Tristan gobin

Page 1

Tristan Gobin Sample of work Academic year 2011-2012



Contents School works ENSAPM 1. Bone-x 7 2. Dymaxion 13 3. Alter network 14 4. Intricate flow 19 Office work, practice and workshop 1. Who’s Next 34 2. EZCT : U-Cube system 41 3. Hyperbody 45 Resume 47



School works ENSAPM

5


_bonix

1.1

1.2

6


1. Bone-x Started as part of the 3rd year’s intensive, this project was then continued in pairs. (Binomial Katia Naouri). The objective here was to make a concrete shell as light as possible. The curves are optimized in order to match the efforts. The variable thickness of the shell distributes the material depending on effort constraints and lightening the structure.

nix nix ions nix ions

mm mm70.71 mm 70.7170.71

mm mm 710.00 710.00 710.00 mm

ions

The second constraint was to produce a mould that matched precisely the shape drawn with the parametric model (with Dassault System Digital Project). We choosed a milling technique with a six axis robot. The plugins and Plan Grasshopper vue du dessous Hal (T. Schwartz) generated the rapid codePlan usedvue by du the dessous ABB IRB 120 robot we used. We then had Plan vue du dessous to understand the mechanisms of machin, learn the limits of the robot to refine our form. Back and forth from design to m manufacturing was necessary m 0 0 until the end20.to enable us to 3 m the protype.m realize m m 0 00 After the moulde fabrication, a .0 0. 0 2 m 3 32 m was paid to particular attention m 00 m 0 .0 0 m 32 m 00 . 0 32

. Plan320vue du dessus

Plan vue du dessus Plan vue du dessus

the quality of the concrete, to be fluid enough to flow around the mould. Several tests were done but we still had to inject the concrete under a pressure of 0,1 MPa.

1.1 Form finding with Digital Project 1.2 Texture research 1.3 Cut-away drawings

1.3

Structure coupée travail sur l’épaisseu variable Structure coupée travail sur coupée l’épaisseu Structure variable travail sur l’épaisseu variable

7


frage - gestion du parcours d’outils

e colision 8 e robot.

1.4

_bonix Mise en place du Coffrage - expérimentation 2

_bonix Mise en place du Coffrage - expérimentation 2 1/ Dans un bloc de mousse assez dense, usinage du moule et du contre moule à l’aide d’un robot 6 axes. L’usinage se fait en 4 parties, et en 4 passages .

1.5

1.4 Form’s control wire 1.5 Toolpath simulation on an ABB IRB 120 equiped of a milling head 1.6 Iron frame fixation’s system

3/ Créations d’ouvertures sur la partie supérieure du coffrage pour - couler le béton - laisser l’air passer Dessin des ouvertures à travailler (à siliconer pour démoulage)

4/ Création de bloc de bois pour fixer les tiges et les empêcher de bouger. Pour maintenir l’armature en fil de fer torsadé à mi-hauteur de la structure des éléments types agraphes sont plantées dans la mousse. L’armature passe à travers les étriers en grillage, pour les maintenir à la bonne hauteur.

1.6


_bonix Usinage du coffrage

_bonix Cales en bois pour maintenir les tiges

_bonix 1.7

Armature

La géométrie de la fraise est à prendre en compte. La taille de coupe, ici 30 mm, la longeur du foret, ici 80mm. Sur la photo, on peut voir que la tête de fixation de la mèche est proche du moule. Nous étions en effet limité pour la profondeur maximum par passe et pour la profondeur maximale globale. Il a fallut en tenir compte dan l’éllaboration du moule et de la géométrie de l’étoile.

1.8

_bonix Coulage du béton

Fixation de l’armature sur les tiges métalliques (elles même maintenues par les cales en bois). L’armature est tendue, de manière à ce qu’elle reste à mi hauteur de la structure dans un même plan et qu’elle ne touche pas les bords. Le réglage de sa tension est permise par deux écrous qui l’enserre à chaque extrémité.

