þśƓǗ ƌīdž ƓƌīśŻ
TU TEA A H R U STR' O R C S O I T S T F A A SER F MC O E EIR T R 0 HA U T M T T A C N EA -H E T, FTSI A I O S -S H L TG!E N NM$ EI MH OF TCRO R AF Y A EGI T PT NR S ENI GE $E N V EA I EBR N H S C T S5T A N E NHO E I G I I E T EL H I G(S L L N E O O I I P#$ K H RL F OEF$O O W$R3T N 2 E E YD B ! A L M T M O N S N U C E2N R I S T E A A E V A B R PMDMO ' E L SAE H I H C T I KHA S N AA -H R H A C FE "DO T NTL Y LA NO O OSE0 M HR A V CE TE R 3Y A N P$ R EK E A DT$N S EA OA H. -P T Mr. LALIT SHARMA
L A N I O T C SN C U I T & A MN EI H T A - E R L I UH 00 NI ! S I -H DD NI AD E ( I H L SE C $ I T A F MO EY T HI T S I A R H E L -V E I $ NN I F 5O S NEY T OG I S (ER L L E O V ! #I N " L5 A DI M D AIO R R MOF R RI S A I S H+Y 3ML A O R N R! -F EE G S T N (R E I E L T H P T S L E CS MA OTAR CREE O 4 DPE P ELT A HA AP S NUL IO L IDA B R A T E UA R PC 'VS E DU S L S E NDT V AEOFE LS0OL E R R U L VO OEA EI F B L N YR MI O S A R VEET A A DRMMN NOM R OFAAE T CT SR NN EN GE) S REOED ODRBN I U0SA T N T AL N ES HA S YE N TR E M A O I SAP(T O KDL A S ONE L . OOV E VT BCE TE EA S $ L X RYLS EO TAI T C ILNT NUOA E C I DSAT M A ER&N E R OLR H OF AET R HS TA E T E U VNI E)R AR SESDO S A DNF HEEA T R S AU LE C A MT U E NT C D RE OI T A NI HLOT M 3OCAM E . D S R A O TC IH -V A
F O E C I V R E S E H T O T D E T T I M M O C Y L L U F S I E H Y C N E I C l O R P GY NT I I H CN AU EM T M TO N EC L L R E E CH XC EA E S4 I H T RN OE F D NU T W3 OE NH +T
I-5
þśƓǗ ƌīdž śśǐ
H N C A I N I H W D v' E T N 5E 4S % E R '5P L 5#A RI 4O R E %FT GA 5N #I M RRE OAC P F I ET SR C C PA I T R S A T P MN TR EEN E HDEN I U T C A T N I S F A -E F hH M U KT S E OL SV L OA N I I T BF S A YOT U MSNA H TDOX C E N EKE EN S T LOE E O A R BY P PI Y EL OC D T NHN 4 I ER R E UPNI R SEI F A A H ET MT L O P N OE T TR $D A E ET SU R C T A I G S C T EO A Y L MT ME SSEM D E HE T VNA R I E T G T -X N TI ) E ! 4 . Y B D E S A E L E R
N R E T T A P T S E 4 K C O L A I C I F F O N O D E S A "
Y T I R A L C T P E C N O C P E E D R O F D E R A P E R P Y L L A I C E P S N O I T C E S v N I A R " R U O Y E S A E 4 h
S T P E C N O C F O N O I S I V E R E T E L P M O C R O F W E I V E 2 K C I U 1 S P A D N I @ E S I W R E T P A H #
S R E W S N A D N A S T N I H H T I W S 1 # E S I W C I P O 4 E S I W R E T P A H #
latest syllabus R E P S !
Key features of the book
EM T I C O C U OL I YA DM L G U O H S N O I T A C I L A B UM R PA EH ES R T F I L A RL O RA T R E E EM R UT SC NA ET N OO T EC DO AT ME M NO EC EL BE E VW E AR HA SU T R O OY F F E Y TC S N E A NP OE HR C HS GI UD OY HN 4A
LALIT SHARMA
I-7
ÿŅŒśƮʼnĊąĢĊŐĊŒƌǖ
AD N# AD LL T R LA N N T O O P ARE+ A OI HA H $EOT T HC"R R N CSR C S I I O O $ YNE 3R T P F O AAO . C0 P J I YU D I R 4 * I L I 6U 0L 2BA S A G J S %UMRS R ETN#0R$E $L U A L 3 A E BPT H $ RAJE 35I R R OUAEO $ T F L2' 3 A A T R EI LHG NVP CA S S E E ONU P! EH -R I I L I I T L T C SN $ O A S ! I N R I R #O H I C T R %N -J E IF R R / 0 R I A O PO$$* V5 ALI PFO AIT N MOH$ O H 3 AHRH L TE E E G A S W C L D G N E $U H A 3 E AI R PL 3 L 3 T H E I I DC J O CDT RAN I N# NAA. T A AI O I R I HN S G NRU 2 A # ! A0D YAY . K N MBM* EVI S RRVE( SMSR$-ID A 6 H $ S S A E H E E T R PAL3HC KR T A P PA 4UH E RH P X XR 2OS J A I S EAE% I O RD I C M R H N O"O#'/I P S U L S T A .L R+ L O S A 0 6 I OATN 3 YH H V T ) T O I N I I A C I I N T NT 6MHH U 3 U3N5A C O T O N!R A NI R H ORTNR$AR 3 H $ O E G PEAI T 3 V D U T / R N PO I A O T T ) $ O2 I M C R O A I N H ML S T A AW B I Y N L 5 H E A TUYHOU$ T C 2 T 0 P N O + A N 0 EIA A !#D KCTDDP N S H A A S I AR 2I NE / T R T EA U O( ,(G 0C (3-) ) IROEDR TOT INY O A T K NF A H I AAL NEL AD L S U N E D A M AN ' U $6 L I M A A(TUR DL$N ROA N E I AO /PS I WHH OO (E H )3T 2H E T D YAN ACA$ RL L H OT A B3RS KA MNHR NFNI S A I K H OH T ARI-I C I HETTR3H KD LAEO T O S P A 3 N AR NOR H MR A ROEN G H ) "IACTA EU N Y P Y F O 3) LN! R L I A O R S ! N H C O2R UWT E A HA$ Y O R 3YCT UME 2 3E M N R DT I A3 NER AY A R'A N N . L E OMB W3WAC DS G RN OR G!AY A K I T A HI HD --H A#SO3 O L N R $L0O LA AEBI DM T VEMS /O 3 O I N (H0A ENHRR C$H E5T5O I E 33 F #3AV N S KOR 3IS AT A N ROR-M MN J I -HPRR R)NO A S A E R !MEA 6V I M A H H H AI3L OT3T O 0 S H O A T O G A S R RM3 0 H N "$RC HE E " A Y R D R L 3ER T $AA R S O LI C KM"O F LVNY-O R NA O A U I B L AH I J NS HU RE N H3 M E R C N C 0! T A3 HR A O T OR3L F I U YR T O T E AL O SYR E S ED N S -E R V KN OO GMBY I I L E-T LGKRM E , A R A DI U ND L H S N R A L 6 G U S ET HEN O AR U E 0 H I YE T MO WRI 2AI N TMB )-6) +T
