1
Profesora: Nerita Tarrillo Dávila Alumna: Yanina Dávila Arévalo Grado y Sección: 4º “A”
2
Índice 1. CONOCIENDO LOS ALGORITMOS …………………………………………………………………………………………. 3 2. DIAGRAMAS DE FLUJOS DE DATOS .……………………………………………………………………………………. 15 3. DIAGRAMAS DE FLUJOS DE DATOS CON DFD ……………………………………………………………………… 44 4. ESTRUCTURAS CONDICIONALES SIMPLES, DOBLES Y MÚLTIPLES ………………………………………… 50 5. ENLACES WEB …………………………………………………………………………………………………………………….. 63
3
4
ALGORITMOS
DIFINICION: En matemáticas, ciencias de la computación y disciplinas relacionadas, un algoritmo es un conjunto prescrito de instrucciones o reglas bien definidas, ordenadas y finitas que permite realizar una actividad mediante pasos sucesivos que no generen dudas a quien deba realizar dicha actividad. Dados un estado inicial y una entrada, siguiendo los pasos sucesivos se llega a un estado final y se obtiene una solución. Los algoritmos son el objeto de estudio de la algoritmia. En la vida cotidiana, se emplean algoritmos frecuentemente para resolver problemas. Algunos ejemplos son los manuales de usuario, que muestran algoritmos para usar un aparato, o las instrucciones que recibe un trabajador por parte de su patrón. Algunos ejemplos en matemática son el algoritmo de la división para calcular el cociente de dos números, el algoritmo de Euclides para obtener el máximo común divisor de dos enteros positivos, o el método de Gauss para resolver un sistema lineal de ecuaciones. En general, no existe ningún consenso definitivo en cuanto a la definición formal de algoritmo. Muchos autores los señalan como listas de instrucciones para resolver un problema abstracto, es decir, que un
5
número finito de pasos convierten los datos de un problema (entrada) en una solución (salida). Sin embargo cabe notar que algunos algoritmos no necesariamente tienen que terminar o resolver un problema en particular. Por ejemplo, una versión modificada de la criba de Eratóstenes que nunca termine de calcular números primos no deja de ser un algoritmo. A lo largo de la historia varios autores han tratado de definir formalmente a los algoritmos utilizando modelos matemáticos como máquinas de Turing entre otros. Sin embargo, estos modelos están sujetos a un tipo particular de datos como son números, símbolos o gráficas mientras que, en general, los algoritmos funcionan sobre una vasta cantidad de estructuras de datos.3 1 En general, la parte común en todas las definiciones se puede resumir en las siguientes tres propiedades siempre y cuando no consideremos algoritmos paralelos: Tiempo secuencial. Un algoritmo funciona en tiempo discretizado –paso a paso–, definiendo así una secuencia de estados "computacionales" por cada entrada válida (la entrada son los datos que se le suministran al algoritmo antes de comenzar).
6
Estado abstracto. Cada estado computacional puede ser descrito formalmente utilizando una estructura de primer orden y cada algoritmo es independiente de su implementación (los algoritmos son objetos abstractos) de manera que en un algoritmo las estructuras de primer orden son invariantes bajo isomorfismo.
