On Integrablity Of F-Structure Satisfying F 2K+1 +F=0

Page 1

The International Journal Of Engineering And Science (IJES) || Volume || 5 || Issue || 9 || Pages || PP 64-66 || 2016 || ISSN (e): 2319 – 1813 ISSN (p): 2319 – 1805

On Integrablity Of F-Structure Satisfying F2K+1+F=0 Lakhan Singh Department of Mathematics, D.J. College, Baraut, Baghpat (U.P.) -------------------------------------------------------- ABSTRACT------------------------------------------------------------The purpose of this paper is to study integrability of the F-structure satisying F2K+1 + F=0, where K is a positive integer. Nijenhuis tensor, metric F-structure, fundamental 2-form have also been discussed. Key words: Differentiable manifold, projection operators, tangent bundle, metric and 2-form. --------------------------------------------------------------------------------------------------------------------------------------Date of Submission: 17 May 2016 Date of Accepted: 22 August 20 16 ----------------------------------------------------------------------------------------------------------------------------- --------I. Let

Vn

be a

C 

INTRODUCTION

differentiable manifold and F be a

C  (1,1) tensor satisfying

F 2k 1  F  0,

1.1

we define the projection operators l and m by

l   F 2K , m  I  F 2K ,

1.2

From (1.1) and (1.2) we have

l  m  I , l 2  l , m2  m, lm  ml  0 Fl  lF  F , Fm  mF  0

(1.3)

II. Let

N l

(2.1)

and

N

NIJENHUIS TENSOR

denote the Nijenhuis tensors corresponding to the operators l and m respectively, then

m

N  X ,Y   lX , lY   l 2  X ,Y   l lX ,Y   l  X , lY  l

(2.2)

N  X ,Y    mX , mY   m2  X ,Y   mmX ,Y   m X , mY  . m

Theorem (2.1) For the F structure satisfying (1.1), we have (2.3)

N  lX , lY   m lX , lY  l

(2.4)

N  lX , mY   0 l

(2.5)

N  mX , lY   0 l

(2.6)

N  mX , mY   l  mX , mY  l

Proof: Using (1.3) and (2.3) (2.7)

N  lX , lY   l 2 X , l 2Y   l 2 lX , lY   l l 2 X , lY   l lX , l 2Y  l

 lX , lY   l lX , lY   l lX , lY   l lX , lY    I  l  lX , lY   m lX , lY 

Proceeding similarly we get other results.

www.theijes.com

The IJES

Page 64


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.