I-9
þśƓǗ !¯,© ϸ¯CϹ μκμμ Ǟâǒ
R E T I N L R E A D %N E %P OE D -N NIN O ONI I AT T A A Z CSI UAN D A %$G R F2O O Y(G R N T I S T T I S N N E E I T -MR E YPI O BL M DE E EVR HEP S$D I L E B E N ACI T R A S UT E S SOU S I E S !2L F 4 E .NS AD YMN C A NUT E(N G F A !O I L G E NYR R I F T T L S S E I E N S 4I LS A U NSO OA M I T O A NN .WO EOT HNU 4KA About NTA
CK GI E NM I E T ES C O UDT DAS NCT OAN CEE FH TD O U R YO T S T F I L Y OR IST B T 5YN I S TU N#I O NO PSUC SETE I R T E IO H R S T ERPS HEPS V O T O I HN R WC T 5OA I WLD A NS DR I T EN 5 W# T S E UEL R#G S T E E NI N T EHIS S T I L NL AR EA E EV ERD I BO IN SFV S A O5 T RL HS P A E R T LT !E L I 4C N WE .N A 4# YR %E CT H NN5T EE#F GE O !T Y GA N NU A D I T A N S R I E G 4R N LE I O A D S N NNO S O5 I I I S M T ES A D EA HS .T CUET – Common University Entrance Test
S N N T O O N I I S S AS S R II I P MM SD D A A EAR HRO 4OF F N E S I5 DT OE # L -L U S E 4"T I NI "O S #I R T E TAV S I MN E R 4O 5 DF L NA E) R S T A EN "H E T# RO E T TD U E RR PE I FS ME E ORD #YE S AHE NM I T FM D ETOM S T SA E C R UTEG DEMO NHMR OT 0 CRAE R O G EF T A BROU LARD L IEPA E WPT R PAG 'AUE R ODD 5T A E N R 4R G 5 I R %S E E 5ED H #DN T O EO5T HHON 4WT I Mode of Examination
S N O I T C E 3 G N I W O L L O F E H T F O T S I S N O C L L I W n ' 5 4 % 5 # Examination Structure for CUET (UG):
Section II –
Section III
DS! EU4 S AB. A BL LNE T SYOI NS 1SE B #NV E IW -OG
S E T S U H NCC T NCI lE A I A I J C -EME B ROP U O$ 33 F
NRD AOE CFS S T AN D X EEBO T I S T TU 1S U E PE#U NB -1 )
CUET(UG) Domain Subject (Section-II) Paper Pattern
S N O D I T E S T E F U PO M E 1B ET T U T OA O T
50
SES I SN H OI CT OA lRH I E ME C EDCOL B PNY$A SUA C S S M I E D L I NE P T E P I I RT A S E A A R MF F D EE I OO V I $ DFHN T G N NAOY5 I B C M E Y EB!UDT R I S MES R A T N IS I R C OX EE E R V TAEI JI D E C B HU EMSN 5 4S 3AA
Six (06)
I-11
45
40
27
Section II Domain
T S E 4 L A R E N E ' n Section IB
S T C E J B U 3 C I F I C E P S N I A M O $
S E G A U G N A , n Section IA
S E G A U G N A , n
! 8 % ' 5 4 % 5 # 4 5 / " !
I-12
Type of Questions in Domain Subject (Section-II) Paper Pattern (analysed from Sample Paper provided by NTA)
S N O I T S E U 1 G N I N O S A E 2 N O I T R E S S ! I
S 1 #
S 1 #
S N O I T S E U 1 E N O L A D N A T 3
S N O I T S E U 1 D E S A B T N E M E T A T 3 I I
S 1 #
S N O I T S E U 1 D E S A B E L B A 4 I
S N O I T S E U 1 G N I W O L L O F E H T H C T A I I
S 1 #
S N O I T S E U 1 D E S A " E S A # I
H C A E S 1 # H T I W S 1
S N O I T S E U 1 D E S A " T X E 4 I I
200 F O T U O D E T P M E T T A E B O T S N O I T S E U 1
50
40 Total
Total Marks Number of MCQs Typology of MCQs
ƴʼnʼnâþƓǖ !¯,© ϸ¯CϹ μκμμ Mathematics/Applied Mathematics (319) Note:
S L A R G E T N ) E T I N I F E $
A E R A S A N O I T A R G E T N ) E V FR O U NC OE I H T T A CR I E L P D PN !U
L A I T N E R E F F I D F O E E R G E D D S NN AO I RT E A DU RQ /E
E FL I B D A I FR OA V G NT H I I V L W O SS N DO NT I AA GU NQ E I T E A LB L L A I U A T R MNA EP RR OE E &F S
X I R T A A F O E S R E V N )
S N O I T A U Q E S U O ED NO AH T T L E U MII X S R FT O A GNG I V N L I O S 3U
S N O I T U B I R T S I $ Y T I L I B A B O R 0
Y T I L I B A B O R P S T I D N A S E L B A I R N A O VI T MU OB I DR NS T AI 2D
E L B A I R A V M O D N A R A F O E U L A V D E T C E P X %
F O N O I T A I V E $ D R A DE NL AB T A 3 I R DA NV A EM CO ND AN I A R R A 6A
N O I T U B I R T S I $ L A I M O N I "
ii
S L A R G E T N I E T I N I F E D N I F O N O I T A U L A V %
S T N A N I M R E T E $
ii
S N O I T C N S U N & O I G T S A N E I S S C V L I I L A A A P T E A V M R M P C R I I ! R N E O E S $ I T D . D I D N R N D E A D N N D R A G A A S N O T N A I O R N S M T I A E E I H G E X A R G N R A C I G A N ( 4 E ) T N )
C N U F E L P M I S F O S L A R G E T N I E T I N I F S E N DO NT I )
K O O B E H T N I S C I T A M E H T A D R A D N A T 3 D E R E V O #
I-13
S N O I T A U Q % L A I T N E R E F F I $
S E C I R T A F O A R B E G L !
S U L U C L A #
iv
E SW OE PK S3 ND AN RA T C I SR ET CE I MX R T I MR A T -YA 3F OXC I I R R T YA T T E I -M L A UAM QFY %O 3
i
iii
iv
-
i
S E C I R T A F O S E P Y T D N A S E C I R T A -
vi
iii
i
-
ii
v
ii
A R B E G L !
iv
iv ii
i iii
iii
i
Section A
Mathematics/Applied Mathematics
Section A will have 15 questions covering both which will be compulsory for all candidates
E I
There will be one Question Paper which will contain Two Sections i.e. Section A and Section B [B1 and B2].