Exploración acotada. La transición de un estado al siguiente queda completamente determinada por una descripción fija y finita; es decir, entre cada estado y el siguiente solamente se puede tomar en cuenta una cantidad fija y limitada de términos del estado actual. En resumen, un algoritmo es cualquier cosa que funcione paso a paso, donde cada paso se pueda describir sin ambigüedad y sin hacer referencia a una computadora en particular, y además tiene un límite fijo en cuanto a la cantidad de datos que se pueden leer/escribir en un solo paso. Esta amplia definición abarca tanto a algoritmos prácticos como aquellos que solo funcionan en teoría, por ejemplo el método de Newton y la eliminación de Gauss-Jordan funcionan, al menos en principio, con números de precisión infinita; sin embargo no es posible programar la precisión
7
infinita en una computadora, y no por ello dejan de ser algoritmos. En particular es posible considerar una cuarta propiedad que puede ser usada para validar la tesis de Church-Turing de que toda función calculable se puede programar en una máquina de Turing (o equivalentemente, en un lenguaje de programación suficientemente general):
Aritmetizabilidad. Solamente operaciones innegablemente calculables están disponibles en el paso inicial. La palabra algoritmo proviene del nombre del matemático llamado Abu Abdullah Muhammad bin Musa alKhwarizmi (hay muchas variantes para el nombre al usar el alfabeto latín, tales como Al-Khorezmi, AlKhwarizmi, Al-Khawarizmi, Al-Khawaritzmi o Al-Khowarizmi) que vivió entre los siglos VIII y IX. Su trabajo consistió en preservar y difundir el conocimiento de la antigua Grecia y de la India. Sus libros eran de fácil comprensión, de ahí que su principal valor no fuera el de crear nuevos teoremas o nuevas corrientes de pensamiento, sino el de simplificar las matemáticas a un nivel lo suficientemente bajo para
8
que pudiera ser comprendido por un amplio público. Cabe destacar cómo señaló las virtudes del sistema decimal indio (en contra de los sistemas tradicionales árabes) y cómo explicó que, mediante una especificación clara y concisa de cómo calcular sistemáticamente, se podrían definir algoritmos que fueran usados en dispositivos mecánicos similares a un ábaco en vez de las manos. También estudió la manera de reducir el número de operaciones necesarias que formaban el cálculo. Por esta razón, aunque no haya sido él el inventor del primer algoritmo, merece que este concepto esté asociado a su nombre. Al-Khorezmi fue sin duda el primer pensador algorítmico. Ya en el siglo XIX, se produjo el primer algoritmo escrito para un computador. La autora fue Ada Byron, en cuyos escritos se detallaban la máquina analítica en 1842. Por ello que es considerada por muchos como la primera programadora aunque, desde Charles Babbage, nadie completó su máquina, por lo que el algoritmo nunca se implementó. La idea de resolver un problema o de disponer de un algoritmo es bastante antigua, tal es así, que existía la errada creencia que no había problema que no se pudiera resolver y en base a ello, el matemático David
9
Hilbert quiso descubrir un algoritmo para los algoritmos. Hoy en dia gracias a los trabajos de Kurt Gödel, Alonso Church (calculo lamba), Alan Turing (maquina de turing), se sabe que dentro del universo de problemas, una pequeña parte es computable, luego que el objetivo que perseguia David Hilbert no era computable, es lo que se ha denominado como la compatibilidad de los algoritmos. CARACTERÍSTICAS: Las características fundamentales que debe cumplir todo algoritmo son:
Ser definido: Sin ambigüedad, cada paso del algoritmo debe indicar la acción a realizar sin criterios de interpretación.
Ser finito: Un número específico y numerable de pasos debe componer al algoritmo, el cual deberá finalizar al completarlos.
Tener cero o más entradas: Datos son proporcionados a un algoritmo como insumo (o estos son generados de alguna forma) para llevar a cabo las operaciones que comprende.
10
Tener una o más salidas: Debe siempre devolver un resultado; de nada sirve un algoritmo que hace algo y nunca sabemos que fue. El devolver un resultado no debe ser considerado como únicamente “verlos” en forma impresa o en pantalla, como ocurre con las computadoras. Existen muchos otros mecanismos susceptibles de programación que no cuentan con una salida de resultados de esta forma. Por salida de resultados debe entenderse todo medio o canal por el cual es posible apreciar los efectos de las acciones del algoritmo.
Efectividad: El tiempo y esfuerzo por cada paso realizado debe ser preciso, no usando nada más ni nada menos que aquello que se requiera para y en su ejecución.
Las características fundamentales que debe cumplir todo algoritmo son:
Un algoritmo debe ser preciso e indicar el orden de realización de cada paso.
Un algoritmo debe estar definido. Si se sigue un algoritmo dos veces, se debe obtener el mismo resultado cada vez.
Un algoritmo debe ser finito. el algoritmo se debe terminar en algún momento; o sea, debe tener un número finito de pasos.
11
Un algoritmo debe ser legibles: El texto que lo describe debe ser claro, tal que permita entenderlo y leerlo fácilmente.
