Collaborative Localization as a Paradigm for Incremental Knowledge Fusion

Page 1

CogInfoCom 2014 • 5th IEEE International Conference on Cognitive Infocommunications • November 5-7, 2014, Vietri sul Mare, Italy

Collaborative Localization as a Paradigm for Incremental Knowledge Fusion George Kampis

Paul Lukowicz

Embedded Intelligence DFKI (German Res. Center for Artificial Intelligence) Kaiserslautern, Germany Email: George.Kampis@dfki.de

Embedded Intelligence DFKI (German Res. Center for Artificial Intelligence) Kaiserslautern, Germany Email: Paul.Lukowicz@dfki.de

ITMO University, St. Petersburg, Russia

Abstract—Collaborative localization is the computation of improved spatial coordinates in mobile agents based on their physical meetings in a pedestrian dead reckoning (PDR) system. Upon meeting the agents can exchange information about their subjective position and update it based on a simple algorithm. We show in a simulation model that the localization error diverges unless this algorithm is introduced in which case it remains bounded. We consider collaborative localization as an example of broader incremental knowledge fusion and discuss its various implications such as the importance of well-informed agents.

individual properties, objectives and actions. Decision-making, coordination and computation are distributed and usually dispersed, and interaction between the units lead to emergent or unexpected, unplanned phenomena. The agents are typically heterogeneous (such as humans, computers, robots, various artefacts and biological entities), having different, a priori uncoordinated (thus possibly inconsistent) objectives and goals.

I. I NTRODUCTION Pedestrian dead reckoning (PDR) systems are widely used for localization (based e.g. on the opportunistic use on inertial sensors built into different devices such as smart phones) but are bound to various errors. Among these, the most important is the accumulation of errors: each step adds an uncertainty in the localization so the further the user moves the less accurate the localization information becomes. In the Smart Society and Smart City context a new idea has been tested, based on the meetings of persons using devices. When two users come close to each other, their devices can use this for updating their own subjective position information based on the fact that (despite their error-prone subjective positions) they occupy nearly identical spatial positons. Using a simple averaging algorithm the estimated (subjective) position can be improved. In mathematical language, the probability density distributions of each system with respect to its own location using the fact of the meeting allows for the construction of a new, joint distribution that has a lower variance than the individual estimates alone. The principle has been tested on the field and is illustrated in (Fig. 1). In this paper we introduce and discuss an agent based simulation, reproducing the earlier empirical result and providing further insights, in particular on the importance of informed agents, system size, correlations, the role of meeting densities and other parameters.

(a) The principle of collaborative localization

II. F ROM DESIGNED TO SELF - ORGANIZING COMPLEX ADAPTIVE SYSTEMS (CAS)

(b) Empirical results from [1]

CAS, or collective adaptive systems, are systems that comprise many agents, all of them coming along with their own

Fig. 1: Collaborative localization in a population of PDR systems

978-1-4799-7280-7/14/$31.00 ©2014 IEEE 327


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Collaborative Localization as a Paradigm for Incremental Knowledge Fusion by Smart Society Project - Issuu