Section B1 will have 35 questions from Mathematics out of which 25 questions need to be attempted. Section B2* will have 35 questions purely from Applied Mathematics out of which 25 question will be attempted
S N O I G E R E L B I S A E F N I D N A E L B I S A E & N O I T U L O S E L B I S A E F L A M I T P /
R A E N I , F O N O I T M A E L L U B MO RR O0 F L G A N CI I M T A M MA ER HG T O A R -0
R O F N O I T U S L E O L SB A FI O R DA OV HO T W E T MN I LS A CM I E H L PB AO R R 'P
Y S R NA ON I I T A " L E N R O I ET CC NN EU L F A VA I F U O QE ES R DE NV AN EI VS I N T I O S I T NC AN R T U F CE I T R I T S E O MP MM O YC S S EN VO I I X T EC L N F E U 2F O T S NN OO I D T A N L A E R ES NN FO O O I T OA ST E R PEE YNP 4/O O N OS GN I R O T I T EC S N R U E VF NC I I R FT O E SM HO PN AO R G 'I R T S E E S HR CE NV AN R I BF EO US L E A I T VR LE A P PO I R C NP I Y R R PA T NN I E A MM E OL D% ES GN NO AI T R C N NU OF I T C I I N R I T F E E $M
L L ADNDOS A ONTN FNI A A O T O T E I C R T ENASI C E E R A S OOICTR( L I S I P E PT R E P SAIT T R C L S O A NI T U AL S N X P I R MMI I X T M R F T L E T U XU NOA T L I I ONMO R MI T O F C T I A I I T O D MNDA E RN O D CE S I I A OI R T ZAE L RD P FI E EWV O T D Z HON L SUTRI S!E F Y E S M I O I R CST E R A I F S TT R CE O S C T I N P E R A T OYUEN T D MA R I M E O V U FMPT E R I L O Q PE E A C I L SR T I N P FU EO E U S T M PE O TE YM IMH S P T H M E T YMSOWC F T E C N S Y I O C L E O S I A N S F C R #O E U T OI I QWA R .R OT T E EK M A RN P N R M RSFO E E E L I DDA DDOT N O RN RRAE O OANAE C R O S I Z F CT I L E E O NI P V N C R A I OT SI T A O C I R L E E I T H T A MLUNCA P L I T M L FT I R MI O T ML O W NY A R U ES A E L TSML CMB E A P N I E C C EX T R R I I E S R CR R A T E T L NT DSAV U A A I OAC NX QNM #MS AES )
E IFDFS MONOR E RAAMV E Y E EN R T C T A E S I N DEE Y G S HTG N FT S I O I S S NU GN SN I V E O I L I N T D C O R O NNSI E I I T PF S U YL E ONC L RI O NPS PS TEME T AU SNS A I E Q NSXI E CI N I N Y R O M U T B R#S A G E MT X NI N I E OV R DT I T A FAA O H M U S QS E EL NR E OO RB A T I UAA T PA QER I UC SNA I I L L XPAFV F I O PO E R A E T M E R A S H E MDR N T T E S AV R ES Y O R N S R I A FO UODO W QTNST SCA A NN F TI OI AO N TS FCI U N O O L J O S O TR D I T S N O ! A X FU AN I O NI R E QA T I L RE G MMN E B RM RT SA A E M I T N EA R E UNF AT IO $N ANL
EN L O U I T RC NN I U A HF T CI C SL I NP OM I T I C NF UO FE V EI T T I A S OI V PR ME OD CS FN O O I T EC VN I T U A VF I C R I E R T DE YM T O I L I N B O AG I I T R N T EE R S E R F F E I V D N DI NF AO S YE T I V I U T NA I V T I N R OE #D
1. Continuity and Differentiability
iii
G N I M M A R G O R 0 R A E N I , ii
iv
i
' 5 4 % 5 # 3 5 " ! , , 9 3
I-14
Section B1: Mathematics UNIT I: RELATIONS AND FUNCTIONS
1. Relations and Functions
2. Inverse Trigonometric Functions
UNIT II: ALGEBRA
1. Matrices
2. Determinants
-
UNIT III: CALCULUS
' 5 4 % 5 # 3 5 " ! , , 9 3
CS I M R T E DE R NMO AA E RH XA 4 GPE ONU L L IA FD6 O EN SSA S E E E VR I T P A XS VE I E R SG E $NNS O A N I R T S O G I NCA T ON,A U I T T FDE C R NFNP UOAR FE ST E CVEI N L I I L T O MA C I V2R HI T T R I S E E R E A M V G$I O O T E N A L OVG I I LT R R A I A E I E I T DH T N N RT EE E NR DD OE RN PF OA F XI F ED DO NO FCO O I R CP ME SH T T 3U T P O EIS R CA H MT NG I R OOO W #,F T C T SS L NE O E J OTO I B ETU T V C E I S NT L E B UA H FI VAT V R GE OF ND RO I G S TPN A I ESAD R I R SN F C E AT A DANS MER GN II VE NI GD I N S M TU A S EDE L DA R T N N C EAM NAV I R SO AIE EMTL GIAP. V I D NXI C AARN N I HMER A C DP T N FNDCE O N I O I S G O T A N EACB T A E M A S E4 I 2X DTS O AN R N R S ATO P S E VP UT I Y I L A L L T A L I A A T U SC VL A T I I I A R HS R E T T E DME F R S I FOMML N O O L E A L SDEB E NNGO R OADR S I EPA ST T T A L AEL N CE VLE I P I L G T P MW O N PA S IA M3 !T F CO NS UL A FR FG O E YT T N E I I R E L A VP M AI FS O Y L NN OO I T A S R T G R EA T P N ) Y B N OD I N T A A I T S N N EO R I E T F C F A I R D F FL O A I ST S R E CA OP RY PB EN S R O E I T VU NT I I T SS A B NU OS I T YE A P BY R G ST EN E T OH N I T ) T D N A
D N A
D E T A U L A V E E B O T
TS U L A OR HG T I E T WN I SE UT L I U N CF I L E A #D F FO O N MO ET I R OA U EL HA 4V LE A T D N N EA MS L AA DR NG E UT &N I ME T UI SI N AF E FD O TF I O MS I LI E AT R SE A P SO L A R R P G C EI T S N A I " E T I F N O I F O E R $P
FE O V O SB C A R A O W ST E NE I L H T YN L L E A I E C W ET PE SB E A SE E R E VA L R B U A CYI L F I ENT O L N P E MMD RI IO S Y L RFA D E R RE DA ND L C UN E AAB T ES R D A L NU I E O HSH T E S S GP N NL IO I LG I D E N E I S R F A E L NO H I T B SA S NR E OAV I PR T U A CSC E I L L D P C I R PI A !C S
LN R A OA I E E T VMN N I OL I EG HF R E S O I F S F E S I NL D N OBO I AI AT I T U R FL U O L OAO SSV3 NLF OAOE R I NE T E R O U N I G L ET O E A SGR D REAS T A P S L R OEI U F CHSD F I W T O N R N A A D POO R I E DTHD A T NU E R AQ O LEMS T A YR LB R A I E F I NT S F ENNO E EO GR P ISY EETNT A F O EI F UI E R T Q D H G EAT E DFLUO F O Q A E I DNT N L NO N A O AI E I I T T R T RA N A E E F E U DMF R I Q R RO E D E F O& L FF IA N ODT I ON NSN I OO UE T I I I OR T T N A EE I U F F U NF L E O Q3 EI $E GD
F O S N O I T C N U F E R A 1 D N A 0 E R E H W
T N A T S N O C R O
F O S N O I T C N U F E R A 1 D N A 0 E R E H W
T N A T S N O C R O
y
dx + Px =Q , dy
x
dy + Py =Q , dx
ax 2 + bx + c dx
∫ (px + q ) ax 2 + bx + c dx
∫
x 2 − a 2 dx
∫ a 2 ± x 2 dx 2
a2 − x2
∫ ax 2 + bx + c
dx
(px + q )
∫ dx + bx + c
(px + q )
∫ ax
ax 2 + bx + c
dx
∫ dx + bx + c 2
∫ ax dx dx
∫ x2 ±a2
∫ dx ±a2 2
∫x
I-15
ex
2. Applications of Derivatives
3. Integrals
-
4. Applications of the Integrals
5. Differential Equations
-
' 5 4 % 5 # 3 5 " ! , , 9 3
I-16
UNIT IV: VECTORS AND THREE-DIMENSIONAL GEOMETRY
F A S G OOON F I P I T ND O A OI R N SI V T R I O I S D OD I T E T T DTC C NE C N E A I U I J S D OVROOO CROPRR NATAPP C E ON F E S I E O R I V T L L O L C R P AO T O EC I C R FT R ET I C VR $DOE S A NT VFL R A N A OL NOC EO T TS EN C C L I T O EL IUS VAPS D R R AA MOOO RC T FPOPP O OCR E NR A TV RL OE F I TZOAOO T C D C C S TE T EI R A C R V N A I U Y L U D A D A B DLFR O CR O NA 3P O AU E T O EQVC S I E I E D T T S VA US A O T R RGARC I N OEFN GTNO E C R AE V T O NI N MV T OG I C I AE SFOT O A P R 6 C N A SAI I L E L E A T PFP N CY O I N I T S EL L RU D4O MA NS T MGN C AR E E O OV ST SS R R R OCNO E O E T T T N OC VI C C I L EFI TE E 6O SVAV 1. Vectors
-
NNA OA I I T S A E UTS QRE EAN # R A OS L T P E C NO EI VL W DOT NW AT NNS EE AE I S N W E I T TL R E O A #BW E T C S E T N N N AN A I T L O S EP PI EA ODW T WS TM E TE O GTBR R NO F E I L T H N G N SN I I O O ! J S EE P NE NI A I LNF L A A O W L FE P E O K C A SS N F OD A I O T T N A S ANI R O $ RI T S A A E E NU NA N I LQA S OPEL RP COO A NCT OEC D I NEN T I VA C L EA DE R I NI N FA $O L 2. Three-dimensional Geometry
NFDO OONT I NAP T U O E A L I ZT B I AI S ML S N IUAO T E I M P T F ORS U L O NFEO OLLS B I A E T A C L I C I B R NT I S UAAA FMVE EEOF WL VH I TTA T A C NM EMI J I ST B OSMP EO SML T E B S L N ON B I O A ORI R RPT T R PO U S L N O F O0 NS C O E S,I L A T B U I HGL S CNO A UISF E SMFN YMOI G D A OR OD L N G H O A OE T NR S I E N MPMLI B A RRLI R A S E T EAAS T C I E NH DI N F EL O P T C F S A A O N L R L E A G O S I R I V E G I NPSE R OYMRT T I E T N E L T C L B O B UNO N I DERS E ORPAE E RF E F 0 R T F I, N H N D ) T I D SNN T O N A I ET S VUL EI A BI R TR T T N S EI I L DD L N U Y ET O PL IN EI R DBE NA" I B OT YR N T PE I L D I SN B T AI E B P ODE RND PAN EI LL A D NBT E OAA I I R T E A I P D VE N OM2 #OE L DB Y N T A AI I L I R 2A B A V BMD O E R RR A PO Z EA NH H OT P A S ME H EY FN R OAOI O E"ET CU H T YNB T A I SI I R NL R I T A OB S I I VD A T BDL A CON A I RAI L P P M I NO T L AN L A U EI T O -T M"
R E G E T N I N A F O S U L U D O M E N I F E $
O L U D O M E C N E U R G N O C E N I F E $
E C I R P N E V I G A T A E R U T X I M A E C U D O R P O T N O I T A G E L L A F O E L U R E H T D N A T S R E D N 5
N O I T A G E L L A F O E L U R Y L P P !