Un algoritmo debe definir tres partes: Entrada, Proceso y Salida. Ejemplo: el algoritmo de receta de cocina se tendrá:
Entrada: ingrediente y utensilios.
Proceso: elaboración de la receta en la cocina.
Salida: terminación del plato (por ejemplo, Pollo al horno). PROPIEDADES DE UN ALGORITMO:
Las propiedades de un algoritmo son puntos guías a seguir para su elaboración, ya que éstos permiten un mejor desarrollo del problema. 1. Enunciado del problema. El enunciado del problema debe de ser claro y completo. Es importante que conozcamos exactamente lo que deseamos que haga el computador. Mientras esto no se comprenda, no tiene caso pasar a la siguiente etapa.
12
2. Análisis de la solución general. Entendido el problema, para resolverlo es preciso analizar:
Los datos de entradas que nos suministran. El proceso al que se requiere someter esos datos a fin de obtener los resultados esperados.
Los datos o resultados que se esperan.
Áreas de trabajo, fórmulas y otros recursos necesarios.
Definir condiciones si las hay
Diferentes alternativas de solución. Analizando el problema, posiblemente tengamos varias formas de resolverlo. Lo importante es determinar cuál es la mejor alternativa: la que produce los resultados esperados en el menor tiempo. 3. Elaboración Del Algoritmo Los conocimientos adquiridos anteriormente son las herramientas necesarias para llevar a cabo la elaboración de un algoritmo a través de un problema. Se recomienda tomar en cuenta cada una de las propiedades de un algoritmo, ya que de ahí se inicia el proceso de elaboración.
13
EJEMPLOS: Diseñar un algoritmo para dar solución a los siguientes casos: Hallar el área de un cuadrado:
A ■ = L*L
INICIO: Lado, área es real leer “ingresar lado:”, lado área= lado^2 Imprimir “el área del cuadrado:”, área. FIN
14
Hallar el área de un circulo: A
= π.2
2
INICIO: Área, radio, x es real x = 3,1416 leer “ingresar radio:”, R. área = X *(R^2) imprimir “el área del circulo es:” Área. FIN:
15
16
SIMBOLOGÍA DE LOS DIAGRAMAS DE FLUJO Las diversas organizaciones usan distintos símbolos, pero el comité sobre computadoras y procesadores de información de la Asociación Norteamericana de Normas ha hecho un gran esfuerzo para normalizar los símbolos de los diagramas de flujo. Esa normalización permite comprender cualquier diagrama de flujo que use los símbolos recomendados. Cada símbolo normal de diagrama de flujo tiene un significado especial.
Expresa Inicio o Fin de un Programa.
Expresa operación algebraica o de asignación.
17
Expresa condiciones y asociaciones alternativas de una decisión lógica.
Expresa condición y acciones alternativas de una decisión numérica.
Entrada / Salida: Representa cualquier tipo de Fuente de entrada y salida
18
Entrada: Lectura de datos por tarjeta perforadas.
Conector dentro de pรกgina.
Representa resultado mediante un reporte impreso
Conector fuera de pรกgina.
19
Expresa operación cíclica repetitiva.
Expresa proceso de llamada a una subalterna.
Representa datos grabados en una cinta magnética.
Almacenamiento en línea Disco Magnético.
20
REGLAS PARA ESTRUCTURAR UN DIAGRAMA DE FLUJO
El sentido de un diagrama de flujo generalmente es de arriba hacia abajo.
Es un símbolo solo puede entrar una flecha de flujo si varias líneas se dirigen al mismo símbolo, se deben unir en una sola flecha.
Las líneas de flujo no deben cruzarse, para evitar los cruces se utilizan los conectores.
De un símbolo excepto el de decisión, solo puede salir una línea de flujo.
Los símbolos Terminal, Conector dentro de página y conector fuera de página solo pueden estar conectados al diagrama por una sola flecha, ya que por su naturaleza es imposible que tenga una entrada y una de salida.
21
Los émbolos de decisión tendrán siempre una sola flecha de entrada y dos o tres flechas de salida según la cantidad de alternativas que se presentan.
