Graphics
3D Geometric Transformation ????? ??? ???? ???
Graphics Lab @ Korea University
Contents
Translation
Scaling
Rotation
Rotations with Quaternions
Other Transformations
Coordinate Transformations
CGVR
Graphics Lab @ Korea University
Transformation in 3D
CGVR
Transformation Matrix A B C 0
D E F 0
G H I 0
J K L S
⇒
3 ×1 1×1
3×3 1× 3
3×3 : Scaling, Reflection, Shearing, Rotation 3×1 : Translation 1×1 : Uniform global Scaling 1×3 : Homogeneous representation Graphics Lab @ Korea University
3D Translation
CGVR
Translation of a Point x' = x + t x ,
y' = y + t y , z' = z + t z y
x z
x' 1 y ' 0 = z ' 0 1 0
0 1
0 0
0 0
1 0
t x x t y y t z z 1 1
Graphics Lab @ Korea University
3D Scaling
CGVR
Uniform Scaling x' = x ⋅ s x ,
y' = y ⋅ s y , z' = z ⋅ sz y
x
x' s x y ' 0 = z' 0 1 0
0
0
sy 0
0 sz
0
0
0 x 0 y 0 z 1 1
z
Graphics Lab @ Korea University
Relative Scaling
CGVR
Scaling with a Selected Fixed Position y
z
y
x
Original position
y
x
z
x
z
Translate
x' 1 y ' 0 T ( x f , y f , z f ) ⋅ S ( s x , s y , s z ) ⋅ T ( − x f ,− y f ,− z f ) = = z' 0 1 0
y
Scaling 0 1 0 0
x
z
Inverse Translate
0 x f sx 0 0 0 y f 0 s y 0 1 z f 0 0 sz 0 1 0 0 0
0 1 0 0 0 0 1 0
0 1 0 0
0 − x f x 0 − y f y 1 − zf z 0 1 1
Graphics Lab @ Korea University
3D Rotation
Coordinate-Axes Rotations
CGVR
X-axis rotation Y-axis rotation Z-axis rotation
General 3D Rotations
Rotation about an axis that is parallel to one of the coordinate axes Rotation about an arbitrary axis
Graphics Lab @ Korea University
Coordinate-Axes Rotations
Z-Axis Rotation
x' cosθ y ' sin θ = z' 0 1 0
− sin θ cosθ 0 0
0 0 x 0 0 y 1 0 z 0 1 1
X-Axis Rotation 0 x ' 1 y ' 0 cosθ = z ' 0 sin θ 0 1 0
0 − sin θ cos θ 0
0 x 0 y 0 z 1 1
Y-Axis Rotation x' cosθ y ' 0 = z ' − sin θ 1 0
y
y
z
0 sin θ 1 0 0 cosθ 0 0
0 x 0 y 0 z 1 1
y
x
x z
CGVR
x z
Graphics Lab @ Korea University
Order of Rotations
CGVR
Order of Rotation Affects Final Position
X-axis Z-axis
Z-axis X-axis
Graphics Lab @ Korea University
General 3D Rotations
CGVR
Rotation about an Axis that is Parallel to One of the Coordinate Axes
Translate the object so that the rotation axis coincides with the parallel coordinate axis Perform the specified rotation about that axis Translate the object so that the rotation axis is moved back to its original position
Graphics Lab @ Korea University
General 3D Rotations
CGVR
Rotation about an Arbitrary Axis Basic BasicIdea Idea
y
TT
(x2,y2,z2)
RR (x1,y1,z1) x z
RR-1-1 TT-1-1
1.1. Translate Translate(x1, (x1,y1, y1,z1) z1)totothe theorigin origin 2.2. Rotate Rotate(x’2, (x’2,y’2, y’2,z’2) z’2)on ontotothe thezz axis axis 3.3. Rotate Rotatethe theobject objectaround aroundthe thez-axis z-axis 4.4. Rotate Rotatethe theaxis axistotothe theoriginal original orientation orientation 5.5. Translate Translatethe therotation rotationaxis axistotothe the original originalposition position
R (θ ) = T −1R −x 1 ( α ) R −y1 ( β ) R z (θ ) R y ( β ) R x ( α ) T Graphics Lab @ Korea University
General 3D Rotations
CGVR
Step 1. Translation y (x2,y2,z2)
(x1,y1,z1) x
1 0 T= 0 0
0 1 0 0
0 − x1 0 − y1 1 − z1 0 1
