN
-
⽪മ KEY PLAN
A
A
-
-
-
-
-
⽪മ KEY PLAN
-
Project
A-A A-A ᴽ࣑ᔿޜሃ - ḷ߶ቲࢆ䶒മ ᴽ࣑ᔿޜሃ - ḷ߶ቲࢆ䶒മ Client
Consultant
Project
B-B
Drawing
Draw By Project
Client
Design By
Consultant Consultant
Drawing Check by
Draw By
Project Number
Scale
Design By
Consultant
Drawing
Draw By
B-B ᴽ࣑ᔿޜሃ ḷ߶ቲࢆ䶒മ 䱣ਠս㖞) Service Apartment Design ᴽ࣑ᔿޜሃ ḷ߶ቲࢆ䶒മ 䱣ਠս㖞) Design By
Client
-
31/F One Island East 18 Westlands Road
31/F One Island East 18 Westlands Road Quarry Bay Hong Kong
Check by
Consultant
App by Consultant
Rev.
Issue Date
Initial
Pilot Date
Description
Rev.
Issue Date
Initial
Description
Computer file
Project Number
Scale
Drawing Number
Rev.
Issue Date
Soho Design
1
全年太阳路径图
气候和舒适度表 Psychrometric Chart
Annual sun-path diagram 2
为利用计算流体力学模拟屋顶扰流设计 CFD simulation on the rooftop spoiler aerodynamics
3
高效节能外遮阳板设计研究 Energy efficient study on the design of external shading features
4
采光系数模拟与室内视觉舒适度研究 采暖和制冷日度数 Heating Degree Days & Cooling Degree Days
Daylight Factor simulation for indoor visual comfort 5
行人区风环境模拟以促进空气流通 Pedestrian wind environment simulation for promoting air ventilation
6
低碳环保生态建筑立面研究 Low carbon and sustainable facade design study
月平均降雨量 Monthly Average Rainfall
Aedas 可持续设计 Aedas Sustainability
深圳气候分析 Climate Analysis of Shenzhen
深 圳 中 洲 集 团 上 沙 项 目 概 念 设 计
Shenzhen Centralcon Shang Sha Concept Design Page 133
深 圳 中 洲 集 团 上 沙 项 目 概 念 设 计
春分日 Spring Equinox
夏至日 Summer Solstice
秋分日 Autumn Equinox
冬至日 Winter Solstice
途和景观的设计。对于公共空间的用途而言, 日照较少的空间可以用作户外活动场所,从而 使得这些空间更为舒适。 而对于景观设计,日照数量可以作为选择栽种 植物的指标,通过这个全年平均日照时数地
早上9时 9am
图,一些需要较多阳光的植物可以适当而准确 地栽种在日照较多的地块,而不需要阳光的植 物则可以选择栽种在较阴凉的地方,从而保证 里不同的植物均可以健康成长,减少将来的维 护和更换植物的开支。 Solar access studies assist the determination of open space and landscape design. For open space, 早上11时 11am
the space with less solar access hours can be used for outdoor activity area to avoid overheating. For landscape design, the solar access hours indicate the appropriate locations for vegetation and water features. Some species require more sunshine but some require less. The study helps the designer to identify most suitable location for different species so as to guarantee their healthy
下午1时 1pm
growth and eliminate cost for replacement.
绿化空间、绿化屋顶 Greenery / Green Roof 平均每天日潜力大约6小时 Average solar access hours is around 6hrs, good for landscaping and green roof
1
户外休憩空间 Passive Open Space 均日照潜力为4小时,适合户外景观和休憩 Avg. 4hr sunlight potential, good fpr outdoor resting.
下午3时 3pm
2
主要户外活动空间 Active Open Space 阳光照射潜力较少,适合户外活动 Area with limited sunlight potential and good for outdoor activities.