Un diagrama de flujo debe estar complemente cerrado, teniendo una continuidad de principio a fin, no pueden quedar flechas en el aire ni símbolos sin conexión al diagrama pues el flujo seria interrumpido. CONSIDERACIONES SOBRE DIAGRAMA DE FLUJO Un diagrama de flujo, puede tener tipos de errores diferentes: DE FORMA: Se genera por no seguir las reglas establecidas, puede hacer el diagrama difícil interpretación, confundir el diagrama y hasta convertirlo en errado en cuanto ser lógica. DE LÓGICA: Son errores de estructura del diagrama en cuanto al arden puede ser de distinta gravedad, desde dejar de mostrar el resultado. O falta un cálculo hasta un error que determine que un programa nunca llegue a su fin.
22
DE OBJETIVO: Es cuando un diagrama de flujo esta correcto en cuanto a su estructura y forma pero no soluciona el problema propuesto sino otro. Una vez terminado e diagrama de flujo, es necesario asegurarse de que funcione correctamente cumpliendo el objetivo fundamental, las condiciones especificas y las excepciones del problema propuesto a esto se le llama generalmente "corrida en frió" prueba de escritorio. Para ellos e selecciona algunos datos (creadas por el programador para fines de la prueba) que cubran todos los casos posibles en todas las condiciones. Tomando estos datos se recorre el diagrama de flujo símbolo a símbolo siguiendo la orden de cada uno de ellos, todo esto se hará a un lado del diagrama o en una hoja aparte dándole valores a variables y ejecutando operación que se indique .Ejemplo:
23
24
¿QUÉ ES UN DIAGRAMA DE FLUJO DE DATOS? Es una descripción grafica de un procedimiento para la resolución de un problema. Son frecuentemente usados para descubrir algoritmos y programas de computador. Los diagramas de flujos están compuestos por figuras conectadas con flechas. Para ejecutar un proceso comienza por el Inicio y se siguen las acciones indicadas por cada figura: El tipo de figura indica el tipo de paso que representa. Del Software, DFD es un software diseñado para contribuir y analizar algoritmos se puede crear diagramas de flujos de datos para la representación de algoritmos de programación estructurada a partir de las herramientas de edición que para este propósito suministra el programa .Después de hacer haber ingresado el representado por el diagrama, podrá, ejecutarlo analizarlo y depurarlo en un entorno interactivo diseñado para este fin. La interfaz grafica de DFD facilita en gran medida el trabajo con diagramas ya que simula la representación estándar de diagramas de flujo en hojas de papel.
25
LOS COMPONENTES DE UN DIAGRAMA DE FLUJO SON:
Proceso
Flujo
Almacén
Terminador
PROCESO: El primer componente de diagrama de flujo de datos se conoce como Proceso. El proceso nuestra una parte del sistema que transforman Entradas y Salidas. Algunas analistas prefieren usar un ovalo o un rectángulo con esquinas redondeadas, otros prefieren usar un rectángulo. Las diferencias entre estas tres formas son puramente cosméticas, aunque obviamente es importante usar la misma forma de la manera consistente para representar todas las funciones de un sistema.
26
FLUJO: Un flujo se representa gráficamente por medio de una flecha que entra y sale de proceso; el flujo se usa para describir el movimiento, de bloques o paquetes de información de una parte del sistema a otra. Los flujos realmente representan Datos, es decir, Bits caracteres, mensajes, números, de puntos, flotante y los diversos tipos de información con los que las computadoras pueden tratar. Los flujos también muestran la dirección: Una cabeza de flecha en cualquier extremo(o posiblemente ambos) del flujo indica si los datos (o el material) se está moviendo hacia adentro a hacia fuera por ejemplo indica claramente que el número se está mandando hacia el proceso denominado validar numero
27
telef贸nicos, y el flujo denominado honorarios de entrega de ch贸feres. Los datos que se mueven a dicho flujo viajaran ya sea de un proceso a otro. Ejemplo:
28
ALMACÉN: Se utiliza para modelar una colección de paquetes de datos en reposo. Se denota por dos líneas paralelas, de modo característico el nombre que se utiliza para identificar para los paquetes que entran y salen del almacén por medios de flujo. PEDIDOS: Para el analista con conocimiento de proceso de datos es tentador referirse a los almacenes como archivos o bases de datos; pro un almacén también pudiera consistir en datos almacenados también pudiera consistir en datos almacenados en tarjetas perforadas, microfilm, microfichas, discos ópticos, etc. y un almacén también puede ser en conjunto de fichas de papel en una caja de cartón , nombres de fichas de papel en un directorio, diversos archivos en un archivero, o varias formas no computarizadas. Los almacenes se conectan por flujos a los procesos. Así el contexto en el que se muestra en un DFD (Diagrama de Flujo de Datos) es uno de los siguientes:
29
Un flujo desde un almacén.
