The International Journal Of Engineering And Science (IJES) || Volume || 5 || Issue || 9 || Pages || PP 64-66 || 2016 || ISSN (e): 2319 – 1813 ISSN (p): 2319 – 1805
On Integrablity Of F-Structure Satisfying F2K+1+F=0 Lakhan Singh Department of Mathematics, D.J. College, Baraut, Baghpat (U.P.) -------------------------------------------------------- ABSTRACT------------------------------------------------------------The purpose of this paper is to study integrability of the F-structure satisying F2K+1 + F=0, where K is a positive integer. Nijenhuis tensor, metric F-structure, fundamental 2-form have also been discussed. Key words: Differentiable manifold, projection operators, tangent bundle, metric and 2-form. --------------------------------------------------------------------------------------------------------------------------------------Date of Submission: 17 May 2016 Date of Accepted: 22 August 20 16 ----------------------------------------------------------------------------------------------------------------------------- --------I. Let
Vn
be a
C
INTRODUCTION
differentiable manifold and F be a
C (1,1) tensor satisfying
F 2k 1 F 0,
1.1
we define the projection operators l and m by
l F 2K , m I F 2K ,
1.2
From (1.1) and (1.2) we have
l m I , l 2 l , m2 m, lm ml 0 Fl lF F , Fm mF 0
(1.3)
II. Let
N l
(2.1)
and
N
NIJENHUIS TENSOR
denote the Nijenhuis tensors corresponding to the operators l and m respectively, then
m
N X ,Y lX , lY l 2 X ,Y l lX ,Y l X , lY l
(2.2)
N X ,Y mX , mY m2 X ,Y mmX ,Y m X , mY . m
Theorem (2.1) For the F structure satisfying (1.1), we have (2.3)
N lX , lY m lX , lY l
(2.4)
N lX , mY 0 l
(2.5)
N mX , lY 0 l
(2.6)
N mX , mY l mX , mY l
Proof: Using (1.3) and (2.3) (2.7)
N lX , lY l 2 X , l 2Y l 2 lX , lY l l 2 X , lY l lX , l 2Y l
lX , lY l lX , lY l lX , lY l lX , lY I l lX , lY m lX , lY
Proceeding similarly we get other results.
www.theijes.com
The IJES
Page 64