3
2
3 3 2
2
1
下午5时 5pm
1
1
2
3
4
1. 室外全年每日平均日照小时 Outdoor annual daily solar access hour 2. 平台层全年每日平均日照小时 Annual daily solar access on podium 3. 中庭全年每日平均日照小时 Annual daily solar access on atrium 4. 地面全年每日平均日照小时 Annual daily solar access on ground
建筑阴影分析 Shadow Analysis
Page 136
公共空间太阳日照潜力分析
图例 Legend
Complex Scheme: Open Space Solar Access Potential
深 圳 中 洲 集 团 上 沙 项 目 概 念 设 计
Shenzhen Centralcon Shang Sha Concept Design Page 137
办公室的布局和人员的行为也不难验证这一观 点。 一个纪录人们对室内环境的反应的报告显示, 自然光比灯光更受欢迎,原因有二。第一,自 然光能满足照明的基本要求;其次,它能让人 感受到周遭环境变化的刺激。研究相信长期在 灯光低下工作会对健康有损,而自然光则能减 低压力和提升舒适性。 1. 在设计过程中,我们利用计算机模拟分析了 建筑立面的自然采光潜力。 2. 最终的建筑布局已经最大限度地减少了建筑 之间的近距离对望,从而最大化了自然采光 和室外景观。 3. 从上图的结果看到,建筑的自然采光充足。 分析结果显示,大部分的建筑立面的垂直采 光系数都在30%以上。 4. 购物商场中庭的垂直采光系数也平均达到 20%。 Evidence that daylight is desirable can be found in research as well as in observations of human behavior and the arrangement of office space. A review of peoples’ reactions to indoor environments suggests that daylight is desired because it fulfils two very basic human requirements: to be able to see both a task and the space well, and to experience some environmental stimulation [Boyce 1998]. Working long-term in electric lighting is believed to be deleterious to health; working by daylight is believed to result in less stress and discomfort. 1.
In the design process, we have studied the daylight access potential for the towers.
2. The proposed building layout has minimized the overlooking between facades and maximized the external view access and daylight access as well. 3. The simulation results shows adequate daylight provision. Vertical Daylight Factor are above 30% on office all buildings. 4. The Vertical Daylight Factor on atrium facades is around 20%.
建筑立面采光分布图 False color of daylight access on building facade
建筑立面垂直采光系数等高线 Contour of vertical daylight factor on building facade
建筑自然采光潜力分析
建筑自然采光潜力分析
图例 Legend
图例 Legend
Daylight Access Potential Analysis
Daylight Access Potential Analysis
亮 Bright
亮 Bright
自然采光
采光系数
Daylight Access
Daylight Factor 暗 Dark Page 138
暗 Dark 深 圳 中 洲 集 团 上 沙 项 目 概 念 设 计
Shenzhen Centralcon Shang Sha Concept Design Page 139
阻挡东北寒风 Block the chilled breeze
阻挡东北寒风 Block the chilled breeze
通风走廊 Wind Corridor
中层高度风速矢量图 Velocity vector on mid-level
中层高度风速矢量图 Velocity vector on mid-level
阵风可能 Potential Gust Wind
地面层行人高度风速矢量图 Velocity vector on pedestrian level
冬季自然通风潜力分析 Natural Ventilation Potential in Winter
下沉风形成d的通风走廊 Wind Corridor by downdraft wind
通风走廊 Wind Corridor
地面层行人高度风速矢量图 Velocity vector on pedestrian level
夏季自然通风潜力分析
图例 Legend 静止
Stagnant
慢
Low Speed
舒适
阵风
Comfortable
Gust Wind
空气流动速度
Air Flow Velocity
快
High Speed
深 圳 中 洲 集 团 上 沙 项 目 概 念 设 计
Shenzhen Centralcon Shang Sha Concept Design Page 149
Natural Ventilation Potential in Summer
图例 Legend 静止
Stagnant
慢
Low Speed
舒适
阵风
Comfortable
Gust Wind
空气流动速度
Air Flow Velocity
快
High Speed
深 圳 中 洲 集 团 上 沙 项 目 概 念 设 计
Shenzhen Centralcon Shang Sha Concept Design Page 147
14.