E R U T X I M A F O E C I R P N A E M E H T E N I M R E T E $
S M E L B O R P S U O I R A V N I N O I T I N I F E D E H T Y L P P !
S E L U R C I T E M H T I R A R A L U D O M G N I S U S N O I T A R E P O C I T E M H T I R A Y L P P !
C. Allegation and Mixture
iii
ii
i UNIT V: LINEAR PROGRAMMING
UNIT VI: PROBABILITY
Section B2: Applied Mathematics
UNIT I: NUMBERS, QUANTIFICATION AND NUMERICAL APPLICATIONS
A. Modulo Arithmetic
B. Congruence Modulo
' 5 4 % 5 # 3 5 " ! , , 9 3
Y L L A C I T A M E H T A M S M E L B O R P E F I L L A E R E V L O 3
M A E R T S N W O D D N A M A E R T S P U N E E W T E B H S I U G N I T S I $
R O L L I F O T S E P I P E R O M R O O W T Y B N E K A T E M I T E H T E N I M R E T E $ E M I T T R W S R E Y A L P O W T F O E C N A M R O F R E P E H T E R A P M O #
R E N T R A P G N I P E E L S D N A R E N T R A P E V I T C A N E E W T E B E T A I T N E R E F F I $
F O O I T A R E H T N I S R E N T R A P E H T G N O M A D E D I V I D E B O T SE S OU L D RH OT I NW I A T GN EE HM T T ES E NV I MI N RR E I T E E H $T
R O O W T G N I S U D E M R O F D I L O S R O F A E R A E C A F R U S E M U L O V E M I T E H T F O NS OE I T P A A R H E DS I E S NR OO CM
S E I T I L A U Q E N I L A C I R E M U N F O S T P E C N O C C I S A B E H T E B I R C S E $
X I R T A M E N I F E $
S E C I R T A M O W T F O Y T I L A U Q E E N I M R E T E $
S E V I T A V I R E D R E D R O R E H G I H D N A D N O C E S E N I M R E T E $
S N O I T C N U F T I C I L P M I D N A S N O I T C NS E UL FB A CI I R R T A E V MT N AE R A D PN E FP O E ND N OI I T D A I N T A N ET R N E E F D F I N D E DP NE AD T Y S F R I T E N DE ND 5)
X I R T A M C I R T E M M Y S W E K S D N A C I R T E M M Y S E N I F E $
X I R T A M N E V I G F O E S O P S N A R T E T I R 7
S E C I R T A M F O S D N I K T N E R E F F I D Y F I T N E D )
S E I T I L A U Q E N I L A C I R E M U N E T I R W D N A D N A T S R E D N 5
A T A D N E V I G E H T M O R F E N O D K R O 7 D E R E V O C E C N A T S I D N E K A T E C N A T S I D
N O I T A U Q E N A F O M R O F E H T N I M E L B O R P E H T S S E R P X %
I-17
D. Numerical Problems
E. Boats and Streams
F. Pipes and Cisterns
G. Races and Games
H. Partnership
I. Numerical Inequalities
UNIT II: ALGEBRA
A. Matrices and types of matrices
B. Equality of matrices, Transpose of a matrix, Symmetric and Skew symmetric matrix
UNIT III: CALCULUS
A. Higher Order Derivatives
' 5 4 % 5 # 3 5 " ! , , 9 3
I-18
E U N E V E R L A N I G R A M D N A T S O C L A N I G R A M E N I F E $
B. Marginal Cost and Marginal Revenue using derivatives
N O I T C N U F E H T F O S T N I O P L A C I T I R C E N I M R E T E $
N O I T C N U F A F O E U L A V M U M I N I M E T U L O S B A D N A M U M I X A M E T U L O S B A E H T D N I &
S N O I T U B I R T S I $ Y T I L I B A B O R 0 S T I D N A S E L B A I R A 6 M O D N A 2 F O T P E C N O C E H T D N A T S R E D N 5 E L B A I R A V M O D N A R A F O $ 3 D N A E C N A I R A 6 E H T E T A L U C L A #
E G A R E V A F O E P Y T L A I C E P S A S A S R E B M U N X E D N ) E N I F E $
S R E B M U N X E D N I F O E P Y T T N E R E F F I D T C U R T S N O #
T S E T L A S R E V E R E M I T Y L P P !