z
Graphics Lab @ Korea University
General 3D Rotations
CGVR
Step 2. Establish [ TR ]αx x axis y
(0,b,c) Projected Point
sin α = cos α =
(a,b,c) α
α x
z Rotated Point
0 1 0 cos α R x (α ) = 0 sin α 0 0
b b2 + c2 c b2 + c2 0 − sin α cos α 0
=
b d
=
c d
0 1 0 0 0 c / d = 0 0 b / d 1 0 0
0 −b/d c/d 0
0 0 0 1
Graphics Lab @ Korea University
Arbitrary Axis Rotation
Step 3. Rotate about y axis by φ a d , cos β = l l l 2 = a2 + b2 + c2 = a2 + d 2
y
sin β = (a,b,c)
Projected Point
d = b2 + c2
l d
x
β (a,0,d)
z
CGVR
Rotated Point
cos β 0 Ry(β ) = sin β 0
0 − sin β 1 0
0 cos β
0
0
0 d / l 0 0 = 0 a / l 1 0
0 − a / l 0 1 0 0 0 d / l 0 0 0 1
Graphics Lab @ Korea University
Arbitrary Axis Rotation
CGVR
Step 4. Rotate about z axis by the desired angle θ y
l θ
x
cos θ sin θ R z (θ ) = 0 0
− sin θ cos θ 0 0
0 0 1 0
0 0 0 1
z
Graphics Lab @ Korea University
Arbitrary Axis Rotation
CGVR
Step 5. Apply the reverse transformation to place the axis back in its initial position y
l
l
z
1 0 −1 −1 −1 T R x (α ) R y ( β ) = 0 0 x
0 0 − x1 1 0 1 0 − y1 0 cos α 0 1 − z1 0 − sin α 0 0 1 0 0
cos β 0 − sin β 0
0 sin β 1 0 0 cos β 0 0
0 sin α cos α 0
0 0 0 1
0 0 0 1
R (θ ) = T −1R −x 1 ( α ) R −y1 ( β ) R z (θ ) R y ( β ) R x ( α ) T Graphics Lab @ Korea University
Example
CGVR
Find the new coordinates of a unit cube 90ºrotated Find the new coordinates of a unit cube 90ºrotated about an axis defined by its endpoints A(2,1,0) and about an axis defined by its endpoints A(2,1,0) and B(3,3,1). B(3,3,1).
A Unit Cube Graphics Lab @ Korea University
Example
CGVR
Step1. Translate point A to the origin
y B’(1,2,1)
A’(0,0,0)
z
x
1 0 T= 0 0
0 0 − 2 1 0 − 1 0 1 0 0 0 1
Graphics Lab @ Korea University
Example
CGVR
Step 2. Rotate axis A’B’ about the x axis by and angle α, until it lies on the xz plane. sin α = cos α =
y Projected point (0,2,1)
α z
B’(1,2,1)
l x B”(1,0,√5)
2 2 2 + 12
=
2 2 5 = 5 5
1 5 = 5 5
l = 12 + 2 2 + 12 = 6
1 0 R x (α ) = 0 0
0 5 5 2 5 5 0
0 2 5 − 5 5 5 0
0 0 0 1
Graphics Lab @ Korea University
Example
CGVR
Step 3. Rotate axis A’B’’ about the y axis by and angle φ, until it coincides with the z axis. sin β =
y
cos β =
(0,0,√6)
β
l
x B”(1,0, √ 5)
z
1 6 = 6 6 5 30 = 6 6
Ry(β) =
30 6 0 6 6 0
0 1 0 0
6 − 6 0 30 6 0
0 0 0 1
Graphics Lab @ Korea University
Example
CGVR
Step 4. Rotate the cube 90° about the z axis 0 − 1 1 0 R z ( 90°) = 0 0 0 0
0 0 1 0
0 0 0 1
Finally, the concatenated rotation matrix about the arbitrary axis AB becomes,
R (θ ) = T −1R −x 1 ( α ) R −y1 ( β ) R z ( 90°) R y ( β ) R x ( α ) T
Graphics Lab @ Korea University
Example 1 0 R (θ ) = 0 0
0 1 0 0 2 5 0 1 0 1 5 2 5 0 1 0 0 − 5 0 0 1 0 0 1 30 6 0 − 0 6 6 0 0 1 0 0 6 30 0 0 0 6 6 0 0 0 1 0
CGVR 2 5 5 5 5 0
0 30 0 6 0 6 0 − 6 1 0
0 5 5 2 5 5 0
0 2 5 − 5 5 5 0
0
0 1 0 0 0 1 0 0 0 0 0 1
6 6 0 30 6 0 0 1 0 0
0 0 − 1 0 1 0 0 0 0 0 0 1
0 0 0 0 1 0 0 1
0 − 2 0 − 1 1 0 0 1
0.166 − 0.075 0.983 1.742 0.742 0 . 667 0 . 075 − 1 . 151 = − 0.650 0.741 0.167 0.560 0 0 1 0
Graphics Lab @ Korea University
Example
CGVR
Multiplying R(θ) by the point matrix of the original cube