商业效果图 Xiamen Depot Mixed Use Complex
Retail Renderings
公寓 地铁出口
休闲商业 公寓
地铁出口 休闲商业
公寓
0 10
30
70
总体平面布局 - 功能业态分析 MLP - Function
公寓 SA 建筑高度:45米 BLDG. Height
建筑面积:18375 m2 GFA
会所
公寓 SA 建筑高度:45米
Club House
建筑面积:2500m2
BLDG. Height
GFA
建筑面积:18375 m2 GFA
公寓 SA 建筑高度:45米 BLDG. Height
建筑面积:18375 m2 GFA
商业 SA 建筑高度:6米 BLDG. Height
建筑面积:15725 m2 BLDG. Height
设计范围面 经营性范围面 容积率 积 积 m2
建筑密度
区域/建筑性质
地下建筑面积
地上建筑面积
机动车位
地上车位
自行车位
m2
m2
辆
辆
辆
44695
71070
573
40
20
21775
15725
公寓
NA
55125
10KV开闭所
NA
160
573
40
20
配套公共厕所
NA
60
22920
NA
绿地率
m2 合计 休闲商业
2
总用地面积:57747.672 m 地上计容总建筑面积:71070 m2 容积率:2.02 建筑密度:40% 绿地率:40%
57747.672
35185.127
2.02
40%
40%
车库
廈門市轨道2号线【五缘湾南站】轨道交通用地建筑概念方案设计
总体平面布局 - 流线 MLP - Circulation
对于大多数布置于地下的商业,必须有足够的天窗,让日光洒进, 陪伴顾客享受购物的体验。在负一层,我们利用站体上盖作为商业 街的步行区域。宜人的尺度创造舒适的步行商业空间连接零售,餐 厅和咖啡馆。这里双层商店淡化了地面于地下的界限。无论是居民 或到此一游的访客都能体验连接自然的乐趣. With most of the retail below ground, it is essential to create enough skylight to allow enough daylight for visitor to enjoy their shopping experience. At B1, we used the non building zone above the metro line to make a retail street. The width allows a comfortable outdoor walking environment that connects visitors to the Retail, Restaurants and Cafes. Here, double storey shops dilutes the boundary between what is ground and what is below ground. Visitors here can experience more connectivity to nature no matter if you are living here or just visiting. 公寓楼高只有45米,是一个更能感知自然地距离。在起居室就能从 视觉、嗅觉和感觉到被自然环抱。海湾与湿地公园的美景对渴望挣 脱纷繁世界的每个人,都能滋养他们的内心。叠石的外观呼应这些 愿望,平台在一个方向上延伸与自然融合,另一面却创造出隐逸的 建筑手法。 The service apartments being just 45m high, the connectivity to nature is much more tangible. One can see, smell and feel the nature in your own living room. Coupled with breathtaking view of the Bay and the wetland park beyond the space is very therapeutic to the individual that want to feel solemn and to get away from the busy world they spend most of their time in. The design with its pebble like appearance echoes these aspirations with a material pallet that in one direction blends well with nature and the other reflects it creating a stealth like architecture. 酒店式公寓 SA 集中商业 Retail Mall 商业街 Retail Street 商业流线流线 SA Circulation 通勤流线 Commuter Circulation 地面出口 Ground Exit 廈門市轨道2号线【五缘湾南站】轨道交通用地建筑概念方案设计
的地下功能空间
ing Underground Functional Space
Section Design
气候分析 Climate Analysis
1. 2.
透彻了解厦门当地气候特征; 建筑设计首重因地制宜原则。
厦门市气候资料 Climate data for Xiamen (1971-2000) 月�
一月
二月
三月
四月
五月
六月
�月
�月
�月
十月
十一月
十二月
全年
Month
Jan
Feb
Mar
Apr
May
Jun
Jul
Aug
Sep
Oct
Nov
Dec
Year
17.0
16.6
18.8
23.1
26.6
29.5
32.0
31.8
30.0
27.4
23.6
19.2
24.6
9.7
9.8
11.8
15.9
19.9
23.3
25.0
24.8
23.3
20.3
16.2
11.7
17.6
34.2
99.4
125.2
157.0
161.8
187.2
138.4
209.0
141.4
36.2
31.1
28.2
1,349.1
7.1
12.0
15.4
14.6
15.2
14.8
9.9
10.9
9.0
3.2
4.0
4.9
121.0
75
80
83
82
84
86
82
82
78
71
70
70
78.6
133.3
88.3
89.6
105.6
132.6
163.8
234.6
211.6
178.9
188.4
163.0
163.5
1,853.2
40
28
24
28
32
40
56
53
49
52
50
50
41.8
平均最高气温 Average high °C 平均最低气温
N
Average low °C
345°
15°
平均降雨量 Precipitation mm
10° 20°
330°
平均相对湿度
30°
% Humidity 平均降雨天数
30°
Avg. Rainy days (0.1 mm) 日照小时数
40°
315°
45°
50°
300°
Summer Solstice 夏至日
Sunshine hours
Annual Prevailing Wind 年主导风
6
70°
18
8
80°
16
82.3°@ 夏至日正午 Noon Summer Solstice
1st75° May
17
1st Sep
厦门气候资料 Climate Data of Xiamen
1st Jun
7
285°
Percent of Possible Sunshine
60°
60?