E L P M A 3 D N A N O I T A L U P O 0 E N I F E $
N O I T A L U P O 0 O T E C N E R E F E R H T I W R E T E M A R A 0 E N I F E $
C I T S I T A T 3 D N A R E T E M A R A 0 N E E W T E B N O I T A L E R E H T N I A L P X %
E L P M A 3 O T E C N E R E F E R H T I W S C I T S I T A T 3 E N I F E $
N O I T A L U P O P A M O R F E L P M A S E V I T A T N E S E R P E R A E N I F E $
E L P M A S D N A N O I T A L U P O P N E E W T E B E T A I T N E R E F F I $
E U L A V D E T C E P X E E H T D N I F O T N O I T U B I R T S I D Y C N E U Q E R F F O N AE EL B MA I CR I A T E V MM HO T I D R N A A YR L P A PF !O
E L B A I R A V M O D N A R E T E R C S I D F O N O I T U B I R T S I D Y T I L I B A B O R P D N I &
L A C O L G N I D N O P S E R R O C D N A A M I N I M L A C O L S DE NU AL AA MV IM X AU MM I LN A CI OM L L A FC O O SL D T N N I A O PM EU HM T I DX NA I M &
E U N E V E R L A N I G R A M D N A T S O C L A N I G R A M D N I &
C. Maxima and Minima
UNIT IV: PROBABILITY DISTRIBUTIONS
A. Probability Distribution
B. Mathematical Expectation
C. Variance
UNIT V: INDEX NUMBERS AND TIME BASED DATA
A. Index Numbers
B. Construction of Index numbers
C. Test of Adequacy of Index Numbers
UNIT VI: UNIT V: INDEX NUMBERS AND TIME BASED DATA
A. Population and Sample
B. Parameter and Statistics and Statistical Interferences
' 5 4 % 5 # 3 5 " ! , , 9 3
N O I T A L U P O P R O F N O I T A M I T S E E H T E Z I L A R E N E G O T C I T S I T A T 3 F O N O I T A T I M I L E H T N I A L P X % A T A D L A C I G O L O N O R H C S A S E I R E S E M I T Y F I T N E D )
S E I R E S E M I T F O S T N E N O P M O C T N E R E F F I D N E E W T E B H S I U G N I T S I $
T E R P R E T N ) D N A A T A D L A C I T S I T A T S N O D E S A B S M E L B O R P L A C I T C A R P E V L O 3 D N U F G N I K N I S D N A Y T I U T E P R E P F O T P E C N O C E H T N I A L P X %
S M R E T D E T A L E R D N A D N O B F O N O I T A U L A V F O T P E C N O C E H T E N I F E $
) % F O T P E C N O C E H T N I A L P X %
N O I T A I C E R P E $ F O D O H T E M R A E N I L F O T P E C N O C E H T E N I F E $
N O I T A I C E R P E D E T A L U C L A #
M E L B O R 0 G N I M M A R G O R 0 R A E N I , O T D E T A L E R S M R E T H T I W E Z I R A I L I M A &
B. Mathematical formulation of Linear Programming Problem
M E L B O R 0 G N I M M A R G O R 0 R A E N I , E T A L U M R O &
N E V I G E H T M O R F T E S S A N A F O E F I L L U F E S U D N A E U L A V L A U D I S E R T S ON CO I TT E A R PM RR E O T F N N ) I
S D O H T E M S U O I R A V G N I S U ) % E T A L U C L A #
H C A O R P P A E U L A V T N E S E R P G N I S U D N O B F O E U L A V E T A L U C L A #
T N U O C C A G N I V A S D N A D N U F G N I K N I S N E E W T E B E T A I T N E R E F F I $
Y T I U T E P R E P E T A L U C L A #
E L P M A 3 N O I T U B I R T S I $ G N I L P M A 3 N O I T A L U P O 0 N E E W T E B N O I T A L E R E H T N I A L P X %
M E R O E H 4 T I M I , L A R T N E # E T A T 3
S E C N E R E F N ) L A C I T S I T A T 3 D N A E C N A C I F I N G I 3 L A C I T S I T A T 3 F O T P E C N O C E H T T E R P R E T N )
UNIT IX: LINEAR PROGRAMMING
A. Introduction and related terminology
I-19
UNIT VII: INDEX NUMBERS AND TIME-BASED DATA
A. Time Series
B. Components of Time Series
C. Time Series analysis for univariate data
UNIT VIII: FINANCIAL MATHEMATICS
A. Perpetuity, Sinking Funds
B. Valuation of Bonds
C. Calculation of EMI
D. Linear method of Depreciation
' 5 4 % 5 # 3 5 " ! , , 9 3
I-20
0 0 , F O S E P Y T T N E R E F F I D E T A L U M R O F D N A Y F I T N E D )
C. Different types of Linear Programming Problems
S N O I G E R D E D N U O B D N A E L B I S A E F N I E L B I S A E F Y F I T N E D )
F. Feasible and infeasible solutions, optimal feasible solution S N O I T U L O S E L B I S A E F N I D N A E L B I S A E F D N A T S R E D N 5
N O I T U L O S E L B I S A E F L A M I T P O D N I &
S E L B A I R A V O W T G N I V L O V N I S E I T I L A U Q E N I R A E N I L Y L FL O A C I MH EP T A S R Y G S AN O RT I OU F L HO PS AT S R I 'D N EI HF T O WT AD R N $A D. Graphical Method of Solution for problems in two Variables
E. Feasible and Infeasible Regions
!śŒƌĊŒƌǖ % ' ! 0
About the Author
I-5
About the book
I-7
Acknowledgements
I-9
About CUET (UG) 2022 Exam
I-11
Syllabus CUET (UG) 2022
I-13
S N O I T C N U & D N A S N O I T A L E 2
Chapter 1
1.1
S N O I T C N U & C I R T E M O N O G I R 4 E S R E V N )
Chapter 2
2.1
S E C I R T A -
Chapter 3
3.1
S T N A N I M R E T E $
Chapter 4
4.1
Y T I L I B A I T N E R E F F I $ D N A Y T I U N I T N O #
Chapter 5
5.1
S E V I T A V I R E $ F O S N O I T A C I L P P !
Chapter 6
6.1
S L A R G E T N )
Chapter 7
7.1
S L A R G E T N ) F O N O I T A C I L P P !
Chapter 8
8.1
S N O I T A U Q % L A I T N E R E F F I $
Chapter 9
9.1
A R B E G L ! R O T C E 6
Chapter 10
10.1
I-21
3 4 . % 4 . / #
I-22
% ' ! 0
Y R T E M O E ' L A N O I S N E M I $ E E R H 4
Chapter 11
11.1
G N I M M A R G O R 0 R A E N I ,
Chapter 12
12.1
Y T I L I B A B O R 0
Chapter 13
13.1
APPENDIX : Tease your Brain!
A.1
Mock Test-1
M.1
Mock Test-2
M.6
L RA I I E T HN T E R DE NF AF I SD N OA I D T E C L NL UA FC S NI WS E OL NB KA I NR UA SV E T VN L E O D VN NE I P HE CD I N H I WE R NO OM I T A UR QO EE N NO !O T T C E P S E R H T I W S E VN I O T I A T VA I U R E Q DE T RN OE ND ON I E T C P NE UD FI N NA T WH OT N T KR N UW S SE NV I I A T T A N V I OR CE HD CD I N H A N WE O L I NB T A AU OI I T RQ A A UVE L QTA N EE I T ND N !NE R EE PF EF DI ND I Y ER NA ON I YD L N R OO GN NA I N D I E A L T L N A OC CS I SE NL OB I T A C I R NA UV F
LS TO FR A O I E MHME OGRI V NIE T YHTA L E YVD O H I N R PT E A E N FF AO DI )E F ST E I NHD N NE OTT I NO ON T I I OA T LN A PUA S UXQI I QEEMN E L O T O I LSANT I E A T Y A I H L N T U O G E N I Q P R EH E E R A F L E EF A S F I HD I F A T T I N D EDE N E H R AET S E H S FT F F E F O O R I PD L SA XE E EH VI M I ET T O A BF VN TO I YEO R E L H N E O E T DP NR G GSDAE C E NAL L ND I A V D E OH L ECI O T S T S A VS I N U E NR EQ I E PVE H I MX T LT REAA V I E S T EI T E R N V HBEEI T CNDRA E AARF V ECE F I I R DD FRR E ) OOA D
N O I T N U L O O I T SA RU OQ NE OE I T H U T L S O E SI F AS I DT EA L S L A T I CF SI I N O I T A U Q NE L OA I I T T C N NE UR FE F !F I D N E V I G A F O E V R U C L A R G E T N I R O E V R U C
y = f(x)
4. Solution of a differential equation -
TN N O EI DT NA EU PQ EE L DA NT I I N E DR E NF AI F D E SH E T L D B AN I A R A I V E Hx T G N I V L O V N I N O I T C N U F E H T E TB E S ,T NE AB T S I N OY CB YD R E A I R F T S I I B T RA A S
I I
…( )
i ii Note that the general solution of an ordinary differential equation of nth order contains n independent arbitrary constants.