UN flujo hacia un almacén.
TERMINADOR: Se representa como un rectángulo como los terminadores ser representa en entidades externas con las cuales el sistema se comunica, continuamente, puede ser una persona, o un grupo. Por ejemplo: una organización externa n o una agencia gubernamental, o un grupo o departamento que este dentro de la misma compañía u organización, pero fuera del control del sistema que se está modelando. En algunos casos, un terminador puede ser otro sistema, como algún otro sistema computacional con el cual se comunica este.
30
Existen tres cosas importantes que debemos recordar acerca de los terminadores.
Son externos al sistema que se está modelando.
Es evidente que ni el analista ni el diseñador del sistema están en posibilidades de cambiar los contenidos de un terminador o la manera en que esta trabaja.
Las relaciones que existen entre lo terminadores no se muestran en el modelo DFD (Diagrama de Flujo de Datos).
REGLAS PARA LA CREACIÓN DE DIAGRAMAS 1. Los diagramas de flujo deben escribirse de arriba hacia abajo y/o de Izquierda a derecha. 2. Los símbolos se unen con líneas, las cuales tienen en la punta una flecha que indica su dirección que fluye la información procesos, se deben utilizar solamente líneas de flujo horizontal o vertical (nunca diagonales).
31
3. Se debe evitar el cruce de líneas, para lo cual se quisiera separar el flujo del diagrama a un sitio distinto, se pudiera realizar utilizando los conectores, se debe tener en cuenta que solo se van a utilizar conectores cuando sean estrictamente necesario. 4. No deben quedar líneas de flujo sin conectar. 5. Todo texto escrito dentro de un símbolo debe ser legible, preciso, evitando el uso de muchas palabras. 6. Todos los símbolos pueden tener más de una línea de entrada, a excepto del símbolo final. 7. Solo los símbolos de decisión pueden y deben tener más de una línea de flujo de salida.
Ejemplo de Diagrama de Flujo: Diagrama de flujo que encuentra la suma de los primeros 50 números naturales.
32
33
El quinto bloque es un símbolo de suma de decisiones y ramificaciones lo q hay dentro del bloque es una pregunta que se le hace a las valores que actualmente incluyen en el proceso.
¿Es N=50?, obviamente la respuesta es No, ya que N todavía es 1.Por lo que el flujo de nuestro programa se dirigirá hacia la parte en donde se observa la palabra No. Tercer bloque, este le sumara1 (N=N+1) y vuelve a llegar a este bloque, donde preguntará ¿es N=50? No todavía es 2 ha pues regresa al tercer bloque y vuelve hacer lo mismo así la suma los primeros 50 números naturales.
Por último indicaciones que le resultado será mostrado en la impresora.
34
EXPLICACIÓN DEL DIAGRAMA DE FLUJO
El primer bloque indica el inicio del diagrama de flujo.
El segundo bloque, es un símbolo de procesos.
35
En este bloque se asume que las variables suman y N ha sido declarada previamente y las inicializa en o para comenzar al conteo y la suma de valores.
Tercer bloque, es también un símbolo de procesos.
En este paso se incrementa en 1 la variable N(N=N+1), por lo que en la primera pasada esta valdrá 1, ya que estaba inicializada en 0.
36
Cuarto bloque, es exactamente lo mismo que el anterior.
