3.biobjective

Page 1

International Journal of Mathematics and Computer Applications Research (IJMCAR) ISSN 2249-6955 Vol. 2 Issue 4 Dec 2012 25-32 Š TJPRC Pvt. Ltd.,

BI-OBJECTIVE EVOLUTIONARY ALGORITHM FOR FLEXIBLE JOB-SHOP SCHEDULING PROBLEM Minimizing Make Span and the Total Workload of Machines 1

1

Research Scholar, Presidency College, University of Madras, Chennai, India 2

3

M. NAGAMANI, 2E. CHANDRASEKARAN & 3D. SARAVANAN

Associate Professor of Mathematics, Presidency College, Chennai, India

Professor of Mathematics, Karpaga Vinayaga College of Engineering and Technology, Chennai, India

ABSTRACT In this paper flexible job-shop scheduling problem (FJSP) is studied in the case of optimizing different contradictory objectives consisting of: (1) minimizing make span, and (2) minimizing total workload. This problem consists of two sub-problems, the routing problem and the sequencing problem and is among the hardest combinatorial optimization problems. As the problem belongs to NP-Hard class problems, we propose an Evolutionary Algorithm (EA) for the FJSP which several different rules for generating the initial population and several strategies for producing new population for next generation. Proposed EA is tested on benchmark problems and with due attention to the results of other meta-heuristics in this field, the results of EA show that our algorithm is effective and comparable to the other algorithms.

KEYWORDS: Bi-Objective, Evolutionary Algorithm, FJSP INTRODUCTION Evolutionary Algorithms (EAs) such as evolutionary strategies and evolutionary algorithms have become the method of choice for optimization problems that are too complex to be solved using deterministic techniques such as linear programming or gradient (Jacobian) methods. The large number of applications (Beasley (1997)) and the continuously growing interest in this field are due to several advantages of EAs compared to gradient based methods for complex problems. EAs require little knowledge about the problem being solved, and they are easy to implement, robust, and inherently parallel. To solve a certain optimization problem, it is enough to require that one is able to evaluate the objective function for a given set of input parameters. Because of their universality, ease of implementation, and fitness for parallel computing, EAs often take less time to find the optimal solution than gradient methods. However, most real-world problems involve simultaneous optimization of several often mutually concurrent objectives. Multi-objective EAs are able to find optimal trade-offs in order to get a set of solutions that are optimal in an overall sense. In multi-objective optimization, gradient based methods are often impossible to apply. Multi-objective EAs, however, can always be applied, and they inherit all of the favorable properties from their single objective relatives. There are many (possibly conflicting) objectives to be optimized simultaneously, there is no longer a single optimal solution but rather a whole set of possible solutions of equivalent quality. Multi-objective EAs can yield a whole set of potential solutions - which are all optimal in some sense. Evolutionary algorithms are well suited to multiobjective optimization problems as they are fundamentally based on biological processes which are inherently


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
3.biobjective by Transtellar Publications - Issuu