THE PAST PRESENT AND FUTURE OF THE ALUMINIUM INDUSTRY
Today it is impossible to imagine our life without aluminium. The light and soft white metal, with a frosted silver tint is virtually everywhere. But there was a time when aluminium was more precious than gold. Contrary to popular belief, aluminium mines do not exist, and only certain minerals and rocks containing aluminium are suitable for industrial production. The latter only started at the end of the 19th century when ways to produce aluminium through electrolysis were discovered, and only in the period between the two World Wars, the extent of its potential was more widely recognised.
Increasingly employed by the transport and construction sectors, aluminium production boomed following World War II. Whilst only 8,000 tonnes of aluminium were produced in 1900, a century later, its production volume had reached over 40 million tonnes. Aluminium’s outstanding properties explain why, in terms of application in various industries, it is nowadays second only to iron. Aluminium is forgeable and malleable. Its oxide film makes it resistant to corrosion and means the life span of aluminium goods is very long. In addition, it has a high electrical conductivity, is nontoxic and is easily reprocessed. These properties go some way to explaining aluminium’s importance in the world economy. The aluminium industry is the largest non-ferrous metal industry in the world economy. It is highly competitive and characterized
12
GLOBAL ISSUES
by high concentration. The six largest producers of aluminium account for more than 40% of the global primary aluminium output. This is mostly due to high entry barriers relating to the specifics of the aluminium production process, which includes bauxite mining, alumina refining and production of aluminium itself. It is no wonder that industry leaders are large, vertically integrated companies, managing all stages of aluminium production. More than that, aluminium production is very energy-intensive; therefore access to cheap energy resources is key to becoming an industry leader. Currently, there are two primary technologies to produce aluminium: Soederberg and prebake. Soederberg uses a continuously created anode made by addition of ‘pitch’ to the top of the anode. The lost heat from the smelting operation is used to bake