1st Jul 1st Aug
日照�分比
35.3°@ 冬至日正午 Noon Winter Solstice
9
15 270°
1st Apr
10
14
13
12
11
90°
1st Oct 1st Mar
1st Nov 255°
北 North
105°
1st Feb
Winter Solstice 冬至日
1st Dec
1st Jan
240°
120°
225°
135°
210°
厦门太阳轨迹图 Sunpath Diagram of Xiamen
南 South
150°
195°
165° 180°
Summer Prevailing Wind 夏季主导风 廈門市轨道2号线【五缘湾南站】轨道交通用地建筑概念方案设计
Xiamen Metro Line 2 Wuyuanwan South Station Project | Concept Design
95
建筑立面热得量及遮阳设计分析 Facade Solar Heat Gain & Shading Design Analysis
1. 建筑座向(南北朝向)和立面外遮阳(大阳 台)设计,减少建筑太阳热得量和整体能耗; 2. 概念设计阶段就使用了计算机模拟分析软件 对外遮阳进行了分析和优化,确保遮阳的有效 性和合理性; 3. 大阳台的外遮阳能有效减少立面夏季太阳热 得量达26%-47%,整体则减少约32%,从而 大大减低建筑的制冷能耗,达到节能的效果。 kWh/m2 热 Hot 太阳热量 Solar Insolation 凉 Cool
西北立面夏季总太阳热辐射得量 North-west facade total solar insolation in summer
130 120 110 100 90 80 70 60 50 40 30
西南立面夏季总太阳热辐射得量 South-west facade total solar insolation in summer
东立面夏季总太阳热辐射得量 East facade total solar insolation in summer
建筑立面热得量及遮阳设计分析 Facade Solar Heat Gain & Shading Design Analysis
建议整体外遮阳设计 Proposed Shading Designing
东立面夏季太阳热得量 Summer Total Solar Heat Gain
56.7
基准模型 - 无建筑外遮阳 Baseline - No External Shading
东立面夏季太阳热得量 Summer Total Solar Heat Gain
107.6
kWh/m2
kWh/m2
~47.3 %
所有立面夏季太阳热得量 Summer Total Solar Heat Gain
71.2
kWh/m2
31.7 %
~
所有立面夏季太阳热得量 西立面夏季太阳热得量 Summer Total Solar Heat Gain
73.7
kWh/m2
~41.9
Summer Total Solar Heat Gain
104.2
kWh/m2
西立面夏季太阳热得量 Summer Total Solar Heat Gain
126.9
kWh/m2
%
廈門市轨道2号线【五缘湾南站】轨道交通用地建筑概念方案设计
Xiamen Metro Line 2 Wuyuanwan South Station Project | Concept Design
9
自然采光设计分析 Daylight Design Analysis
1. 利用科学化手段优化设计、最大化自然采光 潜力; 2. 塔楼的座向既最大化了景观、同时也最少化 建筑之间的对望和相互遮挡,从而使得里面的 自然采光效果达到最优化; 3. 立面自然采光达30-40%,有利室内自然采 光。 %DF 100 90 80 70 60
亮 Bright
50 40
自然採光
30
暗 Dark
10
Daylight Access
20 0
建筑立面自然采光系数分布 Daylight factor distribution on building envelope
风环境分析 - 整体室外风环境 CFD Wind Analysis - Overall Urban Wind Environment
1. 全年而言,以东风为主导风向; 2. 建筑与主导风之间形成一夹角,能诱导自然 风吹过地块的不同角落; 3. 分析的结果显示,地块整体的通风良好,没 有出现超过5米/秒的阵风,室外风环境舒适。 4. 不仅如此,地块的风速在1-3米/秒之间,十 分舒适 ,能吸引人们在夏季享受室外空间。
0.0 低速 Low
舒适 Comfort 1.0 2.0
3.0
风速 Speed (m/s)
阵风 Gust Wind 4.0 5.0 高速 High
建筑立面风压分布图 Static presure on building envelope
行人高度风速分布图 Velocity contour on pedestrian level
行人高度风速矢量图 Velocity vector on pedestrian level
自然风流动路径图 Pathline of air movement
环保建筑设计策略 - 可持续基地规划设计 Sustainable Design Strategies - Site Planning & Design
1
1
最大化自然通风潜力,减少使用空调, 使得室内外更舒适。 Design to maximize potential for cross ventilation to minimize use of air conditioning and enhance outdoor and indoor space comfort.