1.9 Lubrifiant à sec pour empecher le béton d’adhérer à la mousse. En premier lieu, le béton est coulé par les trous à l’aide d’un entonnoir, mais il n’y a pas assez de pression, et il ne s’écoule pas corUtilisation d’un tamis pour avoir une granulométrie homogène rectement. L’utilisation d’un tuyau de 2m permet d’introduire de la 1.7 Foam milling et la plus fine possible. pression. Le béton peut s’écouler dans l’ensemble du coffrage.

1.8 Assembling of the moulde Proportions du mélange : 3 ciments, 5 sables, et 1/2 d’eau 1.9 Concret pouring

9




2.1

12

2.2


2. Dymaxion Richard Buckminster Fuller’s Dymaxion house was the subject of a study during the fourth semester. This work was done in pairs (Binomial Fanny Roche). Issues of structure and inhabitancy were the center of the semester, and this house is especially interesting regarding this. The work followed three directions. The first involved the analysis of retrieved documents. The two other related construction of models, one showing the structure, but revisited in the form of a folding, the other showing the interior of the house. The difficulty was mainly to look for documents because there is little accurate plans and documentation on this house. 2.1 Pictures of the model 2.2 Structural caracteristics

13


3. Alter network Building units (working units in a broad sense) physically producing the city are knots around which built-up areas of living units are organized, by a technologically advanced selfconstruction process; then, once their productive task completed, they become public spaces of a particular character (no-work spaces) continuing this way to play a structuring role for the city. This is an almost symbolic proposition. Simulation allows to foreshadow the different topological possibilities of technical networks allowing the city to exist; mobility networks come after, optimizing travel distances. The FabLabs are gridshells whose form follows a parametric process according to their position therefore they are all different. The project does not take the “context� into account, that is to say the actual characteristics of the local territory, except to take advantage of some existing infrastructure. 3.1 Sketches of fablab’s interactions 3.2 Sequence of computational selforganisation testing 3.3 Three different organisations of the pattern 3.4 Detail : organisation around the fablab

14

3.1


3.2

3.4

3.3

15


3.5

16


Dissection du

This is a theoretical project for a sort of generic city: it could be placed anywhere, it does not follow a specific urban analysis. Its location close to HLM (low rent specific production method and construction technology), highlights the contrast between it and another construction technology (the proposed one), that is to say one other production of the built environment. The project highlights two things constantly overlooked in the actual architectural or urban projects, namely the technical infrastructure and the production method for built objects.

C 1 6 2

1 2 3 4 5 6 7

- unit - unité de stoc

- unit

7

5

3

4

Dissection du FabLab Caractéristique des noyaux 1 6 2

1 2 3 4 5 6 7

- unité de production robotisée - unité de stockage composants évolués - espace de réflexion - unité de production robotisée - unité de stockage - pré-découpe - retraitement central

3.6 3.5 Fablab population 3.6 First floor plan of a fablab 3.7 Section of a fablab

7

5

3

4

3.7

17


18


4. Intricate flow Very early, we defined ergonomics, ventilation, noise and sunlight performing requirements for our project. We started by designing and materialize compounds and welding, trying this way to anchor our project in an eco-conception. While working at the scale of components, we tried to make it intelligent and logic, we wanted the whole project to be intelligent and logic too. Therefore, the project is a permanent back and forth between large and small scales, between fiber, envelope and fonctions. The use of parametric and associative tools offers flexibility and high adaptability. Gradually, new concepts were added to the project, enriching it : - Creation of a structural system integrating logic flow management, temperature and light as much as possible. - Consideration of temporality with both permanent and ephemeral components. - In situ production of components for the structure and the envelope but also for daily life components. -Desire to abolish the logic of stages in favor of a system of interconnected “planes of existences”. These plans are offering the possibility to compartmentalize spaces efficiently as a “desk village”. 19


4.1

20


4.3

4.4

4.4 4.1 Computational conceptual research 4.2 Model : conceptual reasearch 4.3 Model : material research 4.2 4.4 Model : structural research

21


4.6

22


4.7

4.6 In & Out relationship 4.7 Spatial relationship diagram

23


We looked for advanced technologies (electrical substrate, protocell) in order to combine them with more traditional systems (natural ventilation, comfort ventilation or humidity controlled ventilation, geothermal energy, principle of accumulation). In other words, we tried to build a reflexion about possible links between high-tech regenerative system and more traditional systems. These regenerative methods, both selective and conservative, are widely described in the book by R. Banham, “Architecture of the Well-Tempered Environment” (ed HYX, printed in 2001 A translation. Cazé), which was one of our basis for this project.

