Ano V. Boletín nº 47
Depósito legal: C 2766-2006
1º ANIVERSARIO DO BLOGUE
MATEMÁTICAS NOS OBXECTOS COTIÁS
O vindeiro, 30 de novembro, o blogue cumplirá un aniño, e para celebralo planteámonos o obxectivo de publicar unha entrada cada día deste mes.
¡Non perdas nin un só día!
Tamén iniciamos novas seccións coma: • Calculadora. • Matemáticas nos obxectos cotiás. • Que curioso! • Recopilatorio de Tetractis en volumes. que poderás ver neste número de Tetractis. Aquí tes algunhas das entradas do mes:
TETRACTIS NA WIKIPEDIA GALEGA
Tetractis xa ten unha entrada na wikipedia galega (Galipedia) que podes ver no enderezo:
http://gl.wikipedia.org/wiki/Tetractis
MAPA MATEMÁTICO Tetractis xa forma parte do Mapa MatemáTICo en Google Maps, unha rede de Blogues Educativos, Sitios Web, Páxinas de Departamentos Didácticos de Matemáticas e Wikis dedicados á ÁREA DE MATEMÁTICAS.
A SAGRADA FAMILIA: MARABILLOSA XEOMETRÍA Antonio Gaudí proxectou a Sagrada Familia combinando formas xeométricas, elixidas polas súas cualidades estruturais, lumínicas, acústicas...: para iso utilizou cuádricas (hiperboloides, paraboloides e elipsoides), helicodes e conoides. O feito de deseñalas coma superficies regradas facilita a súa construcción.
www.tetractismonelos.blogspot.com
Novembro, 2010
Matemáticas básicas no pentagrama.
N
unha partitura referida a unha obra musical podemos atopar máis matemáticas das que nos imaxinamos. Observemos estes penta‐ gramas pertencentes a unha partitura para piano:
A simple vista, vemos que un pentagrama está formado por cinco seg‐ mentos paralelos e dividido en compases por segmentos perpendicu‐ lares a eles. Os compases son, por así dicilo, fraccións dun pentagrama. En música, a palabra compás ten dous significados. Un deles, é do que acabamos de falar, fraccións dun pentagrama. O outro, refírese a dous números enteiros que atopamos ao comezo dunha obra. O superior indica o numero de figuras que haberá en cada compás, e o inferior a que tipo de figuras nos referimos, xa que cada figura ten asignado un número. Nesta partitura que ten un compás que se le dous por catro, ten que haber dúas negras en cada compás (referíndonos a fracción dun pentagrama). Todas as figuras teñen unha relación de equi‐ valencia, como vemos na táboa da esquerda. Ao principio do penta‐ grama, vemos o símbolo ♯, chamado sostido, que aumenta o 50% do ton das notas ás que afecte. Neste caso, afecta á nota fa, xa que está co‐ locado na liña onde se escribe esa nota. Pola contra, se houbera estou‐ tro símbolo ♭, chamado bemol, reduciría o ton da nota nun 50%. Ta‐ mén podemos colocar estes dous símbolos ao lado de calquera das notas que queiramos alterar. No terceiro compás, usando a palabra compás como fracción do pentagrama, vemos unha negra que ten un puntiño. Este símbolo au‐ menta a duración da figura nun 50%. Se tomamos n como valor da nota, poderiamos expresar matematicamente o seu valor final da se‐ guinte maneira: Valor da nota con puntiño= Finalmente, nunha partitura para piano como esta, podemos ver uns pequenos números encima de cada nota chamados dixitacións (algo terá que ver coa palabra díxito, que usamos para os número 0,1,2,3…), que indican o dedo con que se ten que executar a nota. Para as dúas mans, o polgar é o 1, o índice o 2, o corazón o 3, o anular o 4 e o mainiño o 5. Elena López Serrapio, 3º ESO B
VARIABLES
ESTATÍSTICAS BIDIMENSIONAIS:
Tratamos de calcular o coeficiente de correlación, o coeficiente de regresión, a recta de regresión e estimar valores na distribución bidimensional que aparece á marxe. • MODE MODE 2 • SHIFT SCL = • Intoducir datos: 1 , 20 DT 2 , 22 DT 3 , 21 DT 4 , 24 DT 5 , 26 DT
xi
yi
1
20
2
22
3
21
4
24
5
26
Este modelo de calculadora só traballa con variables estatísticas unidimensionais e non permite calcular o coeficiente de correlación ou o de regresión. A recta de regresión de y sobre x será: y = A + Bx A calculadora permite facer estimacións, tanto de valores de x, coma de valores de y: Ŷ (3,5), 3.5 SHIFT Ŷ
1 (Regresión Linear) (Borrado de memoria)
^ x (25),
• Acceso a parámetros:
SHIFT 1
7(REG)
x^
^x (25), 25 SHIFT S-VAR ⇒ ⇒ ⇒ 1 E calcular outros parámetros: • x, σx, y, σy (con SHIFT e S-VAR) • Σx2 , Σx , n SHIFT S-SUM 1, 2 ou 3 • Σy2 , Σy, Σxy SHIFT S-SUM ⇒ 1, 2 ou 3
1 2 3
x
y
1
20
2
22
3
21
A recta de regresión de y sobre x será: y = A + Bx A calculadora permite facer estimacións, tanto de valores de x, coma de valores de y: Ŷ(3,5), 3.5 SHIFT 1 7(REG) 5
4
24
^x (25), 25 SHIFT 1
5
26
(Regresión Linear)
7(REG) 4
E calcular outros parámetros: • n, x, σx, y, σy SHIFT 1 5(VAR) • Σx2 , Σx , Σy2 , Σy, Σxy SHIFT 1 4(SUM)