Pero en este, ya se agrega el valor de N a la variable que contendrá la suma (en el primer caso contendrá 1, ya que N=1). VENTAJAS DEL ENFOQUE DE FLUJOS DE DATOS El enfoque de flujo de datos tiene cuatro ventajas principales sobre la explicación narrativa de la forma en que se mueven los datos a trabes del sistema .Las ventajas son. 1. Libertad para realizar en forma muy temprana la implementación de técnicas de sistema. 2. Una mayor comprensión de las interrelaciones de los sistemas y subsistemas.
37
3. Comunicación del conocimiento del sistema actual a los usuarios por medio de diagramas de flujo de datos. 4. Análisis de un sistema propuesto para determinar si han sido definidas los datos y procesos necesarios. SÍMBOLOS USADOS EN EL DIAGRAMA DE FLUJO DE DATOS
38
SIGNIFICADO DE LOS SÍMBOLOS DE FLUJO El cuadrado doble es representado y usado para una actividad externa (otro departamento, un negocio, una persona, o una maquina) que puedan enviar datos y recibirlas del sistema. La entidad externa es llamada una fuente de destino de datos y es considerada externa al estudio, cada entidad externa es etiquetada con un nombre adecuado. La flecha muestra el movimiento de datos de un punto a otro , esta señalada hacia suceden simultáneamente pueden ser representadas simplemente mediante el uso de flechas paralelas, debido a que una flecha representada datos acerca de una persona lugar o casa, también :Debe ser descrita con un nombre. Un rectángulo con esquinas redondeadas es usado para mostrar la aparición de un proceso de transformación. Los procesos siempre denotan un cambio o transformación de los datos. USO DE DIAGRAMAS DE FLUJO DE DATOS Los diagramas de flujo de datos son útiles a lo largo del proceso de análisis y diseños, .Existen compromisos para decidir que tanto deben ser explotados de los flujos de datos. Se desperdiciara tiempo y se sacrificara
39
compresibilidad si los diagramas de flujo de datos son exclusivamente complejos. Por otro lado, si los diagramas de flujo de datos están muy poco explotados, pueden ocurrir errores u omisiones que pueden eventualmente afectar el sistema que está en desarrollo. Por último, recuerde que los diagramas del sistema de flujo pueden ser usados para documentar niveles altos o bajos del análisis y para ayudar a sustentar la lógica subyacente en los flujos de datos de la organización. CARACTERÍSTICAS DE LOS DIAGRAMAS DE FLUJO DE DATOS
Muestran que debe hacer el sistema sin referencias.
Son diagramas explícitos y comprensibles.
Dan la posibilidad de representan el sistema a diferentes niveles de complejidad, desde lo más global a lo más detallado solo requieren de 4 símbolos.
Son fácil de mantenimiento, pues los cambios afectan solo algunos de sus elementos y no al todo.
¿CUÁLES SO LAS VENTAJAS DE LOS DIAGRAMAS DE FLUJO DE DATOS?
Fácil lectura, con esto se constituye en un instrumento de mucha versatilidad.
40
Facilitan la interacción Usuario-Analista.
¿CUÁLES SON LAS LIMITACIONES DE LOS DIAGRAMAS DE FLUJO DE DATOS?
No permite recoger el comportamiento de sistema que deben responder a eventos en tiempos acotados. Para ello se usa el diagrama de transición de Estados.
No permite dar cuenta de la de las relaciones entre los datos que se precisan almacenar .Para ello se usan el diagrama Entidad-Relación.
No permite reflejar situaciones en las cuales es preciso dejar de manifiesto la necesaria concurrencia de dos o más flujo de datos para un subproceso pueda iniciar efectivamente su tarea. Para ello se utiliza la especificación de procesos.
No permite recoger el contenido de los flujos de datos ni el contenido de los archivos .Para ello se utiliza el diccionario de datos.
41
42
43
44
45
46
47
48
49
50
51
Las estructuras condicionales comparan una variable contra otro(s) valor (es), para que en base al resultado de esta comparación, se siga un curso de acción dentro del programa. Cabe mencionar que la comparación se puede hacer contra otra variable o contra una constante, según se necesite. Existen tres tipos básicos, las simples, las dobles y las múltiples.