F O N O I T U L O S L A R E N E G E H T D E L L A C S I N E H 4
dy d 2y d ny F x, y, , 2 , ..., n = 0 dx d x d x
9.1
n
x, y
General solution -
EE VH I T T A N VI I G R N E I DR A RE E DP RP OA TL E S B E A HI GR I A H V ET HN T E FD O N RE E P DE RD ON I EO HT T T SC I E NP OS I E T R A UT H QI EW LE A L I T B N A ER I R A E F V F I T D N E AD FN O E P EN DI O T EA EHU T HF Q 4O E
order
Differential Equations
9
R E T P A H C
A QUICK REVIEW
1. Differential equation –
2. Ordinary differential equation –
3. Order and degree
degree
f x, y, c , c , … cn
3 # ) 4 ! % ( 4 ! -
9.2
N O I T U L O S E H T T E G O T S E D I S H T O B E T A R G E T N )
S E M O C E B N O I T A U Q E N E V I G E H 4
E I E E R G E D F O N O I T C N U F S U O E N E G O M O H A S I Type 3 : Homogeneous differential equations
& E R E H W
2
Procedure :
D N A N I E L B A R A P E S S I H C I H W
T U 0
D N A
N I E L B A R A P E S S I H C I H W
T E ,
S E M O C E B N O I T A U Q E E H 4
E C A L P E R D N E E H T N )
Y B
R O
F O S N O I T C N U F E R A 1 D N A 0 E R E H W
Type 4 : Linear differential equations
Y L N O F O N O I T C N U F A S I . Y L N O S A N O I T A U Q E E H T E T I R 7
x
Q,
y x
x.
v
Gv
dv dx
v+x
b
dy + Py dx
Form :
dy dv =v + x dx dx
vx
y
v
y x
a
z O
fx y
F O N O I T C N U F A S I E R E H W
Procedure :
F Ox Oy x, y F x y,
x.
z
fz 1 dz − a b dx
b
dy dx
Form :
z c by ax a
f(ax + by + c dy dx
Form :
v
c
D RE E L F L F A I C D S AI FT S O N NA OS T I T N U O L O C SY LR A A R R E T NI EB GR EA E HH T T MLN L O OA I ROA T F DTU ESQ E E NU I L L A A A T VI T B N ORE A NL R E OUF I C T F I I T U D R L A O E SPH YGT NN F !IO V I N G O I YT BU L NO OS I T R A A L UU QC EI T LR A A I T P N EA Type 1 : Variables separable form M R O &
b
y
y
x x
M x dx 1 dy N(y)
a
Mx Ny
dy dx
-
Particular solution –
5. Solutions of the differential equations –
Procedure :
1 ∫ N (y) = ∫ M (x ) dx + C
Type 2 : Reducible to variables separable form
3 . / ) 4 ! 5 1 % , ! ) 4 . % 2 % & & ) $
& )
M R O F E H T F O E I
L A I T N E R E F F I D E H T F O N O I T U L O S E A S E S H I T F O E N O N N O T I A U Q E
n
n
n
L A I T N E R E F F I D E H T F O N O I T U L O S A S I n
n
N I S N O I T A U Q E
S E N I L L L A F O Y L I M A F F O S NI OI N I T G A I UR QO EH G LU A I O T R N H ET R E G F N F I I S $S A P
n
SE E R VA R U C F O Y L I M A F F O N NI OS I T A U Q E Y LB A I S T D I N E ET S R T N E N EA F S F T I E S $R N PO EC R
x2 – y2
x
y
dy dx
T R W
N E V I G S I N O I T U L O S E H T D N A
n
c x
a b c
c
bx
a
y
R O T C A F G N I T A R G E T N )
F O S N O I T C N U F E R A 1 0 E R E H W
S E L S C I R I Y C T I LN L E A U S FS D E E H OU Y I N T L D I F I F A O MR E D E AD T N FN O O F N N OA S SI NX OA T I A UN QO ES LE A R I T T N N E EC R E G FN F I I $V A H
dy dx
4.
d x
dy d 2y ⋅ dx dx 2
d 3y dx 3
a y
x2 – y2
x
y
x2 – y2
x
y
x2 – y2
x
y
dy dx
b x
dy x dx
d y
dy x dx
c y
dy dx
3.
dy dx
a x
dy x dx
b y
dy x dx
a y
y
d 2y dx 2
d y
dy y dx d
x
y dy dx 2
x
y
d 2y dx 2 c y dy y2 dx
2
6. y
y b
dy dx
y dy y dx
x
bx e
a
5. y
x
d 2y dx 2
c
N O I T A U Q E L A I T N E R E F F I D E H T F O E E R G S EI $
2.
y
N I R A E N I L E B Y A M N O I T A U Q E L A I T N E R E F F I D E H T S E M I T E M O 3 d
c x
∫ (Q × I.F.) dy + C
& ) E S A C S I H T N )
c
d 3y dx 3
x
dy dx
y
d b
dy d 2y ⋅ dx dx 2
a
d 3y dx 3
dy dx
b y
dy cos dx 1.
d 2y dx 2
b
y
I.F.
x
Pdy
e∫
a 2
2
dy y2 dx a
Y B N E V I G S I N O I T U L O S E H 4 b
Q dx + Px dy
∫ (Q × I.F.) dx + C
y
a
x
*Note :
Pdy
e∫
& ) D N I & Procedure :
9.3
MULTIPLE CHOICE QUESTIONS (MCQs)
S I
L A I T N E R E F F I D E H T F O R O T C A F G N I T A R G E T N )
S I
N O I T A U Q E
A U Q E L A I S T I N E R E F F I D E H n T F O R O Tn C A F G N I N T A A T R G E T N )N O I T S O C n
N I S Y E
S O S C S O O C C n N I S N N I Y I S E S
N E V I G
N O I T A U Q E L A I T N E R E F F I D E H T F O N O I T U L O 3
S I
N E V I G
N I S
M
M n
X M n
L A I T N E R E F F I D E H T S E I S F I T A S
X
be
N E V I G
n
n T O C
x
N I S
M N O I T A U Q E
x2
N O I T A U Q E L A I T N E R S E I F F I D E H T F O R O T C A F G N I T A R G E T N )
S I E
n
n T O C
n N A T
d y
c y
N A T
S O C
y
y
y
x
y
b x
a x
N I S N I S
A U Q E L A I T S N I E R E F F I D E H T n F O n RN O A T T C An F G N I T A R G E T N )N O I T
C
T O C
S O C
n N A T
S I
d 2y dx 2
b
T O C
X T O C
L A I T N E R E F F I D E H T F O N O I T U L O S R A L U C I T R A 0
N O I T A U Q E
d 2y dx 2
a
y
y
xy F O N O I T U L O 3
y x y y
17.
y
y
d
y
y
c
y
y
tan –1 x
N N N N A T A T A S I T
y
c
1 x2
y
a
e
ae
d y
x dy e
x 3 π x + 3 + 4
dy
y
x
18. y
x 3 π x + 3 + 4
c y
y dx
c
d
x 3 π + + x 3 2
b y
x
ex
y
d
ey
dy dx
a y
x
c
c
x 3 π x + 3 + 4
c
ey
ex
x
16.
b
b
dy dx
x
x
c
d x
c x
(1 + x 2 ) 2 y x y
ex
y dx
x dy
9.
N O I T A U Q E
S I
S O C D E N I F E D T O N S O C n F O N O I T U LI S O 3 N O I T A U Q E
d
S I
L A I T N E R E F F I D E H T F O E E R G E D D N D A E R N E I F D E R D O T F O N O M U 3 c
a
ex
ey
a
n
N O I T A U Q E
b
x c x y d
dy dx
15. c y
c
14.
a
b c x
y
b
1
dy x+ dx
1 x
x dy
x
x y dx
y
2
e1 + y
d
2
e 1+ y c
y –1
e tan b
y
a
e cot
–1
x dy
y
y dx /3
L A I T N E R E F F I D E H T F O N O I T U L O S R A L U C I T R A 0
L A I T N E R E F F I D E H T F O E E R G E D D N A R E D R O F O M U 3 d
b
11.
c
dy dx
10.
b
d 2y a 2 dx 2
x
2
e cos
d y
e cos x
a
a
y
x
a
dy 1+ dx
1
13.
8.
x
c y
x 2
e sin
b y
x
y
x
y
dy dx a y e
dy dx
2
12. 7.