2
大量使用绿化屋顶设计,既可以减少顶 层的制冷负荷,同时有效减轻城市热岛 效应。 Large area of green roof and sky garden to reduce cooling load for top level and mitigate Heat Island effect.
3
采用高太阳反射值的屋面材料,增加反 射太阳热量的能力,从而减缓城市热岛 效应和建筑制冷需求。 Use roofing materials with high solar reflectance index (SRI) value to maximize reflectance of solar radiation to mitigate heat island effect.
4
地面设计增加绿化和水体,配合优化室 外自然通风建筑布局,减低城市热岛效 应。 Increase area of landscape and optimize outdoor ventilation to reduce UHI.
5
别出心裁的连廊设计把不同地块连贯起 来,增加空间的通达性,提高室外活 动、交流空间的量和质,让人们享受更 大、更好的室外空间。 Enhance the quantity and quality of the outdoor activity space through the ring link-bridge.
6
场地周边具备地铁、公交车线路等公交 服务,能减少人们对自驾的依赖,从而 减少交通带来的能耗与污染。 Provision of subway and bus service in the vicinity site to reduce use of private car to minimize energy use and pollution.
7
合理开发地下空间用于商业和停车,让 更多地面空间用于绿化。 Use of underground space for retail and car parking. More space on ground level for greening.
6
7 5
1 4
6 1
环保建筑设计策略 - 节水和水资源循环设计 Sustainable Design Strategies - Water Efficiency and Recycle Design
1
1
收集屋顶的雨水,并过滤和消毒,用作 其他的用途,减少市政用水。 Collect rainwater from roofs for reuse to reduce municipal water consumption.
2
雨水用于浇灌,以减少市政用水的负 荷。 The collected rainwater can be used for landscape irrigation to reduce municipal water consumption.
3
雨水用于室外和车库清洁,以减少市政 用水的负荷。 The collected rainwater can be used for road and basement capark cleansing to reduce municipal water consumption.
4
景观浇灌采用节水型的滴灌系统,以减 少市政用水的负荷。 Drip irrigation is used to reduce municipal water consumption.
5
使用低流量高效率用水设备,以减少市 政用水的负荷。 Use WELS Excellent fittings to reduce municipal water consumption.
6
制冷机冷凝水循环使用 ,以减少市政用 水的负荷。 Reuse condensate from chiller plant to reduce municipal water consumption.
7
景观植物选用本土品种或用水量较低的 品种,减少景观浇灌的需求量。 Use local species or species require less irrigation for the landscape planting to reduce water consumption.
6
7 5 3
2
雨水收集系统
4
廈門市轨道2号线【五缘湾南站】轨道交通用地建筑概念方案设计
Xiamen Metro Line 2 Wuyuanwan South Station Project | Concept Design
105
环保建筑设计策略 - 建筑节能设计 Sustainable Design Strategies - Energy Efficient Design
1
使用大量的水平遮阳、屋檐等设计,大 大减低立面的太阳热辐射吸收量,从而 减少建筑能耗。 Horizontal fins and large eaves effectively reduce solar heat gain through envelope to reduce cooling load & energy use.
2
绿化屋顶可以减少制冷负荷,达到节能 的效果。 Green roof to reduce heat gain and cooling load.
3
使用双层Low-E中空玻璃,阻挡太阳热 辐射,减少建筑的制冷能耗。 Double Low-E glass to reduce solar heat gain and cooling load.
4
尽量利用自然光,以减少灯光照明的能 耗。 Use daylight through glazed facade to minimize use of artificial lighting.
5
屋面和平台铺面采用高太阳反射值浅色 材料,增加太阳辐射热的反射,从而减 少热量吸收,以减少制冷能耗。 Use light color finishing materials with high SRI value for top roof and podium to reduce absorption of solar radiation and cooling load.
6
室外景观照明使用太阳能灯具,增加可 再生能源的使用量。而且通过使用设计 美观的太阳能灯,更加能美化室外景 观。 Solar powered lighting is used for landscape lighting.
7
安装地库采用采光管,使地库停车场能 直接使用室外光线,改善地库的自然采 光。 Use sunpipe to divert sunlight into the basement carpark to reduce lighting energy use.