4.8

24

4.8 Research : fiber’s deformation hierarchy 4.9 First step : self organisation 4.10 Second step : ponctual deformation 4.11 Third step : first area control 4.12 Fourth step : envelope generation with sun and geolocalisation influence 4.13 Fifth step : structural generation and specification of each entity 4.14 Final control of repartition, new iteration if necessary, to refine parameters


t=1

t=2

t=7

t=8

4.9

4.12

4.10

50m²

32m²

36m²

39m²

39m²

36m²

40m²

40m²

38m²

38m²

34m²

4.13

WORKSPACE 904,78 m²

x1 43 m²

x54

BIOTOPE 132,73 m²

x18

FAB_LAB 78,54 m² COMMUN 75,40 m² RESTAURANT

75,43 m²

AUDITORIUM 113,10 m²

x1 113 m²

39m²

38m²

39m²

38m²

x1 78 m²

34m²

34m²

33m²

x1 75 m²

35m²

4.11

4.14

4.13

25


4.14

4.16 4.14 Section 4.15 Model: workspace (scale 1/20) 4.16 Model: detail 4.17 Aerial view

26

4.15


4.17

27


4.18 First level plan 4.19 Plan detail of a workspace 4.20 Workspace section

A

A’

0m

1m

4.18

4.19

28


0m

1m 4.20

29


contreventement fibre primaire spécificité : système porteur matériaux : acier Ø ext - Ø int: 200 - 170 mm opérations : ceintrage, soudage couverture spécificité : matériaux variable pour donner des qualités d’isolation et de lumière. fibre secondaire matériaux : fibre de verre Ø ext - Ø int: 40 - 35 mm opérations :é ceintrage plateau matériaux : bois lamelé collé épaisseur : 20 mm opérations : découpe, perforation

rotule

rotule matériaux : acier moulé opérations : tirage

interface Fibre secondaire / Plateau

agraffe matériaux : acier épaisseur : 2 mm opérations : pièces standard visserie matériaux : acier épaisseur : 3 mm opérations : pièces standard

Interface plateau/agraffe matériaux : tole acier pliée épaisseur : 3 mm opérations : découpe, perforation, pli

acceuil rotule matériaux : acier moulé opérations : tirage

plancher structurel spécificités : système adaptatif aux contraintes structurelles locales en répartissant les efforts épaisseur : 60 mm

appuis : 3 points

30

appuis : 4 points

appuis : 5 points

appuis : 7 points

pièce de joint matériaux : aluminium Ø ext - Ø int: 45 - 35 mm opérations : perforation, découpe visserie matériaux : acier Ø : 4mm opérations : pièces standard

angle d’incidence : singulier




Office work, practice and workshop

33


1. Who’s Next This project was realized through a partnership between ENSA Paris Malaquais and the ready-towear compagny Who’s Next First Class. We had 10,000£ to turn a 2,000 m² parking into a deck.We were a team of five second year students. The teacher Philippe Morel followed us. We assured the whole work, from design to construction, through costing and the details of execution. The assembly was particularly hard. We assembled more than 90 compounds each consisting of 12 cardboard discs. Metal angles specially designed for the occasion, building by rivets, kept the pieces of cardboard fixed together. More than 10,000 rivets were used, the building took five days.

1.1

34

1.1 Scaled model for assembly test 1.2 Assembly sequence 1.3 Details on the metallic hinges 1.4 Elevation : assembly of module A with module B Next page : 1.5 Axonometry : Geometry parameters of module A


1

2

3

4

5

6

7

8

9

10

11

12

13

14

1

1

1.2

1

2

2

3

1.3

1.4

35


36


37


2.1

38

2.2


2. EZCT : U-Cube system U-Cube system is an experimental device consisting of cubic hollowed Styrofoam. Cavities, responding to specific connectivity rules, in which a self-compacting concrete liquid Ductal ®is poured, forming a support structure with no outside contact. This lack of contact with holding polystyrene as formwork offers many advantages, including excellent thermal and acoustic insulation. Cavities, cut by a 6-axis ABB industrial robot, piloted by HAL ®, reproduce a three-dimensional mesh as continuous as possible (a surface as smooth and even possible), while the cubes obey to “digital geometry” rules (or “discrete geometry”). The project aims to integrate the architectural thinking of the possibilities and features of the computer as a “discrete state machine.”