A: 1. Ordenda na orixe da recta de regresión B: 2. Coeficiente de regresión de y sobre x r: 3. Coeficiente de correlación Tetractis 47
SHIFT
A recta de regresión de y sobre x será: y = A + Bx A calculadora permite facer estimacións, tanto de valores de x, coma de valores de y: Ŷ(3,5), 3.5 SHIFT S-VAR ⇒ ⇒ ⇒ 2
• MODE MODE 2 1 (Regresión Linear) • SHIFT CLR 1(Scl) = (Borrado de memoria) • Intoducir datos: 1 , 20 DT aparece n = 1 2 , 22 DT “ n=2 3 , 21 DT “ n=3 4 , 24 DT “ n=4 5 , 26 DT “ n=5 Os elementos necesarios son: A: SHIFT S-VAR ⇒ ⇒ B: SHIFT S-VAR ⇒ ⇒ r: SHIFT S-VAR ⇒ ⇒
25
E calcular outros parámetros: • x, σx, y, σy (con SHIFT e 1, 2, 4 e 5) • Σx2 (RCL A), Σx (RCL B), • Σy2 (RCL D), Σy (RCL E), • Σxy (RCL F)
Os elementos necesarios son: (coeficiente de correlación) r: SHIFT r A: SHIFT A (coeficente de regresión) B: SHIFT B
• STAT: MODE 2 2 • Introducir datos: SHIFT 1 2(Data)
REGRESIÓN LINEAR
2
Novembro, 2010
RELOXOS MATEMÁTICOS PARA TODOS
...para os calculadores
...para os radiáns
...para os trigonométricos
...para a cuadratura do triángulo
...para os dixitais
...para os múltiplos de 7
...para os funcionais
...para os nove-adictos
...para os primos
...para os cartesianos
...para os enrolados con Arquímedes
...para os sesaxesimais
...para os binarios
...para os matediversos
...para outros matediversos
...para os complexos
...para os euleriáns
...para os radicais
...para os que abandoan o xiz
...para os fotógrafos
A
TARACEAS
DE
taracea ou marquetería é una técnica artesanal empregada no revestimento de pavimentos, paredes, mobles, esculturas e obxectos artísticos. Para elaboralas utilízanse pezas de distintos materiais (madeiras, metais...). Elabóranse incrustando pequenas pezas destes materiais nomeados nun fondo macizo co fin de crear un deseño decorativo. Pódense facer en pedra dura, en madeira, en xeso, en metais... A taracea mais utilizada consiste en incrustar na madeira ou no metal materiais como o marfil, Carei, cobre ou a propia madeira. O efecto de contraste depende da cor e da textura dos materiais utilizados. Por exemplo, as madeiras exóticas (a caoba e o ébano), ou as combinacións de marfil e madeiras coloreadas, permiten deseños de gran beleza e finura. Polo xeral a taracea utilizouse para decorar mobles, instrumentos musicais e pequenos obxectos de madeira. Encontramos un exemplo de taracea no mobiliario chino da dinastía Ming (1368-1644). En Europa a taracea empregouse sobre todo nos séculos XVI e XVII. FRA GIOVANNI GIOCONDO
Giovanni Giocondo naceu en Verona (norte de Italia) en 1433 e faleceu en 1515. Foi arquitecto, arqueólogo e estudoso da idade antiga clásica. Ingresou na Orden Dominicana a idade de dezaoito anos, e converteuse nun máis dos moitos membros desta orde que foron pioneiros do Renacemento. Sen embargo, poste-
FRA GIOVANNI riormente fíxose franciscano. Comezou a súa carreira como profesor de latín e grego en Verona onde tivo como alumno Xulio César Escalígero. Frade, arqueólogo e moi bo no debuxo, visitou Roma onde debuxou os edificios da antigüidade, escribiu a historia dos seus grandes monumentos e completou moitas inscricións deterioradas. Estimulou o estudio clásico a través de coleccións de antigos manuscritos, un dos cales, terminado en 1492, regaloullo a Lorenzo de Medicís. Pronto volveu a súa cidade natal, onde construíu pontes e proxectou fortificacións para Treviso, facendo de arquitecto
Mazzochio é un poliedro que se pode inscribir nun toro; é similar a un sombreiro florentino do renacemento.
e de inxenieiro e incluso de director a pé de obra de seus proxectos. AS SÚAS TARACEAS
Son mosaicos feitos de anacos de madeira con incrustacións. Trátase dun arte que alcanzou o seu esplendor no norte de Italia no século XV e principios do XVI. Abaixo preséntanse cinco taraceas de Fra Giovanni, elaboradas arredor de 1520. Unhas atópanse no mosteiro de Monte Olivetto Maggiore e outras na igrexa de Santa María,
Taracea na Alhambra
Verona Hai que ter en conta que as taraceas son paneis planos. A aparición das portas do armario abertas son un tipo de efecto da súa perspectiva maxistral. Para a construción da taracea, empregáronse debuxos como modelos para cortar moitas pezas de madeira (tal vez un millar). A madeira das pezas cortadas pégase a outra madeira e vernízase. As diferentes cores proporcionan matices diferentes. As veces aplícase calor para que a madeira ofreza unha gama mais ampla de tonalidades. Conteñen debuxos feitos por Leonardo da Vinci para a obra ’A divina proporción’ de Luca Paccioli e aparecen: aproximacións poliédri-
cas á esfera, icosaedro, icosaedro truncado, mazzochio, cuboctaedro, poliedros estrelados...
Javier Goyanes Souto. 1º Bach. B