4
5 2
3
6
7 7
106
环保建筑设计策略 - 可持续建材 Sustainable Design Strategies - Sustainable Material & Resource
1
1
分析建筑结构、材料等生命周期成本, 选取成本较低的建筑结构和材料。 Conduct Product Life Cycle analysis for the building structure and material.t
2
30%建筑材料使用距离基地800公里以 内,以减少运输的能耗和交通污染。 At least 30% materials within 800km to reduce energy use and pollution by transportation.
3
使用循环成分含量较高的建筑材料。总 体循环成分占比不低于20%。 Use materials with high recycled content. Total recycled content not less than 20%.
4
使用对大气破坏潜力和对地球暖化影响 最低的空调冷媒。不使用以CFC为基础 的材料。 Use refrigerant with low ozone depletion potential and global warming potential. Also, no CFC based materials will be used.
5
项目75%的永久性安装的木材源自经过 认证的可持续管理森林。 75% timber in the project are from sustainablely managed forest, e.g. FSC forest.
6
使用可快速生长的建筑材料能减低建筑 的内在能耗和生命周期成本。 Rapidly renewable bamboo material to reduce the embodied energy and life cycle cost.
7
建筑与室内一体化施工,减少室内装修 所引起的二次施工的施工废料和污染。 Integrated construction for superstructure and interior fitting out to minimize construction waste and pollution.
6 4 7
3 5
2
800km
环保建筑设计策略 - 健康和安全的室内环境 Sustainable Design Strategies - Healthy & Safe Indoor Environment
5
3
2
1
室内设置抽烟房,同时在市内所有的公 共空间禁止吸烟,以大大改善室内的空 气质量。 Design designated smoking room inside building and prohibit smoking in the building to enhance indoor air quality.
2
建筑布局有利于整体的室外自然通风, 提高整个小区的通风效率和人们的热舒 适性。 MLP is optimized to maximize the natural ventilation performance. As a result, comfort of residents can be enhanced.
3
建筑之间视野良好,尽量避免建筑之间 的视线干扰。同时大部分室内空间都拥 有室外景观,提高视觉舒适性。 Good external view access to enhance visual comfort and value of the premises.
4
通过外窗尽量利用自然光,同时让居民 能够感受室外的变化,增加视觉的舒适 性。 Use of daylight through glazed facade to enhance indoor visual comfort.
5
建筑外遮阳、窗帘遮阳等手段可以减少 室内的眩光,从而大大提高室内的视觉 舒适性。 External shading can greatly reduce the glare problem and improve visual comfort of occupants.
6
室内装修用的油漆、密封胶等,用低或 无VOC的产品,减低对人们健康的威 胁。 Use LOW or NO VOC content paints, sealant and carpet products to safeguard occupants’ health.
4
1
6
7
vocs 7
空调新风采用MERV13或者以上的高效 能过滤网,确保室内空气质量。 Use HEPA filter, at least MERV 13, for HVAC system to improve indoor air quality.
廈門市轨道2号线【五缘湾南站】轨道交通用地建筑概念方案设计
Xiamen Metro Line 2 Wuyuanwan South Station Project | Concept Design
109
Part III: Workshop Teaching
Hunan University Workshop
CV
CV Tianyi Chen
陈天一 Email: tichen101@hotmail.com
Tel: +852 63523247
出生 : 10.1, 1987
香港 , 中国
11.2014 - 至今
9.2012 - 2.2014 9.2011 - 9.2012 9.2006 - 6.2011
Hongkong,CHINA
Aedas Ltd, Hongkong
Nov. 2014 - Now
Architecture Association, London, UK Master of Architecture, Architecture and Unbanism (Design Research Lab) ETH, Zurich, Swiss Master of Advanced Studies, Computer Aided Architecture Design (CAAD) Hunan Univeristy, Changsha,China Bachelor of Architecture
Sep. 2012 - Feb.2014 Sep.2011 - Sep. 2012 Sep.2006 - Jun. 2011
AWARDS & SCHOLARSHIPS
获奖情况 瑞士政府奖学金 毛泽东纪念馆国家概念竞赛三等奖 建构模型大赛创新奖 湖南大学主办
Birth: oct.1, 1987
EDUCATION
教育背景 伦敦建筑联盟,英国 建筑学硕士, 建筑与城市主义(设计研究所) 苏黎世联邦理工, 瑞士 计算机辅助建筑设计硕士 湖南大学, 中国 建筑学学士
Tel: +852 63523247
WORKING EXPERIENCE
工作经历 凯达建筑事务所,香港
Email: tichen101@hotmail.com