[ P′ ] = R ( θ ) ⋅ [ P ] 0.166 0.742 [ P′] = − 0.650 0 2.650 − 0.558 = 1.467 1
− 0.075 0.983
1.742 0 0.075 − 1.151 1 0.167 0.560 1 0 1 1
0 1 1 0 0 1 1 0.667 1 1 1 0 0 0 0 0.741 0 0 1 1 0 0 1 0 1 1 1 1 1 1 1 1.667 1.834 2.816 2.725 1.742 1.909 2.891 − 0.484 0.258 0.184 − 1.225 − 1.151 − 0.409 − 0.483 1.301 0.650 0.817 0.726 0.560 − 0.091 0.076 1 1 1 1 1 1 1 Graphics Lab @ Korea University
Rotations with Quaternions
CGVR
Quaternion
Scalar part s + vector part v = (a, b, c) Real part + complex part (imaginary numbers i, j, k)
q = ( s, v ) = s + ai + bj + ck
Rotation about any axis
Set up a unit quaternion (u: unit vector) θ θ s = cos , v = u sin 2 2
Represent any point position P in quaternion notation (p = (x, y, z)) P = ( 0, p ) Graphics Lab @ Korea University
Rotations with Quaternions
CGVR
Carry out with the quaternion operation (q-1=(s, –v)) P′ = qPq −1
Produce the new quaternion P′ = ( 0, p′) p′ = s 2 p + v ( p ⋅ v ) + 2 s ( v × p ) + v × ( v × p )
Obtain the rotation matrix by quaternion multiplication M R (θ ) = R −x 1 ( α ) R −y1 ( β ) R z (θ ) R y ( β ) R x ( α )
1 − 2b 2 − 2c 2 2ab − 2 sc 2ac + 2 sb = 2ab + 2 sc 1 − 2a 2 − 2c 2 2bc − 2 sa 2 2 2ac − 2 sb 2 bc + 2 sa 1 − 2 a − 2 b Include the translations: R (θ ) = T −1M (θ ) T R
Graphics Lab @ Korea University
Example
CGVR
Rotation about z axis
θ θ Set the unit quaternion: s = cos , v = ( 0, 0, 1) sin 2 2 Substitute a=b=0, c=sin(θ/2) into the matrix: θ θ 2θ 1 − 2 sin − 2 cos sin 0 2 2 2 θ θ θ M R (θ ) = 2 cos sin 1 − 2 sin 2 0 2 2 2 2θ 0 0 1 1 − 2 sin = cos θ 2 θ θ 2 cos sin = sin θ cos θ − sin θ 0 2 2 = sin θ cos θ 0 0 0 1 Graphics Lab @ Korea University
Other Transformations
Reflection Relative to the xy Plane y
y z
z
CGVR
x
x
x' 1 y' 0 = z' 0 1 0
0 1 0 0
0 x 0 0 y −1 0 z 0 1 1 0
Z-axis Shear x' 1 y ' 0 = z ' 0 1 0
0 1
a b
0 0
1 0
0 x 0 y 0 z 1 1
Graphics Lab @ Korea University
Coordinate Transformations
CGVR
Multiple Coordinate System
Local (modeling) coordinate system World coordinate scene
Local Coordinate System Graphics Lab @ Korea University
Coordinate Transformations
CGVR
Multiple Coordinate System
Local (modeling) coordinate system World coordinate scene
Word Coordinate System Graphics Lab @ Korea University
Coordinate Transformations
CGVR
Example – Simulation of Tractor movement
As tractor moves, tractor coordinate system and front-wheel coordinate system move in world coordinate system Front wheels rotate in wheel coordinate system
Graphics Lab @ Korea University
Coordinate Transformations
CGVR
Transformation of an Object Description from One Coordinate System to Another Transformation Matrix Bring the two coordinates systems into alignment 1. Translation y’ y x’ u'y u'y y u'x (x0,y0,z0) u'x (0,0,0) x u 'z z u'z z’ (0,0,0) x
z
T( − x0 , − y0 , − z0 )
Graphics Lab @ Korea University
Coordinate Transformations
CGVR
2. Rotation & Scaling y’ y u'y
u'x x z (0,0,0) z’ u'z
y u' y
y u'
x’
y
z
u ′x1 u ′ R = y1 u ′z1 0
(0,0,0)u'x u' z
x
u ′x2 u ′y2 u ′z2
u ′x3 u ′y3 u ′z3
0
0
z
u' x (0,0,0) x u' z
0 0 0 1 Graphics Lab @ Korea University