52
Simples:
Las estructuras condicionales simples se les conoce como “Tomas de decisión”. Estas tomas de decisión tienen la siguiente forma: Pseudocódigo:
Diagrama de flujo:
53
Dobles: Las estructuras condicionales dobles permiten elegir entre dos opciones o alternativas posibles en función del cumplimiento o no de una determinada condición. Se representa de la siguiente forma: Pseudocódigo:
Diagrama de flujo:
Donde: Si:Indica el comando de comparación Condición : Indica la condición a evaluar Entonces : Precede a las acciones a realizar cuando se cumple la condición Instrucción(es):Son las acciones a realizar cuando se cumple o no la condición si no :Precede a las acciones a realizar cuando no se cumple la condición Dependiendo de si la comparación es cierta o falsa, se pueden realizar una o más acciones.
54
Múltiples: Las estructuras de comparación múltiples, son tomas de decisión especializadas que permiten comparar una variable contra distintos posibles resultados, ejecutando para cada caso una serie de instrucciones especificas. La forma común es la siguiente:
Pseudocódigo:
Diagrama de flujo:
55
Múltiples (En caso de):
Las estructuras de comparación múltiples, es una toma de decisión especializada que permiten evaluar una variable con distintos posibles resultados, ejecutando para cada caso una serie de instrucciones especificas. La forma es la siguiente:
Pseudocódigo:
Diagrama de flujo:
56
Veamos algunos ejemplos donde se aplique todo lo anterior: Realizar un algoritmo en donde se pide la edad del usuario; si es mayor de edad debe aparecer un mensaje indic谩ndolo. Expresarlo en Pseudoc贸digo y Diagrama de flujos. Pseudoc贸digo:
Diagrama de flujo:
57
Se pide leer tres notas del alumno, calcular su definitiva en un rango de 0-5 y enviar un mensaje donde diga si el alumno aprobó o reprobó el curso. Exprese el algoritmo usando Pseudocódigo y diagrama de flujos. Pseudocódigo: INICIO Not1, Not2, Not 3 :REAL Def: REAL LEA Nota1, Nota2, Nota3 Def ß (Not1 + Not2 + Not3) /3 Si Def < 3 entonces Escriba “Reprobó el curso” Sino Escriba “Aprobó el curso” Fin-Si FIN
58
Diagrama de flujo:
59
Se desea escribir un algoritmo que pida la altura de una persona, si la altura es menor o igual a 150 cm envíe el mensaje: “Persona de altura baja”; si la altura está entre 151 y 170 escriba el mensaje: “Persona de altura media” y si la altura es mayor al 171 escriba el mensaje: “Persona alta”. Exprese el algoritmo usando Pseudocódigo y diagrama de flujos. Pseudocódigo: INICIO Altura: ENTERO ESCRIBA “Cuál es tu altura? ” LEA Altura Si Altura <=150 entonces ESCRIBA “persona de altura baja” Sino Si Altura <=170 entonces ESCRIBA “persona de altura media” Sino Si Altura>170 ENTONCES ESCRIBA “persona alta” Fin-Si Fin-Si Fin-Si FIN ¡Es importante ser ordenado en el código que se escribe!
60
Diagrama de flujo:
61
Dado un numero entre 1 y 7 escriba su correspondiente día de la semana así: 1- Lunes 2- Martes 3- Miércoles 4- Jueves 5- Viernes 6- Sábado 7- Domingo Exprese el algoritmo usando Pseudocódigo y diagrama de flujos. Pseudocódigo: Pseudocódigo: INICIO Dia: ENTERO ESCRIBA “Diga un número para escribir su día” LEA Dia En-caso-de Dia haga Caso 1: ESCRIBA “Lunes” Caso 2: ESCRIBA “Martes” Caso 3: ESCRIBA “Miércoles” Caso 4: ESCRIBA “Jueves” Caso 5: ESCRIBA “Viernes” Caso 6: ESCRIBA “Sábado” Caso 7: ESCRIBA “Domingo” SINO: ESCRIBA “Escribió un numero fuera del rango 1-7” Fin-Caso FIN
62
Diagrama de flujo:
63
Enlaces web: http://es.wikipedia.org/wiki/Algoritmo http://html.rincondelvago.com/dfd.html http://www.javaya.com.ar/detalleconcepto.php?codigo=80&inicio=
GRACIAS!