9.2011 6.2010 6.2008
Swiss Government Scholarship 3th Price , Chairman Mao Zedong Museum National Innovation Price, Structure Model Design Competiion hold by Hunan University
Sep. 2011 Jun. 2010 Jun. 2018
出版与展览
PUBLICATION & EXHIBITION
2015,《世界建筑导报》 12 月 自主和网络化建筑 ,P52 2014, 北京国际设计周 湖南大学与 Wax 事务所联合工作坊 作品展示 2013,《设计智能 -——高级计算性建筑生形研究学生建筑设计作品》 许卫国,林尔 . 尼奇 编,中国建筑工业出版社 2013, 数字渗透 DADA 数字建筑展 中国建筑学会建筑师分会数字建筑设计专业委员会主办,北京 2010, 《数字现实 学生建筑设计作品》 许卫国,林尔 . 尼奇 编, 中国建筑工业出版社 2010, 数字现实 北京国际建筑双年展学生作品 清华大学,中国建设部主办,北京 2010, 数字技术建筑年度论坛 同济大学主办, 上海 2009, 《城市建筑》 城市建筑杂志社 2009, 当代中国建筑论坛 (CCAF) 湖南大学主办,长沙
2015,Journal: World Architecture Review Novernber Autonomous & Networked Architecture,P52 2014, Beijing Internatioal Design Week Hunan University and Wax Architects union workshop projects 2013, Book: Design Intelligence, Advanced Computational Research, DADA 2013 students Edit by Neil Leach / Xu Weiguo ,China Architecture & Building Press 2013, DADA "Digital Architecture Design Association " Digital Infiltration 2013 student works, Beijing Hold by Digital Architecture Design Association, Beijing 2010, Book: Machinic Process, Architecture Biennial Beijing 2010 students Edit by Neil Leach / Xu Weiguo ,China Architecture & Building Press 2010, Architecture Biennial Beijing Hold by Tsinghua University and Ministry of Architure, Beijing 2010, Annual Symposlum on New Digital Techniques for Architecture Hold by Tongji University, Shanghai 2009, Unbanism and Architecture(UA) Maganize Unbanism and Architecture Press 2009, The Contemporary Chinese Architectural Forum(CCAF) Hold by Hunan University, Changsha
主要经历
EXPERIENCE
2014/08-09, 湖南大学与 Wax 事务所联合工作坊教师,长沙 2013, 扎哈 . 哈迪德事务所运算小组工作坊, 墨西哥 2012, Rhino 原厂建筑曲面造型特级课程, 深圳 2011, 国家大学生创新训练项目 " 数字设计艺术性研究 " 结题, 长沙 2010 /08-10, 湖南君悦置业有限公司实习,建筑助理 2008 - 2010, 湖南大学数字建筑研究所助理 2010, 湖南大学数字建筑研究所 + 扎哈事务所运算小组工作坊 2009, 湖南大学台湾国立交通大学数字建筑工作坊 2008, 清华大学参数化建筑设计工作坊
2014/08-09, Hunan University and Wax Architects union workshop Tutor, Changsha 2013, ZAHA CODE workshop, Mexico 2012, Rhino McNeel Asia Architecture Modeling Advanced Class, Shenzhen 2011, National University student Innovation Program"Digital Design Art Research" complete, Changsha 2010/08-10, Architectural Assistant in Junyue Real Estate Development Co. Ltd 2008 - 2010, Assistant of Digital Architecture Lab, Hunan University 2010, D[a]L + ZAHA CODE workshop, Changsha 2009, National Chiao Tung University and HNU Digital Architecture workshop 2008, Tsinghua University Parametric Architecture Design workshop
软件技能
TECHNICAL SKILLS
Maya, Rhino3D, Sketchup, Grasshopper, Processing Java, Arduino Ecotect, Flow Design, Karamba,FEA Scanner Sovler, solidthinking AutoCAD, Adobe photoshop/ illustration/inDesign MentalRay Rendering, Vray, Keyshot
Maya, Rhino3D, Sketchup, Grasshopper, Processing Java, Arduino Ecotect, Flow Design, Karamba,FEA Scanner Sovler, solidthinking AutoCAD, Adobe photoshop/ illustration/inDesign MentalRay Rendering, Vray, Keyshot
Email: tichen101@hotmail.com Phone: +852 63523247 Hongkong, China