3 # ) 4 ! % ( 4 ! -
9.4
3 . / ) 4 ! 5 1 % , ! ) 4 . % 2 % & & ) $
S I Y X
D E N I F E D T O N
L L A F O N O I T A U Q E LI S A I E T N N EL A R P E F A F I D N I ES HE T N I L FL O A C RI E T DR RE /V N O N N O I T A U Q E L A I T N E R E F F I D E H T F O E E R G E D E H 4
b
N O I T A U Q E L A I T N E R E F F I D E H T F O N O I T U L O 3
S I
S I
E S E H T F O E N O N
L A I T N E R E F F I D E H T F O E E R G E D D N A R E D R O E H 4
N O I T A U Q E L A I T N E R E F F I D E H T F O N O I T U L O 3
F O Y L I M A F A S T N E S E R P E R
S E N I L T H G I A R T S
L L A F O N O I T A U Q E L A I T S I N E A R@ E S F F U I I DD EA HR T N FE O V RG I E D RA OF EO S HE 4C L R I C
S A L O B A R A P S E S P I L L E
S E L C R I C
N O I T A U Q E L A I T N E R E F F I D E H T F O N O I T U L O 3
30.
F O Y L I M A F A S T N E S E R P E R
L A I T N E R E F F I D E H T F O E E R G E D D N A R E D R O E H 4
S E L C R I C
S A L O B R E P Y H
S E N I L T H G I A R T S
S A L O B A R A P
E R A
+ x 1/5
1/4
N O I T A U Q E
S U O E N E G O M O H A S I
&
Y L E V I T C E P S E R
D N A
D N A
D N A
D N A
N O I T A U Q E L A I T N E R E F F I D E H T F O E E R G E D E H 4
L A S I R E NR EE GD R E NO I S S E F T O H N T AN T F S O O I NT E OA N CU O YQ N RE A L R A T I I T B N RE A E R FE E O R F F G RI E E D BA D MF F O UO NN N O E O I H I T T C 4 U N L O U S F
d 2y dy + dx 2 dx
Y L E V I T C E P S E R E R A
N O I T A U Q E
2
N O I T A U Q E L A I T N E R E F F I D E H T F O E E R G E $
N I S
N I S
d
D E N I F E D T O N
S O C n
X
Y
Y
S I
E S E H T F O E N O N
N O I T A U Q E E S E L H A T I T F N O E E R N E O F F N I D E H T F O E E R G E $
S I Y S O C
2
S U O E N E G O M O H A T O N S I G N I W O L L O D F EN HA T F F O HO CN I O H I T 7C N U F
d
c
dy + sin dx dx
d y
c
3 2
b
25.
a
2
3/2
d 2y dx 2
d
32.
24.
=
c
M
d
dy 2 1 + dx
b
a
M
c
d
c
d
c
b
b
a
d
c
b
a
a
31.
x2 + y2 + y x
x y
23.
b
d
c
d c
b
a
b
a
a
22. dy 2x –y =3 dx
dy 2 d 2y 1 + = dx dx 2 x
d xy = e x + c
29.
b
x = ex +c y
a y=
e c + x2 x y= a
dy y dx
21.
e c − x x2 b
c
28.
d
c
2 3 d 2y dy + 1 dx = 2 dx x
x
d
y x
y x
c
ex y
dy dx
x
d
c b x a x
a
20.
27.
y x
b
19.
a
y
1/2
dy log dx
d
c d 2y dx 2 d
x
26. dy dx
b
a
dy dx
d 2y dx 2 c
9.5
T N A T S N O C Y N A G N I E B # #
n H G U O R H T S E S S A P T I D N A
X n
X n
X n
n
N I S
n
S I
L L A A I I T T N N E E R R E E F F F F S I I I D D E E H G H O T T L F F O O G R O R O O L T T C C A A F F G G G N N O L I I T T A A R R G G G O E L E T T N N G I I N O L O N N T I ! ! A U Q E
N O I T A U Q E
E B L L I W
N E H W
N E H W T A H T H C U S
T A H T N E V I '
F O E U L A V E H 4
E S E H T F O E N O N
n G O L
N O I T A U Q E L A I T N E R E F F I D E H T F O N O I T U L O S !
n
N O I T A U Q E L A I T N E R E F F I D E H T F O N OS I I T U L O 3
S I
E S E H T F O E N O N
L A I T N E R E F F I D E n H T F O N O I S T I U L O S E T E n P L M O C N E O H T I 4 A U Q E
d
R E D R O D N O C E S A S I G N I W O L L N O O F I T EA HU T Q FE O L A HI CT I N H E R 7E F F I D
X n
2/2
y = (x + c ) e − x
x
dy dx
x
S I
X n
39.
d y
x
x
c y
x
a x
xy
b y
a y
c
2/2
y = ce x
b
2/2
y = ce −x
a
dy dx
y
2
x
1 2
44.
d
c ee
dy dy dx – x dx
y
e
y
b
a e
x
x
dy = ye x dx
)
d
1– x2
c
y y
c y
(
x
b
43.
y d y xy
dy dx 1– x2
x 1+ x2
y
x
b y y
37.
y
x
dy x dx
a ex
b
x
a
y
x
y
a
d x
x
c
x
42.
36.
Y E V R U C A F O T N I O P Y N A T A E P O L S E H 4
d
d dx cx
1 e 4 d y
S I XT S N A ST OS CN !O C Y n R Y A R R O T I n n FB R NA O I T E A R UA Q" E D LN A T I A ! N EE R R E E F H F I D W E H N 4S I "
y
d 2y − αy = 0 dx 2 c y
S I E V R U C E H T F O N O I T A U Q E E H 4
c x
d 2y + αy = 0 dx 2 c b ax e
C b y
Y B N E V I G S I
b x
d 2y + α 2y = 0 2 dx b
1 e 4
b ax
N O I T A U Q E L A I T N E R E F F I D E H T F O N O I T U L O 3 y
1 e
38.
a x
b
d 2y − α 2y = 0 dx 2
x
ax
a
1 e 4 d y e dx 2 a y
d y
c y
c y
Dx 2
x
x
b y
x
a y
D
F N O O I Y T L A I U M Q E E L E A F S S A E E E I T H N H H T T T S E F F FI R O O O E N F I E F E N I N NG O I O I O D TR O N N A E H UT T QA F EE O LR N T A N O I T I E T N C U EH Y L R B T O E S I F L N W F Y A I E R n E V DS E I EL N G C H E R S 4 I I C ' L L A 34.
41.
35.
b y a y
yy
x
dy dx
d
x
c x
dx 2
fx
40. ax
x
d x
x
b x
d 2y
33.
3 # ) 4 ! % ( 4 ! -
9.6
3 . / ) 4 ! 5 1 % , ! ) 4 . % 2 % & & ) $
S I #
#
#
#
L A I T N E R E F F I D E H T F O N S O I I T U L O S L A R E N E G N E O H I T 4 A U Q E
Y
E V R U C A O T
T A T N E G N A T E H T F O E P O L S E H 4
E H T N E H T
S I H G U O R H T G N I S S A P
S I E V R U C E H T F O N O I T A U Q E
TA N S ES GI C NS AB T A EE HH T T FF O EO PO I OT S L I A S T ERN E HH I T O T P HO CT E I H H LT W A UF R O Q O E E F T SA EI VT n n n N R N I UID CO R EPO HYE NH 4A T TO A T
y
F O N O I T U L O S L A R E N E G E H 4
N E H W
d xx
y
c xx
y
S I
n n n
N O I T U L O S L A R E N E E G T I E N E N F H I T N O N O SI N I I T #A U Q E L nA I N T AN T E R E E O F F N W I O T nD N E AH TT F O
y
y dx
F O Y L I M AS F I N EI HG T I R FO O E NH OT I T H A G UU QO ER LH A T I T S N E EI N R L E L F A F I C D I T ER HE 4V N O N
F O S N O I T U L O S F O R E B M S UI N E H 4
x
x dy
F O N O I T n n U L O S EY HB 4N E V I G
b
dy 1 + x = dx 1 + y 2
F O Y L I M A F E H T F O N O I T A US QI E L A I T N E R E F F I D ES HE 4V R U C
a
a x
y
N A T
N A T
51.
y dy
x dx
d
N N A A T T n
R DE ED T N R EO S D E N R PA EE R E SR I G SE E VD R F UO CN FO O I T A !U Q E L !A I T N Y EL YRE L E V I F I F MI T C AD E &AP S YE BR
56.
x
c
N N A T A T
x
N A T N O I T A U Q ES LI A I T N E R E F F I D C EE HS T FN O A NT O I T U L O 3
d
52.