Issues related to the project are fourfold. 1) Establishing a correspondence between the geometry of the construction and geometry present in a computer. 2) Anticipating the massive deployment of robotics (whose logic is discrete) not by adapting the robots to the models, but adapting upstream geometric models used by the architecture to robots. 3) Explore the potential of an economical use of the Ultra High Performance Fibre-Reinforced Concrete (UHPFRC). 4) Develop a different architectural notation, which would not be based anymore on plans or continuous dimensions (metric), but on a series of numbers describing the relative positions and directions of cubes in a discrete space (cubes are voxel-”volume elements “, by analogy with the pixels-” picture elements “).

2.1 Drilling’s numerical model 2.2 Computational analysis of discretized lines describing a complex surface

3.3

39


2.3

2.4

40


2.3 Model : variable section of concrete framework in its foam and wood mould 2.4 Model : framework with elliptic section 2.5 Experiementation with Ductal poured in foam at Lafarge’s laboratory

2.5

41


3.3

3.4

3.1

3.5

3.2

3.6

42


3. Hyperbody This workshop took place in Rotterdam, in the premises of the TU Delft. It was a master class with Wes McGee and Dave Pigram. The purpose of the workshop was to create a concrete funicular structure, which mould was made of foam. The software Processing was first used to create a funicular system simulation and for the form finding. Once the form was found, the foam mould was cut with a robotic hot wire. To combine funicular structures with robotic hotwire cutting was the aim of this workshop. Separate blocks of the free-standing foam were cut, and then put together to form the mould. Unfortunately we did not have the time to pour the concrete inside. If we could have done it, we would have obtained a concrete framework.

3.7

3.1 Funicular mesh system form finding with Processing 3.2 Aerial view of the last generation 3.3 Workshop’s premises 3.4 ABB Robotic hot wire 3.5 Partial assembling 3.6 Foam moulde testing 3.7 Drawings : section, plan, mass plan

43



Resume

45


46


Tristan GOBIN Born 11/04/1987 8 rue de la Vega 75012 PARIS, FRANCE tristan.gobin@gmail.com +33 6 33 53 45 44 EDUCATION 2011 Currently in third year of Undergraduate at Ecole Nationale Supérieure d’Architecture Paris Malaquais. 2009 Student in second year of Undergraduate in Geography, specialty Urbanism at Paris 7 University 2008 BTS Space Design Diploma (French equivalent of HND) at La Martinière School in Lyon 2007 MANAA (French equivalent of Foundation course - Art and Design) at Saliège School in Toulouse 2003-06 Baccalauréat « Scientific » specialty Biology (French equivalent of GCE Advance Level) WORK EXPERIENCES 2011-12 Trainee at EZCT (Paris) 2009-10 Designer for 3+1 Architecte and Vaillant Architecte (Paris) 2008 Trainee with Vaillant Architecte (Paris) WORKSHOP 2011 Workshop with Dave Pigram and Wes McGee, With the department of research Hyperbody Masterclass at thye TUDelft Institut, RDM Campus Rotterdam LANGUAGES Good English, Perfect French, Average Italian SKILLS PAO : Indesign, Illustrator Rendering : Photoshop, Vray CAD/AEC : Mathematica, Autocad, Rhino, Revit 2012, Grasshopper, Digital Project and Knowledge Pattern (notion), VBnet (notion), Processing (notion) Robotic : Robot Studio and Rapid code (for ABB robot), HAL for Grasshopper (T. Schwartz’s plug-in), Robotics tooling, Milling programmation Web Design : HTML, C++ INTERESTS Sports : Hand Ball, Volley Ball, Badminton, Viet Vo Dao Music : Harpsichord and piano studies in Music School (Francis Poulenc, CRR Tours), percussion.

47




Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.