C E S
c
y
b
E S E H T F O E N O N
b
x
2
d
a
a
dy 1 + y 2 = dx 1 + x 2
a
y
x y
55.
2/2
(C − x ) e x y = (x + C) e x
2/2
c
dy y + 1 = dx x − 1
49. y
2/2
c xy
x2 + y2 2xy
50.
ex
a xy
b y ex d y
2 dy = e x /2 xy dx
48.
Ce x
2/2
Ce −x
a y
ex
b xy
54.
d c
y dy −y dx
2+y
ex d 2
2
e −y + e x b
2− y
ex a
ey = ex
c
b
a
2 dy = 2xe x − y dx
k
y
x
d
k
53.
dy dx c
tan x =k tan y c
y b
x
y
47.
dy −y dx x d
x
y
dy dx x+ b
dy +y dx a
k
x
y
x
a
d
y dy
a
dy dx
c
x
x dx
b
T I S A E P O L S E S O H W E V R U C E H T F O N O I T A U Q E E H 4 S I N I G I R O E H T M O R F T N E R E F F I D T N I O P Y N A a
y
46.
dy y + 4 dx c
2y d
2
y x
x+
dy dy y + 2x –y dx dx b
y = x 2 +C x x = x 2 +C y y = x +C x
dy dy x+ dx dx 4
a y
45.
9.7
# n
n
n
n
n
N I S "
n
L A I T N E R E F F I D E H T F O N O I T U L O S R A L U C I T R A P E H 4
T A N E H T n D N A
T A H T N E V I G n
n
n
n n n
S GI n n O L N O I T N A UE QH EW
C
C
T N E T N O C B R A S I
E R E H W
Y T I N U S U I D A R D N A E B E R T N E # T E ,
N O I T A U Q E D E R I U Q E R E H T S I
N E H T
n
2
b
S I
F O N O I T U L O S L A R E N E G E H 4 A L O B R E P Y H R A L U G N A T C E R n
F )
n
n
T E G E W G N I T A I T N E R E F F I $
y
dy y dx
2
" " " S O C ! ! ! !
S I N O I T A U Q E L A I T N E R E F F I D E H T F O N O I T U L O S E H T
dy dy 1+ = 3x − dx dx 2 2 1 + dy = 9x 2 + dy − 6x dy dx dx dx
7.
dy dx
y
a
x
m
mx
dy dx
x
y
y
a
i.e. x
60
59
58
3. y
c
c
d
b
b
b
c
a
57
A L O B A R A P
N O I T U L O S L A R E N E G E H T S I G N I W O L L O F E H T F O H C I H 7
HINTS AND SOLUTIONS
a
48
55
47
54
46
53
45
52
44
51
43
y
? x a
a
d
49
56
b
d
c
d
c
d
c
50
e
42
41
40
39
38
x
b
a
d
c
c
37
e
a
b
36
d
35 34 33 32 31 30
e
b
c
c
d
b
c
29
x
b
27 26 25 24 23
e
28 b
d
c
c
a
22
c
b
20 19 18 17
e
21 d
b
a
c
16
x
d
b
15
e
14 13 12 11 10
b
b
b
c
a
b
9
e
a
b
y
x
7 6 5
y
y
y
x
c
b
a
4 3
y
e
d
d
c
2
8
E L C R I C
F O
ANSWERS
y
a
1 e− 2
t
60.
dy dx
x
1 2 −
5 4
x x
b log e 2 +
a
2.
E S P I L L E N A
d 2y dy −2 +y dx dx 2
y
x3 +C 3
ey d y
b
1
e
d ex
ex
e
x
c y
1 2
a
c
x
b y
b ey
x3 +C 3
ey c ex x
ex
a y
ex y x e y
a y
57.
d
c
x
x3 +C 3
ex
dy = e x − y + x 2e −y dx
59. b
a
dy − ty dt (t + 1) 58.
3 # ) 4 ! % ( 4 ! -
9.8
3 . / ) 4 ! 5 1 % , ! ) 4 . % 2 % & & ) $
S N I A T N O C T S U M N O I T U L O S E H T S OT SN A NT OS I N T A O UC QB ER LA A I O T N W ET
n
#
N A T
& )
D
D
#
N O I T U L O 3
#
n
xdn
R E F F I D R E D R O D N O C E 3 A S I
E C N I 3
# N A T
E L O B R T E N P A Y T H S N R O A L C U G N A T n C E R
& )
Y X G O L
&
E
X E
&
X D X E Y D Y n E
S E V I G
#
E E R G E D F O N O I T C N U F S U O E N E G O M O H A S I
&
#
E B T N A C
n
n E
y
E
x
E B N O I T A U Q E E H T T E ,
RM E DO N R R W O F O D N OE K SI N SA S T I NT B AO T E S R NN E O O S H C I I T W S A B UE R Q V AER U OLC A W I F TTO ENY E n R R L A I E M F F I A D F E EEV H CT O NF B I 3OA
n
N A T E S U
S A D E N l E D T O N E E R G E $
N I L A I M O N Y L O P A S A D E S S E R P X E
S I N O I T A U Q %
S I R E D R O
E E R G E D D N A R E D R /
(x y
d 2y dx 2
27.
x
λ 0 F(x , y )
e 3x 7 − 3 12
dy Sin dx dy dx
y
e 3x +C 3
x + y + λy λx
λ
− 1 −4y e 4
x +y +y x
2
2
2
−1 1 − 4 3 −7 12 − 1 −4y e 4
25.
OO
2
y x
e y
dy dx
λ 2x 2 + λ 2 y 2 + λy λx x y
dy dx 60. xy 23.
1
x2 + y2 + y x
x
y
x dx
e∫x
x
y x y −1 − x(1 + x 2 ) x
x ydy y
56. dy dx
−1 x (1 + x 2 ) dy y + dx x
y 14.
1
dx
∫x × x
1 x yu
dy dx
dx
1 x
1
∫x
y
π i.e. 4 x3 π + x + 3 4 y xy x x
x
x
y x
dy dx
−
e
y x x
dy dx 45. Given: y
x3 +C 3 x+
a
a
k
y
x h
-
d 2y dx 2
33. y
y x
dy 11. dx
x dx
dy 1 + y2
h k
30. x
dy dx
x
9.9
Tan Print’s Mathematics for NTA CUET (UG) 2022 AUTHOR
: Lalit Sharma
DATE OF PUBLICATION : MAY 2022 EDITION ISBN NO NO. OF PAGES BINDING TYPE
: : : :
2022 9789394186675 200 PAPERBACK
Rs. : 345
| USD : 35
Description This book intends to cater to the principal needs of all the students preparing for the Common University Entrance Test (CUET) at the Undergraduate Level in the Mathematics Domain. This book contains the practice material in a highly student-friendly and thorough manner. The Present Publication is the Latest 2022 Edition, authored by Lalit Sharma, with the following noteworthy features:
·
[As per the Latest Syllabus] released by the National Testing Agency (NTA)
·
[Chapter-wise/Topic-wise MCQs] with hints and answers
·
[Chapter-wise ‘Mind Maps/Quick Review’] for complete revision of concepts
·
[Tease your Brain] section for conceptual clarity
·
[Official Mock Test Pattern]
ORDER NOW